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ABSTRACT

This thesis presents a design method of robust Proportional-integral-derivative (PID) control by using
backstepping control with time delay estimation (TDE) and nonlinear damping. PID controllers are widely
used as feedback control in many industrial control system fields. The structure of a PID control is simple
and consists of three terms that include a proportional gain, an integral gain and a differential gain. The
control makes its desired output by assigning PID gains that are required to control systems precisely after
calculating the error between the desired input and output of systems.

Gains of PID control have definite physical meaning. If these gains are tuned carefully, acceptable
performance can be obtained since steady-state error and transient response are improved simultaneously. To
select PID gains, many previous studies investigated methods of tuning PID control gains to get good
performance. Methods of tuning gains are selected on the analytical basis of closed-loop stability and
performance. Since PID controllers are linear models and many studies deal with linear plants, it is very

difficult to select PID gains for nonlinear plants. Although many previous studies have been conducted such



as Fuzzy control and optimal control, the methods proposed in these studies are very difficult and

theoretically complex. As a result, PID gains are usually tuned heuristically.

A systematic method was proposed by Chang et al. to select gains of robust PID control for nonlinear plants

by using second-order controller canonical forms in discrete PID controllers from the viewpoint of a

sampled-data system. In that study, although the plant model was unknown, the method was enabled to

determine robust PID gains by using time delay control (TDC) when the plant has second-order controller

canonical form and when TDC and PID controls are conducted in discrete time domain. Due to the

equivalence to TDC, the gains of PID control were determined.

TDC is a simple and effective technique for estimating system nonlinearities and uncertainties. This method

uses the time delayed signal of system variables to estimate uncertainties of a system. While TDC has the

advantage of requiring no prior knowledge of the system model, it also has the disadvantage of time delay

estimation (TDE) error due to hard nonlinearities. It degrades the system stability and performance.

When PID gains are tuned by using TDC with a system that has hard nonlinearities, system stability and

performance cannot be guaranteed. To overcome TDE error and guarantee the stability of a system,

backstepping control with TDE and nonlinear damping was proposed.

Based on this method, in this paper, the equivalent relationship between PID control and backstepping



control with TDE, nonlinear damping will be presented to select PID gains efficiently. While general PID

controllers have constant gains, the proposed PID controller has variable PID gains due to nonlinear

damping that uses the feedback state. In addition, the gains of the proposed PID control will be analyzed to

identify the characteristics of the purposed controller. Since the proposed PID control uses the equivalent

control method by backstepping control with TDE and nonlinear damping, it has the enhanced control

performance and stability with respect to the difficulties presented above.

Keywords: PID control, backstepping control, nonlinear damping, time delay estimation (TDE)
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Chapter 1. Introduction

1.1 Motivations and objects

PID (Proportional-Integral-Derivation) control is widely used as feedback control in many industrial control
system fields. A PID controller consists of three terms that include a proportional gain, an integral gain and a
differential gain. The controller makes the desired output by assigning PID gains that are required to control
systems precisely after it calculates the error between the desired input and output of systems [1].

PID controllers have simple structures and are easy to apply to general systems. In addition, the gains of PID
control have definite physical meaning [4]. If these gains are well tuned, the desired performance can be
obtained although there are nonlinear plants such as robot manipulators. But, in practice, tuning the gains is
difficult due to problems such as stability of closed-loop systems and coupled gains with respect to system
performance. That is, applying PID control to nonlinear systems is difficult. For example, if the number of
joints is three in a robot manipulator, it is required to select nine gains since three gains are assigned to one joint.
Since these gains are coupled each other and stability analysis is complicated, gain selection is very difficult.

There are many previous studies of tuning gains of PID control to get good response. For example, the Ziegler-



Nichols method is very well known in this field. Although this method is simple and easy to tune PID gains, its

performance is insufficient in nonlinear systems. In general, while studies show good performance in linear

systems [22], they have degraded performance in nonlinear systems. Thus, it is difficult to select PID gains for

nonlinear plants [2], [3]. Although many previous studies have been implemented to select PID gains for

nonlinear plants such as Fuzzy control [23]-[25] and optimal control [26]-[28], PID gains are usually tuned

heuristically because the methods proposed in these studies are difficult and theoretically complex [4].

A systematic method was proposed by Chang et al. to select gains of robust PID control for nonlinear plants by

using second-order controller canonical forms in discrete PID controllers from the viewpoint of a sampled-data

system [4]. In that study, although the plant model was unknown, the method was enabled to determine robust

PID gains by using time delay control (TDC) when the plant has second-order controller canonical form and

when TDC and PID controls are conducted in discrete time domain [4]. Due to the equivalence to TDC, the

gains of PID control were determined.

TDC is a simple and effective technique for estimating system nonlinearities and uncertainties [5], [29]. This

method uses the time delayed signal of system variables to estimate uncertainties of the current system. While

TDC has the advantage of requiring no prior knowledge of the system model, it also has the disadvantage of

time delay estimation (TDE) error due to hard nonlinearities such as the Stiction and Coulomb friction. It



degrades the system stability and performance [5]. When PID gains are tuned by using TDC in the systems that

have hard nonlinearities, system stability and performance cannot be guaranteed.

Many previous studies have investigated the disadvantages of TDE error. These studies concentrate on

performance improvement by reducing TDE error. TDC with Sliding Mode Control [8], TDC with Internal

Model Control [9] and TDC with ideal velocity feedback [10] were conducted by using an additional element in

control input. However, an additional stability analysis of these controllers for nonlinear systems is required.

Backstepping control with TDE and nonlinear damping was introduced [7]. In this controller, TDE estimates

system nonlinearity and uncertainty and, nonlinear damping guarantees the closed-loop stability by using the

bounding functions. The advantage of this control is to make stability condition based on Lyapunov functions.

Based on this method, this paper presents, the equivalent relationship between PID control and backstepping

control with TDE, nonlinear damping to consider selection of PID gains efficiently. Then, a PID control that is

derived from equivalent relationship is satisfied with stability conditions since it has same properties of

backstepping control with TDE, nonlinear damping.

The proposed PID control becomes a variable PID control due to nonlinear damping. Nonlinear damping uses

the feedback state and, so changes according to time. In the industrial control, a PID control with constant gains

is generally selected. Those controllers seldom meet desired performance criteria since system parameters



change when unknown disturbance or/and dynamics occur in the systems. For this reason, many studies have

been conducted to tune PID gains automatically such as adaptive PID control method. In this process, there are

some difficulties such as unknown disturbances, unmodeled dynamics and stability analysis. Since the proposed

PID control is the equivalent control method by backstepping control with TDE and nonlinear damping [7], it

has enhanced control performance and stability with respect to the difficulties presented above.

1.2 Dissertation structure

Chapter 2 will describe the preliminaries needed to do this study including backstepping control, time delay

estimation (TDE), nonlinear damping and introduce applicable systems. Chapter 3 will represent the design

method of variable PID control by using backstepping control with TDE, nonlinear damping. After equivalence

is derived from the relationship between variable PID control and backstepping control with TDE, nonlinear

damping in discrete time domain, gains of variable PID control will be analyzed in the aspects of patterns and

the range of gains. Chapters 4 and 5 will present simulation and experimentation to prove the proposed theory.

Finally, Chapter 6 will summarize the findings of the paper.



Chapter 2. Preliminaries

2.1 Target System and Control Objective

The target system is n-DOF nonlinear uncertain system as follows:

% = f(x, X) +G(X)u (2.1)
where x € R™ and x € R"™ denote the state vectors of the system. u € R™ stands for the control input.
f(x, X) € R™ represents nonlinear function that includes uncertainty and disturbance. G(x) € R™™"
denotes the input matrix. The target system is represented as strict-feedback form. General physical systems
can be denoted as this form such as robot manipulator [11].

To design backstepping control with TDE and nonlinear damping, it is assumed that system (2.1) is satisfied
with the following assumptions [7]:
Assumption 1. G(x) is positive-definite, and ||G(x) || is bounded such that
0< Gy = G < Gy 22)

where Gj,and Gy, are positive constants.



Assumption 2. There exist a finite positive, but not necessarily known constant N¢ and a known positive-

definite diagonal matrix function F(x,x) € R™™ such that the following inequalities hold for all (x, X) in the

domain of interest:

5

il

< Ny (23)

)

i

where 1 <i<n, i €N; f; denotes the i*" diagonal element of f(x,x)and F; denotes the i** diagonal

element of F(x,x). The bounding function F(x,%) will be used to construct nonlinear damping terms [12][13].

In this research, the control object is to track the known desired trajectory x4, X4, X4 € R™ by using

equivalent PID control that corresponds to backstepping control with TDE and nonlinear damping.

2.2 Preliminaries

2.2.1 Backstepping control

Backstepping method is a powerful way to control nonlinear systems [14]. The theory of backstepping control

concentrates on guaranteeing the boundedness of state variables by stabilizing the system as well as tracking the

reference input on the output of a system.

Backstepping control has a recursive procedure. Using this method, after the entire system is divided into each

subsystem that is desired, each subsystem is designed as a top-down process. In addition, backstepping control



is based on Lyapunov functions. As Lyapunov functions are the method that prove the stability of systems, it is

automatically made in the design process of backstepping control. Considering backstepping control with

Lyapunov functions about the design of feedback control, control law is designed and satisfied with stability of

the nonlinear system. Furthermore, nonlinear terms that are useful for a system are used in the design process of

backstepping control.

2.2.2. Time delay estimation

Consider the following nonlinear differential equation [15].

x= f(x,t)+ G Du+d(t) (2.4)

where x € R™ denotes state vectors of the system. u € R™ stands for the input vector. f (x,t) € R"

represents nonlinear function in companion form, which represents the plant dynamics and may be unknown yet

bounded. G(x,t) € R™" denotes control distribution matrix, the range of which should be known. d(t) €

R™ is unknown disturbances.

It is assumed that the states and their derivatives are measurable in this system. Introducing in (2.4) a constant

matrix G representing the known range of G(x,t), (2.4) can be rearranged into the following equation :



x= f(xt)+ G tu+d(t)

= Gu+ [f(x,t) + {G(x,t) — Glu+ d(t)]

= Gu + H(t) (2.5)

where H(t) denotes the total uncertainty including the uncertainties in the plant and unknown disturbances,

and is represented as

H®) = f(xt) +{Gxt) — Glu+d(®)] (2.6)

The problem is to estimate the total uncertainty H(t) of the system [5]. First, consider a sufficiently small

time delay L. H(t — L) can be used to estimate H(t) by using the information of control input and state

variables in former time. It means information of an accurate model is not required. If time delay L is very

small, the following equation is denoted as

H(t) ~ H(t— L) = H(t) = x(t — L) — Gu(t — L) 2.7)

This is referred to as time delay estimation [5] [29].

The robustness of control is decided by accuracy of estimating H(t). Effectiveness of time delay estimation

(TDE) is affected by the time delay L. The time delay L needs to be selected such that the continuity assumption

of H(t) may be valid. That is, the time delay L must have faster bandwidth than bandwidth of disturbances and

nonlinear dynamics of the system. In practice, the smallest achievable L is the sampling period in digital



implementation.

2.2.3 Nonlinear damping

Nonlinear damping is nonlinear design tool based on Lyapunov functions and a technique that guarantees the

boundedness of trajectories when even no upper bound on the uncertainty is known [16]. Through an example

from [16], we will show how it can be used to achieve stabilization [17].

Consider the scalar system

x =x*+x% +x5,(t) + u, (2.8)

where §,(t) is a bounded function with respect to time t, which is an unknown disturbance and u denotes the

control input of the scalar system. It is assumed that &, is uniformly bounded for all (t, x, u). Although no

upper bound on the term x§,(t) in the above dynamics is known, the control component v(t) is designed as

ensuring the boundedness of the trajectories of the closed-loop system.

The control input is designed as

u=0o¢x) +vx), (2.9)

where ¢(x) denotes the nominal stabilizing feedback control law and v(x) is the nonlinear damping

component.



Considering the scalar system (2.8), ¢(x) and v(x) are designed as
d(x) = —x* —x? —x, (2.10)
v(x) = —x3 (2.11)
With the control input designed above, the closed-loop dynamics can be obtained as
x =xt+x% + ¢+ v+x8,(b)
= —x—x3 +x8,(t) (2.12)

Define the Lyapunov function as V(x) = %xz, the derivative of V(x)is represented as

= —x? —x* +x2§,
= —x? —x?(x%2 - §,). (2.13)
where V is negative for any nonzero x satisfying x? > §,.
That is, the above closed-loop dynamics has a bounded solution regardless of how large the bounded
disturbance 8, is, due to the nonlinear damping term —x3.
The design method of nonlinear damping is explained through the above example. Note that the design of
nonlinear damping is not unique. For instance, if the nonlinear damping term is designed as —x5 or — x7,

the closed-loop system also can be stabilized. It means the design of nonlinear damping is flexible.

-10-



2.3 Backstepping control with Time delay estimation (TDE) , nonlinear damping

2.3.1 Outline

The general backstepping control method requires an accurate system model when the control input is

designed. In the case of systems with uncertainties that include disturbances, modeling error except parameter

uncertainties, backstepping control cannot be applied. Backstepping control using time delay estimation (TDE)

was proposed to compensate for the above problems [21]. However, this control method is still subjected to

TDE error. Applied TDE in the system, a sampling time L should be assumed as a very small value, but it is

impossible in the case of a real system. Also, an estimated H(t) cannot estimate real H(t) when there are hard

nonlinearities in the system. This phenomenon is called TDE error.

Backstepping control with TDE and nonlinear damping was proposed [7]. The design of this method solved

the above problems. Adding nonlinear damping [6] in backstepping control using TDE, two strong points were

discovered. First, the closed-loop stability is guaranteed although there are time delayed terms and system

uncertainties and nonlinearities. Second, the control performance is enhanced by dissipating the disturbing

energy.

-11 -



2.3.2 The controller design

Consider the target system

X = f(x, X) +G(X)u

(2.14)

It is represented as second order dynamics of the state vector x. According to backstepping method, the design

of backstepping control with TDE, nonlinear damping is made up of two steps [7], [21]. In the first step, the

whole system is divided into two subsystems. Each subsystem is expressed as a first-order state equation such

as (2.15). Then, state vectors are used to make the tracking error. In addition, a state feedback control is

designed for the subsystem 1. In the second step, TDE is used to estimate the system uncertainties and

nonlinearities in the subsystem 2 and nonlinear damping term is applied to ensure the closed-loop stability [7].

Step one

Define x, = x and x, =X, Then, the target system (2.14) can be transformed as

Xl = XZ
X, = f(x; X )+ G(x; Ju
Define error vectors as

{zl=x1— X4

Zz = XZ -
where « is a virtual input to stabilize the subsystem 1. Using (2.15), (2.16), subsystems are derived as

71 = Zp . 00— Xq (subsystem 1)
7, = f(X1 X, ) + G(X;)u — & (subsystem 2)

The virtual input o is designed by a Lyapunov function as

-12 -

(2.15)

(2.16)

(2.17)



0= %y — 12y (2.18)

where ¢; € R™" is a positive-definite diagonal gain matrix. The subsystem 1 is reformulated by using virtual

input o as

i1 = Z; — C1Z24 (219)

Note that z, can be treated as the input forcing function of subsystem 1. It will be shown in a part of stability

analysis.

Step two

Let us reformulate subsystem 2 as

u=G1z— f+d (2.20)

where the function variables are omitted for simplicity.

To apply time delay estimation, let us define a positive-definite diagonal gain matrix, G € R™". (2.20) is

reformulated as

u=G12z, +H (2.21)

where H = (G(x1)™! — G™1) z,+G(x4) "1 (— f(x1, X, ) + &). It includes all uncertainties and nonlinearities

of the system.

(2.21) is denoted with respect to time t and reformulated in terms of H as

H(t) = U(t) - E_liz(t) (222)
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Itis used to form the estimated H). H s defined as the estimated H(y and defined as

=

H 2 Hey, (2.23)
where L denotes a constant time delay. Normally, L is expressed to the sampling time and is a sufficient small.
Then, H._r, means the value of H, in the former samping time.

Thus, it is achieved as

uTDE = ﬁ = H(t—L) = u(t—L) - G_liZ(t_L) (224)

To compensate TDE error called the estimation error (H — Hy), the nonlinear damping is applied in the

control input and the nonlinear damping is designed as

Unp = —(_;_lszz(t)

= —G'k(F + B + p)Zz(v) (2.25)

where w contains nonlinear damping components F,B,andp. k € R™™ denotes a positive definite

diagonal gain matrix. F is bounding function in assumption 2. B € R™™, p € R™ " stand for positive-

semidefinite diagonal matrix functions respectively.

B,p are defined as

B = diag(|a4], [é&s], -, [én])

p = diag(|Hy|, [Hz, .., [Ha]) (2.26)

where @&, H; (1 <i<n) denote the elements of ¢, Hy.

Considering TDE, to inject the desired error dynamics in (2.21), control input upy; is designed as
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upy = —G ez, (g (2.27)
Therefore, the desired error dynamics is denoted as
Z;+ ¢z, =0 (2.28)
where ¢, € R™" is a positive-definite diagonal gain matrix.
Consequently, the whole control input can be designed as
U = Ny + Uppg + Unp
=—G ez + Hy — G lRwzy

= —(_;_1C2Z2 ® + Ug-1) — G_liZ(t_L) — C_lkWZZ(t) (229)

The block diagram of backstepping control with TDE and nonlinear damping is shown in Fig. 2. 1.
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Fig. 2.1. Black diagram of backstepping control with TDE and nonlinear damping
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2.3.3 Stability analysis

Backstepping method and nonlinear damping are based on the Lyapunov function. The Lyapunove function is

a method for stability analysis in linear and nonlinear systems. It concludes stability without solving for the

solution of the differential equation governing the system. Therefore stability analysis based on the Lyapunov

function will be shown and the boundedness of the closed-loop tracking error will be proved. After two lemmas

are expressed, the theorem will be shown [7].

Lemmal

Assumption: If the virtual input a is applied to subsystem 1 and if z, is made uniformly bounded (as will

be proved in Lemma 2), then z; is uniformly bounded [7].

Proof: Define the Lyapunov function for subsystem 1 as

T2y (230)

where z, is positive for non-zero vector. The time variable t is omitted for simplicity. Substituting (2.19), the

time derivative of the Lyapunov function V; is derived as

V1 = in1

= 2] (—C121+2Z;)
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= —21¢12,+2{Z;

< —z{cyzy + |2]|I22)

= — |zf]e1(lz1] — €7tz (2.31)

where if |z;| > c71|z,| and |z,| is bounded, the vector V; is negative for any nonzero z, Furthermore,

|z4] — c;tzz] > 0, ¢, is a positive-definite diagonal matrix. Here, a vector is bounded if and only if each

element of the vector is bounded. Thus z; will remain in the set (|z;] < c7l|z;|) as t — +oo. The

boundedness of |z,| will be shown in Lemma 2.

Lemma 2

Assumption: Assumption land Assumption 2 are held. If the control input u is applied to the subsystem 2,

then z, is uniformly bounded [7].

Proof: the closed-loop system is given from subsystem 2. Substituting the control input u (2.29) into

subsystem 2, it derived as

72; = —GG lcyz, + GH— GG 'k(F+ B+p)zy +f — & (2.32)

Here, also the time variable t is omitted for simplicity. In the same manner in Lemma 1, the Lyapunov function

is defined as
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272 (2.33)

where z, is positive for none zero vector and V, is positive. By applying (2.32) to (2.33), the time derivative

of the Lyapunov function V, is derived as

.
V, = 2,2,

= 2J[-GG'cyz, — GGK(F+ B+ p)z, + GH+f — @]

= —2]GG 'c,z; — 2] GG k(F+ B+ p)z, + 23 (f + GH — &)

< —2]GG lcyz, — 2 GGIK(F + B + p)zy + |23 |(If] + G|H| + |&|)

= -2;GG 2, — 2" W[lz2| — ] (2.34)
where = GG 'Kk(F + B + p), (2.35)
n= (k(F+ B+p) GG 1(If| + G|H| + |al) (2.36)

P € R™™ is a diagonal matrix that includes nonlinear damping components and p € R™ is a vector.
G, G, c;,andF are positive-definite matrices. B,p are positive-semidefinite matrices. Therefore,
—z1GGc,z, is negative definite for any none zero vector z, and — |z,T|y[|z,| — n] has to be negative
definite. That is, V, is negative for any nonzero vector z, satisfying

|zz] —p =0 (2.37)

To prove (2.37), it is shown that p is bounded for all t € [0,). As (k(F + B + p))_l is a diagonal matrix,
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p can be reformulated as

n= GG L(k(F+ B+p)  (fl + GA| + lal)

= GG 'y, + Gu, + GG lug (2.38)
where gy = (k(F+ B+p))  If]
= (k(F+ B+p)) A,

(2.39)

pa = (k(F+ B+p) lad.

As k, F, B, p areall diagonal matrices and |f|, |Fl| |é| are vectors, the it" element of pq, my, ps can

be respectively expressed as

(= (ki(ﬁi + B+ Pi))_l Ifil
o = (ki(ﬁi + 6 + Pi))_l |ﬁi|
ps; = (ki(Fi + B + Pi))_1 |t

(2.40)

Considering Assumption land Assumption 2, the inequalities of (2.40) is obtained as

Ifil _ Nf

. -1
i = (ki + B+ p)  Ifil < PR

~ -1 |~ H; 1
pai = (ki(F + B+ p))  |Hi| < KFitop; (2.41)
il 1

R -1 .
s = (kiFot Bt po) il < 7l <

) T

Therefore, as (2.41) is applied to (2.38), the following inequalities are obtained as
B = GGy + Gpy + GGy,

< GG INk! + Gk! + GG k! (2.42)
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Since p > 0,GG™INk ™! >0, Gk™! > 0and GGk~ > 0, p is expressed as

lull < IIGGINK ™ + Gk~ + GG 1k1|

< NGHNANGHIIRTH + IR+ 6K

< NGI(NeG, T I+ Ik + G Ik I)

2 Mmax (243)

where p.x IS a finite constant. Each element of p is bounded by a finite constant ..

That is, V, is negative definite for any none zero vector z, satisfying |z,;| = fimqy, forall 1<i <n, i € N.

Therefore, z, is uniformly bounded.

Theorem

Assumption: Assumption 1 and 2 are held. If the total control input u is applied to the system (2.1), then the

tracking error of the closed loop system is globally uniformly ultimately bounded.

Proof: In Lemma 1 and 2, it was proved that V; < 0 for any nonzero vector z, satisfying |z;| > ¢ imax

Hence, the closed-loop tracking error |z,| with any initiate value is bounded by |z;]| < ¢7 pmax. According

to the definition 4.6 in [16], the tracking error of the closed-loop system is globally uniformly ultimately

bounded.

-20-



Chapter 3. The Design of Variable

PID Control and Overviews

3.1 Introduction

These days, many control systems are conducted by using digital devices such as computers, microprocessors
in discrete time domain. Although many control systems are analyzed in continuous time domain, considering
practical systems and the execution environment, these have to be analyzed in discrete time domain. In practice,
many other control systems are interpreted in discrete time domains.

As was mentioned in Chapter 1, the relationship between the time delay control (TDC) and PID control was
proved in discrete time domain [4]. PID control has robust properties by using TDC. However, inevitable
problem called TDE error of TDC also is observed in equivalent PID control. Backstepping control with TDE
and nonlinear damping was designed based on Lyapunov function that is used to analyze the stability of control
systems, so it solved the problem of TDE error [7]. In this section, the relationship between PID control and
backstepping control with TDE, nonlinear damping will be derived in the discrete time domain to design a PID

controller.
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3.2 The design of variable PID control
3.2.1 PID control in the discrete time domain [4]
Conventional PID control has three gains that are expressed as a proportional gain K, an integral gain Ty, a

derivative gain Ty. Considering the target system (2.1), PID control is denoted as

_ t .
Uy = K[e(t) + Tt [y e(Ddt + TDe(t)] + up¢ (3.1)

e= X4—X (3.2

where e is an error vector with respect to position x and is denoted as (3.2). x4 denotes the reference input
vector. K stands for the constant diagonal proportional gain matrix, Tp denotes the constant diagonal

derivative time matrix, T; the constant diagonal integral matrix and wupc a constant dc-bias vector, That is,

K, = 0 Ty -+ O
S l le[z i, Tp=

Tp: - O Upc 1
oo l, unc=[ : l 33)
0 - K, 0 - Tin N

0 - Tp Upc.n

Note that the number of elements of PID gain matrices is 3n.

To transfer continuous time domain to discrete time domain, causality relationship should be explained. The

physical systems have causality with respect to time t. For example, the inputs are required to make output. In

the case of system (3.1), variable x and control input u have sequence. It is shown in Fig. 3.1.
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[ X(k-1) Uk-1)

W

U k) L

|

X(k)

Fig. 3.1. Sequence of xy and u,

where k denotes at k-th sampling instant (t=kL) and L represents the sampling time of digital devices. As we

can see in Fig. 3.1, X-1) and ug_qy are used to get the control input u,. Similarly, x, is taken by using

u). Therefore, control input (3.1) of PID control is transferred to the following

ll(k) = K[e(k—l) + LTl_1 }(z—ol E(i) + TDé(k—l)] + Upc (34)

(3.4) is transformed into another form to match backstepping control with TDE and nonlinear damping by

follow procedure [4], [30]. Subtracting PID control input (3.5) at the discrete time (k-1) from PID control input

(3.4) at the discrete time (K),

uge1) = Klegea) + LT ZiF ey + Tpége—z)| + upc (3.5)

It is derived as

Ugg — Uge1y = K[ (€gee1) — €ae—zy)+ T 'Legeo1) + To(€ge—1) — €ac-2))] (3.6)
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Considering (3.2), (3.6) is reformulated as

Xdk-1) — Xdk-2) Xk-1) ~ X(k-2) _
3 - 3 ) + T (Xage-1) — Xge-1)

ll(k) = u(k—l) + KL [(

Xak-1 ~Xak-2)  Xk-1 ~ Xk-2) )]

T,
+"( L L

@7
In addition, PID control is represented in discrete time domain as (3.7). The constant vector upc will be
explained after backstepping control with TDE and nonlinear damping is represented, since it is related with the
backstepping method at the discrete time k = 1.
3.2.2. Backstepping control with TDE, nonlinear damping in discrete time domain
In Chapter 2, backstepping control with TDE and nonlinear damping was explained with respect to the control
input and stability. The whole control input of that controller was formulated from (2.29) as
U = Ugor) — Gz — G201y — G TRkwzy (3.8)
Backstepping control with TDE and nonlinear damping also are conducted in digital devices, so causality has
to be considered. According to causality, (3.8) is reformulated with (2.19) as
Uy = U1y — G Z 1) + C1Zie1) + (€2 + kW) (Z1 -1y + €1Z1(k-1))]
= U1y — G [Z1-1) + (€1 + €2 + KW)Zy 1y + (€3 + KW)C1Z1(-1))]

3.9)
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As ¢4, ¢,k and w are a diagonal matrices, (3.9) is rearranged as

Ugy = U1y — G [Zyge-1) + (€1 + €2 + KWz gy + (1€ + €1 KW) Z15_1))]

(3.10)
To match the form of PID control, (3.10) is transformed by using (2.16) as follows:
Ugy = U1y + G [Kgeo) — Koy + (€1 + €2 + kW) Xq-1) — Xk-1))
+ (€c1€2 + ¢ kW) (Xg-1) — X(k-1) )] (3.11)

3.2.3. The Relationship between PID control with Backstepping control with TDE,

nonlinear damping in discrete time domain

In the above parts, two control inputs were given from section 3.2.1 and 3.2.2 for the target system (2.1).

These are represented in discrete time domain as

Control input of PID control:

Xdk-1) ~ Xd(k-2)  X(k-1) T X(k-2)
L L

Ugo = Uge—1) + KL[( ) + T (Xage-1) — X(e-1))

+Tp (Xd(k—l);xd(k—z) _ X(k-1);X(k-z) )] (3.12)
Control input of backstepping control with TDE and nonlinear damping:

Ugy = U1y + G [Rao1) — Koy + (€1 + €2 + kW) Xqa-1) — X-1))

+ (c1¢; + ¢ kW) (Xgk-1) — Xk-1) )] (3.13)
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The above two control inputs must have similar forms to drive an equivalent relationship. To do this,

numerical differentiation is used to solve the differential terms in each control input. In practice, many users in

the control fields use numerical differentiation to get differential signals since they use digital devices. There are

three kinds of numerical differentiation; forward method, center method, backward method [19]. In our case, the

backward method will be used since others need to require a future value and do not satisfy causality of digital

systems. The backward method is defined as

Xk ~ X(k-1)

Xk is needed to resolve (3.13), it is considered as

.. X = 2X(k-1)+X(k-2)

X(k) = 12 (315)
Considering (3.14), (3.15), two control inputs are reformulated as
Control input of PID control:

Xd(k-1) — Xd(k- X(k-1) — X(k- _
Uy = Ugey) + KL[( (k—1) - (k=2)  4(k-1) - (k-2) ) + T 1(xd(k_1) —X(k—1))
Xd(k-1) — 2Xdk-2) T Xdk-3) Xk-1) ~ 2X(k-2) T X(k-3)
+Tp > — > ]
L L
(3.16)
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Control input of backstepping control with TDE and nonlinear damping:

Xdtg ~ 2Xda-n+Xdk-2)  X@ T ZX@e-1+Xxk-2)
L2 L2

Ugy = Ugen) + G

Xd@ — Xdk-1) X T Xk-1)
L L

+(cq + ¢z + kw)( )

+ (c1€2 + ¢ kW) (Xgk-1) — X(k-1) )] (3.17)
As comparing (3.16) and (3.17), the equivalent relationship is found as

K= G 1(cy + c; + kw)
= - .

TI = (Cl + CZ + kW)(Cl(:Z + ClkW)_l,

TD = (Cl + Cz + kW)_l (318)

where w denotes a nonlinear damping component and is changing with respect to time by using feedback

states. Therefore, it becomes variable PID control due to w.

3.2.4. A constant dc-bias vector upc

In the PID control, upc already is mentioned briefly in section 3.2.1 and denotes a n X 1 constant vector

representing a dc-bias decided by initial conditions [4]. upc is derived from the equivalence between PID

control and backstepping control with TDE, nonlinear damping at a discrete time k=1.

When a discrete time k=1, the control input of backstepping control with TDE, nonlinear damping is denoted

from (3.11) as
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u(l)_Back = U(O) + G_l[é(o) + (C1 +cy + kW)e(0)+ (C1C2 + ClkW) e(o) ] (319)

where e = x4 — X, € denotes an initial error, u, stands for initial control input.

With a discrete time k=1, the control input of the variable PID control is represented from (3.4) as

u(l)_PID = K[e(o) + LTI_le(O) + TDe(O)] + ch (320)

Considering W) gack = U¢1)_pip, Upc IS derived by using (3.18) as

Upc = (_;_1[ (e(o) + (Cl +c, + kW)e(o)) - L_I(é(o) + (Cl +c; + kW)E(O))] (321)

3.3 Consideration of variable PID control

In the previous research, gains of original time delay control (TDC) are transferred constant gains of PID

control by using equivalent relationship between the two controls [4]. But, in this paper, gains of PID control

are changed with variation of time due to nonlinear damping.

From (3.18), the equivalent relationship was expressed as

K= G 1(c; + ¢, + kw)
= L :
TI = (Cl + CZ + kW)(chZ + clkW)_l,

Tp = (¢q + ¢ + kw) ™!

(3.22)
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where others are constant diagonal matrices without nonlinear damping component w. As w is a variable

positive-definite diagonal matrix, gains of PID control are changed according to the size of nonlinear damping

component w. To get the range of gains, (3.22) is rearranged as

G l(ci +c Gk
K= (cq 2)+ w
L L

Ti=c; 1+ (c; + kw)™?!
Tp = (¢; + ¢ + kw) ™!

(3.23)
where a gain Ty is derived by a partial-fraction expansion. As each gain consists of diagonal matrices, gains
can be expressed such as (3.23).

Considering a size of nonlinear damping component w, it is assumed that diag(O0, ...,0) < w < diag( oo, ...,

). Then, the range of PID gains is determined as

G 1(c;+c G '(c;+c¢ G lkw
(c1 +¢3) <K< (c1 +¢3) +
L L L
Gl<Ti<ci 1+ ¢t
diag(0,...,0) < Tp < (cq + ¢x)7 !

(3.24)

G 1, c¢;, c; and k are constant diagonal matrices and L is constant. If w is removed, each gain has constant
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value. That is, since gains of a PID controller depend on the variation of nonlinear damping component w,

patterns and ranges of gains can be anticipated.

According to the size of w, the variation of each gain is represented in Table.3.1

Gains w Increase Decrease
K Increase Decrease
T, Decrease Increase
Tp Decrease Increase

Table.3.1. Variation of PID gains
Note that gain K is proportional to nonlinear damping component w, T; and Ty are inversely proportional to

w. It means that characteristics of system response are changed by variation of gains.

3.4 Comparison with the previous study

As was mentioned in Chapter 1, a systematic method was proposed to select PID gains [4]. That method
makes PID gains constant by using TDC. In this paper, the proposed PID control has variable gains by using

backstepping control with TDE and nonlinear damping. Both controllers use TDE equally. To compare two

methods, closed-loop dynamics are shown as follows:

én + ke + ke = GH — Hey) (3.25)
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21(t) + (C1 + CZ)il(t) + C1C2Z1(t) = E(ﬁ(t) - H(t)) - kWZZ(t) (326)

where e = Xq4 — X, 2 =X — Xgand z, =7; + ¢{Z¢ .

(3.25) is from TDC and (3.26) is from backstepping control with TDE and nonlinear damping. Note that the

proposed PID control is theoretically equal to backstepping control with TDE, nonlinear damping. (3.26) is

reformulated as the follow.

é(t) + kvé(t) + kpe(t) = E(H(t) - ﬁ(t)) + kW(el(t) + c1e1) (327)

Note that H, Fl(t) from (3.25) are a little different with Hy), ﬁ(t) from (3.27) but these are similar each

other. If nonlinear damping component w is removed from (3.27), (3.25) is almost similar with (3.27).

k,, Kp, ¢4,and c, are determined by desired error dynamics. Damping ratio & = 1 was used and desired

error dynamics from the two controls are shown as

é+ kpe+kye=0 (3.28)

€+ (cg+cy)é+cice=0 (3.29)

Then, to match each other, k,, kp is represented as

kv=C1+C2 y

kp = C1C, (330)

In practice, (3.30) has to be satisfied when considering a same system. Thus, if nonlinear damping is removed in
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the proposed PID control, the control has same relationship with the previous study and each gain is represented

as

G Megtep)
= 3 :
T = (¢1 + ¢)(c16) 7Y,
TD = (Cl + Cz)_l . (331)

Considering (3.30), the above is same with the previous study that dealt with relationship between TDC and

PID control. It will be proved in simulation and experiment.

3.5 Simple method to design proposed PID control by the previous study

Considering the relationship between TDC and previous PID control in the previous study [4], the proposed

PID control can be designed easily. The relationship in the previous study was denoted as follows:

Gk,
K= ,
L
Tl = kka_lf
T, = k, (3.32)

As was mentioned in the section 3.4, (3.32) can be reformulated as

G (ci+c
K= (i 2)’
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Ty = (¢q + €2)(c162) 7Y,
Tp = (c; + )" (3:33)
Substituting ¢, with ¢, + kw in (3.33), PID gains are given as

K= G 1(c; + c; + kw)
= - .

T; = (¢q + ¢ + kw)(c¢3 + ¢ kw) 71,

TD = (Cl +c, + kW)_1 (334)

The proposed PID gains are simply derived.

3.6 Conclusion

In this chapter, the equivalent relationship between PID control and backstepping control with TDE, nonlinear

damping was proved in the discrete time domain. Considering this relationship, each PID gain was expressed as

a variable gain. That is, the equivalent control becomes variable PID control. As nonlinear damping terms were

considered, a range and patterns of PID gains can be anticipated. In addition, the proposed PID control is the

same as PID control by TDC when nonlinear damping is removed in the proposed PID control. In the later

chapters, these will be proved through simulations and experiments.
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Chapter 4. Simulation

4.1 Introduction

In the previous chapter, the equivalent relationship between variable PID control and backstepping control
with TDE, nonlinear damping was introduced. PID gains are obtained by that relationship. In this chapter, the
simulation with respect to 1-DOF and 2-DOF robot manipulators will be shown to prove the equivalent
relationship.
4.2 One-link robot manipulator

4.2.1. Simulation Setup

A one-DOF robot manipulator is adopted in the simulation as shown in Fig. 4.1.

S S TS
Fig. 4.1. One-link manipulator
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where [ stands for length of link 1. m denotes the mass of link 1. g stands for the acceleration of gravity. g

denotes the joint angle of link 1.

The robot dynamics is written in the form as

M(q)G +C(q,q) +G(@) +F(q,. @) + g =T (4.1)

The functions in robot dynamics are expressed as

M(q) = ml3,

C(q,9) =0,

G(q) = mglcos(q),

F(q, 9=f,q + fesgn(q),

T4 = sin(4nt).

(4.2)

where q,q represents the position and velocity of the joints, respectively. M(q) stands for the generalized

inertia, C(q,q) coriolis and centripetal force, G(q)the gravity, F(q, g)the friction forces, t4 the unknown

disturbance torque and t the joint torque. f, f, denote the Coulomb friction coefficient and the viscous

friction coefficient.

The initial g,¢ and control input are set to zeros in the time t=0. The parameters of the robot dynamics are
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m=1.0kg, | =1.0 m, f,=5.0Nm, f,=5.0 Nm, g = 9.8m/s2. The reference trajectory of position is adopted as
gq(t) = 10 sin (gt) [deg]. (4.3)
A sampling time is adopted as L=0.002 sec in the simulation. The simulation is implemented for 6 sec.
4.2.2. Design of Controllers
To prove the equivalent relationship between variable PID control and backstepping control with TDE,
nonlinear damping, each control is compared. After designing backstepping control with TDE and nonlinear
damping, the equivalent PID control is designed by using backstepping control with TDE, nonlinear damping
such as (3.22)
The desired error dynamics are determined by considering damping ratio § = 1 and natural frequency w= 10.
According to design method in [7], c;and c, are calculated as
c; =10,c, =10 (4.4)
Nonlinear damping w is designed as
w=F+B+p (4.5)
where the bounding function F is determined as F = ¢ + 1.0 x 107¢ by using nominal model that is given
as M(q)"(C(q,q) + G(q) + F(q,9) + 14). 1.0 x 107® was used to keep F positive definite. pand p are

determined as B = |&|, p = |H| Note that nonlinear damping component w is flexible. Thus, it can be
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changed. Gains G,k are tuned as

G=1k = 20 (4.6)

Considering PID control, the control input of PID control is denoted by the equivalent relationship (3.18). Each

gain is expressed as

K = 10000(1+w),

T = 1+w
" 5(1+w)’
_ 1
D7 20(1 +w)

(4.7)

4.2 3. Simulation Result

The position trajectories of backstepping control with TDE, nonlinear damping and the proposed PID control

are shown with the desired trajectory in Fig. 4.2 (a). The result seems to be one line, but is actually two lines,

one on top of the other. The position trajectories of each control follow the desired trajectory well. In Fig. 4.2

(b), each position error is compared to confirm the equivalent relationship between the two controls. Above all,

to make certain of the equivalent relationship of the two control input, the control inputs are shown in Fig. 4.3

(@). As these look like similar, the difference between the two control inputs is calculated as defining difference

of control inputs (ug,cc — Uprp) and shown in Fig. 4.3 (b) to give more detail. The range of difference is small.
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This result means the equivalent relationship between the proposed PID control and backstepping control with

TDE, nonlinear damping has been achieved.

Considering a range of gains with (3.24) in PID control, the range of each gain is arranged as

10000 < K < 10000(1 + w)

(4.8)

These ranges are identified in Fig. 4.4. To understand the patterns of PID gains, Fig. 4.5 is shown. The gains of

the proposed PID control depend on nonlinear damping component w. In the case of this simulation, nonlinear

damping component w is affected by p that is an absolute value of an estimated H. Since p is larger than

others relatively in nonlinear damping component w, the pattern of nonlinear damping is similar with the

control input when considering (2.24). That is, when a control input is sufficiently large, the patterns of PID

control can be anticipated by a control input. In general, the patterns and ranges of PID gains depend on

nonlinear damping that is proportional to gain K, and inversely proportional to gains T; and Tp.
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Fig. 4.2. (a)Position trajectories and (b) Position errors by backstepping control with TDE, nonlinear damping
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and the proposed PID control
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Fig. 4.3. (a) Control inputs and (b) Difference of control inputs by backstepping control with TDE, nonlinear

damping and the proposed PID control
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4.3 Two-link robot manipulator

4.3.1. Simulation Setup

A two-link robot manipulator is used to prove the equivalent relationship between the two controllers and has

the viscous friction and the Coulomb friction. The target plant is shown as Fig. 4.6.

S TS S S S S

Fig. 4.6.Two-link manipulator
where [, 1, stand for length of link 1, link 2. m, ,m, denote mass of link 1, link 2 respectively. g stands for

the local acceleration of gravity. q, ,q, denote joint angles of link 1 and link 2 respectively.
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Let x = [q; q,]". Then, a dynamic equation of 2-link robot manipulator is given as

MX)X+CxX)+GX)+FEX)+14= T

where x,x,X € R" represents the position, velocity, and acceleration of the joints, respectively.

M(x) = [mll§ + 2m, L1, cos(qy) + (my + my)l2 myl2 + mylilycos(qy)
myl3 + mylil,c0s(q,) m,l3
C(x,%) = [_2‘71‘?2”12[1[.2251“(‘72) _ qgmzl1lz Sin(‘b)]
G3myly1; sin(q,)

G(x) = [mzlzg cos(qy + q2) + (my + my)lug COS(‘h)]
mylyg cos(q; + qz)

. fo1dq + fc15gn(‘?1)]

F(x, = . .

(%) fv292 + fe258n(42)

_ [sin(2mt)
- [sin(Znt)

(4.9)

(4.10)

where M(x) € R™" stands for the generalized inertia matrix. C(x,%x) € R™ coriolis and centripetal matrix,

G(x) € R™ the gravitational vector, F(x,X) € R " the friction forces, Tq € R" the unknown disturbance

torque and t € R" the joint torque. f.andf, are the Coulomb friction coefficient and the viscous friction

coefficient.

The initial x,x and control input are set to zeros in the time t=0. The parameters of the robot dynamics are

m, = 1.0kg, m, = 1.0kg, I, =1.0m, I, = 1.0 m, f,,= 5.0Nm, f,,=5.0Nm, f,;=5.0 Nm, f.,=5.0 Nm, g =
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9.8m/s?. A fifth-order polynomial trajectory is used as the desired trajectory and is shown in Fig. 4.7. A

sampling time is adopted as L=0.001 sec in the simulation. The simulation is implemented for 20 sec.

30 T =
| Desired Theta

L e
6..10 ________________________________________________________________________________________________________ -
L]
o
<
e e e S UL e e FORRA
o
:‘a_—")
(o]
o [ . A P S a
70 | R S Ao L eeemeaas Fommmmoens R R A domemnenn -
_30 | i 1 | 1 i
0 2 4 6 8 10 12 14

time(sec)

Fig. 4.7.The desired trajectory of Joints
4.3.2 Design of Controllers
The equivalent relationship between proposed PID control and backstepping control with TDE, nonlinear
damping will be proved through this simulation in the same manner with the previous simulation.
First, backstepping control with TDE, nonlinear damping is designed to make the equivalent PID control. The
desired error dynamics is adopted as considering damping ratio & =1 and natural frequency w= 5. According to
the design method in [7], cqand c, are calculated as

5 0 o —[° 4 (4.11)

Clz[o 517 251 5

and nonlinear damping component w is designed as
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w=F+ B+p (4.12)

.2 .2 -5
where o [q1 +qg; +1.0x10 L 0 .
0 qi +q5 +1.0x 10
_[leal 0 ]
B=0" ol
b= [|H1| 0 ] (4.13)
0 |H]

The bounding function F is determined by using nominal model. 1.0 x 10~ of F was used to keep F
positive definite.
Gains G,k are tuned as

G = [065 0(.)2] k= [g 100] (4-14)

Second, considering PID control, the control input of PID control can be designed by the equivalent

relationship. PID control gains are denoted as

(5000 0 2500 0
K'[ 0 2000] +[ 0 zooo]w
10 + 5wqy 0
S PEEERT)
1= . 10 + 10w,
(25 + 50w,,)
1
0
5(2 + wy)
Ty = )
0 -
10(1 + wapy)

(4.15)
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Wi 0 ] and w is a positive definite diagonal matrix.

where w = [
0 Wyo

Third, time delay control (TDC) is designed to compare the proposed method. Relationship between proposed
method and the previous study of [4] will be found through this step. Considering desired error dynamics and
(3.30), kyand k,, are calculated as

k, [100 100]’ kp = [205 205] (4.16)

Gains G is determined as

G1= [0(')5 0(_’2] (4.17)

Fourth, PID control of the previous study is designed by considering TDC. Then, PID gains are denoted as

Ko [50000 20000]
T1=[004 0(.)4]
5= ol

(4.18)

4.3.3 Simulation Result

Position trajectories of backstepping control with TDE, nonlinear damping and the proposed PID control are

shown in Fig. 4.8 (a), (b). Each position trajectory seems to be one line, but is actually two lines, one on top of

the other. The position trajectories of the controllers follow the desired trajectory well as shown in Fig. 4.8 (a),
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(b). Each position error is compared to confirm the equivalent relationship between the two controllers in Fig.

4.8 (c), (d).

To prove the equivalent relationship of the two controllers, the control inputs of joints were compared and are

shown in Fig. 4.9 (a), (b). As these look similar, the difference between two control inputs is calculated as

defining the difference of control inputs (ug.cx — Wp;p) and is shown in Fig. 4.9 (c), (d) to give more detail.

The ranges of difference are small. As was already mentioned in the above simulation, this result means the

equivalent relationship between backstepping control with TDE, nonlinear damping and the proposed PID

control has been achieved.

Considering the ranges of gains with (3.24), the ranges of PID gains are arranged as

5000 0 5000 + 2500w, 0
[ 0 2000] <K= 0 2000 + 2000w, |’
02 0 04 0
o oal=m<[y o4l
diag(0,..,0) <Tp < [0(-)1 o(.)1]' (4.19)

With (4.19), the ranges and patterns of the proposed PID gains are shown in Fig. 4.10. In addition, each range

and pattern of each gain can be anticipated as was mentioned in the above simulation. In Fig. 4.10, diagonal

elements of PID gains are only shown since other elements are zero.

To analyze PID gains in detail, nonlinear damping component w is removed from the proposed PID control.
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Then, PID gains are shown in Fig. 4.11 and represented as

K= [50000 20000
T‘:[004 0(.)4]
©o=["0 ol

(4.20)

where each gain is expressed as a constant diagonal matrix.

The constant gain K is smaller than the variable gain K and the constant gain T; and Tp are larger than the

variable gain T; and Tp. That is, gain K increases and the gain T; and Tp decreases by applying nonlinear

damping. Note that results of (4.20) are the same as (4.18).

In Section 3.4, the proposed PID control without nonlinear damping was compared with the previous study [4].

The results show that if nonlinear damping is removed, the relationship between backstepping control with

TDE, nonlinear damping and the proposed PID control has the same relationship between TDC and PID control.

To prove this result, when there is no nonlinear damping, the PID control and original TDC are compared in the

same manner. These results are shown in Fig. 4.12 and Fig. 4.13 respectively. That is, the proposed PID control

without nonlinear damping is considered as TDC. In addition, performance of the proposed PID control and a

previous PID control are compared in Fig. 4.14 and Fig. 4. 15.
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Fig. 4.8. (a) Position trajectory of Joint 1, (b) Position trajectory of Joint 2, (c) Position error of Joint 1, and (d)

Position error of Joint 2 by backstepping control with TDE, nonlinear damping and the proposed PID control.
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The diagonal elements are only shown.
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Fig. 4.12. (a) Position trajectory of Joint 1, (b) Position trajectory of Joint 2, (c) Position errors of Joint 1, and

(d) Position errors of Joint 2 by TDC and PID control without nonlinear damping

-54 -



(a)
40 T 1 1
35 L‘?‘g """ poosenee A BT
H 1 | | ]
- : Lot
30 """" A il e [ v f}' """
! e e};
3 i i
E 29 t """ FRtR v R wTTTTTTT
z { YR "~ B
= g il
20 i fr' """ oo "“';';'E """"""
g W
e e LT ST R SR
10 ----------- oo AR
o] b s Urpe
O i : .......... UF'H:I
0 5 10 15 20
time(sec)
14
x 10 (c)
4

Fig. 4.13. (a) Control inputs of Joint 1, (b) Control inputs of Joint 2, (c) Control input difference of Joint 1, and

____________________

...............................

10
time(sec)

20

""" UTDC
.......... U
PID
15 ! .'-.J"' [T
o i
Do
:|"
£ 10 A
= il
- i
S 5 , ! -----------
0 i . o
5 i i i
0 5 10 15 20
time(sec)

.............................................

____________________

———————————————————————————————————————————————

10 15 20
time(sec)

(d) Control input difference of Joint 2 by TDC and PID control without nonlinear damping

-55-



Pasition Error (Degree)

Position (degree)
L]

-0.25

0.3

Desired Theta
Theta

PIDA

____________________________________________

______________________________________

____________________________________________

10 15

time(sec)

10
time(sec)

Position (degree)

Pasition Error (Degree)

0 5

0 ]

Desired Theta
Theta

PIDA

___________________________________________

.....................................

...........................................

10 15

time(sec)

——————————————————————————————————————————————

10 15

time(sec)

20

Fig. 4.14. (a) Position trajectory of Joint 1, (b) Position trajectory of Joint 2, (c) Position errors of Joint 1, and

(d) Position errors of Joint 2 by the proposed PID control (PID1) and the previous PID control (PID2)
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(d) Control input difference of Joint 2 by the proposed PID control (PID1) and the previous PID control (PID2)
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4.4 Conclusion

In this chapter, simulation was conducted to verify the equivalent relationship between the proposed PID

control and backstepping control with TDE, nonlinear damping. The proposed method was identified through

the equivalent relationship of the two controls. The control inputs, positions, and position errors of the two

controllers were similar with each other. The range and patterns of PID gains could be anticipated by using

nonlinear damping and (3.23). In addition, considering the proposed PID control without nonlinear damping,

since the controller corresponds to TDC, a correlation between the previous study [4] and the proposed study

was discovered. Then, robustness of the proposed PID controller was validated when comparing the proposed

PID control and the previous PID control by TDC.
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Chapter 5. Experiment

5.1 Introduction

To validate the equivalent relationship between backstepping control with TDE, nonlinear damping, simulation
and the proposed PID control was conducted. Then, relationship was proved in Chapter 4. To apply this
relationship to the real systems, experiment will be implemented by using a conventional 6DOF PUMA type
robot that is shown in Fig. 5.1.

5.2 Experiment

5.2.1. Experimental Setup

A 6-DOF PUMA robot (Samsung Faraman-AT2) was used for this experiment and is shown in Fig. 5.1. Only
three joints are used from the base, however, it is enough to validate the equivalent relationships. AC servo
motors are used to transmit power through a harmonic drive with gear ratios of 120:1, 120:1, and 100:1 for
Joints 1, 2, and 3 respectively. The maximum continuous torque is 0.637, 0.319, and 0.319 Nm for Joints 1, 2,
and 3 respectively. Each joint has an encoder with a resolution of 2048 pulse/rev attached at its shaft to sense

the angular displacement. Thus, the resolution of each robot joint is 3.66 x 10™* deg (quadrature encoder).
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The controller is operated in Linux-RTAI that is a real-time operating system environment with a sampling

frequency of 1 kHz.

The desired trajectory of each joint is shown in Fig. 5.2 and is not applied to other joints.

Fig. 5.1.The 6 DOF PUMA robot (Samsung Faraman — AT2)

{(a) Desired Trajectory

Position{Degree)

time(sec)

Fig. 5.2.The desired trajectory of Joints 1, 2, and 3
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5.2.2. Design of Controllers

To prove the equivalent relationship between backstepping control with TDE, nonlinear damping and the

proposed PID control, each controller will be compared. After designing backstepping control with TDE and

nonlinear damping, the equivalent PID control is designed by using gains of backstepping control with TDE and

nonlinear damping, and a sampling time in (3.22)

The sampling time is adopted as L = 0.002 sec although the operation system environment has a sampling

frequency of 1 kHz due to the effect of the sensor resolution and the numerical differentiation [20]. In practice,

when the sampling time is 1msec in the experiment, control inputs changed rapidly at unspecific points because

making control input require velocity states by numerical differentiation. In addition, the experiment was

conducted for 12 sec.

First, backstepping control with TDE, nonlinear damping is designed to compare the proposed PID control.

The desired error dynamics are selected as considering damping ratio & = 1 and natural frequency w = 10 Hz.

According to the design method in [7], c;and c, are calculated as

¢; = diag(10.0,10.0, 10.0),

c; = diag(10.0,10.0, 10.0) (5.1)

and nonlinear damping component w is designed as
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w=F+B+p (52)

where

F=diag(¢? +¢3+¢2+1.0x107° ..., ¢? +¢2+¢3+1.0x107°)

B = diag(|ayl, [, las])

p = diag(|f, |, [H,| [A;]) (5.3)

The bounding function F is determined by considering robot dynamics that are unknown, and 1.0 x 107¢ of

F was used to keep F positive definite. Nonlinear damping component w depends on feedback states.

Gains G,k are tuned as

G ! = diag (0.015, 0.012, 0.012)

k = diag (50.0,50.0, 50.0) (5.4)

Second, considering PID control, the control input of PID control is denoted by the equivalent relationship

(3.18). Then, PID gains are represented as

K = diag(150 + 375wy, 120+300wy,, 120+300ws)

20 + 50W11 20 + SOWZZ 20 + 50W33

T, = diag( ) )
1004+500w;; ~ 100+500w,; " 100+500ws;

1 1
20 4+ 50wy; 20 + 50Wwy,’ 20 + 50wss

T, = diag(

(5.5)
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Wll Ry 0
where w = l : : l and w is a positive definite diagonal matrix.
0 ves W33
Third, time delay control (TDC) is designed to compare the proposed method. Relationship between proposed
method and the previous study of [4] will be found through this step. Considering desired error dynamics and
(3.30), kyand k,, are calculated as
k, = diag(20.0,20.0, 20.0)
kp = diag(100.0,100.0, 100.0) (5.6)
Gains G is determined as
G ! = diag (0.015, 0.012, 0.012) (5.7)

Fourth, PID control of the previous study is designed by considering TDC. Then, PID gains are denoted as

K = diag(150,120,120)
Ty = diag (0.2,0.2,0.2)

Tp = diag (0.05,0.05,0.05)

(5.8)
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5.2.3. Experimental Result

The desired trajectories assigned to the robot manipulator and the position trajectories generated by the system

are shown in Fig. 5.3 (a), (c), and (e). The position trajectories follow the desired trajectories well as shown in

Fig. 5.3 (a), (b), and (e). The position errors of each joint are represented and compared to confirm the

equivalent relationship between the two controls in Fig. 5.3 (b), (d) and (f).

To validate the equivalent relationship of the two control inputs, the control inputs of each joint are compared

and shown in Fig. 5.4 (a), (c), and (e). Although the results look similar, to investigate in detail, the difference

between the two control inputs is calculated as defining difference of control inputs (uggcx — Wprp) and shown

in Fig. 5.4 (b), (d), and (f).

The difference was larger than the simulation results since the initial position is always changed by physical

phenomena such as gravity when the robot manipulator is controlled. That difference occurred even if the same

control methods were used twice in the experiment. To solve this phenomenon, control inputs and control input

difference were transferred from discrete time domain to frequency domain by Fast Fourier Transform (FFT).

Since control inputs are discrete and aperiodic signals, these can be considered in the frequency domain. The

results were shown in Fig. 5.5. Control inputs were regarded as the same control inputs in the frequency domain

since the range of control input difference is small. Thus, the equivalent relationship between backstepping
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control with TDE, nonlinear damping and the proposed PID control was achieved.

Using variable PID control by proposed equivalent relationship, the gains K, Ty, and Ty are shown in Fig.

5.6. The gains K, Ty, and Ty are 3 by 3 diagonal matrices. Considering a range of gains with (3.24) in PID

control, the range of each gain is arranged as

diag(150,120,120) < K < diag(150+375w ;, 120+300w,,, 120+300wx;)

diag(0.1, 0.1, 0.1) < T; < diag (0.2,0.2,0.2)

diag(0, 0, 0) < Ty, < diag (0.05, 0. 05, 0. 05)

(5.6)

These ranges of gains are identified in Fig. 5.6. Note that only diagonal elements of gains are expressed since

other elements are zero. As already mentioned in Chapter 3, the patterns of variable PID gains depend on

nonlinear damping component w. The nonlinear damping component w and its elements are shown in Fig. 5.7.

Comparing w in Fig. 5.7 and PID gains in Fig. 5.6, K has the similar pattern with w and T;, Tp have similar

patterns with w~1 since it was mentioned in (3.23) that w is proportional to K and inversely proportional to T;

and Tp.

Note that p is not dominant relatively when elements F, B, and p of w are compared. Its result is different

with simulations since control inputs are small relatively. The diagonal term of p is expressed as
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p= diag(|ﬁ1|, |ﬁ2|» |ﬁ3|)
] = ugy) — G2y (57)
where u_p, is dominant in [H]. If control input u is small, p will decrease. In this case, since it is difficult
to predict the pattern of PID gains by control inputs, nonlinear damping component w must be used to anticipate
patterns of PID gains.

In the simulation and Chapter 3, the proposed PID control without nonlinear damping was compared with the
previous study [4]. The results show that, when there is no nonlinear damping, the proposed PID control was the
same as the previous PID control by the relationship between TDC and PID control.

To prove the results in the real system, when nonlinear damping is removed, PID gains are shown in Fig. 5.8

and expressed as constant matrices. The constant gain K is smaller than the variable gain K with nonlinear

damping and the constant gains Ty, Tp are larger than the variable gains Ty, Tp with nonlinear damping.

The proposed PID control without nonlinear damping was compared with the original TDC in the same

manner with the simulation. These results are shown in Fig. 5.9 and Fig. 5.10 respectively. That is, the

proposed PID control without nonlinear damping is considered as TDC. That is, correlation between the

proposed study and the previous study is discovered.

Control performance is compared by using each PID control in Fig. 5.11. Although the desired trajectory and
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each controlled position trajectory is similar, position errors and control inputs have difference between two

controllers. The proposed PID control is more robust than the previous PID control as considering position

errors.
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Fig. 5.3. (a) Position trajectories of Joint 1, (b) Position errors of Joint 2, (c) Position trajectories of Joint 2, (d)

Position errors of Joint 2, (e) Position trajectories of Joint 3, and (f) Position errors of Joint 3 by backstepping

control with TDE, nonlinear damping and the proposed PID control
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Fig. 5.4. (a) Control inputs of Joint 1, (b) Control input difference of Joint 1, (c) Control inputs of Joint 2, (d)

Control input difference of Joint 2, (e) Control inputs of Joint 3, and (f) Control input difference of Joint 3 by

backstepping control with TDE, nonlinear damping and the proposed PID control in Time domain
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backstepping control with TDE, nonlinear damping and the proposed PID control in Frequency domain
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Fig. 5.9. (a) Position trajectories of Joint 1, (b) Position errors of Joint 2, (c) Position trajectories of Joint 2, (d)

Position errors of Joint 2, (e) Position trajectories of Joint 3, and (f) Position errors of Joint 3 by TDC and the

proposed PID control without nonlinear damping
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TDC and PID control without nonlinear damping
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5.3 Conclusion

In this chapter, the experiment was conducted to verify the equivalent relationship between backstepping

control with TDE, nonlinear damping and the proposed PID control. The proposed method satisfied the

equivalent relationship of the two controls. It was proved that control inputs, positions, and position errors of

backstepping control with TDE, nonlinear damping correspond to positions, control inputs, and position errors

of the proposed variable PID control. The range and patterns of PID gains could be anticipated by using

nonlinear damping component w and (3.23).

Considering the proposed PID control without nonlinear damping, the controller corresponded to the original

TDC. Thus, the correlation between the previous study [4] and the proposed study was discovered. In addition,

the proposed PID control was more robust than the previous PID control designed by TDC.
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Chapter 6. Conclusion

This thesis proposed the design method of robust PID control by using backstepping control with time delay
estimation (TDE) and nonlinear damping. In the previous study by Chang et al. [4], a systematic design method
of PID control for a class of nonlinear systems was presented by using time delay control (TDC). In this case,
there was the inevitable problem of the so-called TDE error. Backstepping control with TDE, nonlinear
damping solved this problem since TDE error is compensated by nonlinear damping [7].

In the proposal, it is considered that backstepping control with TDE, nonlinear damping would be related to
PID control since PID control can be designed by TDC in the previous study. The equivalent relationship
between the two controls is derived through theoretical analysis in the discrete time domain because many
controllers are operated in digital devices.

The proposed PID control has the same characteristics with backstepping control including TDE, nonlinear
damping. That is, the proposed PID control does not require exact information of robot dynamics and ensures
closed-loop stability. Therefore, the proposed controller can be used in a nonlinear system, even one with hard

nonlinearities such as the Coulomb friction and Stiction.

-78 -



Considering the proposed PID control, PID gains derived from backstepping control with TDE and nonlinear

damping are changed due to nonlinear damping during operation time. Thus, the proposed PID control has the

advantages of variable structure controls such as variable structure PID control that use sliding modes. While

variable structure PID controls with sliding modes have problems with chattering and complicated stability

analysis, the proposed PID control does not consider these problems.

The equivalent relationship was proved through simulation and experiment. In the simulation, one-link and

two-link robot models were used. Although there were nonlinear friction and continuous disturbance, the

position trajectories tracked the desired trajectory well. In addition, comparing control inputs and position errors,

each control has nearly similar results. In the experiment, a 6-DOF PUMA robot (Samsung AT2) was used to

prove the proposed equivalent relationship between the two controls in the same manner.

After deriving the ranges of PID gains by using the equivalent relationship, characteristics of PID gains were

discovered through simulation and experiment. As nonlinear damping was detected, the patterns of PID gains

could be analyzed. Then, it was identified that the patterns and ranges of PID gains depend on nonlinear

damping. Therefore, the pattern and range of PID gains can be anticipated by nonlinear damping.

When the proposed PID control without nonlinear damping was used, it was discovered that the control

corresponds to TDC. That is, the correlation between the previous study [4] and the proposed study was
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discovered. In addition, the proposed PID control and PID control of the previous study were compared in

experiment. Then, it was verified that the proposed PID control is more robust than the previous PID control

designed by TDC.

The proposed PID control has the same characteristics with backstepping control including TDE, nonlinear

damping. It has high accuracy, counteracts TDE errors, and is theoretically stable. The proposed PID control can

be used in industrial control systems. Consideration of tuning PID gains will be reduced and high accuracy and

problems of stability will be solved by using the proposed PID control even if there is a nonlinear system that

includes hard nonlinearities.

-80-



Reference

[1] Araki M, PID control, Control Systems, Robotics, and Automation, Vol.Il, p.1-23(1995).

[2] W. Li, X. G. Chang, F. M. Wahl, and J. Farrell, “Tracking control of a manipulator under uncertainty by
fuzzy PID controller,” Fuzzy Sets Syst., vol. 122, no. 1, pp. 125-137, 2001.

[3] I. Cervantes and J. Alvarez-Ramirez, “On the PID tracking control of robot manipulators,” Syst. Control
Lett., vol. 42, no. 1, pp. 37-46, 2001.

[4] P.H. Chang, J.H. Jung “A Systematic Method for Gain Selection of Robust PID Control for Nonlinear
Plants of Second-Order Controller Canonical Form* in IEEE TRANSACTIONS ON CONTROL SYSTEMS
TECHNOLOGY, VOL. 17, NO. 2, MARCH 2009

[5] T. C. Hsia and L. S. Gao, “Robot manipulator control using decentralized linear time-invariant time-
delayed joint controllers,” in Proc. IEEE Int. Conf. Robot. Autom., 1990, pp. 2070-2075.

[6] Z. H. Qu, “Robust control of nonlinear uncertain systems under generalized matching conditions,”
Automatica, vol. 29, no. 4, pp. 985-998, 1993.

[71 Y. Jin, P. H. Chang, Y. S. Park., “Stability Analysis and Design of Time Delay Estimation Based Control
for a Class of Nonlinear Uncertain Systems” in IEEE Conference on Decision and Control, pp.4084-4089,
2010.

[8] P.H. Chang and S. H. Park, “ On Improving Time-Delay Control under Certain Hard Nonlinearities,”
Mechatronics, vol. 13, no.4, pp. 393-412, 2003.

[9] G.R. Cho, P. H. Chang, S.H. Park, and M Jin, “Robust tracking under nonlinear friction using time delay
control with internal model,” IEEE Trans. Control Systems Technology, vol. 17, no. 6, pp. 1406-1414, 2009.
[10] M. Jin, S. H. Kang, and P. H. Chang, “Robust compliant motion control of robot with nonlinear friction
using time-delay estimation,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 258-269, 2008.

[11] Pyung H. Chang and Jeong W. Lee, “A model reference observer for time delay control and its
application to robot trajectory control”, IEEE Trans. On Contl.. Vol 4, no.1, 1996

[12] z. J. Yang, H. Tsubakihara, S. Kanae, K. Wada, and C. Y. Su, “A novel robust nonlinear motion
controller with disturbance observer,” IEEE Trans. on Control Systems Technology, vol. 16, no. 1, pp. 137-

147, 2008.

-81-



[13] M. L. Krstic, Kanellakopoulos, and P.Kokotovic, Nonlinear and Adaptive Control Design. New York:
Wiley, 1995.

[14] Hassan k. Khalil, Nonlinear systems. Prentice hall, 1996

[15] K. Youcef-Toumi and Osamu Ito, “A time delay controller for systems with unknown dynamics, ” Trans.
Of ASME, J. Dyn. Sys. Meas., sontr, vol. 112, no. 1, pp. 133-142, 1990

[16] H. K. Khalil, Nonlinear Systems (Third Edition). Upper Saddle River, NJ: Prentice-Hall, 2002.

[17] Y. Jin, P. H. Chang, M. Jin, D. G. Gweon., “Stability guaranteed time delay control of manipulators
using nonlinear damping and terminal sliding mode” in IEEE Trans. Industrial electronics, vol. *, no.*, 2012
[18] M. Kristic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and Adaptive Control Design, New York,
NY:John Willey & Sons, 1995

[19] D.G. Zill nad M. R. Cullen, Advanced Engineering Mathmatics, PWS-KENT Publishing company, 1992.
[20] E. Lee, J. Park, K.A. Loparo, C. B. Schrader and P.H. Chang. “Bang-Bang Impact Control Using Hybrid
Impedance/ Time-Delay Control” , IEEE/ASME Transactions on Mechatronics, vol. 8, no.2,pp.272-277,2003.

[21] J. H. Chung, P .H. Chang, “Backstepping using Time delay estimation”, The Korean society of

mechanical engineers, Z=A St =27%!, A, pp.577-582, 1998.

[22] PID 2006, IEEE Contr. Syst. Mag., vol. 26, no. 1, Feb. 2006.

[23] H. B. Kazemian, “The SOF-PID controller for the control of a MIMO robot arm,” IEEE Trans. Fuzzy
Syst., vol. 10, no. 4, pp. 523-532, Apr. 2002.

[24] W. Li, X. G. Chang, J. Farrell, and F. M.Wahl, “Design of an enhanced hybrid fuzzy P+ID controller
for a mechanical manipulator,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 6, pp. 938-945,

Dec. 2001.

[25] Y. L. Sun and M. J. Er, “Hybrid fuzzy control of robotics systems,” IEEE Trans. Fuzzy Syst., vol. 12, no.
6, pp. 755-765, Dec. 2004.

[26] J. Park and W. K. Chung, “Analytic nonlinear H,, inverse-optimal control for euler-lagrange system,”
IEEE Trans. Robot. Autom., vol.16, no. 6, pp. 847-854, Dec. 2000.

[27] Y. Choi and W. K. Chung, “Performance limitation and autotuning of inverse optimal PID controller for
lagrangian systems,” ASME J. Dynam. Syst. Meas. Control, vol. 127, no. 2, pp. 240-248, 2005.

[28] J. Park and W. Chung, “Design of a robust H, PID control for industrial manipulators,” ASME J.

Dynam. Syst. Meas. Control, vol. 122, no. 4, pp. 803-812, 2000.

-82-



[29] T. C. Hsia, “A new technique for robust control of servo systems,” IEEE Trans. Ind. Electron.,
vol. 36, no. 1, pp. 1-7, 1989.

[30] K.J. Astrom and T. Hagglund, PID controllers (Second edition), ISA,N. C., 1995.

-83-



ik LT -] uwewooN®
o =] K il ) ol 7o) K
mo <l T . of Al_ — joll R —
—_— ki = o — =< © Kir KA s
o jol o ol B =
d 3 L g e o
A 10 o 3 [} < A3 mw X N =
0 W o
N ol ow Hoow g o W
A il = Kb oI A = o 380
1 < o 3 < _ = W iy
- — —~ _ o hE | - <
_ J X <
0j0 ‘5 i |l hll T} ~ = IH
— [ < orl mjn N oF I+
— e - - — Pl
° T T g T o og X CL - R
oln | 5 m © @ = 5 < =
iH0 LY s m o MW R ~ O
= ) [H] —_ I_._/I
B 2 E o A @ oo 2 W
= = 2 S
oH 70 a Booe < W 5 o 4
i ol ~N prdl Q o
fTs Jll_ — e _._._.__._._ o :_ﬂ {0 = o 1
ol = ol v N TR S Bo% o ou =
. | | ] X -l
of N NO = %__m " TR - ¥R .
] O ol - H = K |_ﬁl |DI
ﬂ =T L||_ n 1[0 —_ ws
I I v g o F
10 fa) s ol 3 1D Jo =
K- SE - N oT  do T g
- 10 =
N =._._ %0 ~ — = oF o0 LH = >
Jo O_ KF o ._.—AT_ - o Al_ = .._m._ o
o = w05 4 TR < - & 3
— Hn_ = N o< o) = {0 JI
— ojo £ > ol Kir
© ~ > 5 = & 2 : = oo @O
K = = T NT O
°______ o M o H = |_4_.._ 53 . <
ol Bl £ X gy P - w o H
gl M = o T+ t+ =0 r o - il oL
K | 02 ow oy 4 H e = o
e | < W N o] < LH ~N 3
N [ ol 8 =} ujr = o S K ~ ol
< ohowm < ° oy N X g 5
4 | Q TH olo mr a Ul Jo =
LY o L. ) K & ¥ 0 oS

|

=
=

o
PID X|0{7|2|

HtEHH O
o H'—

.|

7-
Ll

F

8

AN AHE

0|5

F

=M7t op7| elch. O Zun PID 0|5 2

u}

N

3

—

.
o

o]
AN
-84 -

of CH

=

PID H 07|



0|5 @2 MEsts Aol oigh MAXML Lol M= ULt o] AFoM =, SUHES 2E

mjo

geto| X RYoE =+ot, EUETL O|XF MO7| Ede=z LIEHHCD nE o,

Ho17|7F oleh AlZE SO H-ECHH, AlZE X|HS 0]t MO{7|(TDOE O|&83iA Z et

—

PID Hof7|2] O|F zts Zdsts ™0l MAIZRACE A[ZEX|HES 0|8t Hof7[e PID

—

HMoizlel 7t EAE O|83lA PID H0]7]e| 0|5 gto| 278 &Lt

MRS ol8eh HMof7|l= AlAHol Hdgn ES=dds AIUXES 0|8 FFot

rir

UEBED =Xl MO{7|ojct HA AAECl SEE FFoH7| ot of A A AIEQ

—_ =

>
N
=2
>
0x
0x
n
>
|>
o2
rE
als
ujn
1o
ox
HL
i
o

|&3t= YROICL O] HMO7|= AlAESl Fae

—

—_—

oN
[um
>

ot Hidgoz Qo) Of7|xl= AlZh X[

4%
ox
<2

olgf ¥7|= RAKTDE erronE ZtTICH=s T RACL Of 2Xtof ofsi A|AESl Jsut

2rg-40[ Aotz L.

=Xl

rir

Yot HUES 71 A[AE0AM TDC & ARE3t0]l PID X079l o5 {2 7+& W,

PID X07|= AIZEX[AHS O|&¢t HOj7|[(TDOLt €2 SFS M E22 A2-o| g dut

450 EFEIX| ZSHA ECh o[ OolF WZo of AFoM= XA FHo| 23 W7|=

RXHTDE errong &MAI7|2 HO{7|o] Hdu-goM F8ds EFst= Al XS 0|&¢

FE(TDE) 1t HjM™®  Hl™(nonlinear damping)2 Zgdt= HAHE X 0]7|(backstepping

control)§ O|&¢ICt O MO{7|E 0|83 ?2l= S7t2| PID XOj7|& 5L, MHAHE

grs 7|2z St= Moj7[el mMEt0|HE O|8%tol S7t PID AMO7|e] 0|5 =S

TOtACL WEkM PID HMO7|= dt HMYO = 2HYd0| EFEE f+ §E= M

-85-



e, vy AAEOM PID XMoj7|e] 0|5 gt =Fdt= A0 Cist EHME SHZSH

ZIQUE ok HetEl PID AMOf7|= HIMH ®HEO SfsiM Zt# O[5S ZHA|A &M, Ole

A|A~"ol metnjg Hetet 2te] Zottte FES 7HAIA &ttt

et o] =20Me AlZE X FFah HU Y

oN

2 0[8sts HWAHYE HMO7|E LTI

i

e

=otd, O O[83M S7t2 PID HMO{Z7|E g3t Hof7|el 05 @&2 T+ Aolct

kA
rot

LooMetEl PID MOZ|0fM  OlF gtEel AZ|et WHEIE 24 AoH, FIHHS=

>~
r\l

|ZtX| ¢S Ol &¢%t XMOf7|(TDO)E Ol &gt PID XOf7|et O] ==F0A X etEl PID X 07| S H|l

g Zojct ojZet HES2 Zolddu 2dE 8ot Y &t

Si&l0f: PID M O17|, AlZh X[¥E 0|8 FF(TDE), H|dd =& (Nonlinear damping), W AEHE

(backstepping) | 0f

-86 -



ZtALS]

=== O|ZA OhFZStEHA ofgi2 =

Ab EZILCE

I

~d

OFEH X[ 4|

o

Ct

SfiLt7+OF

NS L ] s

of FMA

An

Ab ERILICH X[E=3Hd0| ool =

F

P
O

25

B

K

OH

10
3+
E
4
ol
*q

10
3+
E|

0

=3
lo

=0 HsfM HIE AF2o O

SHAHR
ol

t

i

Jor
uj

- ot Aol HaX Z2H M

=
=

=0 Z0| A= FIoA

T

LI

O
PN

b

CH AlZtO]

|
A

o<

r
U+

[e]3
=

oln
31
ki

o= 7t&

—-_
o
T

=
e

2, 53 &, XY, widya 2

|
—

o & Vi, gl

ujm
J0
Tl
<0

a8l

SfLCY.

s ojot

=
A

Ol SHILIE Oro o =
X FHIHE, B2 = FX|

SLCL a2|1 57

ol
VYN

AL
e

=13
=

L

-87 -



Hgoz 0o=

gol, 10|, =t 37|

54

Ab EILCE Lo] 2 S T

7t
(=}

L3

)

= Ao =S

- S 7P

%l
—

571E

-

KU
Uk

ofl

1

HEBLCF.

L|C}t. 7}HO|

s

SS0AE HA

Ojx|gtoz 7t

3

ol
pal

LICt. O2|

<o
ol

F

ojmL| 1

i

=

o

LHo

Ch. FHel 2F oM 22| 7HE0]

.

ol

r

o
KK
=0

Ho

—_

fol
Kr

—_

Jod

Klo

o

s

joll
ar

TEPEe]

Tl
Jod

i A 2

I.

o2
ou

I.

A 225

oF
=

Of Q0= AAt

ILICE SEX|E, SAIO] X2 eldo

0OQ| HHO
—=2 T d

BFOA HAF EZFUCL O] =22 BtLte

= AZ17b = A5 of2of

A O]
™ M

b

.
o
=

| o 4%

A

b

C
[

Jo!

K,

-_-—

o2

of &=

b SHLHEA

012

Hi2HD,

=
=

U7

H 7t

ECl s

-88-



Curriculum Vitae

Name :Junyoung Lee
Birth Date : Feb 3, 1985

Education

2011.3 - 2013. 2: Master of Robotics Engineering, Daegu Gyeongbuk Institute of Science and
Technology (DGIST), Korea
2003.3 — 2011. 2: Bachelor of Electronics Engineering, Keimyung University, Korea.

-89 -



	Ⅰ. INTRODUCTION
	1.1 Motivations and objects
	1.2 Dissertation structure

	Ⅱ. Preliminaries
	2.1 Target System and Control Objective
	2.2 Preliminaries
	2.2.1 Backstepping control
	2.2.2 Time Delay Estimation (TDE)
	2.2.3 Nonlinear damping

	2.3 Backstepping control with TDE , nonlinear damping
	2.3.1 Outline
	2.3.2 Control design
	2.3.3 Stability analysis


	Ⅲ. The Design of Variable PID Control and Overviews
	3.1 Introduction
	3.2 The design of variable PID control
	3.2.1 PID control in the discrete time domain
	3.2.2 Backstepping control with TDE, nonlinear damping in discrete time domain
	3.2.3 The Relationship between PID control with Backstepping control with TDE, nonlinear damping in discrete time domain
	3.2.4. A constant dc-bias vector uDC

	3.3 Consideration of variable structure PID control
	3.4 Comparison with the previous study
	3.5 Simple method to design proposed PID control by the previous study
	3.6 Conclusion

	Ⅳ. Simulation
	4.1 Introduction
	4.2 One-link robot manipulator
	4.2.1 Simulation setup
	4.2.2 Design of controllers
	4.2.3 Simulation results

	4.3. Two-link robot manipulator
	4.3.1 Simulation setup
	4.3.2 Design of controllers
	4.3.3 Simulation results

	4.4. Conclusion

	Ⅴ. Experiment
	5.1 Introduction
	5.2 Experiment
	5.2.1 Experimental setup
	5.2.2 Design of controllers
	5.2.3 Experimental results

	5.3 Conclusion

	Ⅵ. Conclusion


<startpage>19
Ⅰ. INTRODUCTION 1
 1.1 Motivations and objects 1
 1.2 Dissertation structure 4
Ⅱ. Preliminaries 5
 2.1 Target System and Control Objective 5
 2.2 Preliminaries 6
  2.2.1 Backstepping control 6
  2.2.2 Time Delay Estimation (TDE) 7
  2.2.3 Nonlinear damping 9
 2.3 Backstepping control with TDE , nonlinear damping 11
  2.3.1 Outline 11
  2.3.2 Control design 12
  2.3.3 Stability analysis 16
Ⅲ. The Design of Variable PID Control and Overviews 21
 3.1 Introduction 21
 3.2 The design of variable PID control 22
  3.2.1 PID control in the discrete time domain 22
  3.2.2 Backstepping control with TDE, nonlinear damping in discrete time domain 24
  3.2.3 The Relationship between PID control with Backstepping control with TDE, nonlinear damping in discrete time domain 25
  3.2.4. A constant dc-bias vector uDC 27
 3.3 Consideration of variable structure PID control 28
 3.4 Comparison with the previous study 30
 3.5 Simple method to design proposed PID control by the previous study 32
 3.6 Conclusion 33
Ⅳ. Simulation 34
 4.1 Introduction 34
 4.2 One-link robot manipulator 34
  4.2.1 Simulation setup 34
  4.2.2 Design of controllers 36
  4.2.3 Simulation results 37
 4.3. Two-link robot manipulator 43
  4.3.1 Simulation setup 43
  4.3.2 Design of controllers 45
  4.3.3 Simulation results 47
 4.4. Conclusion 58
Ⅴ. Experiment 59
 5.1 Introduction 59
 5.2 Experiment 59
  5.2.1 Experimental setup 59
  5.2.2 Design of controllers 61
  5.2.3 Experimental results 64
 5.3 Conclusion 77
Ⅵ. Conclusion 78
</body>

