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ABSTRACT 

Spatial multiplexing (SM) multi-input multi-output (MIMO) technology is con-

sidered as core advanced communication technology to achieve more capacity. Although it 

guarantees more capacity, it gives huge burden on the receiver side to detect each 

stream which is transmitted from each transmit antenna. The main reason is inter-stream 

interference caused from streams of other antennas.  

  In this thesis, to reduce inter-stream interference effects we propose dimension 

reduction soft demodulation (DRSD) with maximum a posteriori (MAP) for iterative detec-

tion and decoding (IDD). The DRSD with MAP employs all ordering successive interference 

cancellation (AOSIC) with slicing MAP criterion for hard detection and also adding one 

more candidate for AOSIC to improve performance. DRSD can provide low complexity to 

separate hard streams and soft streams and slicing MAP criterion also provides similar 

performance to conventional IDD algorithms such as the soft-input soft-output single 

tree-search based on sphere decoding (SISO-STS-SD) which has better performance than 

others.    

Our proposed algorithm can reduce the complexity of iterative soft MIMO detection 

and give fixed complexity on the variety of SNR. Moreover, receiver performance of pro-

posed scheme nearly approaches the performance of SISO-STS-SD. 

 

Keywords: Dimension reduction soft demodulation. Iterative detection and decoding. All 

ordering successive interference cancellation, Slicing MAP criterion.  
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Ⅰ. INTRODUCTION 

 

1.1 Overview of this study 

The continuous increase in data rate currently caused by mobile devices such 

as smart phones, portable multimedia devices and tablet PCs cannot be neglected. To meet 

these explosive needs, advanced technology is required such as MIMO which employs multi-

ple antennas on both sides of the antennas. Specifically, spatial multiplexing (SM) MIMO 

technology is considered a main technology to provide more capacity and concurrently has 

been incorporated in many advanced wireless communication standards such as IEEE 802.11n 

and LTE-Advanced [1]. On the other hand, SM MIMO technology places a huge burden on the 

receiver side because of inter-stream interference. To detect each symbol or bit, we 

should deal with inter-stream interference because each receiver antenna gets interfer-

ences from other antennas. To reduce the inter-stream interference, many schemes have 

been developed such as linear equalizers [2] or maximum likelihood detectors, etc. Among 

these algorithms, although maximum likelihood (ML) detector has optimal performance, it 

entails significant complexity to determine each stream though the candidates for 

SN
M where M is the number of complex constellations and SN  is the number of spatial 

streams.  

Moreover, when using channel coding such as convolution coding or block coding 

or low-density parity-check (LDPC), ML detectors cannot provide optimum performance be-

cause channel coding causes correlation between bits. The detector must make a decision 

jointly on all the blocks using knowledge of the correlations across blocks introduced 

by the channel code. In the case of a coded system, a soft decision detector, calcula-

tion of the log likelihood ratio (LLR) of each bit is required and has better perfor-

mance instead of a hard decision detector. 

However, the soft decision detector is also insufficient to achieve near-

capacity bound. Therefore, we consider iterative detection and decoding (IDD) algorithms 

which, in general, can achieve significantly better performances when using the priori 

information rather than decoding on hard detection or soft detection only [3]-[7]. When 

better performance is required, iterative detection is one of best solutions. However, 

IDD has significant computational tasks compared to the hard detector or soft detector 

only. Thus, we propose a low complexity solution with better performance for iterative 

SM MIMO detection. 
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1.2 Notation 

The superscripts 
T
and 

H
 stand for transpose and conjugate transpose, respec-

tively. The 
M N

C  is a set of all complex matrices of size M N . TM  and RM  are the 

number of transmitter and receiver antennas respectively. sN  (= { , }R Tmin M M ), is the 

number of spatial streams. M  represents the number of complex constellation points for 

the modulation. ,s bb  is the b -th bit of the s -th stream. P[ ]s  indicates the probability 

of an event s . The probability density function of an event s  is expressed as p[ ]s . 
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Ⅱ. MIMO SPATIAL MULTIPLEXING TECHNOLOGIES BACKGROUND 

 

2.1 System model 
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Figure 2.1 Coded SM MIMO transmitter and receiver. 

We consider a coded SM MIMO system with RM  and TM  over a flat fading channel 

as shown in Fig. 2.1 where b is data bits, x  is coded bits, s  is transmit symbols, ŝ  

is detected transmit symbols and b̂  is estimated bits. At the transmitter, data bits 

sequences are encoded by a coding scheme such as block codes, turbo codes, and low den-

sity parity check (LDPC) codes. The coded bits are assigned into N  bits, which are 

mapped to a modulation symbol for M -ary modulation with 2NM  . Then, a group of sN   

streams are transmitted through multiple transmit antennas. The received signal through 

a channel can be represented as 

 

= + ,y Hs z                                     (1) 

 

where 1[y ...y ]
R

T

My  is an ( 1)RM  receiver signal vector, 1[ ... ]
TMH h h  is a 

( )R TM M  effective channel matrix with mh  representing an  ( 1)RM   channel gain 

vector from the m -th stream to all receive antennas, and s  is a vector of transmit 

symbol such as 1[s ...s ]
SNs . 
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We assume the channel H  and the noise variance 
2  are perfectly known at the re-

ceiver. In addition, the probability density function (pdf) of the noise vector z  is 

expressed as 

 

2

2 2

1 1
p( )= exp( ).

( ) RN 
z z                        (2) 

 

 

2.2 SM detection and decoding 

MIMO technology provides two main advantages; diversity gain and SM gain [2]. 

Diversity gain is connected to reliability which is related to how error probability can 

be reduced. On the other hand, SM represents that how many data rates can be transmit-

ted. In this thesis, we consider only SM as a method of capacity improvement.  

SM of MIMO technology basically loads each data stream on each antenna as 

shown in Fig. 2.1 assuming R TM M . Although the transmitters load the data stream on 

each antenna, the receiver cannot detect the stream of each antenna correctly because of 

inter-stream interference from other antennas. To reduce the effect of inter-stream in-

terference, a variety of SM detection algorithms are presented such as linear equalizer 

or decision feedback equalizer. Among algorithms, vertical Bell Lab layerd space-time 

(V-BLAST) [8] which removes interference between inter-streams and successively detects 

each stream is a popular detection because of good performance and easy implementation. 

Then, SM detection algorithms are combined with channel coding schemes to 

achieve near channel capacity. In Fig. 2.1, SM detection and the channel decoding block 

are independently operated to estimate each bit correctly. The bit information delivered 

to the decoder from the detector is measured as the ratio of bit probabilities and is 

called the maximum a posteriori (MAP) or a posteriori probability (APP). There are two 

ways to exchange information between SM detection and decoder such as non-iterative de-

tection decoder (Non-IDD) and iterative detection and decoder (IDD). In non-IDD, an out-

put of the detector is passed to the channel decoder for bit decision without any feed-

back where the detector can employ hard or soft detection. Hard-detection is to deter-

mine each symbol independently using a symbol by symbol detector such as linear detector 

and non-linear detector. Soft-detector is expressed as the log likelihood ratio (LLR) 

called L-values [9]. The large absolute value of LLRs means that the detected or decoded 

bit information is reliable. By contrast, near zero value of LLRs indicates that the 

estimated bit is unreliable. On the other hand, in IDD, priori information between the 
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detector and decoder is exchanged in an iterative operation until desired performance is 

achieved or maximum numbers of iterations are performed. The IDD achieves near optimum 

performance with MAP or APP unlike non-IDD. More details are described below. 

 

 

2.3. Non-iterative detection and decoding  

Non-IDD assumes that all transmitted messages are of equal probability. Then, 

priori information is not considered in this algorithm. There are mainly two receivers 

in non-iterative detection and decoding such as hard-detection receivers and soft-

detection receivers. The details are presented below.  

 

 

2.3.1 Hard-detection receivers  

 

Hard detector

Demodulator

( Symbol to Bit 

Mapping)

b̂ ŝ
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Figure 2.2 A MIMO receiver model with hard detection receivers 

Hard SM detection as a symbol by symbol detector determines the transmitted 

streams without any other information from the decoder such as feedback and can provide 

estimated bits from demodulator to decoder. These are the main characteristics from my 

points of view. Fig. 2.2 shows a MIMO receiver model with hard detection receivers.  

The SM MIMO hard detector detects a transmit symbol vector from the signal 

vector received at the receive antennas. Each element of the transmit symbol vector is 

demapped to the candidate symbol on the constellation used at the transmitter, which in 

turn estimates the coded bits transmitted. The estimated coded bit is used by the hard 
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decoder to generate the data bit. An uncoded system can be viewed as a special case of 

this hard decoding, where there exists no encoder at the transmitter and no decoder at 

the receiver. Thus, the same MIMO hard detection can be applied to the uncoded system. 

One of the most complex parts for designing a MIMO receiver with hard decoding is 

the MIMO hard detector, which detects a transmit symbol vector from a receive signal 

vector y . ML detection output of the transmit symbol vector assuming that all 

transmitted messages are of equal probability is given by 

 

 ˆ =  p | ,argmax
s S

s y s                                  (3) 

 

where S  is a set of all possible 
N

SM  transmit symbol vectors, and  

 

2

2 2

1 1
p( | )= exp( )

( ) RM 
 y s y Hs

                         (4)

 

 

which shows that the ML detector is equivalent to the minimum distance detector. 

The straightforward implementation of the ML hard detector (3) is calculating 

the Euclidean distance (ED) for all and then finding ŝ  which minimizes the minimum ED 

and the corresponding ŝ . However, to avoid exhaustive search such as 
N

SM  more effi-

cient algorithms exist that do not require the calculation of EDs for all possible 

transmit symbol vectors. One such example is a sphere decoder with an infinite initial 

sphere size [10, 11]. Furthermore, near-ML hard detectors also exist that further reduc-

es the number of ED calculations [3, 12, 13]. 
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2.3.2 Soft-detection receivers  
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Figure 2.3 A MIMO receiver model with soft detection 

For channel coding systems, soft detection receivers can provide the log like-

lihood ratio (LLR) of each coded bit unlike the hard detection receivers. This LLR in-

formation of each bit can be used for soft decoding. Then the soft decoding can give 

better performance than hard detection which does not pass LLR of each coded bit to de-

coder. Fig. 2.3 shows a MIMO receiver model with soft detection. In contrast to a re-

ceiver with hard detection, the LLRs of coded bits are directly calculated from the re-

ceived signal vectors. The LLR becomes an input to a soft decoder to generate the data 

bit estimates. The LLR for the b -th bit of the s -th stream, ,s bb , is  

 

,

,

,

P[b 1| ]
log .

P[b 1| ]

s b

s b

s b

L
  
    

y

y
                           (5) 

 

Using the conditional pdf in (4), the LLR can be represented assuming that all transmit-

ted messages are of equal probability as  

 

1 1
, ,

2 2

2, 2

1 1
log ex )p( log exp( )

s b s b

s bL
   

   
       

   
   

  
s S s S

y Hs y Hs            (6) 
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where ,s b

1
S  and ,s b

1
S  are the sets of symbol vectors that have the bit corresponding to +1 

and -1 bit at a b -th bit of s -th stream respectively. For example, ,

1

1 1S  is the sets of 

symbol vectors which has +1 bit at the first bit of the first stream. 

The LLR can be calculated in a straightforward way by literally evaluating (6) 

using EDs for all possible transmit vectors. However, the complexity is too high to im-

plement using state-of-the-art technology. Thus, a so-called max-log approximation [8, 

9-13] is commonly employed in practice, where the logarithm of the sum of multiple expo-

nentials is approximated as the maximum among the arguments of the exponentials. With 

the max-log approximation, the following approximate LLR can be calculated as  

 

, ,

2 2

, 2 2

1 1
min mins b
s s

L
   

   
1 1

s b s bS S
y Hs y Hs

              

 (7) 

 

However, the complexity of this approximate LLR calculation is still quite 

high, and even further approximation is often taken in practice [3, 13-16]. 

 

 

2.4 Iterative detection and decoding (IDD).  

IDD assumes that all transmitted messages are not of equal probability and can 

exchange the prior information between the SM detector and the channel decoder in an 

iterative fashion unlike non-IDD.   

We consider an iterative soft MIMO decoder as shown in Fig. 2.1. The iterative  

MIMO detector calculates the log-likelihood ratio (LLR) of 
,s bL

 
according to [17] as 

(5). Using Bayes's theorem, we can rewrite (5) because all transmitted messages are not 

of equal probability as 

 

, ,

,

, ,

, ,

, ,

a priori information an extrinsic information

p( | b 1)P(b 1) / p( )
log

p( | b 1)P(b 1) / p( )

P[b =+1] p( | b 1)
log +log .

P[b = 1] p( | b 1)
     

s b s b

s b

s b s b

s b s b

s b s b

L
    

       

  
      

y y

y y

y

y

                     (8) 

 



- 9 - 

 

Extrinsic information can be represented using the expectation as 

 

,

,

,

,

,

, ,

, ,

p( | )P( | b =+1)
P[b =+1]

log log
P[b = 1] p( | )P( | b =+ )

    

1

 

s b

s b

s b

s b

s b

s b s b

A E

s b s b

L

L L









 
 

   
  

 

 





1

1

s S

s S

y s s

y s s               (9) 

 

for all symbols s =1, ... , sN and all bits b =1, ... , N . 

The conditional pdf of a received signal vector y  given a transmit symbol vector 

s   is as (4). Then, the MIMO detector computes the extrinsic LLRs 

 

, , , , s,b,E A

s b s b s bL L L                                   (10) 

 

that are conveyed to a channel decoder. Instead of calculating extrinsic information 

directly, we consider maximizing a posteriori probability for simple calculation. We 

then remove the priori information to provide extrinsic information to the channel de-

coder such as , , , .E A

s b s b s bL L L   To find the LLRs for each bits, we require the computa-

tion of sN
M  Euclidean distances per LLR value, which invokes massive computational 

complexity to the detector. Max-log approximation and QR-decomposing are commonly de-

ployed to solve the problem [13], where approximate LLR can be defined as 

 

1 1
, ,

, ,

2 2

, 2 2

2 2

2 2

1 1
log exp( )P[ ] log exp( )P[ ]

1 1
     min log P[s] min log P[s]

s b s b

s bL
 

 

 

 

 

 

   
       

 


   
   
 

 
   

   







 

1 1
s b s b

s S s S

s S s S

y Hs s y Hs s

y Rs y Rs

      (11)                  

 

where H QR , 
Hy Q y , Q  and R  are an R RN N  unitary matrix and an R SN N  

upper triangular matrix respectively, and log P[ ]s  is the priori information term as 

[18] 
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,

, ,

, ,

, , , ,

, , , ,

P[ ]=log( P[ ])

exp(0.5b )
           log

exp(0.5 ) exp( 0.5 )

           0.5 log(exp(0.5 ) exp( 0.5 ))}

           (0.5 0.5 ),  fo

l

r 2.

og s b

A

s b s b

A A

s b s b

A A A

s b s b s b s b

A A A

s b s b s b s b

b

L

L L

b L L L

b L L L

 
     

   

  









s

            (12) 

 

Although (11) can achieve better performance than non-IDD, it also requires significant 

computational complexity calculations. To reduce this massive complexity, we consider 

all ordering successive interference cancellation (AOSIC) [19] with MAP criterion for 

the hard-detection and dimension reduction soft demodulator (DRSD) [20] for the soft-

detection iteratively. 
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Ⅲ. PROPOSED SCHEMES 

 

3.1 DRSD with MAP 

DRSD with MAP are extended to IDD algorithm because DRSD in [20] is based on 

non-IDD algorithm. Then, to calculate the LLR value of (11), an iterative dimension re-

duction soft demodulator is employed. The dimension reduction reduces the number of 

streams whose transmit symbol candidates are required to be calculated exhaustively for 

soft detection. The iterative DRSD considers only part of the streams for soft detection 

and employs a hard detector to find the best transmit symbol subvector for the remaining 

streams iteratively. 

First of all, the calculation of the LLRs for the 
so

SN  streams among the total 

SN  stream is focused. Accordingly, 
ha

SN  (
s

S S

oN N  ) is the number of remaining 

streams out of the total SN  streams. The transmit symbol vector corresponding to soft 

detection streams as 
sos  and the transmit symbol vector corresponding to the remaining 

hard detection streams as 
has  are represented. Then, a transmit symbol vector can be 

divided as 

 

.
ha

so

 
  
 

s
s

s
                                    (13) 

The channel matrix corresponding to each soft stream and hard streams are also divided 

into two submatices as 

 

,ha so   R R R                                  (14) 

 

where R
a

S
hN Nha 

R C  and 
so

RN Nso 
R C  represent the channel matrices for 

sos  and 
has , 

respectively. The received signal is represented as 

 

+ .ha ha so so y R s R s z                              (15) 

 

The LLR of (11) for the b -th bit of the s -th stream  is 
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( )
,

( )
,

2

, 2
,

2

2
,

1
min {

log P[ ]}

1
min {

log P[ ]}

soso ha ha

soso ha ha

ha ha so so

s b

ha ha so so

L








 

 

  



  



1
s b

1
s b

s S s S

s S s S

y R s R s

s

y R s R s

s

                  (16) 

 

where 
( )

,

so b

s bS  is the set of soft detection transmit symbol subvectors 
so

s  with ,s bb b , 

and 
ha

S  is the set of all hard detection transmit symbol subvectors 
ha

s  with ,s bb b . 

Calculating the LLR values over the sets 
( )

,

so b

s bS  and 
ha

S  can be operated in 3 

three steps: 1) instead of extrinsic information, find the minimum ED over the set 
ha

S  

for each 
so

s  with the priori information logP[ ]ha
s , 2) calculate the minimum ED of each 

so
s  with the priori information log P[ ]so

s , and 3) subtract a priori information of the 

b -th bit of the s -th stream as (10) to pass extrinsic LLRs to a  channel decoder as 

 

( 1)
,

(1)
,

2

, 2

2

2

1
min { min ( ) log P[ ] log P[ ]}

1
          min { min ( ) log P[ ] log P[ ]},

so ha haso
s b

so ha haso
s b

so ha ha ha so

s b
b

so ha ha ha so

b

L




 



 
 
 

  

 
 
 



   

s Ss

s Ss

y s R s s s

y s R s s s

     (17) 

where 

 

(s ) = + ,so so so ha hay y R s R s z                         (18) 

logP[ ] logP[ ] logP[ ],ha so s s s                       (19) 

 

which is formed by subtracting the transmit symbol subvector 
so

S  for DRSD detection. 

P[ ]ha
s  and P[ ]so

s  are independent. 

The MAP hard detector calculates the minimum Euclidean distance (ED) for each 

so
s  with the priori information as 

 

2

2

1
ˆ ˆ( ) { ( ) ( ) log P[ ]} log P[ ].so so ha ha so ha soC


  s y s R s s s s           (20) 

where  
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2

2

1
ˆ arg min ( ) log P[ ]

ha ha

ha so ha ha ha




 

  



s S

s y s R s s                  (21) 

 

Finally, the LLR can be calculated by 

 

( 1) ( 1)
, ,

, min C( ) min C( )
so soso so
s b s b

so so

s b
b b

L
 

 
 

s s

s s                         (22) 

 

Then, based on (10), the extrinsic LLR for the channel decoder is denoted as 

 

( 1) ( 1)
, ,

, ,{ min C( ) min C( )}
so soso so
s b s b

E so so A

s b s bL L
 

 
  

s S s S

s s                     (23) 

 

where 
A

,s bL  is the data bit and the a priori information of the b -th bit of the s -th 

streams. To have full LLR values for iteration soft decoding, the DRSD operation should 

be done multiple times. The LLR calculation for the remaining streams can be calculated 

by rearranging the transmit symbol vector. For example, when ( , )so

S SN N  = (3, 1), first 

of all, the iterative DRSD can be performed with 1 2 3[ ]s s ss and                               

1 2 3=[ ]H h h h , for the soft detection of streams 3. Then, the DRSD can be repeated with  

1 3 2[ ]s s ss  and 3 1 2=[ ]H h h h , for the soft detection of stream 2. With this repetition 

of calculation, the iterative soft decoder can have the full LLR values, estimating the 

bit and provide iteratively the priori information of each bit to the iterative soft 

decoder 

 

 

3.1.1 AOSIC with slicing MAP criterion 

For each 
so

s , all ordering successive interference cancellation (AOSIC) with 

MAP criterion can directly find vectors 
ha

s  from the received signal as follows [19] 

 

Initialization: 
2 1

1= R [ ]H H  G R R I R  - Find pseudo inverse       (24a) 

                  1i      

                  Ns! - Find all stream orders to detect 

                    j  - The next detected symbol order from Ns! ordering 
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Recursion:  

              ( )j i jw G  - Find nulling matrix                          (24b) 

              = j

ha

j is w y   - Interference nulling                         (24c) 

              s =dec( )ha ha

j js  - Slicing                                    (24d) 

              1=y ( )ha

i i j jy s  R  - Cancelling                             (24e) 

              1  ( )=i j

 

G R   - Update pseudo in 

verse                      (24f) 

              1i i   

Finalizing:  

              

2

2

1 2 !

1
ˆ ( )= arg min ( )

             

log P[

   

] ,

{ , , , }

ha

S

ha so so ha ha ha

ha ha ha

N



 
  

 

 

s Φ

s s y s R s s

s s s

       (24g) 

 

where (A) j is j -th row of A  and Hi


is H with rows of 1, ,, ik k removed and 

ha

js is out-

put from the AOSIC with the j -th ordering for hard detection.  

However, this AOSIC with MAP criterion is not enough to have better perfor-

mance because the iteration does not affect AOSIC procedure. Then, we propose AOSIC 

slicing MAP criterion which extends MAP detector by using a priori probabilities. Con-

ventional slicer is to determine one constellation point which is nearest constellation 

point as (24c) and (24d). On the other hand, AOSIC slicing MAP criterion is used as  
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,where C is constellation points, instead of using slicing as (24d). For each bit of s -
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th  stream, the constellation points can be divided into two groups such as +1 group and 

-1 group. Fig. 3.1 shows a couple of groups of each bit. With this partition, each bit 

can be easily decided by calculating the distance with the priori information. For exam 

 

ple, we assume the priori information of each stream is given. Then, the AOSIC slicing 

MAP criterion is applied for QPSK with 2 transmit and 2 receive antennas for hard detec-

tions as 

 

1 2 1 2 ,1

2 2 2 2 ,2

d log[ ] d log[ ] b 1

d log[ ] d log[ ] b 1

ha ha

s

ha ha
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s s

s s
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where 1d  is the distance between image value of upper constellation points and image 

value of estimate 2ŝ  
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is the distance between real value of right constellation points and real value of esti-

mate 2ŝ  
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 and 2d  is the distance between real value of left con-

stellation points and real value of estimate 2ŝ  
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. 2log[ ]ha
s  is 

the priori information of second stream. Impact slicing MAP criterion is as  
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where ,1   sb and ,2   sb are the first and second bit of the second stream respectively and 
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2

A

,1   sL and 
2

A

,2   sL are a priori LLR value of the first bit and a priori LLR value of the 

second bit of second stream respectively. With impact slicing MAP criterion, calculation 

of Euclidean distance is not necessary just like conventional slicing. Then, without 

more complexity, AOSIC with slicing MAP criterion can provide iteration improvement per-

formance.     
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Figure 3.1 Bit partition example of the QPSK constellation 

. 

 

3.1.2 Adding one more candidate 

The more candidates of symbol for hard detection we add, the more complexity 

arises. Therefore, to find more exact each symbol or stream for hard detection are crit-

ical factor to maintain low computation complexity because AOSIC with slicing MAP crite-

rion is not enough to achieve performance of MAP detection.   

One minor approach is to use the DRSD with MAP property which has each esti-

mated hard stream for each soft stream because to find minimal ED of each soft stream, a 

detector should detect the hard streams. Then, hard streams with minimal ED that are 

detected by AOSIC with slicing MAP criterion can be used to find the minimum distance 

for other calculation of ED. After deciding the hard streams for minimum distance, dou-

ble checking of each distance with fixed hard streams for other soft stream can provide 

improved performance because AOSIC algorithm has limited candidates’ numbers and are 

sensitive on noise effects.  

If the fixed hard streams are not included as candidates in other soft AOSIC 

detector, then one more candidate such as estimated hard streams is included to check 
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the minimum distance. The AOSIC with slicing criterion (24g) can be modified as     

 

2

2

1 !, ,2

1
ˆ ( )= arg min ( ) log P

            

[ ],

{ , , , } ,   

ha

S

ha so so ha ha

A

ha

N



 

 

s Φ

s s y s R s s

s s s s

                (28) 

 

where As is estimated as hard streams previously.  

For example, hard streams 
ha

s are two with QPSK constellation and soft stream 

so
s is one ( , , )ha so

S S SN N N  = (3, 2, 1). AOSIC with slicing MAP criterion provides each 

estimated hard stream for each soft stream as (24g). Then, minimal estimated streams ŝ  

are determined as  
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where 
so

cs  is soft stream with each constellation point of such as QPSK has four constel-

lation points and , 
ˆha

stream candidates is estimated hard streams. When ŝ  is determined as 

1 , 2,1 3,1( ˆ ˆ ,  )so ha ha

js s s , 2,1
ˆha
s  and 3,1

ˆha
s  (= As ) become fixed hard stream which has minimal ED. Then, 

other soft streams check 2,1
ˆha
s  and 3,1

ˆha
s  candidates included to calculate minimum distance. 

If they already include these candidates As ,  As  does not included. If they does not 

include these candidates, As  should be included as (28). 
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Ⅳ. COMPLEXITY and PERFORMACNE EVALUATION 

 

4.1 Complexity Evaluation 

The complexity evaluation of the iterative DRSD detector is compared with 

iterative MAP soft detections. To calculate the Euclidean distance for each LLR value, 

tree searching should be considered. Then, the number of visited constellation points 

(same as nodes in tree searching representation) is chosen as the complexity measure 

reference because the complexity associated with each node of a tree is approximately 

the same regardless of the node location. In this paper, only the complexity for the 

Euclidean distance calculation is considered because the calculation of priori infor-

mation is not a tree search scheme and priori information is commonly computed by most 

iterative detectors. 

With conventional MAP computation, the number of visited nodes is 
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since a conventional search visits all the nodes of the tree which has 
iM nodes in 

layer i for i = 1, 2,..., SN . 

On the other hand, based on the DRSD, the number of visited nodes for the soft 

detection of 
so

SN  streams is 
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where AOSIC+MAP ( )ha

SC N  is the number of visited nodes of the considered AOSIC detector 

with MAP criterion. With the repeated use of the same partial DRSD [ / ]so

S SN N  times 

for full LLR values, the total number if visited nodes for the demodulation of all 

SN  streams is 
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The AOSIC with MAP reduces the candidates of the tree searching as (16). To cal-

culate the complexity of the hard detectors, we calculate the number of visiting nodes 

based on AOSIC with MAP as 
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Finally, the complexity of the iterative DRSD with AOSIC is 

 

1

, ( , ) [ ]{ M ( )!( )}.
1

so
S

so
S

N
Nso so soS

DRSD tot S S S S S Sso

S

N M M
C N N N N N N

N M




   


     (34) 

 

To compare with complexity and performance, we introduce soft-input soft-output 

single tree-search based on sphere decoding (SISO STS-SD) which uses tightening of the 

tree-pruning criterion [4]. To the best knowledge of authors, SISO STS-SD is consid-

ered as one of best algorithms by using LLR correction method with low complexity. 

However, unlike our algorithm, the complexity of SISO STS-SD has unfixed characteris-

tics because sphere decoding is changed by SNR. Then, the average visiting nodes from 

our simulation are represented as complexity for SISO STS-SD. Fig. 3 compares the com-

plexity of DRSD with the exhaustive MAP and SISO STS-SD. As you can see, our algorithm 

has better and fixed complexity on a variety of SNR.    
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Figure 4.1 Complexity comparasion for 16QAM with 3 transmit and 3 receive antennas. 
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4.2 Performance evaluation 

We tested our algorithm with the MIMO-OFDM simulator for QPSK and 16QAM con-

stellations using Gray code respectively. The simulation results are based on a convolu-

tion encoder (rate R = 5/6, constraint lengths K = 7, polynomials [133 171]) and by im-

plementing BCJR channel decoder [21] based on the min-sum algorithm and considering the 

three tap channel which is generated randomly. One packet consists of 4 OFDM symbols and 

128 subcarriers are used for simulation. We assume that bits are statistically independ-

ent. If one of the bits in the frame has an error, the frame is considered to be in er-

ror. Because of the simulation time limitation, up to three iterations is performed. In 

this section, besides SISO STS-SD scheme, we introduce another scheme such as minimum 

mean-squared error (MMSE) based parallel interference cancellation (MMSE-PIC) algorithm 

which initially is proposed by Wang and Poor in 1999 for multi-user detection [22].  

Fig.4 shows the packet error rate (PER) curves for QPSK with 3 transmit and 3 

receive antennas. Three streams are transmitted ( SN =3) and the number of soft demodula-

tion streams is chosen as 1 (
so

SN =1) for the DRSD. The DRSD with MAP performs better 

than the SISO STS-SD algorithm, where MMSE-PIC has a large degradation of performance. 

Fig.5 shows PER curves for 16QAM with 3 transmit and 3 receive antennas. Three 

streams are transmitted ( SN =3) and the number of soft demodulation streams is chosen as 

1 (
so

SN =1) for the DRSD. The DRSD with M-AOSIC performs the almost similar as the SISO-

STS-SD, where MMSE-PIC has a large degradation of performance. 

Lastly, Fig.6 shows the packet error rate (PER) curves for 16QAM with 4 trans-

mit and 4 receive antennas. Three streams are transmitted ( SN =3), and the number of 

soft demodulation streams is chosen as 1 (
so

SN =1) for the DRSD. The DRSD with M-AOSIC 

has performance degradation compared to SISO-STS-SD because of the performance degrada-

tion of AOSIC with slicing criterion. 
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Figure 4.2 PER curves for QPSK with 3 transmit and 3 receive antennas. 

 

 

 

Figure 4.3 PER curves for 16QAM with 3 tranmit and 3 receive antennas. 
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Figure 4.4 PER curves for 16QAM with 4 transmit and 4 receive antennas. 
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Ⅴ. SUMMARY and FUTURE WORK 

 

5.1 Summary 

SM MIMO transmission has attracted attention to approach near capacity bound 

which provides more data rate. One severe problem is that receiver side has massive 

burden of computational complexity to detect each stream or symbol because of inter-

stream interference. To reduce this problem, non-IDD and IDD algorithm are introduced 

as background knowledge. IDD algorithm of SM MIMO transmission is mainly considered as 

main technology in this thesis.  

In this thesis, we have proposed DRSD with MAP that employ AOSIC with slic-

ing MAP criterion and adding the one more candidate. DRSD basically separates soft-

streams and hard-streams to give complexity burden to hard detector. Then, slicing MAP 

criterion used for hard detector provides improving performance. In addition, adding 

one more candidate which is best hard streams through the DRSD with MAP improves per-

formance. 

The use of the proposed IDD algorithm can provide similar performance with 

lower fixed complexity on SNR variation compared to other IDD algorithm such as SISO-

STS-SD.  
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5.2 Future work 

We simulated 4 transmit and 4 receiver antennas with 16QAM. In the simulation 

results, although our algorithm has less complexity, our algorithm cannot have better per-

formance than the SISO-STS-SD algorithm. In terms of high order antennas such as 8x8 an-

tennas, it is expected that performance of the proposal scheme becomes worse than the SI-

SO-STS-SD algorithm. To add more candidates, a new algorithm or new types of criterion is 

required with low complexity for high order antennas implementation. 
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요 약 문 

차원감소 소프트복조 기반의 다중 안테나 반복검출 기법 

 

공간다중 다중안테나 검출기법은 높은 데이터 율을 얻기 위해서 꼭 필요한 

기술이지만 실제 적용에 있어서 문제를 가지고 있다. 특히 공간다중 다중안테나 검출기법 중 

반복검출복호기법의 경우 확실한 수신 성능의 개선이 있지만 수신 단에 많은 계산양의 부담을 

주어서 실제 적용하기가 어렵다.  

이에 본 논문은 이 문제를 해결하기 위해서 최대사후확률을 사용한 차원감소 

소프트복조기법을 제안한다. 차원감소 소프트복조기법의 하드검출을 위해서 모든 

순서순차간섭삭제기법을 슬라이싱 최대사후확률 기준을 가지고 개선하며 추가 성능 향상을 

위해서 모든 순서순차간섭삭제기법에 하나의 스트림 리스트를 추가하는 기법을 제안한다. 하드 

검출과 소프트 검출로 스트림을 분리하여 복잡도를 낮추었으며 특히 슬라이싱 최대사후확률 

기준을 가지고 반복검출복호기법의 충분한 성능을 보인다.  

제안한 기법은 반복검출복혹기법의 기존의 기법에 비해 낮은 계산량과 신호 및 

잡음비에 무관한 고정 계산량을 제공하며 기존 기법의 성능에 근접한 성능을 보인다.  

 

 

핵심어: 반복 검출, 모든순서순차삭제기법, 낮은차수검출기법, 최대사후확률, 최대우도 
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아버지라는 이름의 작은 등불이 되길 간절한 마음으로 기원합니다.  

마지막으로 지면으로 통해서 일일이 언급을 하지 못했지만 그 동안 저를 아끼고 

사랑해주신 모든 분들께 다시 한 번 진심으로 감사 드립니다.   
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