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Abstract A Lookup-Table (LUT) based design enhances the
processing speed of a fuzzy obstacle avoidance controller
by reducing the operation time. Also, a LUT sharing
method provides efficient ways of reducing the LUT
memory size. In order to share the LUT which is used for a
fuzzy obstacle avoidance controller, an idea of using a
basis function is developed. As applications of the shared
LUT-based fuzzy controller, a laser-sensor-based fuzzy
controller and an ultrasonic-sensor-based fuzzy controller
are introduced in this paper. This paper suggests a LUT
sharing method that reduces the LUT buffer size without a
significant degradation of the performance. The LUT
sharing method makes the buffer size independent of the
fuzzy system’s complexity. A simulation using MSRDS
(Microsoft Robotics Developer Studio) is used to evaluate
the proposed method. To investigate the performance of
the controller, experiments are carried out using a Pioneer
P3-DX with LabVIEW as an integration tool. Although the
simulation and experiments show little difference between
the fully valued LUT-based method and the LUT sharing
method in terms of the operation time, the LUT sharing
method reduces almost 95% of the full-valued LUT-based
buffer size.
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1. Introduction

Autonomous navigation algorithms are applied to various
applications for mobile robots to drive toward their target
position without a remote control program. In the mapping
step of an autonomous navigation application, the robot
acquires the location and contour information of obstacles
from sensors and updates its navigation map. A navigation
path from the current position to the target position on the
map is determined by the updated map data. If there are
no changes in the map during the robot navigation process,
obstacle avoidance is not necessary because a well-defined
navigation path will lead the robot to the target position
safely. Even in the event that unexpected obstacles
suddenly appear on the navigation path, the robot is
required to perform obstacle avoidance in order to
navigate the planned path without colliding with these
types of obstacles. To escape the unexpected obstacles and
continue toward the target position under real-time
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navigation, the robot should determine its steering
direction and velocity instantly. This paper is focused on
performance improvement and implemental optimization
for a fast real-time obstacle avoidance system of robot
navigation.

There are several algorithms pertaining to robot obstacle
avoidance, including potential field algorithms [1], vector
field histogram algorithms [2], and fuzzy controller
algorithms [3]. The fundamentals of fuzzy controller
methods were presented by Wang [4], Palm [5], Passino [6],
Aguirre [7], and others [8, 9]. As a result of these papers,
fuzzy controller methods have more advantages in real-
time applications because they provide simpler and more
intuitive methods of robot obstacle avoidance. This is why
we chose fuzzy controller methods for obstacle avoidance
here. Mbede [10] proposed a neuro-fuzzy motion
controller, and Lilly [11] presented a P/N fuzzy obstacle
avoidance controller. Lilly’'s work provided a more
intuitive method for robot obstacle avoidance through its
use of negative fuzzy rules to eliminate redundant fuzzy
rules. Kiendl [12] and Branson [13] also presented methods
of utilizing negative rules in fuzzy systems. The fuzzy
controller in this paper is based on the P/N rule fuzzy
controller method proposed in Lilly’s paper [11]. We
verified the performance of the previous P/N rule fuzzy
controller method using a robotics simulator in MSRDS
(Microsoft Robotics Development Studio) 2008 [14]. We
also devised an improved algorithm based on the previous
P/N rule fuzzy controllers, verified them in a simulator,
and experimented in a real environment.

In Section 2, the fundamentals of the P/N rule fuzzy
controller and the full LUT-based design of the P/N fuzzy
controller are introduced. The proposed LUT sharing
method for the controller is described in Section 3. Section
4 and Section 5 present the laser range-finder-based 50-rule
P/N fuzzy controller and the ultrasonic-sensor-based 18-
rule P/N fuzzy controller, respectively. Simulation and
experimentation results are shown in Section 6. Finally,
concluding remarks are summarized in Section 7.

2. A Positive/Negative rule fuzzy controller and its full-
LUT-based design

2.1 A Positive/Negative rule fuzzy controller

Fuzzy rules of traditional fuzzy systems only describe the
operations that are to be run. In Positive/Negative (P/N)
rule fuzzy system theory, the concept of negative fuzzy
rules was introduced to prescribe actions to avoid rather
than execute. Two types of rules, positive rules and
negative rules, are used in a P/N rule fuzzy controller.
Positive-rules derive the proper output of the P/N-rule-
based fuzzy system, comparable to typical fuzzy system
rules. In contrast, negative rules cause the fuzzy system not
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to produce improper fuzzy output. The P/N rule fuzzy
system can be applied to obstacle avoidance for the
autonomous navigation of mobile robots. Positive rules
direct the robot to a target place and negative rules prevent
the robot from colliding with obstacles. The effect of
positive rules is dominant in a non-obstacle environment
because negative rules begin to affect navigation only
when obstacles appear on the navigation path of the robot.
If the detected obstacles are far from the robot, negative
rules rarely affect the system. As the obstacles come closer
to the robot, the negative rules dominate the system.

2.2 Full-LUT-based design of a Positive/Negative rule fuzzy
controller
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Figure 1. Fuzzy membership degree acquisition on lookup-table
based architecture
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Figure 2. Lookup-table (LUT) buffers of full-LUT-based architecture

For secure navigation for mobile robots, the computation
delay of the obstacle avoidance controller is one of the
most important factors. To reduce the delay, we decided
to reduce the computational complexity of the controller.
It is not to be denied that faster decision when avoiding
obstacles contributes to more accurate avoidance. In our
design, we adopted a P/N fuzzy controller method which
is simpler and more intuitive for robot obstacle
avoidance. fuzzy membership functions
formed as Gaussian distribution curves are the most
critical problem related to fast operations because the
fuzzy controller should process numerous floating point
operations to calculate the fuzzy membership degrees.
The computations for fuzzy membership degrees could
be a burden that causes difficulties with real-time
navigation. Therefore, we attempted to reduce the
computations for membership degrees through the use of

However,
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the LUTs of membership functions. The basic idea is that
the fuzzy controller does not need to calculate the
membership function degree upon the receipt of sensor
data each time, as all membership functions and their
each output values corresponding to their input values
are previously determined according to the characteristics
of the function. Therefore, it is possible to store all
membership function data in the LUTs in advance and
search for membership degrees from the LUTs without
any computational time. Fig. 2 illustrates the process of
obtaining fuzzy membership degrees from the LUT. The
LUT buffers of all fuzzy membership functions are shown
in Fig. 3. If the fuzzy controller obtains each membership
degree from LUT buffers, the robot can reduce the
processing time and perform more frequent obstacle-
avoidance operations because the operation delay in the
multiplication of the floating point operands is
eliminated.

7| Address | Data(4bytes)
- 0 1
- 1 0999938966

Fuzzy system Address -
inputs Generator
N
Shared ~

Memebership Compensator Lookup-Table S .
degrees ~o
>~ s11 ] 0.000000119

Figure 3. Fuzzy membership degree acquisition using a shared
lookup-table

0.018895886

3. Lookup-Table sharing method

It is quite attractive to use LUTs that are capable of rapid
operations in a fuzzy controller, but there are also
disadvantages in a LUT-based design. To maintain the
LUTs of membership functions, the fuzzy controller
should guarantee a sufficient size of the buffer memory
for the LUTs. Because a large LUT memory is a burden on
the system, we tried to reduce the memory through the
use of a shared LUT. The shared LUT contains the
function values of a basic Gaussian distribution function
that we defined. The equation of the basis function can be

expressed as follows:

2
Xirans

— 2 O-BasisFunc[anz 1)
f;asis =e )

The variance of the basis function, oBasisFunction, is set to 128
for the 50-rule P/N fuzzy controller. This idea stems from
the fact that all membership functions of our fuzzy
controller are based on a Gaussian distribution which is
characterized by the variance (o) and the center (c).
Therefore, each membership function’s output value is
simply obtained from the basis function by converting the
input value xinput into the proper converted value xconverted,
which is calculated as follows:

Op ;
BasisFunction
(xinpur - CMembfmhi]zFundion) . (2)

xC onverted —
MembershipFunction
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The input data from a laser range finder (LRF) are
discrete and are converted into integer values so that they
can be used as the indexes of the LUTs. The shared LUT
is also indexed by integral numbers to simplify the use of
buffers.
contain a decimal fraction value, it is not possible to
provide the output value of the original membership
function using the shared LUT because it provides only
the output values of integral inputs. Although we cannot
use non-integer indexes, we can obtain an approximate
value by rounding off xconverted to its nearest integer.

Because the calculation result, Xxconwerteq, can

As shown above, fusis is a Gaussian distribution function;
hence, the left part of the basis function in the shared LUT
can be eliminated to remove redundancy. The absolute
values of the inputs are used to generate an indexing
address corresponding to the left part of the basis
function. Finally, the indexing address of the shared LUT
is calculated as follows:

" — O BasisFuncion
Addr esSpyr = )”OLll‘ld( (xinpul _CM@mbersh[;Function) . (3)

GMembershi;Func‘tiun

Fig. 3 shows a diagram of the fuzzy membership degree
acquisition process using the LUT sharing method. The
Address Generator generates the indexing address of the
shared LUT, Addresstur; the calculated address is proper
for the characteristics of each of its membership function.
In each indexing address, 32-bit floating point data is
stored. Also, the range of indexing address is between 0
and 511, as shown in Fig. 3. If the calculated address,
Addressiur, exceeds a length of 511, we change the value
to 511 and the LUT releases 0 as the output. This also
indicates that we consider output values
0.000000119 as 0 in order to reduce the buffer size.

below

After reading the output of the function from the shared
LUT, Compensator compensates for the output value, as it
is not identical to an expected membership degree.
However, this may not be necessary when the errors
between the shared LUT outputs and the original output
values are too small to affect the navigation performance.
We confirmed this in simulations and determined it was
feasible to eliminate Compensator from the design.

4. 50-Rule P/N Fuzzy Controller for Laser-Range-Finder-
based Obstacle Avoidance

4.1 Design of 50-Rule P/N Fuzzy Controller

The 50-rule P/N fuzzy controller is designed with two
types of input parameters, the first is sensor data from a
laser range finder and the second is the relative target
position based on the current position of the robot. Fig. 4
shows the measurement data from the laser range finder.
The laser range finder sensor provides the distance
vectors of directions over 180 degree with an angular
resolution of 0.5 degrees. To simplify the fuzzy system,
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we converted the scale of inputs into integer values by
multiplying the input value by 2. Once the target position
is determined, the position is a constant on the navigation
map. However, the relative target position varies
according to changes of the current robot position. As the
robot moves, the robot controller should update the
relative target position, which consists of a target distance
and a target direction. The output of the fuzzy controller
is the steering direction of the robot. In a real application,
however, the the
information into values for steering, as in the velocities of
two wheels.

controller converts direction

In the 50 P/N fuzzy rules, 25 positive rules are related to
the target position and 25 negative rules are related to the
positions of multiple obstacles. The fuzzification of the
50-rule P/N fuzzy controller for the laser-range-finder-
based obstacle avoidance method is explained in the next
section.

4.2 Fuzzification

Fuzzification of the input is described by the membership
functions shown in Fig. 5. Each membership function of a
fuzzy input is a Gaussian distribution function. These are
expressed as Eq. (4)

(=)’

f@=e 9, @

where ¢ denotes the center of the distribution and o
denotes the variance of the function. Table 1 represents
the ¢ and o values of each fuzzy membership function.
The fuzzy sets Hard Left (HL), Soft Left (SL), Straight (S),
Soft Right (SR), and Hard Right (HR) are for the fuzzy
inputs of the target or the obstacle direction. In addition,
Zero (Z), Very Near (VN), Near (N), Far (Far), and Very
Far (VF) are related to the fuzzy inputs of the target or the
obstacle distance. The output fuzzy sets Hard Left (HL),
Left (L), Soft Left (SL), Straight (S), Soft Right (SR), Right
(R), and Hard Right (HR) are for positive rules, while HL ,
L,SL, S, SR, R,and HR are for negative rules.

4.3 Rule Base

The expert-provided positive rule base is shown in Table 2
and the negative rule base is given in Table 3. The positive
rule base can be represented by the following rules:

Rule 1P

If XTargetDirection is HL and XrtargetDistance is Z then y is HL

Rule 2P

If XTargetDirection is HL and XrtargetDistance is VN then y is HL

Rule 3P

If XTargetDirection is HL and XtargetDistance is N then y is L

Rule 25P
If XTargetDirection is HR and XTargetDistance is VF then y is SR.
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Figure 5. Membership functions of the designed 50-rule fuzzy
controller

Target Obstacle
Center | Variation | Center | Variation

() (0) (c) (0)

HL -120 36 -120 36

SL -60 36 -60 36

Direction S 0 36 0 6
(degreex2)

SR 60 36 60 36

HR 120 36 120 36

4 0 6000 500 300

VN | 10000 6000 1000 300

Distance 01" 20000 | 6000 1500 300

(mm)
F 30000 6000 2000 300
VE | 40000 6000 2500 300

Table 1. Characteristics of the Fuzzy Membership Functions of
the 50-rule P/N Fuzzy Controller

Steering Target Direction
Direction HL | SL S SR | HR
Z | HL | HL S | HR | HR
T ; VN | HL L S R | HR
M N L[ s|rR[R
Distance
F L SL S SR R
VF | SL S S S SR

Table 2. Rule Base of the 25-rule Positive Fuzzy System (Expert-
Provided)
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Steering Obstacle Direction
Direction HL SL S SR | HR
Z | HL | HL | S | HR | HR
VN | HL | L S R | HR
Obstacle f{L E = 5 I{R
Di N L L S R R
istance — — — — —
F L SL S SR R
VF|sL | S| S| S| SR

Table 3. Rule Base of the 25-rule Negative Fuzzy System (Expert-
Provided)

The negative rule base in Table 3 is represented in the
same manner of the above rules, as follows:

Rule IN

If XobstacleDirection is HL and XobstacleDistance is Z then y is not HL
Rule 2N

If XobstacleDirection is HL. and XobstacleDistance is VN then y is not HL
Rule 3N

If XobstacleDirection i HL. and XobstacleDistance is N then y isnot L

Rule 25N
If XObstacleDirection is HR and XobstacteDistance is VF then y is not SR.

Degrees of positive- | Degree of negative-
rule fuzzy sets rule fuzzy sets
HL UHL HL pm
SL st SL us
S s S us
SR SR SR SR
HR UHR HR pm
Z uz z uz
VN UvN VN Yy
N uN N ¥
F UE F ur
VF JLVF VF W

Table 4. Membership Degrees of Input Fuzzy Sets

The notation of the membership degree of each fuzzy set
is expressed as shown in Table 4. The weight of the
positive rule ‘Rule 1P’ is determined by the multiplication
of punt and pz, and the weight of ‘Rule 2P’ is calculated by
the multiplication of pur and pvn. The same approach is
applied to the other rules. The combined degree of the
positive rule ‘Rule 1P’ and its corresponding negative
rules is calculated as follows:
#ofObstacke

w=offsete - piz) | [0, 15,0011, 17 0= 1, 115 )

= .
Similarly, the other combined degrees are calculated as
follows:

#ofObstacle s
1y = (offset + iy - ) | [ = ez, - 1700 = ez, - pig YU = pisg, - 117,),
i=1

HofObstacls

Hs = (offset+ 1) | [0 =seg,

i

iy M= e Y= g,

i i

b = b, 415,
i=l
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#ofObstacle

[0k, a0~ - 1 )= g, bt Y=t - ),

i "Ni i i i i "Ni

g = (offSet+ pyy - tp)
i=l
#ofObstacle s
us = (offset + pyy - pyrp) H (= g, - g = g - g ),
i=1
#ofObstacle s
He = (offset + pug - p17) H(l = gy g U = g g YA = g - ),
i=1
#ofObstacls
oy =(0ffset+ pig - pune) [T =pg, - iy W= gty - i WA= pagg - YU = pag - ),
i=1
#ofObstacle
g = (offset+ g - ) H(l g, ey )t
i=1
#ofObstacle s
Ho = (offset + pg - up) [0 sz, )0 = pigg, - 17,

i=1

e = gyt W= gy - e ),

o = (offset+ g, - pyr)
#HofObstacls
o [T sz, st YO s, 403 Y0 g, - s Y=, g N0 g, i, YA g, - i),
i=1
= (offset+ s - p17)
HofObstacly

S [ O R N R e N U R SN

i Ni i i i i
i=l

= (offset+ g - tyy)
HofObstacke
x H(l—,usi‘_ Hp =gt 17 )= g, -t )= 4,

i=l

)=, MUt ),
i3 =(offSett pig - 1)
#ofObstacke
o R A
i=l
4= offsett pig - 1)
#HofObstacke

(O R N S T S T
i=l

=g, - e )= g,

i

s =(offSett pis - piyr)
#ofObstacke
LT, DO, 1 Nttt DUt 1t DUt 1t YU s i),

L D=,
#ofObstacles
g = (offset+ pisg - p17) | [0 pegg, - 1500 =t 115 0= i, i s
i=1
#ofObstacke

s =(offset pigp piry) | [0t - U=tz - o WU gt -1 = g 412,
i=1

#ofObstacke
tas =t pusg-p) | [0 e, st DU =ttt N g -1, YU pt -1,

i=1
#ofObstacle s
tho = (offset + pgp - pup) [ [0 = sesg, - 50 = i, - 1)
i=1
oo = (offSet+ ug - tyr)
#ofObstacls
LTt s, a6, 0=t MO 5, 5 )0 107 = s
i=1

M)

i i
#ofObstacle s
tay = Coffset + g - p17) | | = gz, 1 )0 = w1z )0 = i, - i),
i=1
#ofObstacle s
Hyy = (offset + ppp - pyy) H(l =tz Mz ) =t iz = pig - )
i=1
#ofObstacle
iy =(offser - pay) [ [0tz - o 0= g - 15 )0 = pt - 205 )= gt -

i=1
#ofObstacle
thrq = offsets - pp) | [0

i=l

U= i - pg W= e - g W= oy - 117,

i i i Ni Ri "Ni

#ofObstacle s
tias = (offset + pp - pye) [ | (= togg, 7 )0 = pig, - i)

i=1

4.4 Defuzzification

Finally, the output value of the 50-rule P/N fuzzy
controller is calculated as the weighted average of all
output fuzzy sets:
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e Wy HLA W - L+we; - SL+wg - S

(W, + W, + W 2 Wypt W +Weg),

Wegp W, + Wy +Wg
Wyp: HRA Wy - R+Wep+ SRAWg - S 7
y=—"1R A 4 3 (W, + W, Wy <Wyp+Wg +VWsp) @)
Wyp+ W +Wep+We
The weights of the output fuzzy sets are as follows:
Wy =y + 1 +ﬂ6,
Wy =Myt +/13,
Wep = Hs + Hy ,
Wy :ﬂ10+/‘11+ﬂ12+ﬂ13+ﬂ14+/‘15+/‘20/ 8)
Wep = Hyg + Hos ,
Wi = My + Hg + Ly + /124,
Wrr = Mo T Hoy T
Target Obstacle
Center | Variation | Center | Variation
() (0) (c) (0)
HL -120 36 -120 72
Directi
irection S 0 6 0 .
(degreex2)
HR 120 36 120 72
Z 0 1500 700 150
Dist
ISANCE N | 15000 | 1500 1200 150
(mm)
F 30000 1500 1700 150

Table 5. Characteristics of Fuzzy Membership Functions of the
18-rule P/N Fuzzy Controller

Steering Target Direction
Direction L S R
7 ‘ Z HL S HR
21Be N | L | s |R
Distance
F SL S SR

Table 6. Rule Base of 9-rule Positive Fuzzy System (Expert-
Provided)

Steering Obstacle Direction
Direction SL S SR
Z HL S HR

Obstacle N — 3 —
Distance i = 5
Ifi SL S SR

Table 7. Rule Base of the 9-rule Negative Fuzzy System (Expert-
Provided)
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Figure 6. Implementation of the ultrasonic sensors for the 18-rule
fuzzy obstacle avoidance fuzzy controller
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Figure 7. Membership functions of the designed 18-rule fuzzy
controller

5. 18-Rule P/N Fuzzy Controller for Ultra-sonic Sensor
based Obstacle Avoidance

5.1 Design of 18-Rule P/N Fuzzy Controller

The 18-rule P/N fuzzy controller is designed as an
ultrasonic sensor based obstacle avoidance system for
mobile robots. Unlike the laser range finder, ultra-sonic
sensors implemented here have an angular resolution of
30° and are arranged with 7 sensors, as shown in Fig. 6.
Each sensor detects the nearest obstacle in front of the
sensor within a distance from 25mm to 3m using a 30°
angular range. Because its angular resolution is relatively
low compared to a laser range finder, we designed a
simpler fuzzy controller based on 18 rules. In a manner
similar to that of the 50-rule P/N fuzzy controller, 9
positive rules are related to a target position and 9
negative rules are related to the positions of multiple
obstacles.

www.intechweb.org



5.2 Fuzzification

Fuzzification of the 18-rule P/N fuzzy controller can be
described by the membership functions shown in Fig. 7.
Each membership function is a Gaussian distribution
function. Table 5 represents the ¢ and o values of each
fuzzy membership function. The fuzzy sets, Left (L),
Straight (S), Right (R), are for the fuzzy inputs of the
target or the obstacle direction. Also, Zero (Z), Near (N),
and Far (Far) are related to the fuzzy inputs of the target
or the obstacle distance. The output fuzzy sets Hard Left
(HL), Left (L), Soft Left (SL), Straight (S), Soft Right (SR),
Right (R), and Hard Right (HR) are for positive rules,
while HL, L, SL, S, SR, R, and HR are for negative
rules.

5.3 Rule Base

Each rule base of positive and negative rules is shown in
Table 6 and Table 7, respectively. The positive rule base
can be represented by following rules:
Rule 1P
If XTargetDirection is L and XTargetDistance is Z then y is HL
Rule 2P
If XTargetDirection is L and XrargetDistance is N then y is L
Rule 3P
If XTargetDirection is L and XrargetDistance is F then y is SL
Rule4P
If XTargetDirection is S and XrargetDistance is Z then y is S
Rule 5P
If XTargetDirection is S and XrargetDistance is N then y is S
Rule 6P
If XTargetDirection is S and XrargetDistance is F then y is S
Rule7P
If XTargetDirection is R and XTargetistance is Z then y is HR
Rule 8P
If XTargetDirection is R and XTargetDistance is N then y is R
Rule 9P
If XTargetDirection is R and XTargetistance is F then y is SR

The negative rule base in Table 7 is also represented as
follows:

Rule IN

If XObstacleDirection iS L and XobstacleDistance is Z then y is not HL

Rule 2N

If XObstacleDirection is L and XobstacleDistance is N then y is not L

Rule 9N
If XObstacleDirection 18 R and XobstacleDistance is F then y is not SR.

The combined degrees of the 9 positive rules are

calculated as follows:
HofObstacke
th=Coffsett g - p1) [ [0=p2, 12)
i1
#ofObstacke

1, =(offsetr - 1) H(l_#u )

7

www.intechweb.org

HofObstacke

w=(offserry-ptp) | J0=t, 1)

HofObstacke

= (offset - p1) | [0t 1 )=, - U= - 1)
i=l
HofObstacke
s =(offsetr pig- ) | 10—t 1)Ut 15 )= 15, - 152)
il

HofObstacke

p=(offsets pi- 1) | [0t 1) = i, 1 )=, )

HofObstacke

th =(offsete 1) | [0t 15,)

HofObstacke

t=(offset pry- ) [ [0, 125)

HofObstacke

Lo =(offSett 1ty - 14) H(l_,‘% /Lﬁ)

Target Position

Starting Position
3 P

2
Space /

Figure 8. Simulation map of MSRDS (Microsoft Robotics
Developer Studio)

Obstacles

5.4 Defuzzification

The output value of the 18-rule P/N fuzzy controller is
also calculated as the weighted average of all output
fuzzy sets:

y,"‘%{L'HL‘*'“i - LA+wgy - SLAwg -

W HW, AW W
“7WIR~HR+%-R+M§R'SR+M§-S
y=

Wt Wt Wept Wy

S
(W0, W 2 W W+ W3,
(10)

(W +W, W3y <Wgt Wi+ Vi)

The weights of output fuzzy sets are as follows:

Wur =,u|,
W=ty
Wor = Hs,
WSZIU4+IUS+IU6, (11)
W =y
We = Hs,

Wir = Ho
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6. Simulation and Experiments

A simulation of the designed 50-rule P/N fuzzy controller
was performed on MSRDS (Microsoft Robotics Developer
Studio). The simulation was performed using an Intel®
Core™ 2 Quad 2.4GHz CPU and 3.24GB RAM computer
system. Fig. 8 shows a robot navigation map of the
graphic simulator. A simulation robot navigates from the
starting position to the target position on the map. If there
are no obstacles in the map, the robot sets its path as a
straight line from the starting position to the target
position. If there are obstacles on the navigation path, the
robot must change and update its path to avoid the
obstacles. To evaluate the proposed method on the
simulator, we created a service module for each fuzzy
controller method and inserted it into the MSRDS Visual
Programming Language (VPL) diagram. The service
modules were programmed in the C# programming
language and created by the Microsoft Visual Studio
compiler. The sensor modules and driving service
modules of the graphic simulator were imported using
the service libraries of MSRDS. Because a graphic
simulation requires high-performance
processors, the simulation was performed on a high-
performance computer system. In this case, the target
systems of our method are mobile robot systems.
Therefore, we used high-performance computer systems
that may not be applicable to mobile embedded systems
only for the graphical simulation. We also considered the

environment

processing time only for the fuzzy operation because the
simulation system uses most of the processing time for
graphical operations.

Table 8 presents the implementation results of each
design. The buffer size of the full-LUT shown in Fig. 2 is
(204+8469+847) x 4 bytes, while that of the shared LUT
presented in Fig. 3 is 512x 4 bytes. The processing clock
cycle of each design in the table is the average
computation of the clock cycles used in the avoidance
operations during the navigation process from the
starting position to the target position on the map. A
fuzzy controller without LUT does not require a buffer
for the LUT(s), but it does need 8 times as much time for
the fuzzy operation compared to the full-LUT-based
fuzzy controller. If all membership functions have LUTs,
the operation time can be greatly reduced. However, this
requires about 38Kbytes of LUT memory. The simulation
result for the LUT sharing method showed that the fuzzy
controller can operate well only with 5.34% of the full
LUT’s memory size. Although the controller requires
about 1.5 times more operation time than the full-LUT-
based design, the comparative reduction of the memory
size is more advantageous for the system. In brief, the
simulation results show that the LUT-based fuzzy
controller greatly reduces the computational latency and
obviously enhances the performance of a real-time
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obstacle avoidance system for an autonomous robot. Also,
the LUT sharing method offers an approach that uses
LUT-based architecture without the additional expense of
added buffer memory. Figs. 9, 10, and 12 show the results,
which were verified in the experiments based on a mobile
robot (Pioneer P3-DX). Figs. 11 and 13 show the
experiment processes in a cluttered environment for the
result shown in Figs. 10 and 12, respectively.

Calculatin Using .
Sharing a
gw/oa the full LUT
LUT LUT
Buffer size of the 0 38,080 2,048
lookup table (bytes)

Clock cycles per 1 427390 | 84797 | 127,494
avoidance (cycles)

Table 8. Buffer size and processing cycles of each fuzzy controller
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Figure 9. Fuzzy controller implementation for obstacle avoidance
with the LabVIEW application on a mobile robot (Pioneer P3-DX)
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Figure 10. Experimental result for obstacle avoidance while
navigating from the starting position (0, 0) to the target position
(900, 5400) in a cluttered environment
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Figure 11. Experiment process in a cluttered environment for the
result shown in Fig. 10
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Figure 12. Experimental result of obstacle avoidance while
navigating from the starting position (0, 0) to the target position
(-4300, 0) in a cluttered environment

Figure 13. Experiment process in a cluttered environment for the
result shown in Fig. 12

7. Conclusions
This work sought to implement a real-time mobile robot
system that uses relatively less power. To perform faster

operations in real-time systems, using faster processors
may be enough for the controller. However, there are

www.intechweb.org

limitations when designing a low-power system with
only high-performance processors. It is necessary to
reduce the operation clock frequency to lower the power
consumption because a high clock frequency elevates the
power consumption of the system. All of these factors
make it clear that a reduction of the operational
complexity is a better answer for both faster operation
and lower power consumption.

We utilized LUT(s) to eliminate the calculation of the
membership degrees, which can be complicated and
reiterative. Thus, we designed a full-LUT-based fuzzy
controller, with which the average operation time is
reduced to 20% of the time required by the fuzzy controller
without LUT(s). However, the full-LUT design requires the
buffers to contain all of the membership function values.
To reduce the buffer size, we attempted to share the LUT
for the membership functions. While the simulation results
showed that the proposed LUT sharing method requires
50% more operation cycles on average compared to the
full-LUT-based design, the proposed method saves 94.5%
of the original LUT buffer size. The results show that the
LUT sharing method can be more worthwhile for real-time
mobile robots because it is approximately 3.35 times faster
than the use of a fuzzy controller without LUT(s).

In conclusion, this work can provide advantages to real-
time obstacle avoidance systems for use in mobile robots
because the LUT-based fuzzy controller design enables
faster obstacle avoidance while the LUT sharing method
provides compactness of the controller by reducing most
of LUT buffers.
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