

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D Thesis

박사 학위논문

A MapReduce-based method for the thorough

and rapid design of high-quality primers

for qPCR experiments

Hyerin Kim(김 혜 린 金 慧 麟)

Department of Information and Communication Engineering

정보통신융합전공

DGIST

2016

Ph.D Thesis

박사 학위논문

A MapReduce-based method for the thorough

and rapid design of high-quality primers

for qPCR experiments

Hyerin Kim(김 혜 린 金 慧 麟)

Department of Information and Communication Engineering

정보통신융합전공

DGIST

2016

 i

Ph.D/IC
201142001

 김 혜 린. Hyerin Kim. A MapReduce-based method for the thorough and rapid

design of high-quality primers for qPCR experiments. Department of Information and

Communication Engineering. 2016. 89p. Advisors Prof. Kim, Min-Soo, Prof. Co-

Advisors Koo, JaeHyung.

ABSTRACT

Primer design is a fundamental technique that is widely used for polymerase chain

reaction (PCR). Although many methods have been proposed for primer design, they require

a great deal of manual effort to generate feasible and valid primers, including homology

tests on off-target sequences using BLAST-like tools. That approach is inconvenient for

many target sequences of quantitative PCR (qPCR) due to considering the same stringent

and allele-invariant constraints. In this dissertation, we propose an entirely new method that

overcomes these drawbacks.

In the first part of this dissertation, we propose the method called MRPrimer that can

design all feasible and valid primer pairs existing in a DNA database at once, while simul-

taneously checking a multitude of filtering constraints and validating primer specificity.

Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a

ranking method. Through qPCR analysis using 343 primer pairs and the corresponding se-

quencing and comparative analyses, we showed that the primer pairs designed by MRPrimer

are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient

and scalable, and therefore useful for quickly constructing an entire collection of feasible

and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest

that MRPrimer can be utilized conveniently for experiments requiring primer design, espe-

cially real-time qPCR.

 ii

Existing web servers for primer design have major drawbacks, including requiring the

use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan

probes, and simultaneous design of primers against multiple targets. Due to the large-scale

computational overhead, the few web servers supporting homology tests use heuristic ap-

proaches or perform homology tests within a limited scope. The primer pairs designed by

MRPrimer are very stable and effective in qPCR experiments. However, although

MRPrimer can design very high-quality primers, routine use is inconvenient because it runs

on a cluster of computers and requires several hours of runtime when the filtering constraints

are adjusted.

In the second part of this dissertation, we propose MRPrimerW, the online version of

MRPrimer, allows users to design the best primers quickly in a web interface, without re-

quiring a MapReduce cluster or a long computation, as in Google’s search system. It per-

forms complete homology testing, supports batch design of primers for multi-target qPCR

experiments, supports design of TaqMan probes, and ranks the resulting primers to return

the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm

of MRPrimer, but completely redesigned it to allow users to receive query results quickly

in a web interface, without requiring a MapReduce cluster or a long computation.

MRPrimerW provides primer design services and a complete set of 341,963,135 in-silico

validated primers covering 99% of human and mouse genes.

In summary, we have proposed a new method for primer design that overcomes most

of drawbacks of existing methods. For an entire DNA database, we have proposed

MRPrimer that can design all possible feasible and valid primer pairs through simultane-

ously checking a multitude of filtering constraints and validating primer specificity. For user

 iii

query from web interface, we have proposed MRPrimerW that performs complete homol-

ogy tests, supports batch designing for qPCR, supports TaqMan probe design, and supports

ranking of primers. We believe that the proposed methods will be contribute to increasing

the efficiency and specificity of experiments involving PCR.

Keywords: MapReduce, primer design, qPCR, homology test

v

Contents

Abstract ··· i

List of contents ··· v

List of tables ··· vii

List of figures ··· viii

Ⅰ. INTRODUCTION

1.1 Background ·· 1

1.2 Motivation and Objectives ··· 7

1.3 Structure of thesis ·· 10

Ⅱ. REALTED WORK

2.1 Batch-style primer design method ·· 12

2.2 Web-based primer design method ··· 14

Ⅲ. MRPRIMER: Batch-style primer design method

3.1 Overview ·· 17

3.2 MRPrimer algorithm ·· 21

3.2.1 Step1:.Candidate primer generation round ································ 21

3.2.2 Step2: Single filtering round ·· 23

3.2.3 Step3: 5’ cross-hybridization filtering round ····························· 25

3.2.4 Step4:.General cross-hybridization filtering round ······················ 27

3.2.5 Step5: Duplicate removing round ·· 32

vi

3.2.6 Step6: Pair filtering round ·· 33

3.2.7 Step7. Ranking round ··· 36

3.3 Experiments for biological validation ··· 38

3.3.1 Data and methods ·· 38

3.3.2 qPCR analysis ·· 42

3.3.3 Comparative analysis ·· 44

3.4 Experiments for computational performance ··· 46

3.4.1Data and setup ··· 46

3.4.2 Results of the completeness and effective ranking system ·············· 46

3.4.3 Results of the coverage and specificity ···································· 49

3.4.4 Results of the computational efficiency and scalability ················· 52

Ⅳ. MRPRIMERW: Web-based primer design method

4.1 Overview ·· 55

4.2 Offline processing part ·· 57

4.3 Index building part ··· 62

4.4 Online processing part ··· 66

4.5 Web interface ··· 70

Ⅴ. CONCLUSIONS ·· 76

REFERENCES ·· 80

vii

List of tables

Table 1.1 Constraints definition and feasible range of values ·························· 4

Table 2.1 Comparison among websites for primer design ···························· 16

Table 3.1 The Summary of the constraints for filtering used in the PrimerBank

 ··· 39

Table 3.2 The statistics of PrimerBank and the results of MRPrimer ··············· 47

Table 3.3 The elapsed times (sec.) of MRPrimer from Step 1 to Step 7 for human and

mouse CCDS data sets ··· 53

Table 3.4 The elapsed times (sec.) of MRPrimer from Step 1 to Step 7 for human and

mouse CCDS data sets with a smaller cluster of less-powerful computers ········· 54

Table 4.1 Statistics of MRPrimerW primers ·· 57

Table 4.2 List of filtering constraints used in offline and online processing of

MRPrimerW ··· 58

Table 4.3 Summary of the filtering constraints used for TaqMan probe design ··· 61

viii

List of figures

Figure 1.1. Polymerase chain reaction ··· 1

Figure 1.2. PCR amplification ·· 2

Figure 1.3. An examples which a primer amplifies intended target or unintended target

 ··· 5

Figure 2.1. An example of multiple sequence alignment results using CLUSTAL

Omega and primers designed from the alignment result using iCODEHOP ······· 13

Figure 3.1. Dataflow of the MapReduce framework ··································· 18

Figure 3.2. Overall flow of the seven-step MRPrimer method ······················· 20

Figure 3.3. The Map and Reduce algorithms for Step 1 ······························· 22

Figure 3.4. The Map and Reduce algorithms for Step 2 ······························· 25

Figure 3.5. An example of the 5’ cross-hybridization filtering step ················· 26

Figure 3.6. The Map and Reduce algorithms for Step 3 ··························· 26-27

Figure 3.7. An example of the general cross-hybridization filtering step ··········· 29

Figure 3.8. The Map and Reduce algorithms for Step 4 ··························· 30-31

Figure 3.9. The Map and Reduce algorithms for Step 5 ······························· 32

ix

Figure 3.10. The Map and Reduce algorithms for Step 6 ····························· 35

Figure 3.11. The Map and Reduce algorithms for Step 7 ····························· 37

Figure 3.12. Verification of 99 primer pairs for non-OR genes using qPCR analysis

 ··· 43

Figure 3.13. Verification of 96 primer pairs for OR genes using qPCR analysis ···

 ··· 43

Figure 3.14. Comparative analysis between MRPrimer and PrimerBank using qPCR

analysis ··· 44

Figure 3.15. Comparative analysis between MRPrimer and PrimerBank using sequenc-

ing analysis ··· 45

Figure 3.16. The advantage of the ranking method of MRPrimer ··················· 49

Figure 3.17. The distribution of the number of primer pairs (in orange) and the number

of unique genes (in purple) according to coverage ····································· 50

Figure 3.18. The number of primers (in orange) and primer pairs (in blue) passed in

each major step of MRPrimer ··· 52

Figure 3.19. The elapsed times of MRPrimer as varying the database size ········ 53

Figure 4.1. Overall flow of the MRPrimerW method ································· 56

Figure 4.2. An example of how MRPrimerW eliminates primers that are homologous

to off-targets. ·· 60

Figure 4.3. Overall flow of the five-found MRPrimerW offline processing method

 ··· 61

x

Figure 4.4. Structures of indices used in MRPrimerW web server ·················· 65

Figure 4.5. Flowchart of searching and single filtering step ·························· 67

Figure 4.6. Flowchart of pair filtering step ·· 68

Figure 4.7. Flowchart of output sorting step ·· 70

Figure 4.8. Input interface of MRPrimerW ··· 72

Figure 4.9. Output interface of MRPrimerW ··· 75

- 1 -

I. INTRODUCTION

1.1 Background

A primer is a short, single-stranded DNA molecule that serves as a starting point for DNA

synthesis. DNA primers are widely used in many biological and medical laboratory

techniques that involve DNA polymerase, such as DNA sequencing and polymerase chain

reaction (PCR, Figure 1.1).

Figure 1.1. Polymerase chain reaction.

5’

5’

3’

3’

Target
sequence

5’

3’ 5’

3’

1. Denaturation:
To separate DNA
strands

Temperature()947255

3’5’

3’ 5’

2. Annealing:
To hydrogen bond
primer with ends of
target sequence

5’

3’

5’

3’

Primer

5’

3’ 5’

3’

3. Extension:
To add nucleotides
to the 3’ end of
each primer

5’

3’ 5’

3’

- 2 -

PCR was developed in 1983 by Kary Mullis, who was awarded the Nobel Prize in

Chemistry in 1993. PCR amplifies a target sequence of DNA across several orders of

magnitude, to generate thousands to millions of copies of the target sequences. Inputs are

target sequences and a pairs of primers, will be explained later. Then output will be

amplified target sequences. Figure 1.1 shows steps of PCR procedure; each cycle consists

of three steps. First, heat up 94 degree to separate two strands of target sequence into one.

Then cool down 55 degree to allow annealing of primers complementary to the target.

Prime is a strand of nucleic acid that servers as starting point of PCR. If the primer matches

with target, in the final step, primer can extend in 5’ to 3’ direction heating up 72 degree.

Repeating the cycles, in cycle 2, get 4 molecules matched with target sequences. In the

same manner, able to obtain 8 molecules in cycle 3. Eventually in cycle 35, 34 billion

molecules can be observed (Figure 1.2).

As a standard laboratory technique for fast mass duplication of specific DNA

sequences, PCR with suitable primers is used in a wide variety of applications, including

phylogenetic analysis of DNA from different species to detect and identify unknown and

distantly related gene sequences [1-3], genetic testing of DNA samples to detect the

1st cycle

2nd cycle

3rd cycle

4th cycle

35th cycle
Target

(template)

Figure 1.2. PCR amplification

- 3 -

presence of disease-associated genetic mutations [4], the study of infectious diseases such

as HIV and antibiotic-resistant microorganisms [4], PCR-based genetic fingerprinting and

parental testing in forensics [4], DNA cloning [5], and microsatellite detection using

molecular markers in population biology [6]. In addition, quantitative PCR (qPCR), also

known as real-time PCR, has been widely used to confirm the results of high-throughput

experiments by validating expression changes of selected genes [7]. The success of PCR-

based experiments, including qPCR analysis, depends strongly on the design of suitable

primers against the target sequence(s).

When designing primers, we must simultaneously consider many kinds of

constraints, including primer length, melting temperature, GC content, self-

complementarity, continuous residues, free-energy value, differences in length and melting

temperature between members of primer pairs, product size, and pair-complementarity [8].

Table 1.1 shows the each constraints definitions and feasible range of values for general

qPCR experiments. Manual design of primers is time-consuming and may easily yield

incorrect results; therefore, automatic methods that can check the aforementioned single

and pair filtering constraints are preferred [9]. Additional important constraints that should

be evaluated are homology tests, i.e., whether the designed primers can only amplify the

target sequence(s) rather than off-target sequences; such tests usually require an additional

BLAST-like tool. Figure 1.3 figure shows the examples which a primer amplifies intended

target or unintended target. All matches primer and intended targets is okay. Primer with 5’

end mismatch and identical rest of residues can be amplified unintended targets. Mismatch

in middle of primer and target also can be amplified unintended targets. Lastly, mismatch

on 3’ end cannot make annealing, so not consider. Fast automatic design of high-quality

- 4 -

primers that satisfy both filtering constraints and homology tests remains a challenge that

has not yet been completely solved.

Table 1.1 Constraints definition and feasible range of values.

 Parameter Definitions Value

Each primer

primer length Primer Length 19~23 bp

melting temperature (TM) Primer melting temperature (nearest
neighbor thermodynamic model) 60~63℃

GC content % of G and C 35~65%

self-complementarity Number of primer bases annealing
to itself < 5-mer

3’ self-complementarity Number of primer 3’ bases
annealing to itself < 4-mer

Contiguous residue Length of a mononucleotide repeat,
for example AAAAAA < 6-mer

Gibbs free energy (∆G) Stability for the last five 3' bases of
primer ≥ -9 kcal/mol

Primer pair

length difference Length difference of pair primers ≤ 3-mer

TM difference Melting temperature difference of
pair primers ≤ 5℃

product size Acceptable size of PCR product
produced by reaction 100~250 bp

pair-complementarity
Number of bases of forward primer
to bind to the reverse primer, and

vice versa
< 9-mer

3’ pair-complementarity
Number of bases of the 3' end

forward primer to bind to the 3' end
reverse primer, and vice versa

< 4-mer

- 5 -

Furthermore, if we want to design a large number of primers for qPCR in a short

time that satisfy the same set of filtering constraints (e.g., similar product sizes), the

problem becomes much more difficult. For qPCR experiments, in addition to the above

SYBR Green primers, TaqMan probes are also commonly used to detect products, and they

can significantly increase the specificity of detection; however, this requires extreme care

in the design of both probes and primers to ensure they satisfy both the filtering constraints

and the homology tests [10].

The existing methods have the following four fundamental problems or drawbacks.

First, the existing methods for a single target sequence do not support both

specification of abundant filtering constraints and homology testing on off-target

5’ 3’

5’

3’

5’
3’

5’ 3’

Amplified

Amplified

Amplified

Not Amplified

Intended
target

Unintended
target

Unintended
target

Unintended
target

Figure 1.3. An examples which a primer amplifies intended target or unintended target.

- 6 -

sequences. In terms of computation, it is a non-trivial problem to support both in a

combined manner because this approach typically requires complex and large-scale join

computation between a large number of candidate primer pairs designed from each target

sequence, as well as a huge number of off-target sequences. Homology tests for every

candidate primer against the entire sequence database requires 9 quintillion comparisons.

Accordingly, users usually use a tool chain of both approaches with some human

intervention, but such an approach cannot yield complete results.

Second, the existing methods for a single target sequence only focus on designing

primers for a specific target sequence; therefore, they cannot be easily used for qPCR,

which requires a large number of primer pairs to satisfy the same stringent and allele-

invariant constraints (e.g., very similar product sizes) across target sequences. To alleviate

this issue, PrimerBank [7, 8] was built and updated over the past several years; this

database contains 248,578 primer pairs designed from 17,076 human and 18,086 mouse

genes following similar constraints.

Third, existing methods cannot find all possible primers completely, especially for

multiple target sequences. This deficiency is mainly due to the first step, i.e., multiple

sequence alignment (MSA). The complexity of optimal MSA is inherently NP-complete

[11], and so finding an optimal alignment is computationally infeasible for more than a

few sequences. Most tools for MSA (e.g., CLUSTALW) [12] are heuristic; therefore,

primers designed based on MSA results are also incomplete. Moreover, although we could

compute the optimal MSA for a given set of sequences, it would be hard to find all possible

primers only with a single fixed alignment because some primers might exist in conserved

regions of non-optimal alignments. Methods not based on MSA, like HYDEN, are also

- 7 -

heuristic, and therefore cannot find all primers. HYDEN also has the serious drawback

that it cannot change primer constraints freely [13]. Overall, the existing methods tend to

miss a large proportion of the feasible primers for given target sequences, even when such

primers actually exist.

Fourth, the existing methods for multiple target sequences only focus on finding

degenerate primers. Degenerate primer is a set of mixture of similar, but not identical

primers. With a degenerate primer, multiple target sequences can be amplified. Degenerate

primers inherently have a trade-off between degeneracy and coverage. In general, we

cannot increase the degeneracy of primer to a high value, since using high degenerate

primers would greatly reduce the specificity of the PCR amplification [14, 15]. In addition,

there have recently been some studies saying that degenerate primers are not quite effective

[16-18]. The degenerate primers could introduce a level of bias into the phylogenetic study,

and so the profiles using them may not accurately represent the coverage of community

[16]. The non-degenerate primers also could obtain the same quality of taxonomic

coverage as the previously designed degenerate primers do [17]. Using non-degenerate

primer, the PCR specificity has been further increased [19]. From those previous studies,

we can say that for multiple target sequences, non-degenerate primers would be better than

the degenerate ones, if both have the same coverage.

1.2 Motivation and objectives

In this dissertation, we propose an entirely new method called MRPrimer

(http://MRPrimer.com) that overcomes most of the drawbacks of existing methods. For a

- 8 -

given set of filtering constraints and a given sequence database (e.g., human gene DNA

sequences), the proposed method designs all feasible primers that satisfy the constraints

while validating their specificity in one sitting.

It finds not only all primers that can amplify a specific single target sequence, but

also all primers that can amplify specific multiple target sequences. It neither relies on

MSA nor heuristics; instead, it simply finds every possible non-degenerate primer, without

missing any feasible or valid primer in the given sequence database, in a single execution.

Consequently, it can design a tremendous number of feasible and valid primer

pairs, e.g., about 63 million pairs from human genes and 84 million pairs from mouse

genes in the consensus coding sequence (CCDS) database

(http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and show very high coverage

ratios, 95% for human and 96% for mouse, for the same database.

For realizing the above desirable features, MRPrimer follows a fairly complicated

but parsimonious flow of computation based on the MapReduce framework [20]. The

overall flow of MRPrimer is composed of a total of seven steps. Here, each step is a

carefully designed MapReduce algorithm.

In addition to designing all feasible and valid primer pairs, while simultaneously

checking a multitude of filtering constraints and validating primer specificity, MRPrimer

suggests the best primer pair for each target sequence, based on a ranking method

performed in its seventh step (i.e., the final step). Consequently, users only need to use the

best primer pair(s) for target sequence(s) for their experiments.

In addition, the flow of MRPrimer is highly efficient and scalable in terms of

- 9 -

computation, and so can construct a collection of all primer pairs corresponding to genome-

scale data within a few hours using only a small cluster of computers. Therefore,

MRPrimer is useful for quickly constructing an entire collection of feasible and valid

primers for frequently updated databases like RefSeq.

We explained the MRPrimer method in more detail and showed its results in

biological experiments. Although MRPrimer can design primers for multiple target

sequences, in this paper we focus on qPCR experiments using primers for single target

sequences. Especially, we demonstrated the results of qPCR analysis using 343 primer

pairs and the corresponding sequencing and comparative analyses for validating the

stability and effectiveness of MRPrimer for qPCR.

In addition, we describe a new web-based method, MRPrimerW

(http://MRPrimerW.com), for batch design of primers for qPCR experiments. This tool

checks filtering constraints, performs rigorous homology testing against a whole genome

database, and ranks the resultant primer pairs according to their penalty scores to pick the

best one for each target sequence. MRPrimerW supports the design of not only SYBR

Green primers, but also TaqMap probes.

MRPrimerW is an online processing method based on our previously proposed

offline processing method MRPrimer, which returns all feasible and valid primer pairs for

a DNA database at once. MRPrimer performs a fairly complex, large-scale computation

based on the MapReduce framework, resulting in design of very high-quality primers.

Through qPCR analysis using 343 primer pairs and corresponding sequencing and

comparative analyses, we showed that the primer pairs designed by MRPrimer are very

stable and effective in qPCR experiments. However, although MRPrimer can design very

- 10 -

high-quality primers, routine use is inconvenient because it runs on a cluster of computers

and requires several hours of runtime when the filtering constraints are adjusted.

MRPrimerW solved this problem completely. On the MRPrimerW website, users can

rapidly design primers of the same high quality without using their own computer cluster,

typically within a minute, while instantly and freely adjusting filtering constraints.

To achieve this level of performance, we adopted an approach based on Google’s

search system. In particular, we reorganized the complex MRPrimer algorithm, which

consists of seven MapReduce rounds, into two parts: offline processing and online

processing. We built index structures using the results of offline processing and loaded

them into the MRPrimerW web server. Using these indices, the online processing stage can

quickly design high-quality primers against a user-specified target, as in a Google keyword

search.

1.3 Structure of thesis

The structure of this dissertation is organized as follows. In Chapter II, we introduced

related works. The batch-style methods for primer design are presented in Section 2.1. In

the following Section 2.2, we discuss websites for primer design and limitations. We

propose the MRPrimer method in Chapter III. The overview of MRPrimer method is

characterized in Section 3.1. Then, we explain details of seven steps of MRPrimer in

Section 3.2. Furthermore, biological validation and computational evaluation are presented

in Section 3.3 and 3.4 respectively. In Chapter IV, we propose MRPrimerW. The overview

of MRPrimerW method is discussed in Section 4.1. In the following Section 4.2 through

- 11 -

Section 4.4, we describe details of MRPrimerW. Section 4.5 presents the MRPrimerW

input and output interface. Finally, conclusions are drawn in Chapter V.

- 12 -

II. RELATED WORK

2.1 Batch-style primer design method

The existing methods for primer design can be categorized into two groups, depending on

whether we wish to specify a single target sequence or multiple target sequences.

The major methods in the former group include Primer3Plus [21] and Primer-

BLAST [22]. The core algorithm of both methods is based on Primer3 [23]. Primer3 is the

most widely used tool to design primer from a single DNA sequence. Primer3Plus, a web

interface of Primer3, allows users to specify a series of filtering constraints that the primers

must satisfy; however, it does not perform homology tests on off-target sequences, and

therefore requires the user to perform time-consuming tests with a BLAST-like tool for

each candidate primer pair. Unlike Primer3Plus, Primer-BLAST performs homology tests;

however, it specifies only a few filtering constraints, which makes it difficult to design

primers as precisely as desired.

The major methods in the latter group include CODEHOP [1, 24], iCODEHOP

[25], GeneFISHER/GeneFISHER2 [26, 27], HYDEN [14], FAS-DPD [15], DePiCt [28],

Amplicon [29], and SCPrimer [30]. All of these methods design degenerate primers, which

are actually mixtures of similar, but not identical primers. Most of them design primers by

first aligning multiple target sequences to find conserved regions, and then designing

- 13 -

primer pairs over those conserved regions. For example, CODEHOP and iCODEHOP

align target sequences with CLUSTALW [12] and design hybrid degenerate primers that

contain a short 3’ degenerate core region of about ~11–12 bp and a longer 5’ consensus

clamp region of ~18–25 bp. Figure 2.1 shows the example of multiple sequence alignment

results of mouse olfactory receptor genes from chromosome 13 using CLUSTAL Omega

[31] and primers designed from the alignment result using iCODEHOP. It showed 7 primer

candidates. Among them forward primer A-4 has 96 degeneracy, and reverse primer A-25

has 128 degeneracy. SCPrimer builds phylogenetic trees from aligned multiple sequences

to identify candidate primers, and then performs a set-covering algorithm to determine the

minimal set of primers required to amplify all members of the alignment. Some tools, such

as HYDEN and DePiCt, do not rely on multiple sequence alignment for primer design, but

still rely on heuristic techniques such as greedy hill climbing.

Figure 2.1. An example of multiple sequence alignment results using CLUSTAL Omega and
primers designed from the alignment result using iCODEHOP.

- 14 -

2.2 Web-based primer design method

To aid in designing primers for PCR experiments, many websites have been developed,

including Primer3Plus [21, 32], BatchPrimer3 [33], Primique [34], QuantPrime [35],

primer-BLAST [22], and PrimerBank [7, 8]. Primer3Plus, a web interface of Primer3, is

one of the most widely used tools; it allows users to specify a set of filtering constraints

for a single target gene. BatchPrimer3, which adopts the Primer3 core algorithm, can

design primers in batches for multiple target genes. However, neither server performs

homology tests on off-target sequences, requiring users to perform time-consuming

homology tests on each candidate primer pair using extrinsic alignment tools.

Primique performs homology tests using BLAST in a limited scope, i.e., only on

a small secondary set of off-target sequences uploaded by the user. Due to a high

computation overhead of homology testing, the maximum size of this secondary database

is limited to 10 MB, much smaller than a whole genome sequence database and therefore

too small for the design of high-quality primers. QuantPrime performs homology testing

for primer pairs designed by Primer3 against the whole transcriptome (mRNA) and

genome database using BLAST. Both Primique and QuantPrime rely on a local alignment

algorithm for homology testing. However, a heuristic approach based on local alignment

cannot accurately count the number of mismatches between a primer and an off-target

sequence [22]; as a result, these methods could yield suboptimally specific primer pairs.

On the contrary, Primer-BLAST performs homology tests with a global alignment

algorithm to ensure full primer-target alignment; accordingly, Primer-BLAST tends to

return more target-specific primer pairs. The core algorithm of Primer-BLAST based on

Primer3 has a function that can rank primers by their penalty scores. However, Primer-

- 15 -

BLAST does not utilize this function to increase the chance of finding target-specific

primers. Although Primer-BLAST exhibits better performance in terms of homology

testing, it does not rank the designed primer pairs by their penalty scores, but ranks them

by their specificity; moreover, it cannot support batch design for multi-target qPCR due to

the large computational overhead required for more accurate homology tests.

Some websites, including PrimerBank [7, 8], RTPrimerDB [36-38], and

qPrimerDepot [39], simply search a database of pre-designed primers, rather than

designing primers in real time in response to user queries. In particular, PrimerBank is one

of the largest databases of primers built and updated over the past several years. Because

the specificities of the primers of PrimerBank have been experimentally validated under

uniform conditions, these primers are fairly effective in real PCR experiments. However,

because PrimerBank relies on the pre-designed primers, it does not allow users to adjust

the filtering constraints, which might be important in the context of qPCR experiments

requiring a full set of primer pairs that satisfy the same constraints. A comparison of other

existing tools is summarized in Table 2.1.

- 16 -

Table 2.1. Comparison among websites for primer design.

Method Batch
designing

Filtering
constraints

Homology
test

Scoring
(Ranking)

TaqMan
probes

Primer3Plus X O X O O
BatchPrimer3 O O X O O

Primique O O △ O X

QuantPrime O O △ O X

Primer-BLAST X O O △a O

PrimerBank X X O X X
O: fully supported
△: partially supported
X: not supported
a Primer-BLAST ranks the designed primer pairs not by penalty scores, but by specificity

- 17 -

III. MRPRIMER: Batch-style primer design method

3.1 Overview

MapReduce

MRPrimer is based on the MapReduce framework, whose dataflow is shown in Figure 3.1.

One round of MapReduce consists of two user-defined functions, Map and Reduce. Here,

Reduce is optional, and so can be omitted. The input data for a round is distributed over

the disks of a cluster of computers. The partial data in each computer is processed by Map

functions, shuffled via network, processed by Reduce functions, and then stored in disks,

which is again fed to the Map functions of the next MapReduce round. The input/output

format of data, i.e. signatures of Map and Reduce functions are formally defined as follows.

Map: 〈k1, v1〉 → list(〈k2, v2〉)

Reduce: 〈k2, list(v2)〉 → 〈k3, v3〉

The Map function takes a pair of key and value, 〈k1, v1〉, as input (e.g. k1 is a sequence ID,

and v1 is the sequence itself), and then returns a list of pairs 〈k2, v2〉 in a different domain,

as output. The Reduce function takes a pair of key and list of values, i.e. 〈k2, list(v2)〉, as

input, and then returns a pair of key and value, i.e. 〈k3, v3〉 in a different domain, as output.

Here, we note that v2 in the output of Map becomes list(v2) in the input of Reduce, since

- 18 -

the shuffle process gathers all v2s having the same k2, which are scattered over computers,

into a single list of v2 on a single computer. MRPrimer largely relies on that feature of

MapReduce for performing large-scale and complicated computation efficiently.

MRPrimer method

The flow of MRPrimer consists of seven steps (Figure 3.2). Each step corresponds to a

single MapReduce round, which again consists of Map and Reduce. The output of Reduce

of each round becomes the input of Map of its next round. MRPrimer takes a DNA

sequence database and a set of filtering constraints, as input, where the set of filtering

constraints include at least seven constraints for single primer, five constraints for primer

pair, and two kinds of validation constraints. Then, through seven steps, it returns all

feasible and valid primer pairs existing in the database and satisfying all constraints set by

users.

The two kinds of validation constraints are 5’ cross-hybridization filtering

constraint and general cross-hybridization filtering constraint. The former means the

maximum number of mismatched residues at the 5’ end of a candidate primer that might

Map Reduce

Map Reduce

Map Reduce

Map Reduce

Map Reduce

shuffle

Input
data

Output
data

Figure 3.1. Dataflow of the MapReduce framework.

- 19 -

cross-hybridize off-target sequences and so should be filtered out. For instance, we assume

that a candidate primer is the same with any subsequence of an off-target sequence at the

3’ end and has only two mismatches at the 5’ end. Then, that candidate primer might cross-

hybridize the off-target sequence due to the high similarity between both, especially at the

3’ end, and thus we filter out the candidate primer. The default value for this constraint is

four, i.e. the candidate primers of up to four mismatches at the 5’ end (and all matches at

the 3’ end) are filtered out. That value can be changed by users. The latter refers to the

maximum number of mismatched residues spread over a candidate primer. It is sufficient

to use a smaller value for this constraint (e.g. two) than for the former constraint. Hereafter,

we denote the latter value as #mismatch.

Among seven steps of MRPrimer, an important ones are single primer filtering

(Step 2), homology test (Step 3-5), and pair primer filtering (Step 7). Different from other

steps, Step 3 (5’ cross-hybridization filtering round) and Step 4 (general cross-

hybridization filtering round) take two kinds inputs, Map1 and Map2, for binary join

computation between both. Here, Map1 indicates a set of all possible subsequences from

off-target sequences, and Map2 indicates a set of candidate primers passed from the

previous step. The series of Steps 4 and 5 is repeatedly performed until checking the

general cross-hybridization filtering constraint is finished. For instance, if #mismatch = 2,

the series of steps is performed twice, i.e. at #mismatch=1 and at #mismatch=2. Although

Step 6 takes a single input, it splits the input into two sets, a set of forward primers and a

set of reverse primers, and then performs self-join computation between both. In Figure

3.2, the boxes in the right part show the input/output formats of Map and Reduce of each

MapReduce round. We explain the method used in each step in more detail.

- 20 -

.

Candidate primer
generation

Input sequences,
filtering constraints

5’ cross-hybridization
filtering

Single filtering

Duplicate removing

General cross-
hybridization filtering

Output sorting

Pair filtering

Step1

Step2

Step3

Step4

Step5

Step7

Map/I: <k1:sid, v1:S>
Map/O: list(<k2:P, v2:sid⊕pos>)
Reduce/I: <k2:P, list(v2:sid⊕pos)>
Reduce/O: <k3:P, v3:sidset⊕sid⊕pos>

Map/I: <k1:P, v1:sidset⊕sid⊕pos>
Map/O: list(<k2:P, v2:sidset⊕sid⊕pos>)

Map1&2/I: <k1:P, v1:sidset⊕sid⊕pos>
Map1&2/O: list(<k2:sufP,

v2:preP⊕sidset⊕sid⊕pos>)
Reduce/I: <k2:sufP,

list(v2:preP⊕sidset⊕sid⊕pos)>
Reduce/O: <k3:P, v3:sidset⊕sid⊕pos>

Map1&2/I: <k1:P, v1:sidset⊕sid⊕pos>
Map1&2/O: list(<k2:seed⊕seedpos⊕|P|,

v2:sidset⊕sid⊕pos⊕preP⊕sufP>)
Reduce/I: <k2:seed⊕seedpos⊕|P|,

list(v2:sidset⊕sid⊕pos⊕preP⊕sufP)>
Reduce/O: <k3:sidset⊕P⊕sid⊕pos, v3:filtered>

Map/I: <k1:sidset⊕P⊕sid⊕pos, v2:filtered>
Map/O: list(<k2:sidset⊕P⊕sid⊕pos,

v2:filtered>)
Reduce/I: <k2:sidset⊕P⊕sid⊕pos,

list(v2:filtered)>
Reduce/O: <k3:sidset, v3:P⊕sid⊕pos>

Map/I: <k1:sidset, v1:P⊕sid⊕pos>
Map/O: list(<k2:sid, v2:sidset⊕P⊕pos>)
Reduce/I: <k2:sid, list(v2:sidset⊕P⊕pos)>
Reduce/O: <k3:sidset⊕sid, v3:f.P⊕f.pos⊕r.P⊕r.pos>

Map/I: <k1:sidset⊕sid, v1:f.P⊕f.pos⊕r.P⊕r.pos>
Map/O: list(<k2:<sidset, penalty>,

v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos>)
Reduce/I: <k2:<sidset, penalty>,

list(v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos)>
Reduce/O: <k3:sidset⊕f.P⊕r.P, v3:sid⊕f.pos⊕r.pos>

#iteration <
#mismatch

No

Yes

Step6

#iteration 1

#Iteration++

Map1

Map1

Map2

Map2

binary
join

binary
join

self-join

Resulting primer pairs

Figure 3.2. Overall flow of the seven-step MRPrimer method.

- 21 -

3.2 MRPrimer algorithm

3.2.1 Step 1: Candidate primer generation round

The Map of this step takes a DNA database, which is a set of pairs of sequence ID, sid, and

sequence data, S, 〈k1:sid, v1:S〉, and extracts all possible subsequences of the lengths

between the minimum length, minL, and the maximum length, maxL. The lengths minL

and maxL are specified by users as one of the single-primer filtering constraints. The Map

also extracts their reverse complementary primers while tagging them with “reverse

primers”. All outputs of Maps of all computers are shuffled and fed into each Reduce,

which again transforms its input to the output format 〈k3:P , v3:sidset⊕sid⊕pos〉. Here, P is

a candidate primer, sidset the set of sequence IDs where P occurs, sid a specific sequence

ID where P occurs, and pos the position where P occurs within the sequence of sid. Three

values of sidset, sid, and pos are concatenated with each other using a character operator

⊕, and thus v3 becomes a single text value. For the operator ⊕, we can use any character

that does not occur in sequence data (e.g. ‘-’). Figure 3.3 presents the Map and Reduce

algorithms for Step 1.

- 22 -

Algorithm 1. Step1-Map
Input: <k1:sid, v1:S> // sid is the ID of a sequence S

Output: list(<k2:P, v2:sid⊕pos>)
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

for pos = 0 to |S|-minLen
for len = minLen to maxLen

if (pos + len ≤ |S|) then
P = S[pos:pos+len];
emit(P, sid⊕pos); // concatenation ⊕
rP = reversePrimerGen(P); // reverse primer
P = reverseTag(rP); // reverse primer tag
emit(P, sid⊕pos+len); // concatenation ⊕
end if

end if
end for

end for

Algorithm 2. Step1-Reduce
Input: <k2:P, list(v2:sid⊕pos)>

Output: <k3:P, v3:sidset⊕sid⊕pos> // sidset is a
concatenation ⊗ of sids covered by P

1:
2:
3:
4:
5:
6:
7:

sidset ← ø;
foreach v in list(v2:sid⊕pos)

sidset ← sidset⊗v.sid; // concatenation ⊗
end for
foreach v in list(v2:sid⊕pos)

emit(P, sidset⊕v.sid⊕v.pos);
end for

Figure 3.3. The Map and Reduce algorithms for Step 1.

- 23 -

3.2.2 Step 2: Single filtering round

This step applies six filtering constraints for a single primer to the candidate primers passed

from Step 1. The constraints include melting temperature, GC content, self-

complementarity, 3’-end self-complementarity, contiguous residue, and Gibbs free energy.

Checking of a single filtering constraint can be defined as a binary function. The function

length() checks if a primer satisfies the length constraint. It can be defined as

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ |𝑝𝑝| ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, where p is a primer, minL is a minimum length, and maxL is a maximum length. The

primer length was already checked in Step 1. The function temp() checks if a primer

satisfies the melting temperature constraint, which can be defined as

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇𝑇𝑇(𝑝𝑝) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠

, where Tm() is a function to calculate a melting temperature, minT is a minimum

temperature, and maxT is a maximum temperature. There are various Tm() functions. To

date the most accurate formula, the nearest neighbor method, which returns as below, can

be used.

𝑇𝑇𝑇𝑇(𝑝𝑝) =
∆𝐻𝐻˚ × 1000

∆𝑆𝑆˚ + 𝑅𝑅 × ln �𝐶𝐶𝑇𝑇4 �
− 273.15

, where ∆H˚ is the enthalpy change, ∆S˚ is the entropy change, R is the gas constant

1.9872cal/K-mol, and 𝐶𝐶𝑇𝑇 is the total molar strand concentration. For calculating the

melting temperature and the value of free energy, we adopted the nearest-neighbor

thermodynamic model [40], which is an improved model of the previous one [41] used in

- 24 -

Primer3Plus [21]. The function GCcontent() checks if a primer satisfies the GC content

constraint. It can be defined as

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐺𝐺𝐺𝐺(𝑝𝑝) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, where GC(p) is the ratio of base-nucleic acid codes G and C in the primer p, minR is the

minimum ratio, and maxR is the maximum ratio. In order to prevent hairpin formation, the

function selfComplementary() checks if any sequences of a primer bind to anywhere its

complementary sequence. It can be defined as

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝| < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

The function repeatSeq() checks whether a primer containing contiguous residues, which

can be defined as

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 |𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝)| ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, where repeat(p) is the length of contiguous sequences in primer p, and maxRS is the

maximum length of allowed repetitive sequences. The function freeEnergy() evaluates the

free energy (∆G) for annealing stability of the 3’end of primer to minimize nonspecific

amplification. The function can be defined as

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑝𝑝, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

, where deltaG(p, numBase) is the value of free energy determined by the most accurate

nearest neighbor thermodynamics method [40], and bindLen is the specific length of the

binding nucleic acid bases at the 3’-end of the primer p. All of these constraints can be

- 25 -

specified by users when starting the program. There is no Reduce function in this step.

Figure 3.4 presents the Map and Reduce algorithms for Step 2.

3.2.3 Step 3: 5’ cross-hybridization filtering round

This step takes two inputs, Map1, which is the output of Step 1, i.e. all possible

subsequences, and Map2, which is the output of Step 2, i.e. a set of candidate primers that

passed all single filtering constraints. The purpose of this step is eliminating a candidate

primer that violates 5’ cross-hybridization filtering constraint. While performing all pair

join between two sets, if a primer from Map1 and a primer from Map2 are identical with

each other except at the 5’ end, the primer from Map2 is filtered out. Figure 3.5 shows an

example of this step, where the primer (b) is identical with the primer (a) except at the 5’

Algorithm 3. Step2-Map
Input: <k1:P, v1:sidset⊕sid⊕pos>
Output: list(<k2:P, v2:sidset⊕sid⊕pos>)
1:
2:
3:
4:
5:
6:

if (isReverse(P))
P = reverseUntag(P);

end if
if (singleFiltering(P)) then

emit (P, sidset⊕sid⊕pos); // concatenation ⊕
end if

Algorithm 4. Step2-Reduce
Input: <k2:P, list(v2:sidset⊕sid⊕pos)>

Output: <k3:sidset, v3:P⊕sid⊕pos> // sidset is a
concatenation ⊗ of sids covered by P

1:
2:
3:

foreach v in list(v2:sidset⊕sid⊕pos)
emit (sidset, P⊕v.sid⊕v.pos);

end for

Figure 3.4. The Map and Reduce algorithms for Step 2.

- 26 -

end, and so is filtered out. The primer (c) is similar with the primer (a), and so should be

removed. However, it does not violate 5’ cross-hybridization constraint, which will be

filtered out in the next step. Figure 3.6 illustrates the Map and Reduce algorithms for Step

3.

ATGCCTAGACGG … AATGATGACATTGCCAAGAG …
(a)…

…

Map1

ATGGGAACACGGATC … AACAATGACATTGCCAAGAG …
(b)

ATGCCCCCTTCGGA … AATGATGAGATTGCCAACTG …
(c)

ATGCGTATA … AATGAATGACATGTGCAGAC …
(d)

Map2

violate 5’ cross-
hybridization, so
filtered out

violate general cross-
hybridization,
but, passes

passes

Figure 3.5. An example of the 5’ cross-hybridization filtering step.

Algorithm 5-1. Step3-Map1
Input: <k1:P, v1:sidset⊕sid⊕pos> // Step1 output
Output: list(<k2:sufP, v2:preP⊕sidset⊕sid⊕pos>)
Variable: prefixLen // length of 5’ subprimer
1:
2:
3:
4:

preP = round1Tag(preP);
preP += P[0:prefixLen-1];
subP = P[prefixLen:|P|];
emit(sufP, preP⊕sidset⊕sid⊕pos); // concatenation ⊕

Algorithm 5-2. Step3-Map2
Input: <k1:sidset, v1:P⊕sid⊕pos> // Step2 output

Output: list(<k2:sufP, v2:preP⊕sidset⊕sid⊕pos>)
Variable: prefixLen // length of 5’ subprimer
1:
2:
3:

subP = P[prefixLen:|P|];
prefix = P[0:prefixLen-1];
emit(sufP, preP⊕sidset⊕sid⊕pos); // concatenation ⊕

- 27 -

3.2.4 Step 4: General cross-hybridization filtering round

This step also takes two inputs, Map1, which is the output of Step 1, i.e. all possible

subsequences, and Map2, which is the output of Step 3, i.e. a set of candidate primers that

passed both the single filtering constraints and 5’ cross-hybridization filtering constraint.

While performing all pair join between two sets, if a primer from Map1 and a primer from

Map2 are identical except a given number of mismatches, i.e. #mismatch, the primer from

Map2 is filtered out.

Algorithm 6. Step3-Reduce
Input: <k2:sufP, list(v2:preP⊕sidset⊕sid⊕pos)>
Output: <k3:P, v3:sidset⊕sid⊕pos>
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

R1, R2← ø;
foreach v in list(v2:preP⊕sidset⊕sid⊕pos)

preP⊕sidset⊕sid⊕pos ← v // decomposition
if (!isRound1Tagged(prefix)

R2 ← preP⊕sidset⊕sid⊕pos;
else

prefix = round1Untag(prefix);
R1 ← preP⊕sidset⊕sid⊕pos;

end if
foreach r2 in R2

isFilter = false;
foreach r1 in R1

if (r2.sidset != r1.sidset) then
isFilter = true;
break;

end if
end for
if (!isFilter)

P = r2.prefix + subP
emit (P, r2.sidset⊕r2.sid⊕r2.pos)

end if
end for

Figure 3.6. The Map and Reduce algorithms of Step 3.

- 28 -

In order to compute this step efficiently, Map of this step splits each primer into

multiple seeds and transforms the input 〈k1:P, v1:sidset⊕sid⊕pos〉 to the output list(〈k2:seed,

v2: sidset⊕sid⊕pos⊕preP⊕sufP〉). According to the theorem, a sequence of length m with

at most k mismatches must contain a seed exactly matched of at least m/(k+1) residues

[42-44]. In the output format, preP means the left part of seed in a primer, and sufP means

the right part of seed in the primer. So, the concatenation of preP, seed, and sufP is equal

to the original P. All outputs of Maps are shuffled, and then all primers from Map1 and

Map2 having the same seed are collected in the input of a specific Reduce. Thus, each

Reduce can check general cross-hybridization filtering constraint on each set of primers

having a common seed.

Figure 3.7 shows an example of that checking. Compared to the primer (a) from

Map1, the primers (c) and (d) from Map2 have two and ten mismatches, respectively. When

checking a single mismatch, i.e. #mismatch=1 in Figure 3.7B(i), the seed size becomes

nine, and there is no common seed among (a), (c), and (d). Thus, the primers (c) and (d)

are not collected together with the primer (a), and do not get filtered out. However, in the

next iteration, i.e. #mismatch=2 in Figure 3.7B(ii), the seed size becomes six, and there is

the common seed between (a) and (c), and between (a) and (d). The primers (a) and (c) are

collected in a specific Reduce, the number of mismatches in the preP and sufP parts in both

primers is checked as two, and so the primer (c) is filtered out. Since the number of

mismatches between the primers (a) and (d) is so high, the primer (d) passes. If a primer

passes successfully, v3:filtered is set to true in the output of Reduce. Otherwise, it is set to

false. Figure 3.8 shows the Map and Reduce algorithms for Step 4.

- 29 -

ATGCCTAGACGG … AATGATGACATTGCCAGCCA …
(a)

ATGCCCCCTTCGGA … AATCATAGTGTCTACAACTC …
(b)

(i) #mismatch=1 (seed size=9)

(a) AATGATGACATTGCCAGCCA

(c) AATAATGACATTGCCAGACA

(d) AATGATAGTGTCAACAACTC

(ii) #mismatch=2 (seed size=6)

(a) AATGATGACATTGCCAGCCA

(c) AATAATGACATTGCCAGACA

(d) AATGATAGTGTCAACAACTC

No common seed,
so, both (c) and (d) pass

A

B

…
…

ATGGGAACACGGATC … AATAATGACATTGCCAGACA …
(c)

ATGCCTCAACCCTTCGGA … AATGATAGTGTCAACAACTC …
(d)

Map1

Map2

Common seed, checked,
(c) is filtered out, and (d) passes

Figure 3.7. An example of the general cross-hybridization filtering step.

- 30 -

Algorithm 7-1. Step4-Map1
Input: <k1:P, v1:sidset⊕sid⊕pos> // Step1 output
Output: list(<k2:seed, v2:sidset⊕sid⊕pos⊕preP⊕sufP>)
Variable: seedLen // length of non-overlapping subsequenes

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

sidset = round1Tag(sidset);
for index = 0 to |P|-seedLen+1

seed = P[index:index+seedLen-1];
if (isReverse(P))

seed = reverseTag(seed);
end if
preP = P[0:index-1];
sufP = P[index+seedLen:|P|];
emit (seed, sidset⊕sid⊕pos⊕preP⊕sufP);
index += seedLen;

end for

Algorithm 7-2. Step4-Map2
Input: <k1:P, v1:sidset⊕sid⊕pos> // Step3 output

Output: list(<k2:seed, v2:sidset⊕sid⊕pos⊕preP⊕sufP>)
Variable: seedLen // length of non-overlapping subsequenes
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

for index = 0 to |P|-seedLen+1
seed = P[index:index+seedLen-1];
if (isReverse(P))

seed = reverseTag(seed);
end if
preP = P[0:index-1];
sufP = P[index+seedLen:|P|];
emit (seed, sidset⊕sid⊕pos⊕preP⊕sufP);
index += seedLen;

end for

- 31 -

Algorithm 8. Step4-Reduce
Input: <k2:seed, list(v2:sidset⊕sid⊕pos⊕preP⊕sufP)>
Output: <k3:sidset⊕P⊕sid⊕pos, v3:filtered>
Variable: filterHashSet// HashSet storing false primer candidate

numMismatch // minimum number of mismatch bases
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

R1, R3 ← ø;
foreach v in list(v2:sidset⊕sid⊕pos⊕preP⊕sufP)

sidset⊕sid⊕pos⊕preP⊕sufP ← v // decomposition
if (isRound1Tagged(sidset))

sidset = round1Untag(sidset);
R1 ← sidset⊕sid⊕pos⊕preP⊕sufP;

else
R3 ← sidset⊕sid⊕pos⊕preP⊕sufP;

end if
end for
foreach r3 in R3

P = r3.preP + r3.seed + r3.sufP;
if (isReverse(r3.seed))

P = reverseTag(P);
end if
if (!filterHashSet.contains(P))

filtered = false;
foreach r1 in R1

if (r1.sid r3.sidset) then
if (countMismatch(r3.preP, r1.preP,

r3.sufP, r1.sufP) numMismatch)
filtered = true;
break;

end if
end if

end for
emit (r3.sidset⊕P⊕sid⊕r3.pos, filter);
if (filtered)

filterHashSet ← P;
end if

end if
end for

Figure 3.8. The Map and Reduce algorithms of Step4

- 32 -

3.2.5 Step 5: Duplicate removing round

After Step 4, there still might be false-positive primers violating the general cross-

hybridization filtering constraint. For instance, in Figure 3.7, primer (d) passes when it is

checked against primer (a). However, it should still be filtered out because it is very similar

to another primer (b) in Map1. Because there are three seeds in primer (d) at the iteration

of #mismatch = 2, a total of three output pairs, 〈k3, v3〉, are produced for (d) in the output

of Reduce in Step 4. Among them, filtered of primer (d) checked with primer (a) is true,

whereas filtered of primer (d) checked with primer (b) is false. They have the same

sidset⊕P⊕sid⊕pos, and so are collected in Reduce in Step 5. If filtered of any of them is

false, Reduce of Step 5 does not return the corresponding primer (e.g., primer (d)) as output,

i.e., the primer is filtered out. The series of Steps 4 and 5 is performed repeatedly until

checking of the general cross-hybridization filtering constraint is finished. Figure 3.9

presents the Map and Reduce algorithms for Step 5.

Algorithm 9. Step5-Map
Input: <k1:sidset⊕P⊕sid⊕pos, filtered>

Output: list(<k2:sidset⊕P⊕sid⊕pos, v2:filtered>)

1: emit(sidset⊕P⊕sid⊕pos, filtered);

Algorithm 10. Step5-Reduce
Input: <k2:sidset⊕P⊕sid⊕pos, list(v2:filtered)>
Output: <k3:sidset, v3:P⊕sid⊕pos>
1:
2:
3:
4:
5:
6:
7:
8:
9:

falseCount = 0;
foreach v in list(v2:filtered)

if (!v)
falseCount ++;

end if
end for
if (falseCount == 0)

emit (sidset, P⊕sid⊕pos);
end if

Figure 3.9. The Map and Reduce algorithms of Step 5.

- 33 -

3.2.6 Step 6: Pair filtering round

In this step, Map first transforms the output of Step 5 into the format 〈k2:sid,

list(v2:sideset⊕P⊕pos) 〉 such that all candidate primers belonging to the same sequence

are collected in a specific Reduce. Then, Reduce splits the candidate primer of each group

into two sets, a set of forward primers and a set of reverse primers, using tags addressed in

Step 1, and performs self-join computation between them. In self-join computation,

Reduce applies five filtering constraints to each candidate primer pair. These constraints

include length difference, melting temperature difference, product size, pair-

complementarity, and 3’-end pair-complementarity. They also can be defined as a binary

function as follows.

The function lengthDiff() checks the difference between lengths of a forward

primer fp and a reverse primer rp, which can be defined as

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓𝑓𝑓, 𝑟𝑟𝑟𝑟, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎(|𝑓𝑓𝑓𝑓| − |𝑟𝑟𝑟𝑟|) ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

Similarly, the function TmDiff() checks the difference between Tm values of a

forward primer fp and a reverse primer rp, which can be defined as

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑓𝑓𝑓𝑓, 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡𝑡𝑡) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇(𝑓𝑓𝑓𝑓) − 𝑇𝑇𝑇𝑇(𝑟𝑟𝑟𝑟)) ≤ 𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

The function productSize() checks if the product(or amplicon) size is within a

certain range, which can be defined as

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓𝑓𝑓, 𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

= � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟𝑟𝑟) − 𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓𝑓𝑓) + |𝑟𝑟𝑟𝑟| < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

- 34 -

, where pos(p) is the nucleotide position of the primer p in a sequence. The function

complementary() checks if a forward primer is not the complement of a reverse primer, or

vice versa, which can be defined as

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑓𝑓, 𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

= � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 |𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 3′𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟| < 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

They all can be specified by users when starting the program. In the output of

Reduce, f.P means a forward primer, r.P means the corresponding reverse primer, f.pos

means the position of f.P, and r.pos means the position of r.P (Figure 3.2). Figure 3.10

shows the Map and Reduce algorithms for Step 6.

- 35 -

Algorithm 11. Step6-Map
Input: <k1:sidset, v1:P⊕sid⊕pos>
Output: list(<k2:sid, v2:sidset⊕P⊕pos>)

1: emit(sid, sidset⊕P⊕pos);

Algorithm 12. Step6-Reduce
Input: <k2:sid, list(v2:sidset⊕P⊕pos)>
Output: <k3:sidset⊕sid, v3:f.P⊕f.pos⊕r.P⊕r.pos>

// f is a forward primer and
r is a reverse primer

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

fp, rp ← ø;
foreach v in list(v2:sidset⊕P⊕pos)

sidset⊕P⊕pos ← v // decomposition
if (!isRvsPrimer(P))

fp ← sidset⊕P⊕pos;
else

P = reverseUntag(P);
rp ← sidset⊕P⊕pos;

end if
foreach f in fp

foreach r in rp
if (f.pos < r.pos and

pairFiltering(f,r)) then
sidset ← f.sidset r.sidset;
emit (sidset⊕sid, f.P⊕f.pos⊕r.P⊕r.pos)

end if
end for

end for

Figure 3.10. The Map and Reduce algorithms of Step 6.

- 36 -

3.2.7 Step 7: Ranking round

The output of Step 6 is not convenient for users because it is unordered. Among millions

of primer pairs, users might have difficulty in choosing a few. The primer pairs passed to

Step 6 might not be equally effective even if they satisfy all the given constraints. Thus,

the final step of MRPrimer, i.e., Step 7, determines their ranking by calculating a penalty

score for each primer pair. The ranking is determined within a specific target sequence(s),

and so users can easily pick the top-1 primer pair for each target sequence. The calculation

of penalty scores follows the method of Primer3Plus [21], which adds penalty scores of

seven constraints for single primers and five constraints for primer pairs. In general, for

the constraints having a range (e.g., melting temperature), the median value has the lowest

penalty. For the other constraints (e.g., self-complementarity), the smallest value, typically

zero, has the lowest penalty. Each penalty score for each constraint is normalized between

0 and 1. Primer pairs with low scores have high rank for the corresponding target sequence.

After calculating a penalty score for each primer pair, Map of Step 7 emits 〈k2:

sidset⊕penalty, v2: sid⊕f.P⊕f.pos⊕r.P⊕r.pos〉. Then, Reduce takes the pairs grouped by

sidset, and at the same time ordered by penalty, which is possible through so-called

secondary sorting provided by MapReduce. Finally, Reduce transforms those ordered

primer pairs into the format 〈k3: sidset⊕f.P⊕r.P, v3: sid⊕f.pos⊕r.pos⊕penalty〉, which

means that a primer pair, 〈f.P, r.P〉, for amplifying a set of sequences of sidset occurs at

〈f.pos, r.pos〉 in sid. Figure 3.11 describes the Map and Reduce algorithms for Step 7.

- 37 -

Figure 3.11. The Map and Reduce algorithms of Step 7, Ranking.

Algorithm 13. Step7-Map
Input: <k1:sidset⊕sid, v1:f.P⊕f.pos⊕r.P⊕r.pos>
Output: list(<k2:<sidset, penalty>, v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos>)
Variable: PrimerPenaltyWeight
1:

2:

penalty = PrimerPenaltyWeight *
(SinglePanalty (f.p) + SinglePanalty (r.p));

emit(<sidset, penalty>, sid⊕f.P⊕f.pos⊕r.P⊕r.pos);

Algorithm 16. Step7-Reduce
Input: <k2:<sidset, penalty>, list(v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos)>
Output: <k3:sidset⊕f.P⊕r.P, v3:sid⊕f.pos⊕r.pos>
1:
2:
3:

foreach v in list(v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos)
emit (sidset⊕f.P⊕r.P, sid⊕f.pos⊕r.pos);

end for

Algorithm 14. Step7-Partitioner
Input: <k2:<sidset, penalty>, v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos>
Output: PartitionID

Variable: numReduceTasks
1: return(sidset[0] % numReduceTasks);

Algorithm 15. Step7-KeyComparator
Input: <K1: <sidset, penalty>, k2: <sidset, penalty>>

Output: comparisonResult
1:
2:
3:
4:

comparisonResult = compareTo(k1.sidset, k2.sidset);
if (comparisonResult == 0)

return compareTo(k1.penalty, k2.penalty);
return comparisonResult;

- 38 -

3.2 Experiments for biological validation

3.3.1 Data and methods

Validating the completeness and ranking method of MRPrimer

To show the completeness and superiority of MRPrimer in terms of the number of primer

pairs designed, we compare the results of MRPrimer with PrimerBank, which is one of the

largest databases of primers that has been built and updated over the past several years [7,

8, 45, 46]. PrimerBank uses the human and mouse genes databases of the NCBI RefSeq

project [47-49]. There are multiple versions of the RefSeq database, specified by their

release dates. Unfortunately, the version of the RefSeq database used for PrimerBank is

out of date, and is therefore no longer available. Thus, we use the oldest version available

for comparison because it is the version most similar to that used for PrimerBank. That

version (released on 07/11/2007) contains a total of 22,942 human mRNA sequences and

a total of 27,305 mouse mRNA sequences. For a fair comparison, we use the exact same

set of filtering constraints as were used to construct PrimerBank [7]; these constraints are

summarized in Table 3.1.

- 39 -

Table 3.1. The Summary of the constraints for filtering used in the PrimerBank.

 Parameter Value

Each primer

primer length 19~23 bp
melting temperature (TM) 60~63℃

GC content 35~65%
self-complementarity < 5-mer

3’ self-complementarity < 4-mer
Contiguous residue < 6-mer

Gibbs free energy (∆G) ≥ -9 kcal/mol

Primer pair

length difference ≤ 3-mer
TM difference ≤ 5℃
product size 100~250 bp

pair-complementarity < 9-mer
3’ pair-complementarity < 4-mer

In addition, to show the effectiveness of ranking method of MRPrimer, we

extracted the validated primer pairs that specifically cover mouse olfactory receptor (OR)

sequences from PrimerBank and analyzed them using the ranking method of MRPrimer.

Among 27,305 mouse mRNA sequences of the RefSeq database, there are 990 mouse OR

genes. We searched for the NCBI Gene IDs of those genes in the PrimerBank

(http://pga.mgh.harvard.edu/primerbank/index.html) and collected 778 validated primer

pairs covering 768 mouse OR genes. MRPrimer can also find 772 out of 778 primer pairs,

and so we can rank those 772 primer pairs, which are common between PrimerBank and

MRPrimer, according to the ranking method of MRPrimer. The ranking results revealed

the rationality of our ranking method. Six primer pairs were not found by MRPrimer

because the six sequences containing them are not present in the version of the RefSeq

database (released on 07/11/2007) used for our experiments.

- 40 -

qPCR analysis of MRPrimer

To validate the quality of primer pairs designed by MRPrimer, we performed qPCR

experiments using the mouse CCDS database rather than the RefSeq database

(http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi). It provides a gold standard for

coding-region locations [50, 51]. In the CCDS datasets, there are currently a total of 29,064

human gene DNA sequences (the last update was 29/11/2013) and a total of 23,874 mouse

gene DNA sequences (the last update was 07/04/2014). We primarily used mouse genes

for our qPCR analysis.

We randomly selected 96 OR genes and 99 non-OR genes (including pheromone

receptors, G proteins, ion channels, signaling molecules, etc.). Thus, we performed a total

of 195 qPCR experiments. For each gene, we selected the top-1 primer pair for that gene,

according to the ranking method of MRPrimer. We summarize the forward and backward

primers designed and selected automatically by MRPrimer in Appendix Tables S1 and S2.

We followed the MIQE guidelines [52] for the qPCR experiments.

Comparative analysis between MRPrimer and PrimerBank

To demonstrate the effectiveness and superiority of MRPrimer for qPCR, we performed

both qPCR and sequencing analyses and compared the results with those obtained using

PrimerBank. Because the primers of both MRPrimer and PrimerBank easily succeeded in

amplifying normal target sequences, we compared their performance using “difficult”

target sequences, i.e., OR genes that have many homologous regions and, therefore, often

fail in qPCR experiments [45]. OR genes form the largest multigene family in mammals

- 41 -

[53]. These genes share many homologous regions; consequently, it is difficult to design

valid primer pairs for them [45]. A number of studies reported the expression of ORs in

olfactory as well as non-olfactory tissues [54, 55]. For such studies, qPCR using valid

primer pairs is an effective and simple way to detect OR genes [54, 55].

To prepare the mouse OR genes, we searched for the NCBI Gene IDs of the mouse

OR genes from CCDS database in PrimerBank and collected 860 validated primer pairs,

each of which amplifies a single OR gene. We first checked their specificity using Primer-

BLAST. Among the 860 primer pairs, 599 primer pairs were of high quality (i.e., high

specificity). These 599 primer pairs were 100% matches to their intended expected target

genes, and the possibility of matching an off-target gene was no more than 80%. Among

the remaining 261 primer pairs, 96 were 100% matched with the expected target genes,

and the possibility of matching an off-target gene was no more than 85%. These 695 (599

plus 96) primer pairs are considered highly specific for their target genes. Among the

remaining primer pairs, 75 primer pairs were 95% matched, and 69 primer pairs were 90%

matched to both target and off-target genes. These 144 (75 plus 69) primer pairs can

amplify target genes along with off-target genes (i.e., wrong target or multi-target). We

selected about 6% of the pairs corresponding to the 695 highly specific genes (i.e., 40

primer pairs) and about 24% of the pairs corresponding to the 144 less specific genes (i.e.,

34 primer pairs). Next, we selected 74 primer pairs from the results of MRPrimer for the

same 74 genes. The selection ratios differed (6% vs. 24%) because the 695 genes are

relatively easy to amplify, whereas the 144 genes are relatively hard. We also note that the

74 OR genes used for this experiment are distinct from the 96 OR genes in the above

experiment; furthermore, they represent harder target sequences. We summarize the

- 42 -

forward and backward primers for the 74 genes of MRPrimer and PrimerBank used in our

experiments (Appendix Table S3).

To identify amplified samples, we compared the sequences of qPCR amplicons

with the expected gene sequences using NCBI BLASTn

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and checked the percent identity between the two

sequences. For BLAST analysis, we applied the following criteria, used in a previous study

[45]. If more than 50% of the length of an expected PCR product sequence matches with

only the expected target sequence, multiple genes, or another gene with 100% identity

between the sequences, it is considered to be target-specific, multiple-target, or wrong

target, respectively. Finally, if a qPCR product sequence does not match with at least 50%

of the length of its expected target sequence, it is considered to be a sequencing failure.

3.3.2 qPCR analysis

For validation of MRPrimer, we performed qPCR using the top-1 primer pairs designed

and selected automatically by MRPrimer, covering 195 genes randomly selected from

among the mouse CCDS database (Appendix Table S1 and S2). The qPCR results reveal

that all primer pairs designed by MRPrimer successfully amplified the corresponding target

genes (Figures 3.12 and 3.13). Each of the qPCR melting curves clearly yielded a single

peak, suggesting that each qPCR product is a single product without off-target gene

amplification. We confirmed the qPCR products by sequencing analysis (data not shown),

indicating that MRPrimer specifically amplified the corresponding target genes.

- 43 -

A

B 0.04

0.03

0.02

0.01

-d
F/

dT

66 70 74 78 82 86 90 94
Temperature (°C)

6.000

4.800

3.600

1.200

4 8 12 16 20 24 28 32
Cycle

Fl
uo

re
sc

en
ce

2.400

36 40 44

Figure 3.12. Verification of 99 primer pairs for non-OR genes using qPCR analysis.

A

B 0.04

0.03

0.02

0.01

-d
F/

dT

66 70 74 78 82 86 90 94
Temperature (°C)

6.000

5.000

4.000

2.000

4 8 12 16 20 24 28 32
Cycle

Fl
uo

re
sc

en
ce

3.000

36 40 44

1.000

Figure 3.13. Verification of 96 primer pairs for OR genes using qPCR analysis.

- 44 -

3.3.3 Comparative analysis

For this comparative analysis, MRPrimer yielded similar results in qPCR analysis, and

better results in sequencing analysis, relative to PrimerBank. Before starting the

experiments, we analyzed primer sets (see Section 3.3.1). The selected 74 primer sets

(Appendix Table S3) from MRPrimer and PrimerBank were used to perform qPCR. The

result (Figure 3.14) shows that both MRPrimer and PrimerBank primers successfully

amplified even the difficult target sequences like OR genes.

However, the sequencing analysis yielded somewhat different results. We

examined all PCR products by sequencing and compared the qPCR amplicon sequences to

the expected gene sequences by NCBI BLASTn. Figure 3.15 shows the sequencing results.

Among the MRPrimer 74 qPCR amplicons, 64 samples (86.48%) were target-specific, and

these samples were 100% matched to the only expected target. Four samples (5.4%) were

0.04

0.03

0.02

0.01

-d
F/

dT

66 70 74 78 82 86 90 94
Temperature (°C)

0.04

0.03

0.02

0.01

-d
F/

dT

66 70 74 78 82 86 90 94
Temperature (°C)

4 8 12 16 20 24 28 32
Cycle

Fl
uo

re
sc

en
ce

36 40

6.000

5.000

4.000

2.000

3.000

1.000

444 8 12 16 20 24 28 32
Cycle

Fl
uo

re
sc

en
ce

36 40 44

6.000

5.000

4.000

2.000

3.000

1.000

MRPrimer PrimerBank

A

B

Figure 3.14. Comparative analysis between MRPrimer and PrimerBank using qPCR analysis.

- 45 -

matched to both the expected target and an unexpected target at the same time (multi-

target). Only one sample was matched to another gene (wrong target). The remaining five

samples (6.75%) did not satisfy our criteria for sequencing analysis. On the other hand,

among the 74 PrimerBank samples, 57 (77.02%) were target gene specific, 9 (12.16%)

were matched to multiple genes (multi-target), 1 was matched to another gene (wrong

target), and 7 (9.45%) did not satisfy our criteria for sequencing analysis. Based on these

results, we confirmed that a single qPCR peak does not indicate the amplification of a

specific single target. Because we intentionally selected difficult target sequences for this

comparative analysis, the target-specific ratio of 86.48% does not indicate the overall

effectiveness of MRPrimer. These findings suggest that primers designed by MRPrimer

were more effective than PrimerBank primers.

86.48% 77.02%

5.4%
12.16%

1.35%
1.35%

6.75% 9.45%

0

20

40

60

80

100

MRPrimer PrimerBank

D
is

tri
bu

tio
n

(%
)

specific-target multi-target

wrong target sequencing failure

64

4
1
5

57

9
1
7

Figure 3.15. Comparative analysis between MRPrimer and PrimerBank using sequencing
analysis.

- 46 -

3.3 Experiments for computational performance

3.4.1 Data and setup

To demonstrate the computational efficiency and scalability of MRPrimer, we measured

the elapsed time required for design of complete sets of validated primer pairs for the

human and mouse CCDS databases. We conducted most of the computational experiments

on a MapReduce cluster of one master node and 40 slave nodes, in which each node

consisted of two Intel Xeon 8-core 2.6 GHz CPUs with 64 GB memory and a 6 TB HDD.

Those nodes are connected with each other via a 1 Gbps network. All computing nodes

were running on CentOS Linux version 6.4 and Apache Hadoop version 1.2.1. For the

Hadoop configuration parameters, we set the number of Map per node to 4, the number of

Reduce per node to 4, the Java heap memory size for Map to 8 GB, and the Java heap

memory size for Reduce to 16 GB.

3.4.2 Result of completeness and effective ranking system

In terms of the number of primer pairs designed, MRPrimer found a much larger

number of feasible and valid primer pairs than PrimerBank under the same filtering

constraints (Table 3.1). Table 3.2 shows the number of primer pairs designed by MRPrimer

and the number of genes covered by those primer pairs, relative to the corresponding values

for PrimerBank. In Table 3.2, we show that PrimerBank yields a coverage ratio of 94% for

their RefSeq database, which is not available now. In terms of the version of the RefSeq

database released on 07/11/2007, which is the available version most similar to that used

for PrimerBank, the coverage ratio decreases to 78% for human genes and 69% for mouse

- 47 -

genes. The size of the RefSeq database is increasing continuously, and the latest version

(released on 03/02/15) contains a total of 99,722 sequences for human and 128,898

sequences for mouse. However, the number of primer pairs in PrimerBank is fixed, and

has not increased since 2012. Because PrimerBank consists of primers collected manually,

it is extremely hard to update it according to the release of a new version of the RefSeq

database. By contrast, MRPrimer is not a static collection, but a program that can generate

a collection immediately when given a new version of a database. For the same RefSeq

database, the coverage ratios for MRPrimer (88% and 81%) are much higher than those

for PrimerBank (78% and 69%). In addition, for up-to-date human and mouse CCDS

databases, MRPrimer exhibits the highest coverage ratios ever: 95% for human and 96%

for mouse. These impressive ratios are mainly due to the high quality of the CCDS database.

Table 3.2. The statistics of PrimerBank and the results of MRPrimer.

N/A indicates data sets that are not available.
a Statistics are from PrimerBank [7].
b Statistics are the same as with a , but the data set is the RefSeq database (released on 07/11/07), the available data set most
similar to the one used for a.
c The data set and filtering constraints (Table 3.1) are the same as in b. Statistics are from MRPrimer.
d The data set is the CCDS database, and the filtering constraints are the same as in b. Statistics are from MRPrimer.

MRPrimer yielded effective ranking results for a large number of the resultant

primer pairs. We extracted a total of 772 common validated primer pairs that specifically

cover mouse OR sequences and analyzed them using the ranking method of MRPrimer.

 PrimerBanka PrimerBankb MRPrimerc MRPrimerd

Data sets Human
N/A

Mouse
N/A

Human
22,942

Mouse
27,305

Human
22,942

Mouse
27,305 Human

29,064
Mouse
23,889

of primer
pairs 129,692 118,886 129,692 118,886 63,419,755 86,867,667 63,632,594 84,226,391

of genes
covered 17,973 18,955 17,973 18,955 20,199 22,253 27,980 22,798

Coverage
ratio 94% 78% 69% 88% 81% 95% 96%

- 48 -

Figure 3.16A shows the relationship between ranks and penalty scores of those 772 primer

pairs. MRPrimer calculates a penalty score for each primer pair and determines the ranking

among primer pairs for a specific target sequence, as described in Step 7. Because there

are different numbers of primer pairs for each target sequence, we normalized the ranks to

between 0% and 100%, denoted as relative rank in the figure. Figure 3.16A shows the

strong correlation between ranks and penalty scores. Primer pairs with small penalties have

high rank (i.e., small %).

Figure 3.16B shows three sets of filtering constraints. X is a relatively relaxed

constraint, Y is the set of constraints used in PrimerBank, and Z is a relatively strict

constraint. According to X, Y, and Z, the 772 primer pairs can also be categorized into the

corresponding three groups designed by using X, Y, and Z (denoted as blue, red, and green

dots, respectively). Although the authors of PrimerBank claimed that they used the Y

constraints to construct PrimerBank, we observed that the primer pairs in PrimerBank did

not strictly follow the Y constraints, but instead followed the X constraints, which are

looser. Groups X, Y, and Z contain 737, 28, and 7 primer pairs, respectively. Some primer

pairs (blue dots) exist in the area of Y or Z because a primer pair that satisfies all constraints

except one (or a few) could have a low penalty score and a high rank. Along with this, we

suggest that primer pairs following strict constraints have high ranks and small penalty

scores without loss of generality. Because a primer pair with a low penalty score has a high

chance of success in amplifying a target sequence [21], and MRPrimer returns the resultant

primer pairs ordered by rank, users simply need to select the top-1 primer pair, i.e., the

probably best primer pair.

- 49 -

3.4.3 Results of the coverage and specificity

MRPrimer finds all possible primer pairs regardless of their coverages, that is not only all

the primer pairs of coverage = 1, but also, all the primer pairs of coverage > 1. Due to the

completeness and exactness of MRPrimer, it could find a primer pair having very high

coverage. Figures 3.17A and 3.17B show the number of primer pairs and the number of

unique genes covered by primer pairs, at each coverage for human and mouse CCDS data

sets, respectively. MRPrimer could design a huge number of primer pairs of up to coverage

= 25 for human CCDS data set and up to coverage = 20 for mouse CCDS data set. While

considering the primer pairs of MRPrimer are not degenerate ones, those high coverages

are quite impressive. For human CCDS data set, the number of primer pairs of coverage =

1 is 25,181,775 (67.6%), whereas that of primer pairs of coverage > 1 is 12,054,846

(32.4%). The number of primer pairs tends to decrease while the coverage increases.

A
Parameter Constraints sets

X Y Z

Each
primer

primer length (bp) 19–23 19–23 19–23
melting temperature

(TM, ℃) 57–62 60–63 58–62

GC content (%) 35–65 35–65 45–55
self-complementarity <14-mer <5-mer <5-mer

3’ self-complementarity - <4-mer <4-mer
contiguous residue <6-mer <6-mer <6-mer
Gibbs free energy

(G, kcal/mol) ≥-9 ≥-9 ≥-9

Primer
pair

length difference <5-mer ≤3-mer ≤3-mer
TM difference (℃) ≤5 ≤5 ≤3
product size (bp) 60–800 100–250 100–200

pair-complementarity <9-mer <9-mer <7-mer
3’ pair-complementarity - <4-mer <4-mer

B
ZYX

Figure 3.16. The advantage of the ranking method of MRPrimer.

- 50 -

However, in some cases, e.g. when the coverage increases from 24 to 25, the numbers of

primer pairs also increase. This is because MRPrimer only designs a kind of essential

primer pairs, i.e. does not produce a primer pair only covering a proper subset of the genes

that are covered by another primer pair.

1 10 100 1000 10000 100000

1 100 10000 1000000100000000

25
22
19
18
17
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Number of unique genes (log-scale)

Number of primer pairs (log-scale)

C
ov

er
ag

e

Primer pair

Unique genes

1 10 100 1000 10000 100000

1 100 10000 1000000100000000

20

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Number of unique genes (log-scale)

Number of primer pair (log-scale)

C
ov

er
ag

e

Primer pair
Unique genes

102 104 106 108 102 104 106 10811

A B

Figure 3.17. The distribution of the number of primer pairs (in orange) and the number of
unique genes (in purple) according to coverage.

- 51 -

MRPrimer starts with all possible subsequences generated in Step 1 and eliminates

the candidate primers violating filtering constraints gradually, as following the flow of

single primer filtering (Step 2), 5’ cross-hybridization filtering (Step 3), general cross-

hybridization filtering (Step 4-5), and pair primer filtering (Step 7). This series of filtering

improves the specificity of the resulting primer pairs designed by MRPrimer as a result.

Figures 3.18A and 3.18B show the number of primers (or primer pairs) passed in each

major step, for human and mouse CCDS data sets, respectively. The general cross-

hybridization filtering again is divided into two sub-steps of #mismatch=1(i.e. relatively

low specificity) and #mismatch=2(i.e. relatively high specificity). Different from the

existing methods like PrimerBLAST, MRPrimer allows users to increase or decrease the

specificity of resulting primer pairs in homology tests, by adjusting #mismatch. In Figure

3.18A, the number of primers for human genes decreases gradually to 7,253,513, and self-

join computation on them in Step 6 generates much more results, 37,236,621, which are

primer pairs, not single primers. Likewise, in Figure 3.18B, the number of primers for

mouse genes decreases gradually to 8,508,645, and self-join computation on them

generates 48,532,297 primer pairs.

- 52 -

3.4.4 Results of the computational efficiency and scalability

MRPrimer showed a good performance in terms of computation time. Table 3.3 shows the

elapsed times of MRPrimer at each step for human and mouse CCDS data sets. Even

though MRPrimer designs all feasible and valid primer pairs, without omitting any one, it

finishes within one or two hours. Once obtaining the results, users do not need to run it

again and just need to pick the primer pairs, especially the top-1 primer pair, from the

results that they want to use for experiments, unless the filtering constraints are changed.

872 857 839 795

6,363

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

St
ep

 2

St
ep

 3

St
ep

 4
-5

(#
m

is
=

1)

St
ep

 4
-5

(#
m

is
=

2)

St
ep

 6

N
u
m

b
er

 o
f

p
ri
m

er
s

(o
r

p
ri
m

er
 p

ai
rs

)
x1

00
00

Filtering steps

1,026 1,008 981 927

8,423

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

St
ep

 2

St
ep

 3

St
ep

 4
-5

(#
m

is
=

1)

St
ep

 4
-5

(#
m

is
=

2)

St
ep

 6

N
u
m

b
er

 o
f

p
ri
m

er
s

(o
r

p
ri
m

er
 p

ai
rs

)
x1

00
00

Filtering steps

A B

Figure 3.18. The number of primers (in orange) and primer pairs (in blue) passed in each
major step of MRPrimer.

- 53 -

Table 3.3. The elapsed times (sec.) of MRPrimer from Step 1 to Step 7 for human and mouse
CCDS data sets (Step 4 and 5 are performed two times at #mismatch=1 and at #mismatch=2).

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Total

human 69 60 65 3,648 56 586 29 4,513

mouse 50 50 59 2,590 55 224 30 3,058

MRPrimer also showed fairly scalable performance in terms of database size (i.e.

the number of DNA sequences). To show this feature authentically, we used a much larger

DNA database, 105,180 DNA sequences of Homo sapiens from the Ensembl site

(http://asia.ensembl.org/biomart/martview/). Figure 3.19 shows the elapsed times of

MRPrimer while varying the number of sequences from 12,500 to 105,180 (i.e. an entire

database). Even for 105,180 sequences, MRPrimer designs all feasible and valid primer

pairs within a reasonable time of less than seven hours. Since MRPrimer is based on

MapReduce, users can reduce the time easily just by adding more computers to the cluster.

985
3,346

8,817

24,606

0

5000

10000

15000

20000

25000

30000

12500 25000 50000 105180

El
ap

se
d
 t

im
e

(s
ec

.)

Number of input sequences

Figure 3.19. The elapsed times of MRPrimer as varying the database size.

- 54 -

Furthermore, MRPrimer was very efficient in terms of computational resource, i.e.

the number of computers or the computing power of each computer. To show this feature,

we perform the same experiments for human and mouse CCDS data set with a small-scale

cluster of commodity PCs as well. The cluster consists of one master PC and ten slave PCs,

where each PC consists of Intel i7-4770 4-core 3.4GHz CPU and 16GB memory, and 3TB

HDD. Here, we use the same number of mappers and reducers, i.e. 4 and 4, respectively,

but use smaller java heap memory sizes, 4GB for Map and 8GB for Reduce, due to the

small memory capacity of PC. Table 3.4 shows the elapsed times of MRPrimer, which still

finishes within a short time of two or three hours.

Table 3.4. The elapsed times (sec.) of MRPrimer from Step 1 to Step 7 for human and mouse
CCDS data sets with a smaller cluster of less-powerful computers (Step 4 and 5 are
performed two times at #mismatch=1 and at #mismatch=2).

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Total

human 303 106 165 7,583 56 557 69 8,839

mouse 259 91 110 3,880 50 272 70 4,732

- 55 -

IV. MRPRIMERW: Web-based primer design method

4.1 Overview

In this chapter, we describe the MRPrimerW, which performs complete homology testing,

supports batch design of primers for multi-target qPCR experiments, supports design of

TaqMan probes, and ranks the resulting primers to return the top-1 best primers to the user.

To ensure high accuracy, we adopted the core algorithm of a previously described

MapReduce-based method, MRPrimer, but completely redesigned it (i.e., seven

MapReduce rounds into two parts: offline processing and online processing) to allow users

to receive query results quickly in a web interface, without requiring a MapReduce cluster

or a long computation.

Offline processing by MRPrimerW, which is independent of user queries,

generates all validated candidate SYBR Green primers and TaqMan probes satisfying

homology tests. Homology testing on an entire sequence database can be achieved by a

large-scale self-join computation without specifying a target sequence. Because this stage

of processing performs homology tests for every candidate primer and probe against the

entire sequence database via a non-heuristic approach, the resultant primers and probes are

all target gene–specific, and at the same time no valid (i.e., target gene specific) primers

and probes are missed. Offline processing takes at least several hours on a cluster of

computers (e.g., ten PCs). On the other hand, the online processing stage is responsive to

- 56 -

user queries, i.e., a specified set of target genes. This stage quickly searches for the best

primer pairs for the target genes and shows them to the user, and in particular returns the

best pair among all valid primers that satisfy user-specified filtering constraints for the

corresponding target gene. Along with SYBR Green primer pairs, online processing returns

TaqMan probes for the target gene, if applicable. As with MRPrimer, the criteria used for

ranking the primers in MRPrimerW are the same as those used in Primer3Plus [32].

Candidate primer
generation

Input sequences,
filtering constraints

Step1

Step2

Step3

No

Output sorting

Searching and
single filtering

Pair filtering

Resulting primer pair

User queries,
filtering constraints

A
C

Constructing
annotation indices

Resulting primer

Gene annotation
data

Loading indices

Constructing
primer index

Round 1

Step1

Step2

Step3

B

5’ cross-hybridization
filtering

Single filtering

Duplicate removing

General cross-
hybridization filtering

Round 2

Round 3

Round 4

Round 5

#iteration <
#mismatch Yes

#iteration 1

#Iteration++

Map1

Map1

Map2

Map2

Figure 4.1. Overall flow of the MRPrimerW method.

- 57 -

4.2 Offline processing part

Offline processing by MRPrimerW takes as input a DNA sequence database and several

filtering constraints, and yields as output all possible primers that satisfy both homology

testing and given filtering constraints (Figure 4.1A). As an input source DNA sequence

database for MRPrimerW, we used the consensus coding sequence (CCDS) database for

human and mouse genes (https://www.ncbi.nlm.nih.gov/CCDS/) (Table 4.1). We selected

these templates because the gene annotations have been defined by extensive manual

curation and are represented consistently in the NCBI, Ensembl, and UCSC Genome

Browsers [56-58]. The most up-to-date CCDS datasets contain 31,394 human gene

sequences (Release 18, the last update was May 12, 2015) and 24,833 mouse gene

sequences (Release 19, the last update was July 30, 2015). About 1% of human and mouse

genes in CCDS do not have any target gene–specific primers; as a result, the offline

processing stage produced valid primers for 31,376 human genes (99%) and 24,797 mouse

genes (99%), comprising 165,923,450 and 176,039,685 distinct primers, respectively.

Table 4.1. Statistics of MRPrimerW primers.

 Human Mouse Both species
Total number of genes 31,394 24,833 56,227

Number of covered genes
(%) 31,376 (99%) 24,797 (99%) 56,173 (99%)

Number of valid primers 165,923,450 176,039,685 341,963,135

For filtering constraints, MRPrimerW considers eight parameters for each primer

and five parameters for each pair, as in MRPrimer (Table 4.2). Most of these constraints

are checked during online processing. However, four parameters (primer length, melting

temperature, GC content, and contiguous residue) are checked during offline processing,

- 58 -

because primers with values out of the appropriate range (e.g., primer length 10 bp) are

non-functional in general; consequently, they do not need to be considered during online

processing. Table 4.2 shows the list of filtering constraints used in offline and online

processing. The parameter ranges in the ‘Online’ column indicate the default settings,

which can be adjusted in each web search.

Table 4.2. List of filtering constraints used in offline and online processing of MRPrimerW.

 Parameter Value range
Offline Online (default)**

each primer

primer length 17–27 bp 19–23 bp

melting temperature (TM)* 56–64℃ 58–62℃
GC content 30–70% 40–60%

self-complementarity - <5-mer
3’ self-complementarity - <4-mer

Contiguous residue <5-mer <6-mer
Gibbs free energy (∆G) - ≥-9 kcal/mol

Hairpin <3-mer

Primer pair

length difference - ≤5-mer

TM difference - ≤3℃
product size - 100–250 bp

pair-complementarity - <5-mer
3’ pair-complementarity - <4-mer

- indicates not applicable.
* To calculate the melting temperature, we adopted the nearest-neighbor thermodynamic model
[40].
** The value ranges in this column indicate the default setting, which can be freely adjusted by
users.

Offline processing consists of five MapReduce rounds (Figure 4.1A). The first

and second rounds generate all possible subsequences satisfying the four filtering

constraints described in the ‘Offline’ column of Table 4.2 for forward and reverse primers.

The next three rounds perform homology tests on the resultant candidate primers

against the entire CCDS database. It extracts all possible subsequences from the database

- 59 -

as candidate primers and compares all possible pairs among them for homology tests. This

requires large-scale computation on a tremendous number of pairs. The 5’ cross-

hybridization filtering round (Round 3) eliminates candidate primers that are the same as

any subsequence of an off-target sequence at the 3’ end and has only a few mismatches (up

to four mismatches) at the 5’ end, and thus might cross-hybridize with an off-target

sequence due to their high complementarity, especially at the 3’ end. The general cross-

hybridization filtering round (Round 4) eliminates candidate primers that are similar to any

subsequence of an off-target sequence (up to two mismatches anywhere). The duplicate

removal round (Round 5) eliminates false-positive primers that still violate the general

cross-hybridization filtering constraint. Rounds 4 and 5 are iterated until the checking of

the general cross-hybridization filtering constraint is completed. The details of offline

processing algorithm flow are shown in Figure 4.3. The large-scale computation of each

round of homology testing relies on distributed data processing in MapReduce.

Figure 4.2 explains how MRPrimerW eliminates primers that are homologous to

off-targets. In the figure below, we assume there are four 20-mer candidate primers of (a)-

(d) that occur in different sequences from each other. In terms of the candidate primer (a),

other candidate primers (b) and (c) are homologous with (a), and so, they are all filtered

out in homology tests. The candidate primer (d) is not homologous with (a), and so, passes

the homology tests. Two kinds of homology tests are used: 5’ cross-hybridization and

general cross-hybridization. The former test considers up to four mismatches (in nucleotide)

at the 5’ end as being homologous, where the 5’ end is the starting point of primer annealing.

In general, a primer can successfully amplify a target gene although its 5’ end is not exactly

matched to target gene, if its 3’ end is exactly matched to the target. The candidate primer

- 60 -

(b) belongs to this case, and the red colored nucleotides in the primer indicate the

mismatches. Here, the candidate primer (b) might amplify not only Sequence j, but also

Sequence i, and thus, should be filtered out. The latter test considers up to two mismatches

anywhere as being homologous. The candidate primer (c) belongs to this case. However,

candidate primer (d) does not belong to either of these cases. The offline processing part

of MRPrimerW performs this kind of homology tests over all possible pairs between all

possible subsequences, which are extracted in a sliding window manner from the database.

For TaqMap probes, we performed the same offline processing algorithm flow

with a different set of filtering constraints (Table 4.3). In detail, we have extracted all

possible candidate TaqMan probes satisfying both the TaqMan probe constraints (Table

4.3) and homology tests from the database. Then, we have loaded the candidate probes into

a TaqMan probe index in the main memory. If a user selects the TaqMan probe design

option in the query web page, MRPrimerW returns a TaqMan probe for each target gene.

Figure 4.2. An example of how MRPrimerW eliminates primers that are homologous to off-
targets.

- 61 -

Table 4.3. Summary of the filtering constraints used for TaqMan probe design.

Parameter Value range
primer length 18–30 bp

melting temperature (TM) 68–70℃
GC content 30–80%

self-complementarity <5-mer
3’ self-complementarity <4-mer

Contiguous residue <6-mer
Gibbs free energy (∆G) ≥-9 kcal/mol

Hairpin <3-mer

Candidate primer
generation

Input sequences,
filtering constraints

No

5’ cross-hybridization
filtering

Single filtering

Duplicate removing

General cross-
hybridization filtering

Round 2

Round 3

Round 4

Round 5

#iteration <
#mismatch Yes

#iteration 1

#Iteration++

Map1

Map1

Map2

Map2

Map/I: <k1:sid, v1:S>
Map/O: list(<k2:P, v2:sid⊕pos>)
Reduce/I: <k2:P, list(v2:sid⊕pos)>
Reduce/O: <k3:P, v3:sidset⊕sid⊕pos>

Map/I: <k1:P, v1:sidset⊕sid⊕pos>
Map/O: list(<k2:P, v2:sidset⊕sid⊕pos>)

Map1&2/I: <k1:P, v1:sidset⊕sid⊕pos>
Map1&2/O: list(<k2:sufP,

v2:preP⊕sidset⊕sid⊕pos>)
Reduce/I: <k2:sufP,

list(v2:preP⊕sidset⊕sid⊕pos)>
Reduce/O: <k3:P, v3:sidset⊕sid⊕pos>

Map1&2/I: <k1:P, v1:sidset⊕sid⊕pos>
Map1&2/O: list(<k2:seed,

v2:sidset⊕sid⊕pos⊕preP⊕sufP>)
Reduce/I: <k2:seed,

list(v2:sidset⊕sid⊕pos⊕preP⊕sufP)>
Reduce/O: <k3:sidset⊕P⊕sid⊕pos, v3:filtered>

Map/I: <k1:sidset⊕P⊕sid⊕pos, v2:filtered>
Map/O: list(<k2:sidset⊕P⊕sid⊕pos,

v2:filtered>)
Reduce/I: <k2:sidset⊕P⊕sid⊕pos,

list(v2:filtered)>
Reduce/O: <k3:sidset, v3:P⊕sid⊕pos>

binary
join

binary
join

Resulting primer

Figure 4.3. Overall flow of the five-found MRPrimerW offline processing method.

- 62 -

4.3 Index building part

After offline processing, we create a set of indices based on the results, which are then

loaded into the main memory of the web server for online processing (Figure 4.1B). The

detailed structures of the indices are illustrated in Figure 4.4. Nine indices are built: seven

gene annotation indices (A-C), one primer index (D), one probe index, and one cached

primer pair index (E). All indices follow the structure of a key–value database, in which

each row is a pair of key and value. Annotation data were downloaded from GenBank ftp

(ftp://ftp.ncbi.nlm.nih.gov/genomes/).

Online processing supports six kinds of queries (i.e., ‘Search by’ options)

including NCBI gene symbol, NCBI CCDS ID, NCBI gene ID, GenBank accession

number, GenBank alias, and keyword. Accordingly, six partial annotation indices are used

for the various query types (Figure 4.4A and 4.4B). The six annotation indices include

(4.4A) GenBank Accession number and NCBI CCDS ID as hash structure indices with

unique identified annotation, and (4.4B) NCBI gene symbol, NCBI gene ID, GenBank

aliases, and keyword (gene description) as list structure indices having duplicated

annotation. The key, portions of the indices formatted as “Species:searchtype:query,” are

used for matching with user queries. For instance, if a user sets the query type to ‘NCBI

Gene Symbol’ and inputs “Adcy6 Anxa2 Cacna1c” in the text field of the website, those

three symbols are used to match with key portions of the corresponding index. The value

portions of the indices are single sequence IDs (sids) or lists of sids in which the key occurs

in the full annotation index and the primer index.

The full annotation index, which simply combines all six kinds of annotation

information, is used to generate the resulting web page (Figure 4.4C). The primer index

- 63 -

contains primer sequences and positions (Figure 4.4D). The hash index contains the primer

sequence and position in the sequence of the sid. The key portion, formatted as

Species:sid+len(*), where len is primer length and * tag refers to the array of reverse

primers, is a pair of sid and primer length, and the value portion, an array of primer data

with p (primer sequence), sid, and pos (position) concatenating + tag, is a pair consisting

of the primer sequence and the <sid, pos> where the primer sequence occurs. For example,

when a user inputs gene symbol ‘Olfr156,’ MRPrimerW first accesses the partial

annotation index for NCBI Gene Symbol and finds a sid corresponding to ‘Olfr156’. Then,

using the sid as the key, MRPrimerW retrieves a set of candidate primers, especially their

sequences and positions, from the primer index, which are subjected to online processing.

The structure of the probe index is the same as (4.4D), but the content is a little different

from that of the primer index. The key is formatted as Species:taqman:sid, and the value is

the array of probe data of probe+sid+pos.

The cached top-1 primer pairs hash index contains pre-computed top-1 primer

pairs for each target (4.4E). The key is formatted as Species:top:sid and the value is the

array of primer data formatted f.p (forward primer), f.pos (forward position of f.p), r.p

(reverse primer), and r.pos (reverse position of r.p) in the sequence sid.

In addition, for the case of the set of user queries that may be amplified by relaxing

filtering constraints, MRPrimerW returns a list of the filtering constraints and how the

constraints should be adjusted. We build constraints metadata index which contains

minimum and maximum values for each single filtering constraints for all target genes.

The key portion is formatted as Species:meta:sid and the value is the array of constraints

metadata concatenating + tag. Before retrieving all candidate primers containing the user

- 64 -

query from indices, constraints metadata are retrieved and examined whether the values of

user given single filtering constraints are between the minimum and maximum values of

metadata. If not, MRPrimerW returns the single filtering constraints and suggestion values.

For pair filtering constraints, the metadata can be varied depending on single filtering

constraints. The pair filtering constraints metadata is calculated while performing pair

filtering step without loading index. If the pair filtering step fails to design primer pairs,

MRPrimerW outputs the pair filtering constraints and how the constraints should be

adjusted.

- 65 -

Sp
ec

ie
s:
si
d

1+
le

n(
*)

(p
+

si
d
+
p
o
s)

[0
]

ke
y

va
lu

e

…

(p
+

si
d
+
p
o
s)

[1
]

…
0

1

fie
ld

Sp
ec

ie
s:
Sy

m
b
o
l:s

ym
b
o
l 1

si
d
[0

]

ke
y

va
lu

e

…

ne
xt

si
d
[1

]
ne

xt
…

Sp
ec

ie
s:
G

en
eI

D
:g

en
eI

D
1

si
d
[0

]
ne

xt
si
d
[1

]
ne

xt
…

Sp
ec

ie
s:
A
lia

se
s:
al

ia
se

s 1
si
d
[0

]

…

ne
xt

si
d
[1

]
ne

xt
…

Sp
ec

ie
s:
Ke

yw
o
rd

:k
ey

w
o
rd

1
si
d
[0

]

…

ne
xt

si
d
[1

]
ne

xt
…

…

Sp
ec

ie
s:
A
cc

es
si
o
n:

ac
ce

ss
io

n 0
si
d

ke
y

va
lu

e

…

Sp
ec

ie
s:
C
C
D

SI
D

:c
cd

sI
D

0
si
d

…

Sp
ec

ie
s:
A
cc

es
si
o
n:

ac
ce

ss
io

n
si
d

Sp
ec

ie
s:
C
C
D

SI
D

:c
cd

sI
D

si
d

Sp
ec

ie
s:
SI

D
:s
id

0
(s

ym
b
o
l+

g
en

eI
D

+
ac

ce
ss

io
n+

cc
d
sI
D

+
al

ia
se

s+
ke

yw
o
rd

)[
0]

ke
y

va
lu

e

…

Sp
ec

ie
s:
SI

D
:s
id

(s
ym

b
o
l+

g
en

eI
D

+
ac

ce
ss

io
n+

cc
d
sI
D

+
al

ia
se

s+
ke

yw
o
rd

)[
0]

ne
xt

ne
xt

(s
ym

b
o
l+

g
en

eI
D

+
ac

ce
ss

io
n+

cc
d
sI
D

+
al

ia
se

s+
ke

yw
o
rd

)[
1]

(s
ym

b
o
l+

g
en

eI
D

+
ac

ce
ss

io
n+

cc
d
sI
D

+
al

ia
se

s+
ke

yw
o
rd

)[
1]

ne
xt

ne
xt

… …

A
B

C D

Sp
ec

ie
s:
to

p
:s
id

1
(s

id
+

f.p
+
r.p

+
f.p

o
s+

r.p
o
s)

[0
]

ke
y

va
lu

e

…

(s
id

+
f.p

+
r.p

+
f.p

o
s+

r.p
o
s)

[1
]

…
0

1

fie
ld

E

Fi
gu

re
 4

.4
. S

tru
ct

ur
es

 o
f i

nd
ic

es
 u

se
d

in
 M

R
Pr

im
er

W
 w

eb
 se

rv
er

.

- 66 -

4.4 Online processing part

Online processing consists of three steps that check the filtering constraints provided by

the users and rank the primers to return the top-1 best primers (Figure 4.1C). The first step

takes the user query and uses the indices to retrieve all candidate primers containing the

query. While extracting the candidates, MRPrimerW applies eight filtering constraints for

each primer, described in Table 4.2. Here, the constraints for length, melting temperature,

GC content, and contiguous residue must be within the range pre-defined in offline

processing. Figure 4.5 illustrates the flowchart of the searching and single filtering step.

The second step applies five filtering constraints for primer pairs, described in

Table 4.2. For this purpose, MRPrimerW performs a self-join computation on each group

of candidate primers from the same target sequence, i.e., it joins forward primers and

backward primers into the same group. This pair-filtering step may take a long time if the

length of the input query (i.e., the number of gene symbols) is long or the number of

candidate primers retrieved is very large. Figure 4.6 shows the flowchart of the pair

filtering step.

- 67 -

Start of single filtering step

End of single filtering step

length

temp

GCcontent

SelfComplementary

endSelfComplementary

endStability

contiguous

true

true

true

true

true

true

true

false

false

false

false

false

false

false

<key: species:sidset+len(*),
value: array(p+sid+pos)>

<key: species:sidset+len(*),
value: array(p+sid+pos)>

Hairpin

true

false

Figure 4.5. Flowchart of searching and single filtering step.

- 68 -

Start of Pair filtering step

End of Pair filtering step

<key: species:sidset,
value: array(p(*)+sid+pos)>

TmDiff

lengthDiff

productSize

complementary

true

true

true

true

true

false

false

false

false

false

endComplementary

<key: species:sidset,
value: array(sid+f.p+r.p+f.pos+r.pos)>

fp ← sidset+p+pos rp ← sidset+p*+pos

join

Figure 4.6. Flowchart of pair filtering step.

- 69 -

The final step calculates the penalty scores of the primers obtained in the previous

step and sorts the primers according to their scores. Then, it returns the top-1 best primer,

i.e., the primer with the lowest penalty score, for each target sequence. The penalty score

is calculated according to the method used in Primer3Plus [21]. Figure 4.7 shows the

flowchart of output sorting step. If the user inputs 12 target genes, MRPrimerW shows the

12 top hits, which can be used for qPCR experiment in most cases. However, if some of

the target genes have no top-1 best primers, the user can relax the filtering constraints (i.e.,

using Advanced Settings) and click the search button to design a set of top primers that

satisfy the same stringent filtering constraints and are target gene–specific. If a user selects

the TaqMan probe design option, MRPrimerW returns a TaqMan probe for each target gene,

where the probe is located between forward and reverse primers. Since in many cases users

do not change default settings on filtering constraints, the response time can be improved

by using the cached top-1 primer pairs index, which stores the top-1 primer pairs under the

default setting for sequences of the database in key-value format in the main memory of

the web server (Figure 4.4E).

- 70 -

4.5 Web interface

The MRPrimerW web server is implemented using Redis (http://redis.io/), an in-memory

key–value store, for data management. Redis supports various kinds of data structures for

various types of values, including string, hash, list, set, and sorted set. Among these,

MRPrimerW uses hash and set for annotation and primer indices (Figure 4.4). In detail, for

the server side, we adopted phpredis (https://github.com/phpredis/phpredis) for

communication between Redis and PHP, and AJAX (asynchronous JavaScript and XML)

for client–server communication. For the client side, MRPrimerW generates web pages

using HTML with CSS and bootstrap (http://getbootstrap.com/) for styling interactive user-

interface components. For dynamic HTML behavior, we used JavaScript and jQuery.

Start of Sorting step

Calculates pair penalty of a primer pair adding forward primer
penalty and reverse primer penalty

End of Sorting step

<key: species:sidset, value: array(sid+f.p+r.p+f.pos+r.pos)>,
<key: species:sidset, value: array(probe+sid+pos)>

<key: species:sidset,
value: sid+f.p+probe+r.p+f.pos+probe.pos+r.pos>

For the top-1 primer pair, find probe which located between
forward and reverse primers

Figure 4.7. Flowchart of output sorting step.

- 71 -

MRPrimerW supports most major web browsers including Microsoft Internet Explorer,

Google Chrome, Apple Safari, and Opera.

Figure 4.8 illustrates an example query of MRPrimerW. MRPrimerW allows the

user to choose species (human or mouse) and query type (NCBI gene symbol, NCBI CCDS

ID, NCBI gene ID, GenBank accession number, GenBank aliases, or keyword), and then

enter the input query. The user can select the TaqMan probe design option to design

TaqMan probes as well as SYBR Green primers. MRPrimerW also provides a feature that

sends the query result to a user via email. If a user enters his/her email address in the query

web page, the web server sends an email containing a link to the result page to the user

after query processing is completed. The users do not need to wait to get a query result and

the result page accessible via the link in the email is available for two weeks (i.e., 14 days).

In Advanced Settings, the user can adjust single- and pair-filtering constraints.

MRPrimerW provides six example queries for single target genes and another six example

queries for multiple target genes, in particular, 24 genes related to signaling molecules.

- 72 -

Figure 4.9 illustrates the results of the example query for nine target genes

(SAMD11, TNF, IL10, TP53, A1CF, UBE2J2, HES4, THDP1, KFK2), where the species

is human and the search type is NCBI Gene Symbol. Among nine target genes, we assume

that three target genes will have primer pairs that amplify each of them solely (case 1: IL10,

SAMD11, TNF), two target genes will have only less target-specific primer pairs that may

amplify multiple targets (case 2: TP53, A1CF), two target genes will have target-specific

Figure 4.8. Input interface of MRPrimerW.

- 73 -

primer pairs, but the given filtering constraints are too strict to return them (case 3: UBE2J2,

HES4), and two target genes will have typos in their symbols (case 4: THDP1, KFK2).

Then, resultant web page shows four tables, each of which contains the primers

for each of the above cases. In detail, the first table (for case 1) shows three top-1 primer

pairs satisfying the same stringent and uniform constraints. The table shows forward and

backward primer sequences, TaqMan probe sequences, gene symbol, GenBank accession

number (with a link to detailed gene information from GenBank and primer information),

penalty score, melting temperatures (TM), amplicon size, and primer positions.

The second table (for case 2) shows a set of less target-specific primers that may

amplify multiple targets for two target genes. In other words, there is no target-specific

primer for the target gene. The indices of MRPrimerW contain both the primers amplifying

a single target and the primers that may amplify multiple targets (i.e., less specific). Highly

homologue genes (e.g. TP53, A1CF) do not have any primer pair that amplifies the

corresponding gene solely. The approach that does not show the results may be too strict, especially

compared with the existing tools. For such target genes, the existing tools may return some results

because they cannot perform homology tests on the entire set of genes. We think that even less

target-specific primers, which may amplify multiple targets, could have practical use in qPCR

experiments. Thus, users can use such less target-specific primers if and when necessary. The

format of the second table is the same as that of the first table.

The third table (for case 3) shows the set of genes that have the top-1 primer pair

that amplifies the target gene solely but may be amplified by relaxing filtering constraints

and how the constraints should be adjusted for each gene. MRPrimerW returns a list of

filtering constraints that require adjustment. How the constraints should be adjusted for

- 74 -

each of the target genes belonging to this case is shown in the third table in the output web

page.

The fourth table (for case 4) shows the set of genes given by the user that may be

wrong or have typos so that cannot be identified in the annotation indices of MRPrimerW.

With this information, users can modify their queries or input parameters to obtain primers

for query genes having no results.

In addition, the headline of each table shows the number of query genes belonging

to the table. For example, among 100 query genes, if 80 genes have suitable target-specific

primer pairs, 10 genes have less target-specific primer pairs that may amplify other genes,

7 have no results because the parameters are too strict, and 3 have no results because of

typos. The headlines of four result tables show 80, 10, 7, and 3, respectively, and so, users

can easily figure out the problematic query genes.

- 75 -

Figure 4.9. Output interface of MRPrimerW.

- 76 -

V. CONCLUSIONS

In this dissertation, we proposed MRPrimer and MRPrimerW that could overcome the

drawbacks of existing design methods, while also integrating several desirable features

required by researchers in this field into a single method. Design of high-quality primers

for multiple target sequences is essential for qPCR experiments, but is a challenging due

to the need to consider both homology tests on off-target sequences and the same stringent

filtering constraints on the primers.

In Chapter 3, we propose MRPrimer that can design all possible feasible and valid

primer pairs for an entire DNA database. The seven steps of MRPrimer are following. Step

1 receives a given DNA sequence database to extract partial sequences for candidate

primers having all possible lengths between the minimum length and the maximum length

Step 2 excluds the primers which do not satisfy input single filtering conditions when the

candidate primers extracted in Step 1 are subjected to the single filtering conditions. Step

3 performs pair-joining Map1, which includes all the possible partial sequences obtained

in Step 1, and Map2, which includes candidate primer sets satisfying the single filtering

conditions obtained in Step 2, and removing the primers for Map2 when the primers for

Map1 and Map2 have the same sequences other than the 5’ termini thereof. Step 4 performs

pair-joining Map1, which includes all the possible partial sequences obtained in Step 1,

and Map2, which includes candidate primer sets satisfying the single filtering conditions

- 77 -

and 5’ cross-hybridization filtering conditions obtained in Step 3, and removing the primers

for Map2 when the primers for Map1 have the same sequences as the primers for Map2

except the sequences having a given mismatch number (#mismatch). Step 5 removs false-

positive primers which still remain from the results of Step 4 and do not satisfy general

cross-hybridization filtering conditions. Step 6 divides the primers remaining from the

results of Step 5 into forward primer sets and reverse primer sets and excluding the primers

which do not satisfy the filtering conditions for self-join calculation when the divided

forward and reverse primer sets are subjected to the filtering conditions. Finally, Step 7

calculates penalty scores for the primer pairs passing Step 6, and sorting the primer pairs

in the same sidset groups according to the calculated penalty scores (Step 7).

Our biological and computational validation results in Section 3.3 and 3.4 indicate

that the resultant primers are very useful and effective for qPCR and sequencing analyses.

We can summarize its major advantages in terms of practical usage as follows.

First, MRPrimer performs both single/pair primer filtering and homology tests, in

a combined and integrated manner. Furthermore, it automatically sorts the resulting primer

pairs for each target sequence, based on penalty scores. Thus, users do not need to be

concerned about mistakes when validating a candidate primer. Because it produces a

complete set of primer pairs, users can repeatedly reuse the results, unless filtering

constraints need to be changed.

Second, MRPrimer designs all feasible primer pairs strictly, following the same

filtering constraints. For example, it can design a large number of primers that follow a

very strict constraint on product size (e.g., between 100 and 150 bp) for a given set of tens

of thousands of sequences all at once. This powerful feature would be especially useful for

- 78 -

qPCR experiments.

Third, MRPrimer is computationally efficient and scalable, and able to design

entire primer pairs for a whole DNA database within a few hours using only a small-scale

cluster of PCs. Even for a database of 105,180 DNA sequences, it could design all primer

pairs within 7 hours. This feature is very useful, especially for sequence databases that are

updated frequently, like the RefSeq database.

In Chapter 4, we proposed MRPrimerW web server, a straightforward but

powerful tool for designing high-quality primer pairs that can be used simultaneously to

detect multiple target genes in qPCR experiments. MRPrimerW overcomes the major

drawbacks of existing web servers for primer design by enabling users to freely adjust

filtering constraints, performing complete homology tests, supporting batch designing for

qPCR, supporting TaqMan probe design, and supporting ranking of primers.

These powerful features were achieved by performing large-scale computation for

homology testing on all possible candidate primers in an exact manner, and then

materializing the resultant valid primers in eight kinds of indices in the main memory of

the web server. Based on these indices, the web server quickly performs online processing

in three steps and returns a complete set of the top primer pairs corresponding to the user’s

query.

The current version of MRPrimerW is built based on the CCDS database, a

collection of coding sequences from human and mouse. We think it is important to include

other popular model organisms such as rat, monkey, Arabidopsis, yeast, nematodes, and

bacteria. Thus, we have a plan to do this in future work.

- 79 -

In conclusion, we believe that we have developed an advanced technology, a

straightforward but powerful method for designing high-quality primer pairs and for

increasing the efficiency and specificity of experiments involving PCR. We also believe

that MRPrimer, MRPrimerW or a variation of MRPrimer could be very useful for other

application areas such as DNA construction and genetic engineering. If there is a specific

fragment to be amplified from a given DNA template, there are a variety of putative primers

that could accomplish this. An MRPrimer-style method of screening and ranking in parallel

could be very effective at designing ideal primer pairs for that purpose. For example, it

could be effectively used to alleviate the problem of lack of novel primer pairs for detecting

unauthorized genetically modified organisms (GMOs) in the collection of GMO detection

methods, called GMO Detection method Database (GMDD) [59, 60].

- 80 -

REFERNECES

[1] T. M. Rose, E. R. Schultz, J. G. Henikoff, S. Pietrokovski, C. M. McCallum, and S.

Henikoff, "Consensus-degenerate hybrid oligonucleotide primers for amplification of

distantly related sequences," Nucleic acids research, vol. 26, pp. 1628-1635, 1998.

[2] E. Gorrón, F. Rodríguez, D. Bernal, L. M. Rodriguez-Rojas, A. Bernal, S. Restrepo, et

al., "A new method for designing degenerate primers and its use in the identification of

sequences in Brachiaria showing similarity to apomixis-associated genes,"

Bioinformatics, vol. 26, pp. 2053-2054, 2010.

[3] B. Dwivedi, R. Schmieder, D. B. Goldsmith, R. A. Edwards, and M. Breitbart,

"PhiSiGns: an online tool to identify signature genes in phages and design PCR primers

for examining phage diversity," BMC bioinformatics, vol. 13, p. 37, 2012.

[4] L.-Y. Chuang, Y.-H. Cheng, and C.-H. Yang, "Specific primer design for the polymerase

chain reaction," Biotechnology letters, vol. 35, pp. 1541-1549, 2013.

[5] J. Huang, I. Khan, R. Liu, Y. Yang, and N. Zhu, "Single primer-mediated circular PCR

for hairpin DNA cloning and plasmid editing," Anal Biochem, p. aheadofprint, Jan 11

2016.

- 81 -

[6] E. Meglécz, C. Costedoat, V. Dubut, A. Gilles, T. Malausa, N. Pech, et al., "QDD: a

user-friendly program to select microsatellite markers and design primers from large

sequencing projects," Bioinformatics, vol. 26, pp. 403-404, 2010.

[7] X. Wang, A. Spandidos, H. Wang, and B. Seed, "PrimerBank: a PCR primer database

for quantitative gene expression analysis, 2012 update," Nucleic acids research, vol. 40,

pp. D1144-D1149, 2012.

[8] A. Spandidos, X. Wang, H. Wang, and B. Seed, "PrimerBank: a resource of human and

mouse PCR primer pairs for gene expression detection and quantification," Nucleic

acids research, vol. 38, pp. D792-D799, 2010.

[9] J.-S. Wu, C. Lee, C.-C. Wu, and Y.-L. Shiue, "Primer design using genetic algorithm,"

Bioinformatics, vol. 20, pp. 1710-1717, 2004.

[10] H. Cao and J. M. Shockey, "Comparison of TaqMan and SYBR Green qPCR methods

for quantitative gene expression in tung tree tissues," J Agric Food Chem, vol. 60, pp.

12296-303, Dec 19 2012.

[11] L. Wang and T. Jiang, "On the complexity of multiple sequence alignment," J Comput

Biol, vol. 1, pp. 337-48, Winter 1994.

[12] J. D. Thompson, D. G. Higgins, and T. J. Gibson, "CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice," Nucleic Acids Res, vol. 22,

- 82 -

pp. 4673-80, Nov 11 1994.

[13] S. N. Gardner, A. L. Hiddessen, P. L. Williams, C. Hara, M. C. Wagner, and B. W.

Colston, Jr., "Multiplex primer prediction software for divergent targets," Nucleic Acids

Res, vol. 37, pp. 6291-304, Oct 2009.

[14] C. Linhart and R. Shamir, "The degenerate primer design problem: theory and

applications," Journal of Computational Biology, vol. 12, pp. 431-456, 2005.

[15] J. A. Iserte, B. I. Stephan, S. E. Goni, C. S. Borio, P. D. Ghiringhelli, and M. E. Lozano,

"Family-specific degenerate primer design: a tool to design consensus degenerated

oligonucleotides," Biotechnol Res Int, vol. 2013, p. 383646, 2013.

[16] G. Baker, J. Smith, and D. A. Cowan, "Review and re-analysis of domain-specific 16S

primers," Journal of Microbiological Methods, vol. 55, pp. 541-555, 2003.

[17] H. Mori, F. Maruyama, H. Kato, A. Toyoda, A. Dozono, Y. Ohtsubo, et al., "Design and

Experimental Application of a Novel Non-Degenerate Universal Primer Set that

Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify Eukaryotic

rRNA Genes," DNA Research, p. dst052, 2013.

[18] P. S. Kumar, M. R. Brooker, S. E. Dowd, and T. Camerlengo, "Target region selection

is a critical determinant of community fingerprints generated by 16S pyrosequencing,"

PloS one, vol. 6, p. e20956, 2011.

[19] L. Giacomucci, K. Purdy, E. Zanardini, A. Polo, and F. Cappitelli, "A new non-

- 83 -

degenerate primer pair for the specific detection of the nitrite reductase gene nrfA in

the genus desulfovibrio," Journal of molecular microbiology and biotechnology, vol.

22, pp. 345-351, 2012.

[20] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters,"

Communications of the ACM, vol. 51, pp. 107-113, 2008.

[21] A. Untergasser, I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, et al.,

"Primer3--new capabilities and interfaces," Nucleic Acids Res, vol. 40, p. e115, Aug

2012.

[22] J. Ye, G. Coulouris, I. Zaretskaya, I. Cutcutache, S. Rozen, and T. L. Madden, "Primer-

BLAST: a tool to design target-specific primers for polymerase chain reaction," BMC

Bioinformatics, vol. 13, p. 134, 2012.

[23] S. Rozen and H. Skaletsky, "Primer3 on the WWW for general users and for biologist

programmers," in Bioinformatics methods and protocols, ed: Springer, 1999, pp. 365-

386.

[24] T. M. Rose, J. G. Henikoff, and S. Henikoff, "CODEHOP (COnsensus-DEgenerate

hybrid oligonucleotide primer) PCR primer design," Nucleic Acids Research, vol. 31,

pp. 3763-3766, 2003.

[25] R. Boyce, P. Chilana, and T. M. Rose, "iCODEHOP: a new interactive program for

designing COnsensus-DEgenerate Hybrid Oligonucleotide Primers from multiply

- 84 -

aligned protein sequences," Nucleic acids research, vol. 37, pp. W222-W228, 2009.

[26] R. Giegerich, F. Meyer, and C. Schleiermacher, "GeneFisher--software support for the

detection of postulated genes," Proc Int Conf Intell Syst Mol Biol, vol. 4, pp. 68-77,

1996.

[27] D. Hagemeier, "GeneFisher2-an AJAX based implementation of GeneFisher,"

Bachelor's thesis University Bielefeld, Faculty of Technology, 2006.

[28] X. Wei, D. N. Kuhn, and G. Narasimhan, "Degenerate primer design via clustering," in

Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE, 2003, pp.

75-83.

[29] S. N. Jarman, "Amplicon: software for designing PCR primers on aligned DNA

sequences," Bioinformatics, vol. 20, pp. 1644-1645, 2004.

[30] O. J. Jabado, G. Palacios, V. Kapoor, J. Hui, N. Renwick, J. Zhai, et al., "Greene

SCPrimer: a rapid comprehensive tool for designing degenerate primers from multiple

sequence alignments," Nucleic acids research, vol. 34, pp. 6605-6611, 2006.

[31] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, et al., "Fast, scalable

generation of high-quality protein multiple sequence alignments using Clustal Omega,"

Molecular systems biology, vol. 7, 2011.

[32] A. Untergasser, H. Nijveen, X. Rao, T. Bisseling, R. Geurts, and J. A. Leunissen,

"Primer3Plus, an enhanced web interface to Primer3," Nucleic Acids Res, vol. 35, pp.

- 85 -

W71-4, Jul 2007.

[33] F. M. You, N. Huo, Y. Q. Gu, M. C. Luo, Y. Ma, D. Hane, et al., "BatchPrimer3: a high

throughput web application for PCR and sequencing primer design," BMC

Bioinformatics, vol. 9, p. 253, 2008.

[34] J. Fredslund and M. Lange, "Primique: automatic design of specific PCR primers for

each sequence in a family," BMC Bioinformatics, vol. 8, p. 369, 2007.

[35] S. Arvidsson, M. Kwasniewski, D. M. Riano-Pachon, and B. Mueller-Roeber,

"QuantPrime--a flexible tool for reliable high-throughput primer design for quantitative

PCR," BMC Bioinformatics, vol. 9, p. 465, 2008.

[36] S. Lefever, J. Vandesompele, F. Speleman, and F. Pattyn, "RTPrimerDB: the portal for

real-time PCR primers and probes," Nucleic Acids Res, vol. 37, pp. D942-5, Jan 2009.

[37] F. Pattyn, F. Speleman, A. De Paepe, and J. Vandesompele, "RTPrimerDB: the real-

time PCR primer and probe database," Nucleic Acids Res, vol. 31, pp. 122-3, Jan 1 2003.

[38] F. Pattyn, P. Robbrecht, A. De Paepe, F. Speleman, and J. Vandesompele, "RTPrimerDB:

the real-time PCR primer and probe database, major update 2006," Nucleic Acids Res,

vol. 34, pp. D684-8, Jan 1 2006.

[39] W. Cui, D. D. Taub, and K. Gardner, "qPrimerDepot: a primer database for quantitative

real time PCR," Nucleic Acids Res, vol. 35, pp. D805-9, Jan 2007.

[40] J. SantaLucia, Jr. and D. Hicks, "The thermodynamics of DNA structural motifs," Annu

- 86 -

Rev Biophys Biomol Struct, vol. 33, pp. 415-40, 2004.

[41] J. SantaLucia, "A unified view of polymer, dumbbell, and oligonucleotide DNA

nearest-neighbor thermodynamics," Proceedings of the National Academy of Sciences,

vol. 95, pp. 1460-1465, 1998.

[42] R. A. Baeza-Yates and C. H. Perleberg, "Fast and practical approximate string

matching," Information Processing Letters, vol. 59, pp. 21-27, 1996.

[43] M. Kim, K. Whang, and J. Lee, "n-Gram/2L-approximation: a two-level n-gram

inverted index structure for approximate string matching," Computer Systems Science

and Engineering, vol. 22, p. 365, 2007.

[44] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee, "n-Gram/2L: A space and time

efficient two-level n-gram inverted index structure," in Proceedings of the 31st

international conference on Very large data bases, 2005, pp. 325-336.

[45] A. Spandidos, X. Wang, H. Wang, S. Dragnev, T. Thurber, and B. Seed, "A

comprehensive collection of experimentally validated primers for Polymerase Chain

Reaction quantitation of murine transcript abundance," BMC genomics, vol. 9, p. 633,

2008.

[46] X. Wang and B. Seed, "A PCR primer bank for quantitative gene expression analysis,"

Nucleic acids research, vol. 31, pp. e154-e154, 2003.

[47] K. Pruitt, T. Tatusova, and J. Ostell, "The reference sequence (RefSeq) project," The

- 87 -

NCBI Handbook [Internet]. National Library of Medicine (US), National Center for

Biotechnology Information, Bethesda, MD, 2002.

[48] T. Tatusova, S. Ciufo, B. Fedorov, K. O'Neill, and I. Tolstoy, "RefSeq microbial

genomes database: new representation and annotation strategy," Nucleic Acids Res, vol.

42, pp. D553-9, 2014.

[49] K. D. Pruitt, G. R. Brown, S. M. Hiatt, F. Thibaud-Nissen, A. Astashyn, O. Ermolaeva,

et al., "RefSeq: an update on mammalian reference sequences," Nucleic Acids Res, vol.

42, pp. D756-63, 2014.

[50] K. D. Pruitt, J. Harrow, R. A. Harte, C. Wallin, M. Diekhans, D. R. Maglott, et al., "The

consensus coding sequence (CCDS) project: Identifying a common protein-coding

gene set for the human and mouse genomes," Genome research, vol. 19, pp. 1316-1323,

2009.

[51] J. H. Fong, T. D. Murphy, and K. D. Pruitt, "Comparison of RefSeq protein-coding

regions in human and vertebrate genomes," BMC genomics, vol. 14, p. 654, 2013.

[52] S. A. Bustin, V. Benes, J. A. Garson, J. Hellemans, J. Huggett, M. Kubista, et al., "The

MIQE guidelines: minimum information for publication of quantitative real-time PCR

experiments," Clinical chemistry, vol. 55, pp. 611-622, 2009.

[53] Y. Niimura, "Olfactory receptor multigene family in vertebrates: from the viewpoint of

evolutionary genomics," Current genomics, vol. 13, p. 103, 2012.

- 88 -

[54] N. Kang, H. Kim, Y. Jae, N. Lee, C. R. Ku, F. Margolis, et al., "Olfactory marker protein

expression is an indicator of olfactory receptor-associated events in non-olfactory

tissues," PLoS One, vol. 10, p. e0116097, 2015.

[55] N. N. Kang, "Olfactory receptors in non-chemosensory tissues," Biochemistry and

Molecular Biology Reports, vol. 45, pp. 612-622, 2012.

[56] K. D. Pruitt, J. Harrow, R. A. Harte, C. Wallin, M. Diekhans, D. R. Maglott, et al., "The

consensus coding sequence (CCDS) project: Identifying a common protein-coding

gene set for the human and mouse genomes," Genome Res, vol. 19, pp. 1316-23, Jul

2009.

[57] C. M. Farrell, N. A. O'Leary, R. A. Harte, J. E. Loveland, L. G. Wilming, C. Wallin, et

al., "Current status and new features of the Consensus Coding Sequence database,"

Nucleic Acids Res, vol. 42, pp. D865-72, Jan 2014.

[58] R. A. Harte, C. M. Farrell, J. E. Loveland, M. M. Suner, L. Wilming, B. Aken, et al.,

"Tracking and coordinating an international curation effort for the CCDS Project,"

Database (Oxford), vol. 2012, p. bas008, 2012.

[59] W. Dong, L. Yang, K. Shen, B. Kim, G. A. Kleter, H. J. Marvin, et al., "GMDD: a

database of GMO detection methods," BMC bioinformatics, vol. 9, p. 260, 2008.

[60] N. Marmiroli, E. Maestri, M. Gullì, A. Malcevschi, C. Peano, R. Bordoni, et al.,

"Methods for detection of GMOs in food and feed," Analytical and Bioanalytical

- 89 -

Chemistry, vol. 392, pp. 369-384, 2008.

- 90 -

요 약 문

맵리듀스 기반의 특이성 조건을 만족하는 유효한 모든 프라이머들을

빠르게 디자인하는 방법

프라이머 디자인은 중합효소 연쇄반응법 (PCR)에 있어서 가장 기본이 되는 기술이며

일반적으로 사용되는 기술이다. 많은 방법들이 프라이머 디자인을 위해 제안되었지만,

이들은 유효한 프라이머를 디자인 하기 위해 BLAST와 같은 추가적인 툴을 사용하여

비 표적 서열에 대한 상동성 테스트를 포함하여 많은 노력과 주의를 필요로 한다. 또한,

이 방법들은 같은 엄격한 제약 조건을 만족하는 다수의 표적 서열에 대한 프라이머를

필요로 하는 정량적 중합효소 연쇄반응법 (qPCR)에 적합하지 않다. 이에 본

학위논문에서는 기존 방법들의 단점을 극복한 완전히 새로운 방법을 제안한다.

 본 학위논문의 첫 번째 파트에서는 기존 연구들의 문제점들을 모두 해결하기 위해

맵리듀스 기반의 완전한 프라이머 디자인 방법인 MRPrimer를 제안한다. MRPrimer는

주어진 서열 데이터베이스에서 사용자에 의해 주어진 여러 제약조건들을 만족하면서

동시에 상동성 테스트를 통과한 모든 가능한 프라이머들을 찾는 것이다. MRPrimer는

범용 컴퓨터들의 클러스터와 그 클러스터 상에서 작동하는 7단계로 구성된 맵리듀스

알고리즘으로 구성되어 프라이머 디자인 시 특이성 검증을 동시에 수행하는 것은 기존의

방법들이 제공하지 못했던 특징이며, 상기 특이성 검증 조건은 다시 5‘ cross-

hybridization filtering 조건과 general cross-hybridization filtering 조건으로

구성된다. 또한, 주어진 DNA 서열 데이터베이스 상에 존재하는 모든 적합한 프라이머

- 91 -

쌍들을 빠짐없이 구하며, coverage가 1인 primer들 뿐만 아니라 coverage가 1보다 큰

프라이머들도 모두 구하는 것을 특징으로 한다. 마지막으로, 사용자가 결과 프라이머들

중 생물학적 실험의 성공률이 높은 프라이머들을 쉽게 선택할 수 있도록 랭킹 기능을

지원하는 특징을 가진다. 343개의 프라이머 쌍에 대해 정량적 중합효소 연쇄반응법

분석과 시퀀싱 및 비교 분석을 통해 MRPrimer로 디자인한 프라이머들은 매우

안정적이고 효과적인 것으로 나타났다. 또한, MRPrimer는 효율적이고 확장성이 높아

RefSeq 데이터베이스와 같이 자주 업데이트되는 데이터베이스에 대해 유효한

프라이머를 디자인 하는데 매우 유용하다.

 프라이머 디자인에 대한 기존의 웹 사이트들은 상동성 테스트를 위한 BLAST와

같은 추가의 툴 사용, 프라이머 랭킹 미지원, TaqMan probe 미지원, 그리고 다수의

표적에 대해 동시에 디자인 하지 못하는 등 여러 단점을 가지고 있다. 또한, 대규모

계산에 대한 오버헤드 때문에 몇 웹 사이트들은 휴리스틱한 방법을 사용하거나, 제한된

범위 내에서 상동성 테스트를 수행한다. MRPrime는 고품질의 프라이머를 디자인 할 수

있지만, 컴퓨터 클러스터에서 작동되고 제약조건을 조정할 때마다 수 시간의 런타임이

요구되기 때문에 일상적인 사용이 불편하다.

 본 학위논문의 두 번째 파트에서는 구글 검색 시스템과 같이 맵리듀스의

클러스터나 긴 계산을 요구하지 않고 웹 인터페이스에서 사용자가 최고의 프라이머를

디자인 할 수 있도록 MRPrimer의 온라인 버전인 MRPrimerW를 제안한다.

MRPrimerW는 완전한 상동성 테스트를 지원하고, 정량적 중합효소 연쇄반응법 실험을

위해 다수의 표적에 대해 프라이머 디자인을 제공하며 TaqMan probe 디자인을

지원하고, 결과 프라이머의 순위를 계산하여 가장 순위가 높은 top-1의 프라이머를

제공한다. 높은 정확성을 보장하기 위해 MRPrimer의 핵심 알고리즘을 적용하면서,

- 92 -

사용자가 웹 인터페이스를 통해 빠르게 질의에 대해 결과를 얻을 수 있다.

MRPrimerW는 프라이머 디자인 서비스를 제공하며 사람과 쥐 전체 유전자의 99%를

커버하는 341,963,135개의 유효한 프라이머 세트를 갖고있다.

 요약하여, 본 학위논문에서는 기존 방법의 단점을 극복한 프라이머 디자인을 위한

새로운 방법들을 제안하였다. 대규모 DNA 데이터베이스의 경우, 동시에 다수의

제약조건을 고려하고 특이성 검증을 통해 가능한 모든 유효한 프라이머 쌍들을 디자인

할 수 있는 MRPrimer를 제안하였다. 또한, 웹 인터페이스에서 주어진 사용자의 질의에

대해 완전한 상동성 테스트를 지원하고, 정량적 중합효소 연쇄반응법 실험을 위해

다수의 표적에 대해 프라이머 디자인을 제공하며 TaqMan probe 디자인을 지원하고

프라이머 랭킹을 지원하는 MRPrimerW를 제안하였다. 제안된 방법들은 중합효소

연쇄반응법을 포함하는 모든 실험에서 그 효율성과 특이성을 높이는데 유용하게 활용 될

수 있는 방법들이라 사료된다.

핵심어: 맵리듀스, 프라이머 디자인, 중합효소 연쇄반응법, 상동성 테스트

- 93 -

Appendix

Table S1. Primers for non-OR genes used in the biological experiments for MRPrimer.

Gene Sequence Size
(bp) Gene Sequence Size

(bp)

Vmn1r26
F TTTATTCCTCCGGTCTGTGCCA

100 Gcg
F CACCAGCGACTACAGCAAATAC

169
R TAGTGGACCTGTATGGTGGAGAT R CTGGCCCTCCAAGTAAGAACT

Vmn1r54
F ACTACATCGTGCTCTCTGGCA

180 Rtp1
F TACCCTCTTTCCCCACGTTCT

180
R GAGGGAAAAGCTGGTGATATGG R ACACATTGTGCTTGAGGTTGGG

Vmn1r65
F GAGGACAACAGAAGAAGTGGCT

142 Rtp4
F TTCCTCCCCATCAAAGAGCTG

170
R TTGGATGATCTGAATGGGCCTC R GGGCAAATGCAGCAATAGACA

Vmn1r66
F ACATCCACAGCTCTCAGGTTTC

164 Rtp2
F CGAGCAGTGTTACGATGAGGAT

174
R GACCATCACCAGACACCAACT R TTCTTGGAGGCATCGGTATAGG

Vmn1r70
F AGAGTTTGCAGGGGATTTTCC

142 Gnas
F TACGATCAGGACGACTACGAGAC

175
R AGCACAGGACCAGAGAAGAAC R GAGTGAGTGACTGGTTGAAGGT

Vmn1r71
F CCAACACATCCGTAGCACTCA

109 Gnaq
F GGTTGATGTGGAGAAGGTGTCT

183
R GGTGAGAGAACAAAAGGCCAGA R TGTGTAGGCAGATAGGAAGGGT

Vmn1r72
F TAACTCCAAAGGGCTGATGCT

178 Gnai2
F CTTATGACTTGGTGCTGGCTGA

183
R TGAAAACCATGAGCAGTAGGC R ACTCAGGGAAACAGATGGTCAG

Vmn1r73
F ACTAAGAGTATCAGGTCCCAGGT

101 Gnao1
F TCACCCTTGACCATCTGCTTTC

107
R ACAATGCAGCTCCCACATTTC R TTGTTGGGTGAGCGGTTTTTG

Vmn1r78
F TCTACTCTGCTTCTCTGATGGCT

160 Gna11
F TCCGCACAATCATCACCTACC

136
R GATAGTTTTGGTGGCTTGGTCC R CTCTGTGGCCCATCAAACTCA

Vmn1r80
F GTTACGGCCTACTCCAAATACC

139 Gna12
F CTAGAAAGGCCACCAAGGGAAT

152
R GAAAGCAGGGTAGAAACAGGTT R CGAGGACACCATGAACAGGATA

Vmn1r84
F GGTCTGTGTTTGAGCATCATGG

178 Gnai3
F GCAGATGATGCCCGACAGTTA

136
R TGGAGTAGGAGAGGACAAAGGT R ATTCCCTGGACCTGCTAAAGC

Vmn1r87
F CTCATCAGAAGAAGCCCGTAGA

175 Gnat2
F TGGACGTCATCAGGAAGTTGT

186
R GAAAGGCCCCTAGTAACACTGT R CGATGATGCCTGTTGTCTTGAC

Vmn1r89
F CTTCTCCTCACTCACGATCTCT

110 Gnaz
F CAGAGAGCAAGGGTGAGATTACA

139
R CTACTGTGGAGATGCTGGGAT R AGGTCGTTCAGGTAGTAGGCT

Vmn1r179
F ACCAATCGACACTACAGAGGC

156 Gnal
F TGGGACGATGAAGGAGTGAAG

124
R ACTCCAATGCCTCACAAATGC R GGTCTGTGGGTGTGTAGTCAA

Vmn1r195
F GGCATTGCAGGCTGTAAAACT

181 Gnai1
F CGGAAGAGGAGTGTAAGCAGTA

152
R TACAAAGGAGGAGGAGAGAGGG R CCCAGCAAGCACGAAAAGTT

Vmn1r211
F GCTGTAAAGTTGCTGTCTACCTG

165 Cacna1c
F GCAGCGTAAGGATGAGTGAAGA

170
R GGCAGAGGAGTGAGGAAAGAAT R TAGAGAGGCAGAGCGAAGGAA

- 94 -

Vmn1r212
F GGAGTTCTGACTGGATTTTGGC

135 Cacna1i
F AAACGTGCTCCTGCTCTGTTT

159
R AACCTTCTTGGTGGGATCTGA R TCGTCCTCTTCTGGTTGGTAGT

Vmn1r228
F GGGACATGGCAGTAGGAATAGT

170 Cacnb1
F AGATGACCGACAACAGGAACC

100
R GGAGAGAAGGATCAAGGCGTTG R CAGCCCTCCAGCTCATTCTTAT

Vmn1r230
F GCCAGGAATTTGGGAACAGGAA

124 Kcnk16
F GTCATTCTCATCTTCCCACCCA

117
R CTGTGGGCTTTCGTTTGTGTT R AACAACATAGTCCCCGAAGCC

Vmn1r231
F TCGCATGAATCAAGAGCCACT

127 Kcnh2
F ACCTGCTTACTGCCCTCTACT

133
R TAATCATCCACCAGCCAGCAC R GACTTTCCAGGACGGGCATAT

Vmn1r232
F GGAACATGGCAATAGGAGTAGGA

183 Kcnc3
F CAGAAGACAAGAGCCCAATCAC

128
R GGGGGAAACCTTTGGAGATAATG R GCGGGACTTCTCGTAACCTTT

Vmn1r233
F CTGGTCTCTGGCAAATGTAGCT

139 Kcnh6
F TACAGCAAATGCCCCCAAGTC

105
R GGCTAGAGGCTTTGGGGAAAT R GTCTGTTCATCTGGGCTTGGA

Vmn1r234
F GTGCATCAGCTCTTCCCTATACT

199 Kcnj11
F TCGTGTCCAAGAAAGGCAACT

110
R GCACACAGCACCAGGGATAAT R AGTGTGTGGCCATTTGAGGTC

Vmn1r236
F CTGTACTATGTAAAGGAGTGCCC

139 Kcnk12
F CTACTTCTGCTTCGTCACCTTCA

159
R CTAAGAAATGAGGTGCTGCCA R ATGGAGATGACGTTGAAGAGCG

Vmn1r237
F TCCTGGGCAACTCCTTCTTAGT

160 Kcnn1
F TTAACCGCGTCACCTTCAACA

157
R TTCAACCCAAAGGCAGACACA R CTGGTCACTTCCTGCTTATCGT

Vmn1r194
F CTGTTCGTGATCTCGTCTTCCA

138 Kcnc4
F GGAGGTAGAAACAGAGCCCATT

185
R CTCTGATCTCTGGGCTGAAAGT R ACAAACCACTCAATCCCACCTC

Vmn1r235
F GGCTTCTGCTCTGTTTGTCTTG

192 Kcnb1
F GGAGAAAAATGGAGAGGGCGT

180
R GGACTCCGTGGATGATTGTGA R TTCAAGTGCTGCGGACTAGAC

Vmn1r67
F GGTGTGTACCTTCCTGGCATT

174 Kcnj9
F TCGTCTCACCTCTCGTCATCA

178
R CTGAGTCTGGGCACAAAAGTAC R CACAACACTTCATCCACCAGGTA

Vmn1r1
F CTGCTCTCTCTGGGTTGTTAGT

170 Kcnd1
F ACTGCAGCCCTGGTTTTCTAC

128
R GGGAAATGCTGGTGTTGTGAA R TCACCACACGACTGCTCTTTG

Vmn1r196
F CACAGTGGTCCAAGCAGTTATC

156 Kcnk1
F TTGTCACCGTTTCCTGCTTCT

157
R GCTGTGTCTCTGATGGAAAGGA R AACTTCTGGTTGTAGCCTTCCC

Vmn1r224
F ACATTGGCTCCAGAACATCTCC

141 Scn1b
F ACGTCTACCGTCTCCTCTTCTT

171
R CCAGCCACCAACCAGGATTATA R CCATCTCTGCCACAAGCCATAT

Vmn1r77
F ATTGGCCCCTTCTGCTTAGTCT

160 Clcn4-2
F TGGAGTCTTTGGGGGTTTATGG

114
R AGAGTACAGCTCGCACATGATC R ACCGCAATAACCTCCAACACT

Vmn1r88
F CCTACGTTTGTCTCCTGGCTTA

145 Clcn3
F GAGCATCTCGAGCAACTAAAGC

162
R CACGGCCAACGAGAGTCATAT R TTCTGTCTCCTCTCTGTCCTCA

Vmn1r82
F AACTCTGGCCAACTCCTTGTC

181 Clcn6
F ATCCTTGGGGAGACACAGGAA

152
R GATTATGGCCGCTTGGAAACA R CACTTCACCGCCTCGTATCTT

Taar1
F GCGGCTGTTCTCCCTTCTTTA

188 Clcn7
F CGACACAGCGTCTAATCACAAC

136
R GCTTTGTGGTGCTTGGCTTTT R GGACCTCTCCACAAACACCTT

- 95 -

Taar2
F GAGGCTTACGCTGATGGAATTG

147 Plcg1
F CGACAGCACCAAGCAAAAGAC

116
R GCCGTAAATCCCCACCATCAT R CAAAGCGCAGAAAGGCAAACT

Taar3
F GCGAACACAAAAGGAGCAGTAG

191 Plcb4
F AGTGAAGGCAAGGAAGGACAAG

154
R TACCCGAGCCATACCAGAAGAT R CGCTGCAGACACACAATATCC

Taar4
F GGCCCTCTCAGAAAGCAAAATG

104 Plcb3
F TTAATCGGCGGCACATCACT

133
R AGGGTAGCCAACACAACACAA R AGCTTGGGTTCCTCTTCCTCTA

Taar5
F TGTCAAGCGGGAAAGAAAAGC

126 Pld3
F TCCTTCTACTGGACCCTCACAA

124
R AGGGGTGGGGTGATGAAGTTA R CAGCGATGCGAACCTTTACAC

Taar6
F CAGAGTGGCGAGAAGAGAAAGAA

137 Sstr3
F GCGAACAGCCTTCATCATCTAC

100
R AAATGTAGGCAGGGGTGATGAAG R CGACCGCACCTTTACCACAAT

Taar9
F CCTCCTTCTGTTTTGCGTCTCT

119 Insig1
F GCTGTATTGCCGTGTTCGTT

111
R GCACAGTCCAGAAACCGATACA R TCCACCACAAACCCAAAGAGA

Fpr1
F GGTTCATCATTGGGTTCAGCAC

124 Anxa2
F GAGACGGTGATTTTGGGCCTAT

127
R ACAAAGGAGAGAACCCGCAAA R GGTTGGTTCGTGAGCAGATGAT

Fpr2
F TCCCTGCCTTATAGTCTTGAGAG

108 Anxa4
F AGAGAAGAGATGGGGGACAGA

168
R TGGGGCCTTTAACTCAATGTCT R GCCAACAGGGCATCTTCAAAG

Fpr3
F CATTCTCACTTTGCCCCTTTTCC

100 Pde6d
F GTGGTTCTTCGAGTTTGGCTT

119
R AACAGAGTTGCCCCAGGATAC R TGATGACATTGCCCGTTAGGA

Ifnar2
F ACTGGCCCCTATGAGAGAAGAA

191 Pde3b
F CCGTCGTTGCCTTGTATTTCC

164
R TCGTCTAGGAGGATGGTGTCTT R CTTGGGTCAATCAGCAGGTCT

Reep2
F ACCCTGTACCCAGCCTATTCTT

157 Pde10a
F GGACAGAGACAAGCGAGATGAA

160
R GCTCAAAGTAGAAGGGGAACCA R GCGAATTACCTTCTCCCACTGA

Reep3
F GTGGTGCTGGTGTTTGGAATG

121 Adcy6
F GACCAACTGCGTAAGGACCAT

178
R CAGTGTAGAGGGCAAAGACGAT R TCAGGGTGGAGTATGGGAACA

Reep5
F GTGGCTTTGTATCTGGTGTTCG

102 Adcy9
F AATGAAACAAGGGGACGAGGAG

119
R GGGACTCTCGATGGCTTTCAT R TAAAGGGGCGGAATGCTATCG

Reep1
F TACAAGGCTGTGAAGTCCAAGG

157 Syt13
F AGAACCTCCACTCCAACCAATC

110
R GCCAGGCTACAAACGCTATTT R GGCCCGTTTTGTCTGTTTCTT

Syt7
F GAAAGCCATCAACGACCTAGAC

120
R TAAGGGGCGTAGGGTGAAATG

- 96 -

Table S2. Primers for OR genes used in the biological experiments for MRPrimer.

Gene Sequence Size
(bp) Gene Sequence Size

(bp)

Olfr631
F GTGGCCATTTCAGGCAATTGT

190 Olfr1208
F GGGTGATGTCCATTCTGACCTT

197
R GGATTTGGCAGGCTCCAAAAT R CTTGTCGTCCCCAACAGAATCA

Olfr1133
F CTTGTGGCTGTTGCCTATGCA

197 Olfr1230
F TGTTCCCGTTGTTGCAACTAG

155
R CACCCTACCACACAGCCAATTA R TCCTTCAGAGCTGGAAGACTTT

Olfr560
F GTCATGGAATCCTCAGTGCTGTT

158 Olfr1234
F GCAAGGCCTACATCCACATTTC

165
R GCGACCATCGGTGTCAACATTA R TAGCCCACTTACGATGGAGCTA

Olfr855
F GTCTCATCTTCAGCCTCTTCCT

164 Olfr1239
F GTTGTGGTCAGCCCAAGTTTAG

169
R GATGACTGTGGCTGTGCTTAAA R GTCCTATGAAAAGCTGGCTCATG

Olfr1010
F GCTACCAGGCTGTGCTCTATTT

107 Olfr1240
F AGTCATCGTTGTTTGCTACCTC

101
R GCGGATCTTCAGAATGGCTACA R AAGTGTCAGTACATGCTAAGCCC

Olfr1055
F CCAGCTGACCTTCTTCAGCATAT

148 Olfr48
F TGTGGGCTTGACTCAGAACAT

112
R AGGTATTGCCACCAGAACATGAC R GCTGCTGATGGTGACCATGATA

Olfr16
F TTAGGCACTGGCCTGGTTATG

196 Olfr1258
F GTTGGTCTCCTATGTGGTCATTC

156
R ATATCAGCCCTATGGGCACAAG R GACAAAGTGGCTGAAGGTCTCA

Olfr1406
F GCCATATTCAGGCTGCCATTTT

141 Olfr1260
F CTGTGACCTTTTCCCGCTCTTA

173
R GGCTGTGATGACCATAAGGCTA R CCTTCAGCTGTTCTTCAGTGCTA

Olfr218
F CCTAACGCTGTACCTTCTGACT

160 Olfr1262
F GAGCACCATATCCTTCAATGGC

185
R GCCAGCTAGCATTCGTGGAATA R CGATTCCAGCTGCTACCACTAA

Olfr1404
F GGCGTGGTCTTCATCTCCTAT

170 Olfr140
F TAGTCCACGCAATGTCACAGA

148
R AGCAAGCTCTGGGACTTAGGT R GGGGCTGAAGGTAATCGTGATA

Olfr432
F CTGGCATGCTCGGCTTTATA

100 Olfr1278
F CCAGGGTTGTGTCTTCCAGATAT

167
R CAGCACAGCTCTCACAATACCT R CCCAAGCACCAGATAGAAGCATA

Olfr429
F CTGGGCCAGTGGTGGAAATTT

199 Olfr1279
F GTGCACTGATGGAGACAAGTT

152
R TGCAAGTAGGAGCTGAGGATCA R TGACAAGCGCCTTTGACAAG

Olfr417
F ATAGACAAGGACAGCCGCATTT

172 Olfr1284
F AAGCATCATCGTGGGAAACCT

125
R GTCCACATGCAACATTGGTCAT R CTGTGGTAGAGGAAAGTCCAACA

Olfr248
F CCATCTGCAATGCCCTCAAATA

187 Olfr1289
F TGGCTACTGCATGGGCAATT

170
R AGCCTCAGAACTGCCCTCATA R GGCAATGACCATGATGTCTAACC

Olfr345
F CACCCTCTGCACTATTCACAAA

174 Olfr1301
F TGACCATTGTGTTGGTGCAGTA

191
R CAACCAGTCAGAGAGGTCACA R GCAGTTGCACAACTGCCAAAA

Olfr50
F GTTCTGCTAGTGATGGTGTCCT

200 Olfr1305
F CCACGGATGTGCCTGCTAATAT

158
R GTGATGACCACCACTGCTAAAG R GTGCATGCAAGCTTGACAAGT

Olfr350
F CTCTTATGGTCACATTGTGGCC

179 Olfr1311
F ACTTGGCCCTTCCCTTCATCA

138
R CAGAAGCAACTATGCCCTTGTC R CTGGGAGCAGAGTTTCCTCATT

Olfr354 F TGACCAACTGTCCTGCCCTTAT 174 Olfr71 F AGCGGCTACTCTTTCCTCTGT 177

- 97 -

R CAGCTAGAAACACCAAGCCCAT R CCAGCATCAGGGGTACAAAAGT

Olfr356
F CTCAGCAGTCTGCCTGTTCTA

180 Olfr275
F TGGAAACTGGACCTGTGATTCA

165
R AGGAACCTTCTCAAGGCACTT R GCAACATTGGCAATGGGAGAA

Olfr362
F GAGATGCTGGGGGCAATGTTAA

199 Olfr273
F AGGTCTTAGCTGTCCTCAAGCT

161
R GCAGCTGAAGGCAATCGTAAGA R CCCTGTGGCTGAGTTCATTCT

Olfr368
F CTTCACCCGGTCCAGAGTTAT

140 Olfr1340
F GACCTGGATTTTTGCAGCTATGG

101
R GTAGCACCATGCCCACATTTC R CCAGGGCTATGCATAGGGTTT

Olfr988
F CATGGGCTTCCTAAATGCTTCTG

185 Olfr38
F CACAAGGCTGGTCATCACATC

127
R GTACAGTGCTCACTAGGTTGAAC R AGCAAGGGTTTCACAGGCTAT

Olfr992
F AGCCACTTTAGTGGGCAACATT

181 Olfr452
F CACAAGGCTGGTCATCACATC

140
R TCCTGTGAAGGAGATGGATGGT R CCAATCGGACCACAGCTAGAAT

Olfr1009
F ACCATGACGGGAAACTTAGGT

120 Olfr450
F CTTAGCCTTGGGTGGTTCTGA

192
R CACGACTGACGAGAAGCAAAT R AGAGGAAGACGGAAGGTGATTAC

Olfr1014
F CTGGATCTTGGATTGTCCACAGT

128 Olfr307
F ACCCTTGACCTACAGCTCCAA

147
R TCAGTATACCCAAGTCCAGCAG R GGCACAAGCCAGAACGGAAATA

Olfr17
F CAGCACTGCCATCCTCACATA

176 Olfr305
F TTCATGGCTCTCCTTGGATCAG

153
R GGCCCAGAGTTCTGTGAATGA R TAATCCAGTGCCCCAGGAAAC

Olfr1022
F CAACACTGCAGTGATGGATTTC

117 Olfr552
F GTGGGGACACACGCTTCAATA

114
R CACAGGTTTCCTGTCAGTGTT R GGAGAACAGCACGAAGGATGAA

Olfr1030
F CATATGCTGCGTGTTTAGTCCAG

193 Olfr553
F CACCTCTGATGCCAGGTTTAAA

131
R AGGCCACTAAGGAAGCCATAGA R GGATATGCGAAGGCACATTGT

Olfr1043
F GCCAAATGCGCTGGTGAATTT

180 Olfr556
F CCGTCATGTGATGCTGGGAATTA

166
R CGCGGCATGAGAATGACATAGA R GGGGTCAGCACATGCTAACTT

Olfr1052
F GCTCAGCTTCTGGACGACAAAA

113 Olfr575
F ATCCCATAAAGAGCGCCTCAAG

104
R ATACTGGGAGCTTGGCTGAATG R AGCGGTGCATGGATGCTAAA

Olfr1079
F CCTTGGCTCCTATCTGCTCATCT

118 Olfr577
F CCCATTGCCTTTCATGCTCAAA

160
R CCCATAAAAGACAGAAACCACGG R GTCCACTCCCACTGTAGAAACA

Olfr1089
F TAGGCATCACTAATCGGCCTG

122 Olfr592
F CAACGCTGTGTATGGCCTTTT

134
R CAGTCGAGGGTCCACTATTGT R TGCTGAGGGCTTTTAACCGT

Olfr1090
F ACAACCTCAGTCCAGTCATTCTG

138 Olfr599
F GTCGTTCTGGTGGTTGCAATT

180
R CTCCAAGTCCTATGTAGGGCAAA R AGCCACAAAGAGCCCATATGAT

Olfr1093
F TGGAGTTGTGCATGGTGCTAT

167 Olfr606
F CAGCCTTACTTCGGAGTGCTAT

191
R CAATCAAGCCCACCAAGTACAA R ATCCATTCCCCACAGCATAAGA

Olfr1106
F GTGTTGGGATCGTGCTTAGGA

171 Olfr622
F AGGTCTAGTTGGCCTGATGAGA

179
R CACCAAAAGCAGCAGTTCATTC R GGGCCACTGAAATTCCATATGC

Olfr1111
F TGCAGATGCTGAGTGCCTTAT

146 Olfr65
F TGTCATGGGCATTGCTTCTACAG

148
R AGGTCACGCTTCCGCTAAAA R GTGGACGACATGAGGAACATTCT

Olfr1112 F CCTAGCTTGTGGGGACACTTTTA 142 Olfr648 F CATAGCTGTGGTGGGAAACTGTA 186

- 98 -

R CCCAGTTGCAGATGGAAGCTT R AGGCAGCCTGGAAATGTGATT

Olfr1124
F GTGCTGCATTCTTATCCTGGGA

153 Olfr661
F AAATTCCACTCATCCCGGTTCTG

126
R CCACTTATCCAGGAGCCAATCA R CCAGCCTGAGCACCTTGTATAA

Olfr1128
F GGGGTCTTTGGAGATACAGAATG

138 Olfr6
F CGAGTTGCCTTCTGTGGCAATA

151
R TGCATAGGCAACAGCCACAAG R CAGTGGCTGAGAGTGGGAATAT

Olfr1136
F GGCTGTTTTCTCCAACTCCTGA

133 Olfr885
F GTGCCTTGTCCCACATAGTTT

167
R CTCTACTAGACATGTCCACAGCA R GGGCACTGTTATATTGACACCA

Olfr1152
F GACCATCAGCTTCACATCCCAA

113 Olfr933
F GACTTTGCTCACTGCTAGTGTTG

167
R CTCTTGGCAAGCAGGTCCAATA R CAGCTTTATGTCAGAGCAGGAG

Olfr1157
F CCCTGGCATGTATGGTCCAATT

168 Olfr768
F AATGGCGTCTGGGGACAATAC

181
R GGTAGCATCCAGACACCAGTAT R GAACTGGATGCAGACCCTGTTG

Olfr74
F TGCTAGCCCTTTCTTCCTCTGA

147 Olfr788
F AACTGTGCTGCCCAACTCTTT

141
R CACTGGCTGAACGCATCTTAAG R GGTGCAGAGTTTCCTGTTCATG

Olfr1161
F CTCAAGATGCAATCATCCAGGGG

144 Olfr812
F ACCAGTCAGGAGAGTTAGAGTTC

120
R CACTTTGAATGTGAGCTGGGAG R TCGTTAAGTTCCCCATCATGC

Olfr1162
F AGTCGTTAAAGTGGCCTCTGT

131 Olfr827
F AAGGAGTGTCTGTGTCCAGTTG

113
R ACTGAAGAGGGATCTTTGTGCTC R CAATGACCCTAGAGGCACAAAA

Olfr1164
F TGAGGCTTGTTGCCTCTTGAT

146 Olfr1389
F GGTTTCTGGCCTTGTGAACTC

148
R CGATCCCATGACAGACACCAATA R CATCTTGACCTCCGTTCCATTAG

Olfr1176
F CCCCACTAAAGGAGCACTACAA

109 Olfr51
F ACCTGCATGCTCTCTTGCATA

160
R TGACTTGAGCACGCAGTATAGA R ACCAATCCACCAATGGTGAAG

Olfr1179
F CTTGCTGTGCTGGTGCTTTTA

185 Olfr11
F CGCTGTGGCCACTATGTCATA

199
R CAGTCCCATCATGCCTGAATTG R GACCTTCGGCAGATTGGATTTTC

Olfr1180
F CTTCATTTCCTTGGTGCCATTG

166 Olfr745
F CTTCTGGTGCTGGTCGAACTA

131
R GACTGGCTGAGTGCACAAATC R CTTCTGCATTCCTGCAGGATTC

Olfr1184
F GCCATGCACTTCTTTGGAATGA

129 Olfr283
F TCGGAAACTTCCTCCTGATACT

150
R GATCAGGATATGGCACCTGCTT R GGAGTAACCCTGAGCCGTAAAA

- 99 -

Table S3. Primers used in the comparative biological analysis.

 MRPrimer PrimerBank

No. Gene Sequence Size
(bp) Sequence Size

(bp)

1 Olfr613
F TGGTTAGAGCGGAGCAGAATC

247
F CCTTCTGGTTAGAGCGGAGC

110
R AGTGGAGCACAGATAGCAACC R CCAAGACACTAGGCATTGTTGAC

2 Olfr911-ps1
F TGGGGCTGGAAAATGGTTCTT

124
F TTGTGCCCAGTGTTATCATCTTT

120
R TTCCCCACTGCTGTTGTTGT R CAGCAAGTATATGGGAGCTACAG

3 Olfr130
F GTCGCACATGCTGGTAGTAGT

223
F TGACACTGGTAGGCAACACAG

176
R AAGAATTTTCTTCCCAGTGCTGT R TGTGGCAGTAATTGTCTTGGC

4 Olfr235
F GGCTGTAACCTGGAACTTTTCC

127
F GTGTTTTGGAATAGCAAATGCCT

180
R GGGGGCTGTGGAAGTGATATAG R GAGCTGGATCGCAAATAGACAA

5 Olfr1053
F GTGAATGTGCTACCCAGTTGTC

172
F CATCACTGCCTGGGTTCATCT

108
R CTGTAGAGGTACGGGATGCC R GGTTGCCCATGACTGTGACT

6 Olfr611
F GAGGAGGCTCTACTTTTGTCGT

134
F TTCCCCACACTGTTGAGAATCT

141
R CCAAGGTAGAGAGCACCACAA R CACATACCAATCGAAGGCCAT

7 Olfr1303
F CTGCTCTGTTACTTCCCCCAA

120
F GTGTCTGCGTTTGTGTTTCTG

106
R ACCATCTCCACTCCACCAACT R GGATGTTTCCAGCCATGCTTAAT

8 Olfr401
F CCCACAGGCTTACAGTTCCAT

187
F TATTCCCTCTATGTTGGGTCGG

150
R CAGGATGAGGCCACCAAAATTC R CAGATGGCTAGGAAGCGGT

9 Olfr118
F TGCTCCCCACTCCATTACTCA

233
F CACTTGCTTGTGGCGATACAT

153
R ACTACGGCCACAAAGATTGCA R CTTTATGGCGACCCTCAGGTG

10 Olfr340
F CATCAGTCGCATCTCCAAAAATG

250
F TTGGGACTCCCCATTCGAG

195
R AGGGAGTTGGCAGTAGATAAAGT R TGGAGATGCGACTGATGAGAA

11 Olfr1295
F CTCCAGGGACTTTCCCACTCA

198
F GGGGTTGTGGTTGTAACTTGC

104
R AGGAGTGATGTTTGAGGAAAGAC R GACAAAGCCTTAGATGCTCCAG

12 Olfr453
F TCTGGGCTTAGGAGGGATTGA

145
F CCTGGTGGATGTGTCTTATGC

135
R ACCACCGACCCAAGAAACAAT R AACTCAATCCCTCCTAAGCCC

13 Olfr510
F TGGCTTCCATTGACATAGCCA

100
F ACCACACTGTAGTCACAGAGT

123
R ATGCCACACCCAATGTAGGAT R TGGTGCTTAGATTCCCAGACA

14 Olfr539
F TCTGTACCTCTTCTGTGATTCCT

245
F GTGGTCCCAAGGTTATCACCC

156
R AAGACCGATGAACCATACAACCA R TGCAGCCATAAGACAACAAGG

15 Olfr1388
F GGCCTTCTTTTTGGTGGGATTC

127
F TCTCTCTCGACTGGACCTTCG

153
R GTCCAGTCGAGAGAGAGCAAT R ACACACCTTTCATAGCTGATGG

16 Olfr1443
F GACTGGAAACTTGGGGATGCT

121
F ATGGAGAACAGGACAGAGGTG

143
R TGGGGTAACAGCAGAGGAGTA R AGAATCAGCACAAGCATCCCC

17 Olfr1494
F AGTCCCATTCCTGCTGATTTGT

167
F CCCTCTACACTACAGCCTCAT

147
R AGCGGGGCCTCAGATATACA R TGGTTGATTTCCTGGTCATGTC

- 100 -

18 Olfr1204 F CCGCAGTTGCAGAAAATCTTG 201 F TCACACAGAATCCGCAGTTG 113

R ATGGAAAGTATCAGCAAGCAGTT R CAGTTGGCTGTTTGTAATGGTG

19 Olfr635 F AAACACCACCATCCTAACCGTTA 188 F CCATCCTAACCGTTATCCGCA 117

R GGAAGAAGAACTGGGCAAAACA R GCATGACTGTAGGGAGTGTGG

20 Olfr694 F CAGCCCTGTACTTTTTAGCCATA 122 F GAGCTGCTCTGTGCCACTATC 173

R AAGCAAGTCCATGAGAGAGAGC R ATGGCCTTTGGAGTGATGACT

21 Olfr1511 F CGCCAGCAAGGTTATCGCATT 165 F TTCTGGGTGTGCTCTCCTTC 101

R GTGCACAACTTCCCATTCATGA R ACCAAATGCGATAACCTTGCTG

22 Olfr960 F AGCAACCTCTCTATCTCTGACAT 148 F AGCCTGTGAAGATTCCTCTCT 230

R AGCACAAAACGCATCCAATACA R GGTTGGGCTGTAGGTAGATGAC

23 Olfr1411 F CTCTCATATGATGGCTGTGTCCT 102 F CTGCCATTGCCCCTAATGC 210

R ACAGATATCACCTTGCCCTGT R CCAGACGGGTACAGGTTGTAG

24 Olfr619 F GCTCGCATACTTTGTGCTGTG 215 F GGCTCACCTATTGTGGGAAGA 74

R GGATTGAGGGAGGGTGGTAGA R ACAGGCCAACCTGGCAATG

25 Olfr122 F GCTGGTAATGCCCTCACGT 109 F AGGAGAACAGCTTGTCTGTCA 60

R CCTCAAATAGGTGGCAGACGT R CTCCAGGGACCTCAGAGAACT

26 Olfr1033 F ACCTTACAGCAGTTGGCATATTT 195 F TCCACCCCTCATCAAGATGG 258

R ACTTCTTGGCAATCACTTTGTCC R GACTCCTCAGTGGGTCGTCT

27 Olfr1331 F CCTTTGTTACCACCACCATGC 114 F TTTGGTCGTTACTCCAATCTCCC 240

R TTATACCCAGGCCACCGAACAT R AGCAATGGTGTAAAAGCACTGT

28 Olfr740 F TCCTGTTCGTTCCTTTCCTCTTC 178 F CCCGACCTCTGAGCATGAAG 83

R TCAGAGGTCGGGCTTAGATACA R TCACAGGATTAACGAGTGGAGT

29 Olfr190 F CTGGCTTTTGTGGATGCTTCC 162 F CTGTGACATCGTTCCATTGCT 263

R TGCCATAGCTCCCAACAAGAA R CTTGGGACACGGGGAAAATATAC

30 Olfr1465 F CATGAGTGGGCTCCTAAAAGGA 189 F ACATTGGGGACACCTTCAATC 254

R AGACACACACACACACCTGAA R TGCGGCACAAGTGGATACAG

31 Olfr1255 F CTCTTGGTCTCTTTGTTGCTGC 229 F AAAAGGAACGTGACTGAGTTCAT 244

R GCTTTATCAATTGGCAGAGTGGT R GAAGGGAGTCCGCAATCAGC

32 Olfr1392 F CTAACTCTCTTTGGGAACACTGC 203 F CTGGCCTGCACTAGAACTCAT 78

R GTTATGAAGAGCTGAGACACACA R ATGGCAGTGTTCCCAAAGAGA

33 Olfr799 F TCCATTGCCTATGCTGCTTGTA 214 F ACAGATGACATTAGGCTGCAAA 227

R GGCTAATTGGTGGGAGAACGA R GCAATGGACTTATCCCCAGATG

34 Olfr569 F GCCTTGTTGGCTATCACTGAC 109 F GGAATCCCAGGGTTGGAGAAT 87

R GGATGAGGCAGGCGTTGTATT R GGTGATATTTCCAGTCAGTGCC

35 Olfr1297 F CATTGCTTCAGGAGAGGTGGTAT 178 F GGTATTGTTGGCTTTAATGGCCT 372

R CTGCAAAAGCACTACCACGTG R GCCTTGGAAGCTCCAGTTTTC

36 Olfr967 F GATGTCCTATCAAGTCTGCACC 175 F GCTTTCTTGCTCCCCTACTTT 348

R AAAAGTAGGGGAGCAAGAAAGC R GTTAGTGCGACCTTGACATCC

- 101 -

37 Olfr355 F TCCTTTCCCCACTTCCATTCAC 198 F GATGTGCCCTACTGGTGACC 336

R AGCAATGCATAGGAAGGGAGTC R AAAAGAGGGTTACCACAGTGAAG

38 Olfr1225 F CCACAGCTCTGAAGGGAAATTT 171 F TGTGGCAATCTTGTGATGGTG 265

R GAATTGAGCAATGGGGTCAACAC R TGTGGGCTTTCAGAGAGTACA

39 Olfr1079 F TCCTGATCATCCTTGGCTCCTAT 128 F ATGTCACAAACTGTATGTTGGGT 253

R CCCATAAAAGACAGAAACCACGG R GCAGATAGGAGCCAAGGATGA

40 Olfr918 F CCACAGGTCTGCTCAATGCTA 154 F TGCTACTCTTCTGTATCCAGTCC 251

R AAGAAAGTTGGAGGAGGGGCA R CCAGCAAATGCCATCCCATAAG

41 Olfr1336 F CCTCTTCTTAACTTGTCCTGCAC 142 F GAGTTGGGCAATGTGACCAGA 249

R ATGGCATGCCTAGAACTGTCCT R CCCCATGAGTAGTGTGGGC

42 Olfr1408 F ACAGTAAGGACCAAGACCAGCT 125 F AAGATTGCCTCATCTGATGGC 243

R CCTACACAACACTTTCCGCAGA R CCTACACAACACTTTCCGCAG

43 Olfr830 F TGTTGGCCATCAAGTGTGACTT 182 F CCTTATGAACCCCAGTTTCTGTG 75

R AACTACAACAAAGCAGGCCTGG R TGCAGCAGACCATTTACAATACT

44 Olfr1356 F CAGTCCTTCTTCTTTGGGTTGC 145 F AACCTGTCCATAGCTGACATCG 76

R CGATGTCAGCTATGGACAGGT R TGCTTTGTGTGCGGATATTCT

45 Olfr1353 F TCTGGTTCTGGTGTCTTGGATTG 101 F AACTTCTTGCTCACTATCATGGC 584

R AGTGTGGGATTTCTGGCTGTG R ACGAAGAGTCTTTTTAGGGCAC

46 Olfr828 F GCTCTTCATTCACTACCTCAGTC 144 F GGACTGATGGTGTTGCGGTT 444

R TTGCCCTATTGATGTGCTTCC R CCTATTGATGTGCTTCCTCAAGG

47 Olfr1145 F TGACTCAGACTCCGACTAAATCC 120 F CTGTCTGCACTGTTCTCCATC 391

R GGAGATTGGGAAGAGCAGAGAA R TCTGAATTGGAATGCCACTTAGC

48 Olfr995 F GTTGTCCCAATCATCAGCCTTTC 100 F TATGCCACATTTGCGACCAGT 326

R TGACCAACACAGTGAACGTCA R AACACAGTGAACGTCAGGTTAAA

49 Olfr978 F TGGCCCTGGTCTCTTCATCTA 174 F GGCCCTGGTCTCTTCATCTAC 63

R TGAGGAAGCACAGACCCATAT R GGCCACAATTCCATCTACAGC

50 Olfr693 F CGCCTCAGTTATCAGTCCCAAA 107 F CCATGTACCTCTTGCTTGAGC 67

R TACCCAGTGCCAGTTCCAAGAA R TTGGGACTGATAACTGAGGCG

51 Olfr967 F GATGTCCTATCAAGTCTGCACC 175 F GCTGGATTAACAAGCACACCA 72

R AAAAGTAGGGGAGCAAGAAAGC R CGTTACTGCATAGATTCCGAGG

52 Olfr653 F CTTCCACCCTCCCACATTTGT 112 F CCACCCTCCCACATTTGTTTT 78

R ACCATTTCCAACCAGAGCAAGG R GAGCAGAAGGGAATAGCAATCC

53 Olfr1284 F GTAAGCATCATCGTGGGAAACC 133 F GGACTCTCCAGTTCTTGGAAAAA 78

R TGGGCACTGTGGTAGAGGAAAG R TCCCACGATGATGCTTACATAGA

54 Olfr348 F GTAACACTGTCCACCACTTCTTC 161 F ACCCCCTCCACTATACAAGAATC 89

R AGTGGCTCCAATGCGTCCATA R AAGGGCACCAGCAAATGATAA

55 Olfr222 F GGTCATCCTGACAGTGCAATT 114 F CACCCCAAAGGACTTTATCCTC 103

R GCATCATTCGCCGTAGTATCAG R CCCCAGCATAGCCAGAATGT

- 102 -

56 Olfr267 F CTGACTGCTCTGCTGGAAACTA 168 F ACCCGAGGTTAGAGATTGTTCT 111

R TGGAATGGGCAGAAGGAGAATAC R TTTGAAGGCGTGAATCCAGGA

57 Olfr433 F GGGCACTGACAAACTTATTGCCT 119 F CATGTCTCACTGCCAGTTTACC 105

R TCTTTTCACTGACCCTCTTCACG R CATGCCACCTTGTGCTCAC

58 Olfr461 F CCTTTTTGCGACCTTCCTTCT 181 F GGCACCAAAGAACTACACCAC 109

R AAGAAGCCCCTGGAGCATATA R GACGTTTGTCAGCATGGACTA

59 Olfr1344 F GCTTTGCACTCTCTGTACCCA 200 F GAACCCTCAATGATTCAGGAACC 129

R AGAGGCTAGGATGAGGACCAAA R GGGCACCATTACCCAGCAC

60 Olfr1358 F GCCTTGATTGAGACCTGCATGA 144 F CCATCCCTTGCGCTACTCTG 112

R GCTCAGGAAGAAGATGCCAAGT R GAAGATCATGCAGGTCTCAATCA

61 Olfr1420 F ATTAACCACTCACTCCACACCC 185 F GGGGTGCAGATGGTGATTTTT 177

R TCAGCTCCACCCAAGAAAACA R CAGTGGTGCAATGGATGATGTAT

62 Olfr1509 F CAACTGGGTGTTGGAGATTCTG 109 F CAACTGGGTGTTGGAGATTCTG 108

R GAGACGTGGCGTGAAGACTAT R AGACGTGGCGTGAAGACTATG

63 Olfr5 F GCTAGGTGGGCTATTGGTTTCT 186 F TTGTGGGCACAGAGTGCATT 133

R AAGCAACCCCAAAGGATGACA R CCTAGCCATGAAATCATAGCCAA

64 Olfr39 F CATGCAGTGCCTCACTCAAGT 166 F CAGATGATCCTAAATTGCAGCCT 113

R CCAGCACATTAGCACAAGGAAG R GAGATGGGAATCAGAACTGACAG

65 Olfr49 F ATTCCTGGGCTTTCTCCTGAC 185 F CTTCCCCAAGATGCTAACCAAC 172

R GTCCTGTGATGATGTTGGTTAGC R GGTGGCATAACGCAAAGGG

66 Olfr632 F CTTCTGTGCTGGGGGTGTTAT 128 F ATGAAGGTGTCTATTCCACCACG 100

R GTCCAGAGCCATAGCAAATAGC R GCAGTGAAATCCAATGATGAGCC

67 Olfr1444 F TTTCTTCTTCGTGGGGTTTGC 154 F GGTTGACAGATGACCCCAATC 117

R GCCACAGGTGTAAGAGCCAAT R GGTGGGAATCCGAGAAGATGA

68 Olfr424 F GGTTCCTGCATCTTTGGCTTTC 124 F GGATGGATACCCGTCTTCACA 127

R CCAAACGCAACACAGGTTCAA R ATGGTCCTTTGCTTACTGATGAG

69 Olfr460 F GTGGGAAACACGGTCATCATTG 127 F TCCTGGCTCTGTAAACCTACG 188

R GCATCACGGGCACAATAACAG R CGGGCACAATAACAGTTGTAACC

70 Olfr677 F AGCTTGTGCACCCATCAAGAT 156 F CCTTGTGGGAAACATCACCAT 175

R GTGTTTAGCGCCTTCAATCGG R GCCCCCGAAACTGATCTCC

71 Olfr218 F GAGCATGGCTATTGTCCAGGTTA 168 F CTGCAATCCTCTAAGGTATTCGG 102

R AACACAAGGACACACACGCT R ACCTGGACAATAGCCATGCTC

72 Olfr362 F TGCCCCACACTTTCCTCTTTT 136 F TGTGCCCCGAATGCTTCAC 122

R GAGAGGCCACGCAAGAGATAAT R TTCCCCAATATGGTGGTCAGATA

73 Olfr558 F TCCCTTTGTGTTCCCTCTACCT 153 F TCAATAGCAATGAATCCAGTGCC 114

R TTGGCATGGATGAGGTGGAAA R GCACAGCAATAAGGTAGAGGGAA

74 Olfr78 F CATGCCACCTTCCTGCTTATTG 138 F ATGAGTTCCTGCAACTTCACC 111

R GCTCCGCTCTGTTCTCACTAT R TGCTACAGCATACATGGAAAGC

	Ⅰ. INTRODUCTION
	1.1 Background
	1.2 Motivation and Objectives
	1.3 Structure of thesis

	Ⅱ. REALTED WORK
	2.1 Batch-style primer design method
	2.2 Web-based primer design method

	Ⅲ. MRPRIMER: Batch-style primer design method
	3.1 Overview
	3.2 MRPrimer algorithm
	3.2.1 Step1:.Candidate primer generation round
	3.2.2 Step2: Single filtering round
	3.2.3 Step3: 5’ cross-hybridization filtering round
	3.2.4 Step4:.General cross-hybridization filtering round
	3.2.5 Step5: Duplicate removing round
	3.2.6 Step6: Pair filtering round
	3.2.7 Step7. Ranking round

	3.3 Experiments for biological validation
	3.3.1 Data and methods
	3.3.2 qPCR analysis
	3.3.3 Comparative analysis

	3.4 Experiments for computational performance
	3.4.1Data and setup
	3.4.2 Results of the completeness and effective ranking system
	3.4.3 Results of the coverage and specificity
	3.4.4 Results of the computational efficiency and scalability

	Ⅳ. MRPRIMERW: Web-based primer design
	4.1 Overview
	4.2 Offline processing part
	4.3 Index building part
	4.4 Online processing part
	4.5 Web interface

	Ⅴ. CONCLUSIONS
	REFERENCES

<startpage>16
Ⅰ. INTRODUCTION 1
 1.1 Background 1
 1.2 Motivation and Objectives 7
 1.3 Structure of thesis 10
Ⅱ. REALTED WORK 12
 2.1 Batch-style primer design method 12
 2.2 Web-based primer design method 14
Ⅲ. MRPRIMER: Batch-style primer design method 17
 3.1 Overview 17
 3.2 MRPrimer algorithm 21
 3.2.1 Step1:.Candidate primer generation round 21
 3.2.2 Step2: Single filtering round 23
 3.2.3 Step3: 5’ cross-hybridization filtering round 25
 3.2.4 Step4:.General cross-hybridization filtering round 27
 3.2.5 Step5: Duplicate removing round 32
 3.2.6 Step6: Pair filtering round 33
 3.2.7 Step7. Ranking round 36
 3.3 Experiments for biological validation 38
 3.3.1 Data and methods 38
 3.3.2 qPCR analysis 42
 3.3.3 Comparative analysis 44
 3.4 Experiments for computational performance 46
 3.4.1Data and setup 46
 3.4.2 Results of the completeness and effective ranking system 46
 3.4.3 Results of the coverage and specificity 49
 3.4.4 Results of the computational efficiency and scalability 52
Ⅳ. MRPRIMERW: Web-based primer design method
 4.1 Overview 55
 4.2 Offline processing part 57
 4.3 Index building part 62
 4.4 Online processing part 66
 4.5 Web interface 70
Ⅴ. CONCLUSIONS 76
REFERENCES 80
</body>

