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Abstract: Automatic catheter and guidewire segmentation plays an important role in robot-assisted
interventions that are guided by fluoroscopy. Existing learning based methods addressing the task
of segmentation or tracking are often limited by the scarcity of annotated samples and difficulty
in data collection. In the case of deep learning based methods, the demand for large amounts of
labeled data further impedes successful application. We propose a synthesize and segment approach
with plug in possibilities for segmentation to address this. We show that an adversarially learned
image-to-image translation network can synthesize catheters in X-ray fluoroscopy enabling data
augmentation in order to alleviate a low data regime. To make realistic synthesized images, we
train the translation network via a perceptual loss coupled with similarity constraints. Then existing
segmentation networks are used to learn accurate localization of catheters in a semi-supervised
setting with the generated images. The empirical results on collected medical datasets show the
value of our approach with significant improvements over existing translation baseline methods.

Keywords: adversarial learning; catheter robot; convolutional neural networks; image translation

1. Introduction

In minimally invasive surgery (MIS), catheters and guidewires are often used for pre-
cise and targeted interventions offering several advantages over conventional procedures,
such as faster recovery and less pain for patients (Hereon, ’catheter’ and ’guidewire’ will
be used interchangeably). In general, MIS requires real-time imaging to visualize anatomy
and accurately manipulate the tools that are involved in delivering treatment. For example,
in cardiac catheterization, a catheter is inserted into the body with real-time continuous
monitoring and guidance via X-ray imaging. However, because catheters are thin flexible
tubes of varying stiffness, they can be easily mistaken for anatomy during placement and
lead to severe complications for patients. Moreover, difficulties in segmenting the catheter
may occur as dye is injected into the vein for the improved visibility of blocked or narrowed
veins. Expert radiologists are often required to carefully monitor catheters in X-ray for the
accurate maneuvering of surgical tools with minimal errors. Thus, an automated system is
vital in augmenting the surgical ability of experts during interventions.

An automatic system is desired to detect, track, and segment the catheter in X-ray
images to mitigate risks for both experts and patients during interventions. However,
precise and reliable detection of catheters in these systems is a challenging task. Although
most catheters provide radio-opaque markers to ease detection, they may be less visible
due to projection angles [1]. The catheter can also be easily confused for wire-like structures
and anatomies, such as surgical sutures, stipples, vessels, and ribs, etc., often showing
similarities in structural appearance. Thus, existing works focus on improving visual
analysis to reduce ambiguity via improved segmentation and detection techniques [2–4].
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For example, Viswanathan et al. [5] proposed an approach to localize surgical tools
in X-ray; however, they solely rely on primitive low level features, such as intensity, and
often fail to accurately localize the catheter and other tools due to shape complexity and
appearance ambiguity. To mitigate this, information regarding the shape of the catheter
is used by hessian based line filtering [6] to improve performance. Following this line
of work, Vandini et al. [7] developed a more sophisticated approach that is based on
segment-like features (SEG-lets) to resolve large deformations between successive frames
in video. However, this method requires domain knowledge and does not guarantee
precise results under noisy conditions.

Latest advances in deep convolutional neural networks (CNN) have enabled signif-
icant improvements in the performance of catheter detection systems [8,9]. It is worth
noting that the success of these deep learning based methods primarily depends on the
availability of large and high-quality training data. Nevertheless, several areas, including
medical imaging, suffer from a lack of sufficient data and require precise expert annotation
to guarantee quality. Annotation is often non-trivial due to the heterogeneity and complex-
ity of data per modality. To cope with these challenges, recent methods for segmentation
follow the following trends; (i) employ extensive augmentation techniques when data
is limited [10], (ii) the use of synthetic samples [11], or (iii) creating annotations that are
based on simple low-level morphological operators [12]. However, training deep learning
models with assumptions such as (iii) may reduce the ability of the models to generalize.
Our work falls under categories (i) and (ii), and we aim to design a more general solution
via Adversarial based augmentation.

In the literature, generative adversarial networks (GANs) [13] are the existing standard
for synthetic image generation, with applications in both X-ray translation and pseudo data
augmentation. For example, Tmenova et al. [14] proposed transfering the style of real X-ray
acquired during interventions into artificial phantom arteries via CycleGAN [15]. However,
artifacts are noticeable in the generated images and the method fails to represent fine details
that are related to the structure of the arteries. Additionally, precise parameter tuning is
required for effective generation. More recently, Lee et al. [16] designed a framework for
data augmentation that adjusts a set of X-ray images with arbitrary intensity distribution
to match the specific intensity distribution of chest X-ray images via GANs. Although
impressive, GANs are known to be difficult to train and often require careful optimization
of the adversarial objectives for stability.

In this work, we investigate and evaluate a deep learning based method for catheter
synthesis and segmentation. In particular, we focus on the translation of in-painted catheter
X-ray images to realistic X-ray images via the CycleGAN architecture as a form of aug-
mentation for improved segmentation in limited settings. Aside from the standard cycle
loss, we incorporate: (i) a perceptual loss to generate high-quality synthetic X-ray images
and (ii) include a similarity loss to avoid large deformations from the original distribution
of the real X-ray image as a constraint. A thorough evaluation of the generated images
using state-of-the-art segmentation models demonstrates that the proposed method can
indeed improve catheter segmentation performance. The main contributions of this work
are highlighted below:

− Synthetic X-ray from labels: we propose to generate synthetic X-ray from in-painted
catheter masks via adversarial learning with CycleGAN as data augmentation for
segmentation.

− Improved generation with perceptual losses: to achieve more realistic generation from
in-painted catheter masks, we incorporate a perceptual loss alongside the standard
cycle loss.

− Enforcing semantic similarity: we further propose a similarity loss to alleviate large
deviations in the semantic quality of the generated images from the original.

− Empirical results and several ablations show the effectiveness of the proposed training
scheme with segmentation performance improving as synthetic augmentation is
increased.
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The presented work is an extended version of the study presented at a conference [17].
Herein, (i) the proposed CycleGAN X-ray translation method is further improved by
using catheter masks in-painted in X-ray images with no real catheter present to mitigate
the problem of generated images showing a progressively vanished catheter as training
proceeds, (ii) catheter segmentation in fluoroscopic X-ray images is further explored based
on the generated images, (iii) thorough quantitative and qualitative results are reported to
validate the proposed methods, and (iv) several ablation studies are presented in order to
assess the performance of catheter segmentation with the generated data.

The rest of the paper is organized, as follows. First, we revisit prior works regarding
catheter segmentation, detection, and translation in Section 2. We present our proposed
method in Section 3, and show the evaluation results regarding catheter synthesis and
segmentation in Section 4. We conclude in Section 6.

2. Related Work

In this section, the current literature on segmentation and detection of catheters is
discussed. In addition, we highlight works that are related to semi-/unsupervised synthesis
for medical imaging.

2.1. Learning Based Methods for Segmentation and Detection

Several works have been proposed to address the localization of catheters in medical
images. For example, Mercan et al. [18] introduced a CNN for catheter segmentation in
chest X-ray images with curve fitting being used to connect line segments. Nguyen at
al. [19] proposed to learn end-to-end temporal continuity between frames coupled with
flow guided warping techniques for improved segmentation in endovascular interven-
tions. Mountney et al. [20] further suggested a method for extracting the needle in X-ray
images. However, this method might not be able to accurately track the tools in X-ray
due to the flexible nature of the catheter. Wang et al. [21] detect catheter tips using region
proposal networks (RPN); however, exact pixel wise locations are required for tracking to
be effective. Recently, Ullah et al. [22] track catheter robot tips on successive frames via
detection and segmentation in natural camera images. A more recent work by Lee et al. [23]
segments the catheter tip position in chest X-ray via a fully convolutional network (FCN).
Shaohan et al. [24] and Ambrosini et al. [25] employed similar approaches for catheter
segmentation in ultrasound and X-ray images using a UNet [26] architecture. However,
existing methods require large amounts of annotated data for supervised training in order
to achieve significant improvements in accuracy. Moreover, collection is non-trivial due to
privacy restrictions for patient data.

Recent works [27,28] have employed conventional data augmentation techniques as a
strategy to increase existing data samples to avoid over-fitting and increase performance
on limited datasets. In particular, some studies have investigated the effects of geomet-
ric transformations, such as translation, reflection, cropping, and the alteration of color
schemes, to improve efficiency. Kooi et al. [29] suggested using scaling and translations to
augment data for mammography lesions detection. Similar data augmentation techniques
were employed with elastic deformations for surgical robot segmentation in [22]. However,
the direct application of standard data augmentation techniques is often problem specific
and it requires careful selection.

2.2. Image Translation in Medical Imaging

Alternatively, GANs [13] have been used to generate realistic images that boost the
performance of vision tasks, such as segmentation. Moreover, several studies show that
GANs are able to synthesize high-quality images by learning the data distribution in order
to augment the training data. Recently, Zaman et al. [30] used the pix2pix [31] framework
for ultrasound bone image generation and improved segmentation performance. Wolterink
et al. [32] used an unpaired CycleGAN-based approach for brain computed tomography
(CT) image synthesis from magnetic resonance (MR) images with notable improvements for
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the task of cross modality-synthesis. Although image synthesis has been applied to various
problems in the medical imaging domain [33–35], there are a few works that address
catheter synthesis and segmentation in X-rays. A notable work is that of Gherardini et
al. [36]; the authors showed the feasibility of using synthetic data to segment catheters via
a transfer learning approach. Yi et al. [37] proposed simulated catheter data generation and
then used recurrent neural networks to process multi-scale inputs for catheter segmentation.
Frid-Adar et al. [38] used similar approaches for synthesizing endotracheal (ET) tubes in
chest X-ray images with CNNs used for the classification and segmentation of ET tubes.
However, these approaches may fail to detect the catheter or tube due to the large domain
shift between the simulated training images and actual X-ray test images.

3. Methods

Figure 1 depicts the architecture of the proposed approach, which consists of two main
stages. In the first stage, we generate realistic catheters in fluoroscopy from in-painted
catheters in X-ray used as input via CycleGAN. Second, a segmentation network is trained
on the generated images to segment the catheter in real X-ray images.

Figure 1. Overall framework of the proposed synthesis and segmentation of catheters in X-ray. The catheter sythesis is
represented with red dotted line, while the catheter segmentation is represented with a sgreen dotted line.

3.1. Synthesize: GAN Based X-ray Translation

In this study, we achieve the task of synthesizing realistic X-ray from catheter masks
using GANs. This can be considered as an image-to-image translation problem from real
to synthetic using a generator G and a discriminator network D in an unsupervised setting.
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Herein, G is trained to map random vectors z ∈ Rz to a synthetic vector a = G(z), with D
distinguishing real from synthetic samples. To achieve this, we employ a CycleGAN [15]
architecture and augment the existing loss functions for realistic generation. Figure 1 (top)
shows the framework.

Following the formulation presented in [17], we consider X as the domain of X-ray
images composited with catheter masks xi ∈ Xn and Y as the domain of the original X-ray
images yi ∈ Yn with no existing catheter annotations i.e., in a single video, we select frames
that do not show an inserted catheters. In a similar fashion, the composite is obtained
via xi = ĉi ⊕ yi, where ĉi is the binary mask highlighting the pixel location of the catheter.
Following, we use xi as input in G.

In the adversarial framework, mappings between G : X → Y and F : Y → X are
learned for arbitrary unpaired samples i.e., both in forward and backward cycles. A residual
network (ResNet) [39] with skip connections is used as the network G and a network [31]
consisting of five convolutional layers followed by batch normalization and leaky ReLU is
used as D, respectively. The objective function of the forward cycle G : X → Y and DY is
formally expressed as:

minGmaxDYLadv(G, DY, X, Y) = E[logDY(y)] +E[log(1− DY(G(x))]. (1)

On the other hand, for the backward cycle F : Y → X, the objective is minFmaxDX
Ladv(F, DX , Y, X). In order to achieve cycle-consistency between the generated samples in
both cycles, a consistency loss is employed following:

Lcyc(G, F) = E[||F(G(x))− x||1] +E[||G(F(y)− y)||1], (2)

collectively, the loss is defined as

L(G, F, DX , DY) = Ladv(G, DY, X, Y) + Ladv(F, DX , Y, X) + λLcyc(G, F). (3)

We further propose to include additional terms based on the structural similarity
(SSIM) [40] and perceptual losses [41] in order to enforce consistency in semantic quality in
both the later and earlier levels of the networks. Formally, SSIM for a pixel p is defined as

SSIM(p)=
2µxµy + C1

µ2
x + µ2

y + C1
.

2σxy + C2

σ2
x + σ2

y + C2
,Lssim(P) =

1
N ∑

p∈P
1− SSIM(p), (4)

where µ and σ represent the mean and standard deviation of the inputs that are computed
using a Gaussian filter. Moreover, SSIM has been shown to enforce visual consistency in
generated images.

On the other hand, a perceptual loss enables the use of earlier level model features to
improve learning. The loss is defined as the Euclidean distance between the feature maps
of the original image X and the reconstructed image X̂. This loss is formulated as:

Lprepθi,j(X, X̂) =
1

HijWij

HijWij

∑
x,y=1

θ, with θ = (θij(X)xy − (X̂)xy)
2, (5)

where Hij and Wij represent the size of the feature map θ for a particular layer in the
pre-trained ResNet network.

Herein, the final loss L includes the GAN loss as well as the additional objectives that
are computed between the forward and backward cycles. Formally,

L = L(G, F, DX , DY) + Lssim(LcycG, x) + Lssim(LcycF, y) + Lperp(LcycG, x) + Lperp(LcycF, y) (6)

3.2. Segment: From Synthesis to Segmentation

Figure 2 presents the segmentation networks that are utilized for the catheter seg-
mentation. Given a synthetic X-ray image as input, the segmentation network is used
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to assign pixels to one of two classes i.e., foreground (catheter) and background (other).
In this study, we consider four key architectures that are representative for segmentation
tasks, (i) U-net [26], (ii) Linknet [42], (iii) PSPNet [43], and (iv) Pyramid Attention Network
(PAN) [44], respectively.

Downsample Upsample

(a) U-Net

Conv

Conv

Conv

Conv

POOL Up Conv
Res-50

(b) PSPNet

(c) LinkNet

Conv-1

+ + +

Res-5Res-4Res-3Res-2

FPAGAU GAU GAU

UP

(d) PAN
Figure 2. Overview of the segmentation networks employed to train and evaluate the augmentation techniques introduced.

U-net [26] (Figure 2a) is a popular architecture for segmentation tasks, especially in
the medical imaging domain. An encoder-decoder network comprised of contracting and
expanding paths enables the learning of semantic features across feature levels. The con-
tracting path progressively extracts image representations and increases their dimension
layer-by-layer, with decoding path leveraging previous layer information for high level
learning. On the other hand, Linknet [42] (Figure 2c) is a U-shape variant, different from
U-net in two aspects. First, it substitutes the standard convolutions of U-net with the
residual modules. Second, it uses a summation of high and low level features instead of
concatenation in the decoder. In this paper, we use a ResNet50 [39] as the encoder for
Linknet.

PSPNet [43] (Figure 2b) has a ResNet-50 pre-trained backbone with dilated convolu-
tions along with a pyramid pooling module. Conventional convolutions are substituted
by dilated convolutions in the last layers of the pre-trained network, which results in
an increase of the receptive field. Pyramid pooling enables the model to capture more
global context in a given image with feature maps pooled at different levels and scales.
Recently, Li et al. [44] proposed Pyramid Attention Network (PAN) (Figure 2d), it uses
spatial pyramid and attention mechanisms to capture dense features for segmentation.
Feature Pyramid Attention (FPA) and Global Attention Up-sampling (GAU) modules were
proposed to improve high level feature representation via spatial pyramid pooling for
global context, while GAU utilizes low-level features later attached to each decoding layer.

4. Experiments
4.1. Datasets

There are currently no publicly available catheter datasets. Thus, we made two
datasets for evaluations. First, X-rays dataset consisted of two-dimensional (2D) an-
giograms with several cranial and caudal views acquired from different patients with
heart disease at Seoul National University Hospital, Korea. Figure 3 shows the dataset. For
the image generation, X-rays of 100 patients not showing any inserted catheter (Figure 3a)
were employed. Subsequently, we randomly composited masks (Figure 3b) with catheters
to create the composited dataset (Figure 3c). Second, we considered the applicability of our
method in a more challenging setting i.e., catheters in natural images. Figure 4 shows the
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samples obtained in our in-house micro-robotic research centre, which consists of 11 videos
sequences with a total of 11884 catheter images (Figure 4a) where catheters exhibit varied
movements in different directions in response to the magnet field alteration in coils. We
composited the camera catheter mask (Figure 4c) obtained using vesseless filter [45] on the
X-ray images (Figure 4b) to construct the composited X-ray dataset (Figure 4d). For evalua-
tion, 200 X-ray images with manual annotations were split into train/validation/testing
based on the ratios, i.e., 140, 10, and 50 images, respectively.

(a) (b) (c) (d)

Figure 3. (a) X-ray image without catheter (b) random groundtruth (c) composited X-ray with groundtruth (d) generated
X-ray image with catheter.

(a) (b) (c) (d) (e)

Figure 4. (a) Catheter in natural image (b) X-ray image without catheter (c) camera catheter mask generated using [45]
given (a) as input (d) composited X-ray with camera catheter mask (e) generated X-ray image using camera catheter.

4.2. Experimental Setup

For training and testing CycleGAN, we selected X-ray images with no true catheter,
including images with little to no visibly of artifacts i.e., 1000 training and 500 validation,
respectively. During training, for any given image; randomly selected catheter masks
(obtained offline) were augmented by random flips for composite creation. Adam [46]
solver with a batch size of 8 was used with λ = 10 in the loss objective. The proposed
method was trained with a learning rate of 2e − 4 for 300 epochs. The generators and
discriminators were trained alternately, with the discriminator later discarded during
inference. The trained generator was later applied to synthesize images of size 256× 256
following training on the composite dataset. The evaluation of generative models is often
challenging, especially when ground-truth labels are absent. Instead, we qualitatively
analyzed the generated images based on visual judgments and domain knowledge.

Furthermore, we present the quantitative results of the segmentation models trained in
a supervised setting with synthetically generated images when the catheter mask is present,
to confirm that applicability of synthetically generated data for catheter segmentation in
real X-ray angiograms. The segmentation models were trained for 250 epochs with an
initial learning rate was set to 1e− 3 for 100 epochs and gradually reduced to 1e− 5 for the
remainder. The mini-batch size was set as 128 with Adam optimizer [46] used to minimize
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the Dice loss. The proposed synthesis and segmentation framework was implemented
using Keras with a Tensorflow backend on a workstation with NVIDIA Titan XP GPU.
The dice metric was used to evaluate segmentation performance; it measures the number of
similar pixels divided by the total number of pixels present in both the target and predicted
masks. Formally:

Dice =
2× (A ∩ B)

A + B
, (7)

where A is the ground truth and B is the predicated mask. The dice coefficient ranges from
0 to 1, where 1 means complete overlap.

4.3. Quantitative Results

This section provides quantitative analysis of the segmentation models trained with
synthetic images. In Table 1, the performance of several state-of-the-art-methods (SOTA)
evaluated on 50 real X-ray test images are presented in terms of Dice scores. Among the
evaluated methods, Linknet trained with 140 labelled images showed the most improved
performance (0.82960). Additionally, Linknet achieved a higher dice score when trained
with labeled images and an additional generated images. As for the images generated by
our catheter synthesis method, U-Net reports the highest dice score and largely outperforms
the rest i.e., PSPNet, PAN, and Linknet.

Table 1. Comparison of segmentation models with labeled and generated images. All of the
segmentation models are evaluated on real catheter X-Ray test set.

Model Training Images Dice Score

140 Labeled Images (Baseline) 0.8156
UNet [26] 30,000 Synthetic catheter (Generated Images) 0.8023

140 Labeled Images + 30,000 Synthetic catheter (Generated Images) 0.8595

140 Labeled Images 0.7589
PSPNet [43] 30,000 Synthetic catheter (Generated Images) 0.7455

140 Labeled Images + Synthetic catheter (Generated Images) 0.8133

140 Labeled Images 0.8072
PAN [44] 30,000 Synthetic catheter (Generated Images) 0.7954

140 Labeled Images + 30,000 Synthetic catheter (Generated Images) 0.8671

140 Labeled Images 0.8296
Linknet [42] 30,000 Synthetic catheter (Generated Images) 0.8044

140 Labeled Images + 30,000 Synthetic catheter (Generated Images) 0.8806

Based on Table 2, we noted that U-Net, PAN, and LinkNet report significant per-
formance improvements when trained in mixed settings i.e., both camera and synthetic
catheter samples with 140 annotated images, as compared to models trained with synthetic
and annotated images only. Notably, camera samples enable the models to learn more
complex and thin structures, and consequently result in an overall efficiency improvement
when combined.
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Table 2. Comparison of segmentation models using camera and synthetic catheters including labeled
images. All the models are evaluated on real catheter X-Ray test set.

Model Training Images Dice Score

5000 Camera catheter + 5000 Synthetic catheter 0.8389
UNet [26] 140 labeled images + 5000 Camera catheter + 5000 Synthetic catheter 0.8974

140 labeled images + 10,000 Synthetic catheter 0.8544

5000 Camera catheter + 5000 Synthetic catheter 0.7220
PSPNet [43] 140 labeled images + 5000 Camera catheter + 5000 Synthetic catheter 0.8112

140 labeled images + 10,000 Synthetic catheter 0.8074

5000 Camera catheter + 5000 Synthetic catheter 0.8210
PAN [44] 140 labeled images + 5000 Camera catheter + 5000 Synthetic catheter 0.8764

140 labeled images + 10,000 Synthetic catheter 0.8598

5000 Camera catheter + 5000 Synthetic catheter) 0.8273
Linknet [42] 140 labeled images + 5000 Camera catheter + 5000 Synthetic catheter 0.8894

140 labeled images + 10,000 Synthetic catheter 0.8797

Figure 5a presents additional experiments with data augmentation included to con-
firm whether the synthetic images are useful. We selected subsets of the generated images
sequentially to train the U-Net model to verify the effect of increasing the number of
generated images on performance. The augmented data samples were created using trans-
formations [47], such as scaling (from 0.5 to 1.5 ratio), horizontal flipping, blurring with
gaussian filters, elastic deformations with different scaling factors and elasticity coeffi-
cients [48], as well as random rotations on each input image. We augmented 140 labeled
images to 1000. The U-Net [26] model trained with augmented images achieved a higher
dice score compared to the model using 1000 generated images. However, when we
increased the number of the generated images to 5000, both models trained using tradi-
tional augmentation and synthetic images showed similar performance. Furthermore,
even better results are obtained by training the segmentation model with 30,000 generated
images. However, the performance saturated when trained with 40,000 images. We assume
that saturation in performance occurs because of the error accumulation of inconsistently
produced images.

0.8189

0.7915
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(b)
Figure 5. Test results of the U-Net model trained on (a) synthetic data only and a combination of (b) camera catheter and
synthetic catheter images.

Additional experiments were performed to further analyze whether camera catheter
images indeed enhance performance (see Figure 5b) by considering a setting with equal
splits of samples i.e., a 50-50 split for camera and synthetic images generated from the
labeled set. Herein, U-Net was trained on the aforementioned split. The best dice score
(0.8389) was achieved when 10,000 Images (5000 Camera catheter + 5000 Synthetic catheter)
were used to train model compared to the model that was only trained with 10,000 Synthetic
catheter (see Figure 5a), the model trained with this split (50-50) achieved better accuracy,



Appl. Sci. 2021, 11, 1638 10 of 16

since the camera catheter images enable the model to precisely localize and distinguish
the thin part of the catheter in real x-ray images. However, the training images are
further increased to 20,000 images (10,000 Camera catheter + 10,000 Synthetic catheter),
performance decreased by 0.0018 points.

4.4. Qualitative Results

Synthesis: the qualitative results of our proposed synthesis method are illustrated in
Figure 6. For both types of inputs provided to the synthesis model, the generated images
show high visual quality overall content of the input image, such as blood vessels, even
though no explicit supervision is provided. In comparison to the input images, the images
generated by both U-Net and ResNet trained with Lcyc only appear darker, noisy, and
introduced artifacts without any noticeable improvement. On the contrary, the proposed
method with a perceptual loss showed improved visual quality without a significant loss
of information. Moreover, translation results confirm the benefit of including additional
losses to maintain visual quality and produce images that may be indistinguishable from
real images.

Figure 6. From top to bottom: inputs, U-Net Lcyc, ResNet Lcyc and ResNet Lcyc + Lperp. (Red arrows) highlight the initial
position of the composited catheter in X-ray angiograms and with the generated images using different methods presented
in each subsequent rows. Synthetic catheters are represented with green dotted region, whereas the camera catheter is
shown in the blue dotted region.

Segmentation: Figure 7 shows the segmentation results on the test set containing the
real catheter. Overall, models that trained with synthetically generated images showed
better visual segmentation compared to models trained on manually annotated data
only. Among the evaluated methods, Linknet [42] showed consistent and improved
performance over the rest. However, failure cases were noted in some samples where
surgical sutures or stipples were segmented as a part of catheter. Moreover, although
PSPNet [43] and PAN [44] showed improvement in removing the surgical sutures, they tend
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to over-segment the catheter. We infer that this behavior is mainly due to the lack of samples
with surgical sutures in the training data, thus the segmentation models treat the surgical
sutures/stipples as a catheters.

Figure 7. Test image results of a segmentation models trained with 30,000 generated images. From top to bottom:
input (1st row), the label images (2nd row), U-Net [26] trained with 140 labeled images (3rd row), U-Net [26] trained
with 30,000 generated images (4th row), PSPNet [43] trained with 140 labeled images (5th row), PSPNet [43] trained
with 30,000 generated images (6th row),PAN [44] trained with 140 labeled images (7th row), PAN [44] trained with
30,000 generated images (8th row), Linknet [42] trained with 140 labeled images, (9th row), and Linknet [42] trained with
30,000 generated images (10th row).
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5. Discussion

Based on our experiments, it is evident that the synthetic catheter images generated
by our proposed method maintain visual quality and enable improved segmentation of
real catheters compared to models trained on limited annotated data. We observed a
significant performance gain of 7.61% when synthetically generated images were used
alongside labeled data as compared to applying standard data augmentation techniques.
Furthermore, using only synthetic catheter alongside camera catheter samples shows a
performance increase of 2.33% and 2% in comparison to the U-Net model(baseline) and
U-Net model trained with standard augmented data, respectively.

The baseline U-Net model [26] trained with 140 labeled images failed to accurately
identify the catheter due to the limited variability of training samples, as shown in the
Figure 8. An initial attempt was made to enable the model to generalize to unseen samples
via standard data augmentation. However, this form of augmentation did not yield
any potential improvements in segmenting the catheters on the test set. By augmenting
the training data with synthetic images, we could improved the baseline results, since
generation provides more diversity in the training set. Despite being successful in most
cases, the models trained with generated images still failed to segment certain parts of
the catheter especially for outliers, such as surgical sutures. To solve this, we further
increased the initial training set with 30,000 generated images, leading to improved overall
segmentation performance with less failure cases on unseen surgical sutures.

Despite the improved performance of the proposed method, we wish to highlight
a few limitations that require careful attention. First, the performance of the proposed
synthesis method is difficult to measure, due to the absence of labeled catheter data.
Furthermore, the current synthesis method does not consider the segmentation step in the
generation of synthetic images; however, we assume that the synthetic image generation
can be improved by integrating catheter segmentation into the proposed synthesis method.
Although we trained the segmentation models for both catheters and guidewires, a more
accurate segmentation could be accomplished by using separate models per input type and
later combine the outputs. In future, we plan to address these drawbacks and investigate
the use of synthetic data as well as develop an architecture that incorporates both generation
and segmentation in an unsupervised manner. Post-processing methods may be used to
further boost segmentation and guarantee the robustness of the system when applied to
low contrast X-ray fluoroscopic images. Moreover, we would like to compare our proposed
approach to more sophisticated GAN based methods.
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Figure 8. Test image results of a segmentation task using generated images. From top to bottom: input (1st row), the ground
truth (2nd row), the baseline UNet [26] segmentation result (3rd row), augmented data segmentation result (4th row),
the segmentation result of the model trained with the 5000 generated image (5th row), segmentation result of U-Net model
trained with 30,000 genereated image (6th row), and the segmentation result of the model trained with 30,000 generated
image plus 140 labeled image (7th row).

6. Conclusions

In this paper, we proposed a catheter synthesis and segmentation framework for X-ray
fluoroscopic images under limited data settings. A CycleGAN based framework with a
novel loss was introduced i.e., a perceptual loss coupled with similarity constraints to
generate a realistic catheter in X-ray fluoroscopic images from composited catheters in
X-ray. We evaluate four segmentation models to prove the effectiveness of the synthetically
generated data, and found that all the models improved performance over models trained
without synthetic data. Moreover, our approach is easily applicable in settings where data
is scarce and labeling is expensive.
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