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ABSTRACT 

Primer design is a fundamental technique that is widely used for polymerase chain 

reaction (PCR). Although many methods have been proposed for primer design, they require 

a great deal of manual effort to generate feasible and valid primers, including homology 

tests on off-target sequences using BLAST-like tools. That approach is inconvenient for 

many target sequences of quantitative PCR (qPCR) due to considering the same stringent 

and allele-invariant constraints. In this dissertation, we propose an entirely new method that 

overcomes these drawbacks.  

In the first part of this dissertation, we propose the method called MRPrimer that can 

design all feasible and valid primer pairs existing in a DNA database at once, while simul-

taneously checking a multitude of filtering constraints and validating primer specificity. 

Furthermore, MRPrimer suggests the best primer pair for each target sequence, based on a 

ranking method. Through qPCR analysis using 343 primer pairs and the corresponding se-

quencing and comparative analyses, we showed that the primer pairs designed by MRPrimer 

are very stable and effective for qPCR. In addition, MRPrimer is computationally efficient 

and scalable, and therefore useful for quickly constructing an entire collection of feasible 

and valid primers for frequently updated databases like RefSeq. Furthermore, we suggest 

that MRPrimer can be utilized conveniently for experiments requiring primer design, espe-

cially real-time qPCR. 
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Existing web servers for primer design have major drawbacks, including requiring the 

use of BLAST-like tools for homology tests, lack of support for ranking of primers, TaqMan 

probes, and simultaneous design of primers against multiple targets. Due to the large-scale 

computational overhead, the few web servers supporting homology tests use heuristic ap-

proaches or perform homology tests within a limited scope. The primer pairs designed by 

MRPrimer are very stable and effective in qPCR experiments. However, although 

MRPrimer can design very high-quality primers, routine use is inconvenient because it runs 

on a cluster of computers and requires several hours of runtime when the filtering constraints 

are adjusted. 

In the second part of this dissertation, we propose MRPrimerW, the online version of 

MRPrimer, allows users to design the best primers quickly in a web interface, without re-

quiring a MapReduce cluster or a long computation, as in Google’s search system. It per-

forms complete homology testing, supports batch design of primers for multi-target qPCR 

experiments, supports design of TaqMan probes, and ranks the resulting primers to return 

the top-1 best primers to the user. To ensure high accuracy, we adopted the core algorithm 

of MRPrimer, but completely redesigned it to allow users to receive query results quickly 

in a web interface, without requiring a MapReduce cluster or a long computation. 

MRPrimerW provides primer design services and a complete set of 341,963,135 in-silico 

validated primers covering 99% of human and mouse genes. 

In summary, we have proposed a new method for primer design that overcomes most 

of drawbacks of existing methods. For an entire DNA database, we have proposed 

MRPrimer that can design all possible feasible and valid primer pairs through simultane-

ously checking a multitude of filtering constraints and validating primer specificity. For user 
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query from web interface, we have proposed MRPrimerW that performs complete homol-

ogy tests, supports batch designing for qPCR, supports TaqMan probe design, and supports 

ranking of primers. We believe that the proposed methods will be contribute to increasing 

the efficiency and specificity of experiments involving PCR.   

 

 

Keywords: MapReduce, primer design, qPCR, homology test 
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I. INTRODUCTION 
 

1.1 Background 

A primer is a short, single-stranded DNA molecule that serves as a starting point for DNA 

synthesis. DNA primers are widely used in many biological and medical laboratory 

techniques that involve DNA polymerase, such as DNA sequencing and polymerase chain 

reaction (PCR, Figure 1.1).  

Figure 1.1. Polymerase chain reaction. 

5’

5’

3’

3’

Target 
sequence

5’

3’ 5’

3’

1. Denaturation:
To separate DNA 
strands

Temperature( )947255

3’5’

3’ 5’

2. Annealing:
To hydrogen bond 
primer with ends of 
target sequence

5’

3’

5’

3’

Primer

5’

3’ 5’

3’

3. Extension:
To add nucleotides 
to the 3’ end of 
each primer

5’

3’ 5’

3’



- 2 - 

 

PCR was developed in 1983 by Kary Mullis, who was awarded the Nobel Prize in 

Chemistry in 1993. PCR amplifies a target sequence of DNA across several orders of 

magnitude, to generate thousands to millions of copies of the target sequences. Inputs are 

target sequences and a pairs of primers, will be explained later. Then output will be 

amplified target sequences. Figure 1.1 shows steps of PCR procedure; each cycle consists 

of three steps. First, heat up 94 degree to separate two strands of target sequence into one. 

Then cool down 55 degree to allow annealing of primers complementary to the target. 

Prime is a strand of nucleic acid that servers as starting point of PCR. If the primer matches 

with target, in the final step, primer can extend in 5’ to 3’ direction heating up 72 degree. 

Repeating the cycles, in cycle 2, get 4 molecules matched with target sequences. In the 

same manner, able to obtain 8 molecules in cycle 3. Eventually in cycle 35, 34 billion 

molecules can be observed (Figure 1.2). 

 

As a standard laboratory technique for fast mass duplication of specific DNA 

sequences, PCR with suitable primers is used in a wide variety of applications, including 

phylogenetic analysis of DNA from different species to detect and identify unknown and 

distantly related gene sequences [1-3], genetic testing of DNA samples to detect the 

1st cycle

2nd cycle

3rd cycle

4th cycle

35th cycle
Target

(template)

Figure 1.2. PCR amplification 
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presence of disease-associated genetic mutations [4], the study of infectious diseases such 

as HIV and antibiotic-resistant microorganisms [4], PCR-based genetic fingerprinting and 

parental testing in forensics [4], DNA cloning [5], and microsatellite detection using 

molecular markers in population biology [6]. In addition, quantitative PCR (qPCR), also 

known as real-time PCR, has been widely used to confirm the results of high-throughput 

experiments by validating expression changes of selected genes [7]. The success of PCR-

based experiments, including qPCR analysis, depends strongly on the design of suitable 

primers against the target sequence(s). 

When designing primers, we must simultaneously consider many kinds of 

constraints, including primer length, melting temperature, GC content, self-

complementarity, continuous residues, free-energy value, differences in length and melting 

temperature between members of primer pairs, product size, and pair-complementarity [8]. 

Table 1.1 shows the each constraints definitions and feasible range of values for general 

qPCR experiments. Manual design of primers is time-consuming and may easily yield 

incorrect results; therefore, automatic methods that can check the aforementioned single 

and pair filtering constraints are preferred [9]. Additional important constraints that should 

be evaluated are homology tests, i.e., whether the designed primers can only amplify the 

target sequence(s) rather than off-target sequences; such tests usually require an additional 

BLAST-like tool. Figure 1.3 figure shows the examples which a primer amplifies intended 

target or unintended target. All matches primer and intended targets is okay. Primer with 5’ 

end mismatch and identical rest of residues can be amplified unintended targets. Mismatch 

in middle of primer and target also can be amplified unintended targets. Lastly, mismatch 

on 3’ end cannot make annealing, so not consider. Fast automatic design of high-quality 
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primers that satisfy both filtering constraints and homology tests remains a challenge that 

has not yet been completely solved.  

Table 1.1 Constraints definition and feasible range of values. 

 Parameter Definitions Value 

Each primer 

primer length Primer Length 19~23 bp 

melting temperature (TM) Primer melting temperature (nearest 
neighbor thermodynamic model) 60~63℃ 

GC content % of G and C 35~65% 

self-complementarity Number of primer bases annealing 
to itself < 5-mer 

3’ self-complementarity Number of primer 3’ bases 
annealing to itself < 4-mer  

Contiguous residue Length of a mononucleotide repeat, 
for example AAAAAA < 6-mer 

Gibbs free energy (∆G) Stability for the last five 3' bases of 
primer ≥ -9 kcal/mol 

Primer pair 

length difference Length difference of pair primers ≤ 3-mer 

TM difference Melting temperature difference of 
pair primers ≤ 5℃ 

product size Acceptable size of PCR product 
produced by reaction 100~250 bp 

pair-complementarity 
Number of bases of forward primer 
to bind to the reverse primer, and 

vice versa 
< 9-mer 

3’ pair-complementarity 
Number of bases of the 3' end 

forward primer to bind to the 3' end 
reverse primer, and vice versa 

< 4-mer 
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Furthermore, if we want to design a large number of primers for qPCR in a short 

time that satisfy the same set of filtering constraints (e.g., similar product sizes), the 

problem becomes much more difficult. For qPCR experiments, in addition to the above 

SYBR Green primers, TaqMan probes are also commonly used to detect products, and they 

can significantly increase the specificity of detection; however, this requires extreme care 

in the design of both probes and primers to ensure they satisfy both the filtering constraints 

and the homology tests [10]. 

The existing methods have the following four fundamental problems or drawbacks.  

First, the existing methods for a single target sequence do not support both 

specification of abundant filtering constraints and homology testing on off-target 

5’ 3’

5’

3’

5’
3’

5’ 3’

Amplified 

Amplified 

Amplified 

Not Amplified 

Intended 
target 

Unintended 
target 

Unintended 
target 

Unintended 
target 

Figure 1.3. An examples which a primer amplifies intended target or unintended target. 
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sequences. In terms of computation, it is a non-trivial problem to support both in a 

combined manner because this approach typically requires complex and large-scale join 

computation between a large number of candidate primer pairs designed from each target 

sequence, as well as a huge number of off-target sequences. Homology tests for every 

candidate primer against the entire sequence database requires 9 quintillion comparisons. 

Accordingly, users usually use a tool chain of both approaches with some human 

intervention, but such an approach cannot yield complete results.  

Second, the existing methods for a single target sequence only focus on designing 

primers for a specific target sequence; therefore, they cannot be easily used for qPCR, 

which requires a large number of primer pairs to satisfy the same stringent and allele-

invariant constraints (e.g., very similar product sizes) across target sequences. To alleviate 

this issue, PrimerBank [7, 8] was built and updated over the past several years; this 

database contains 248,578 primer pairs designed from 17,076 human and 18,086 mouse 

genes following similar constraints.  

Third, existing methods cannot find all possible primers completely, especially for 

multiple target sequences. This deficiency is mainly due to the first step, i.e., multiple 

sequence alignment (MSA). The complexity of optimal MSA is inherently NP-complete 

[11], and so finding an optimal alignment is computationally infeasible for more than a 

few sequences. Most tools for MSA (e.g., CLUSTALW) [12] are heuristic; therefore, 

primers designed based on MSA results are also incomplete. Moreover, although we could 

compute the optimal MSA for a given set of sequences, it would be hard to find all possible 

primers only with a single fixed alignment because some primers might exist in conserved 

regions of non-optimal alignments. Methods not based on MSA, like HYDEN, are also 
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heuristic, and therefore cannot find all primers. HYDEN also has the serious drawback 

that it cannot change primer constraints freely [13]. Overall, the existing methods tend to 

miss a large proportion of the feasible primers for given target sequences, even when such 

primers actually exist.  

Fourth, the existing methods for multiple target sequences only focus on finding 

degenerate primers. Degenerate primer is a set of mixture of similar, but not identical 

primers. With a degenerate primer, multiple target sequences can be amplified. Degenerate 

primers inherently have a trade-off between degeneracy and coverage. In general, we 

cannot increase the degeneracy of primer to a high value, since using high degenerate 

primers would greatly reduce the specificity of the PCR amplification [14, 15]. In addition, 

there have recently been some studies saying that degenerate primers are not quite effective 

[16-18]. The degenerate primers could introduce a level of bias into the phylogenetic study, 

and so the profiles using them may not accurately represent the coverage of community 

[16]. The non-degenerate primers also could obtain the same quality of taxonomic 

coverage as the previously designed degenerate primers do [17]. Using non-degenerate 

primer, the PCR specificity has been further increased [19]. From those previous studies, 

we can say that for multiple target sequences, non-degenerate primers would be better than 

the degenerate ones, if both have the same coverage. 

 

1.2 Motivation and objectives 

In this dissertation, we propose an entirely new method called MRPrimer 

(http://MRPrimer.com) that overcomes most of the drawbacks of existing methods. For a 
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given set of filtering constraints and a given sequence database (e.g., human gene DNA 

sequences), the proposed method designs all feasible primers that satisfy the constraints 

while validating their specificity in one sitting. 

It finds not only all primers that can amplify a specific single target sequence, but 

also all primers that can amplify specific multiple target sequences. It neither relies on 

MSA nor heuristics; instead, it simply finds every possible non-degenerate primer, without 

missing any feasible or valid primer in the given sequence database, in a single execution.  

Consequently, it can design a tremendous number of feasible and valid primer 

pairs, e.g., about 63 million pairs from human genes and 84 million pairs from mouse 

genes in the consensus coding sequence (CCDS) database 

(http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and show very high coverage 

ratios, 95% for human and 96% for mouse, for the same database.  

For realizing the above desirable features, MRPrimer follows a fairly complicated 

but parsimonious flow of computation based on the MapReduce framework [20]. The 

overall flow of MRPrimer is composed of a total of seven steps. Here, each step is a 

carefully designed MapReduce algorithm.  

In addition to designing all feasible and valid primer pairs, while simultaneously 

checking a multitude of filtering constraints and validating primer specificity, MRPrimer 

suggests the best primer pair for each target sequence, based on a ranking method 

performed in its seventh step (i.e., the final step). Consequently, users only need to use the 

best primer pair(s) for target sequence(s) for their experiments.  

In addition, the flow of MRPrimer is highly efficient and scalable in terms of 
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computation, and so can construct a collection of all primer pairs corresponding to genome-

scale data within a few hours using only a small cluster of computers. Therefore, 

MRPrimer is useful for quickly constructing an entire collection of feasible and valid 

primers for frequently updated databases like RefSeq.  

We explained the MRPrimer method in more detail and showed its results in 

biological experiments. Although MRPrimer can design primers for multiple target 

sequences, in this paper we focus on qPCR experiments using primers for single target 

sequences. Especially, we demonstrated the results of qPCR analysis using 343 primer 

pairs and the corresponding sequencing and comparative analyses for validating the 

stability and effectiveness of MRPrimer for qPCR. 

In addition, we describe a new web-based method, MRPrimerW 

(http://MRPrimerW.com), for batch design of primers for qPCR experiments. This tool 

checks filtering constraints, performs rigorous homology testing against a whole genome 

database, and ranks the resultant primer pairs according to their penalty scores to pick the 

best one for each target sequence. MRPrimerW supports the design of not only SYBR 

Green primers, but also TaqMap probes.  

MRPrimerW is an online processing method based on our previously proposed 

offline processing method MRPrimer, which returns all feasible and valid primer pairs for 

a DNA database at once. MRPrimer performs a fairly complex, large-scale computation 

based on the MapReduce framework, resulting in design of very high-quality primers. 

Through qPCR analysis using 343 primer pairs and corresponding sequencing and 

comparative analyses, we showed that the primer pairs designed by MRPrimer are very 

stable and effective in qPCR experiments. However, although MRPrimer can design very 
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high-quality primers, routine use is inconvenient because it runs on a cluster of computers 

and requires several hours of runtime when the filtering constraints are adjusted. 

MRPrimerW solved this problem completely. On the MRPrimerW website, users can 

rapidly design primers of the same high quality without using their own computer cluster, 

typically within a minute, while instantly and freely adjusting filtering constraints.  

To achieve this level of performance, we adopted an approach based on Google’s 

search system. In particular, we reorganized the complex MRPrimer algorithm, which 

consists of seven MapReduce rounds, into two parts: offline processing and online 

processing. We built index structures using the results of offline processing and loaded 

them into the MRPrimerW web server. Using these indices, the online processing stage can 

quickly design high-quality primers against a user-specified target, as in a Google keyword 

search. 

 

1.3 Structure of thesis 

The structure of this dissertation is organized as follows. In Chapter II, we introduced 

related works. The batch-style methods for primer design are presented in Section 2.1. In 

the following Section 2.2, we discuss websites for primer design and limitations. We 

propose the MRPrimer method in Chapter III. The overview of MRPrimer method is 

characterized in Section 3.1. Then, we explain details of seven steps of MRPrimer in 

Section 3.2. Furthermore, biological validation and computational evaluation are presented 

in Section 3.3 and 3.4 respectively. In Chapter IV, we propose MRPrimerW. The overview 

of MRPrimerW method is discussed in Section 4.1. In the following Section 4.2 through 
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Section 4.4, we describe details of MRPrimerW. Section 4.5 presents the MRPrimerW 

input and output interface. Finally, conclusions are drawn in Chapter V. 
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II. RELATED WORK 
 

2.1  Batch-style primer design method 

The existing methods for primer design can be categorized into two groups, depending on 

whether we wish to specify a single target sequence or multiple target sequences.  

The major methods in the former group include Primer3Plus [21] and Primer-

BLAST [22]. The core algorithm of both methods is based on Primer3 [23]. Primer3 is the 

most widely used tool to design primer from a single DNA sequence. Primer3Plus, a web 

interface of Primer3, allows users to specify a series of filtering constraints that the primers 

must satisfy; however, it does not perform homology tests on off-target sequences, and 

therefore requires the user to perform time-consuming tests with a BLAST-like tool for 

each candidate primer pair. Unlike Primer3Plus, Primer-BLAST performs homology tests; 

however, it specifies only a few filtering constraints, which makes it difficult to design 

primers as precisely as desired.  

The major methods in the latter group include CODEHOP [1, 24], iCODEHOP 

[25], GeneFISHER/GeneFISHER2 [26, 27], HYDEN [14], FAS-DPD [15], DePiCt [28], 

Amplicon [29], and SCPrimer [30]. All of these methods design degenerate primers, which 

are actually mixtures of similar, but not identical primers. Most of them design primers by 

first aligning multiple target sequences to find conserved regions, and then designing 
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primer pairs over those conserved regions. For example, CODEHOP and iCODEHOP 

align target sequences with CLUSTALW [12] and design hybrid degenerate primers that 

contain a short 3’ degenerate core region of about ~11–12 bp and a longer 5’ consensus 

clamp region of ~18–25 bp. Figure 2.1 shows the example of multiple sequence alignment 

results of mouse olfactory receptor genes from chromosome 13 using CLUSTAL Omega 

[31] and primers designed from the alignment result using iCODEHOP. It showed 7 primer 

candidates. Among them forward primer A-4 has 96 degeneracy, and reverse primer A-25 

has 128 degeneracy. SCPrimer builds phylogenetic trees from aligned multiple sequences 

to identify candidate primers, and then performs a set-covering algorithm to determine the 

minimal set of primers required to amplify all members of the alignment. Some tools, such 

as HYDEN and DePiCt, do not rely on multiple sequence alignment for primer design, but 

still rely on heuristic techniques such as greedy hill climbing. 

 

 

Figure 2.1. An example of multiple sequence alignment results using CLUSTAL Omega and 
primers designed from the alignment result using iCODEHOP.  
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2.2 Web-based primer design method 

To aid in designing primers for PCR experiments, many websites have been developed, 

including Primer3Plus [21, 32], BatchPrimer3 [33], Primique [34], QuantPrime [35], 

primer-BLAST [22], and PrimerBank [7, 8]. Primer3Plus, a web interface of Primer3, is 

one of the most widely used tools; it allows users to specify a set of filtering constraints 

for a single target gene. BatchPrimer3, which adopts the Primer3 core algorithm, can 

design primers in batches for multiple target genes. However, neither server performs 

homology tests on off-target sequences, requiring users to perform time-consuming 

homology tests on each candidate primer pair using extrinsic alignment tools.  

Primique performs homology tests using BLAST in a limited scope, i.e., only on 

a small secondary set of off-target sequences uploaded by the user. Due to a high 

computation overhead of homology testing, the maximum size of this secondary database 

is limited to 10 MB, much smaller than a whole genome sequence database and therefore 

too small for the design of high-quality primers. QuantPrime performs homology testing 

for primer pairs designed by Primer3 against the whole transcriptome (mRNA) and 

genome database using BLAST. Both Primique and QuantPrime rely on a local alignment 

algorithm for homology testing. However, a heuristic approach based on local alignment 

cannot accurately count the number of mismatches between a primer and an off-target 

sequence [22]; as a result, these methods could yield suboptimally specific primer pairs. 

On the contrary, Primer-BLAST performs homology tests with a global alignment 

algorithm to ensure full primer-target alignment; accordingly, Primer-BLAST tends to 

return more target-specific primer pairs. The core algorithm of Primer-BLAST based on 

Primer3 has a function that can rank primers by their penalty scores. However, Primer-
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BLAST does not utilize this function to increase the chance of finding target-specific 

primers. Although Primer-BLAST exhibits better performance in terms of homology 

testing, it does not rank the designed primer pairs by their penalty scores, but ranks them 

by their specificity; moreover, it cannot support batch design for multi-target qPCR due to 

the large computational overhead required for more accurate homology tests.  

Some websites, including PrimerBank [7, 8], RTPrimerDB [36-38], and 

qPrimerDepot [39], simply search a database of pre-designed primers, rather than 

designing primers in real time in response to user queries. In particular, PrimerBank is one 

of the largest databases of primers built and updated over the past several years. Because 

the specificities of the primers of PrimerBank have been experimentally validated under 

uniform conditions, these primers are fairly effective in real PCR experiments. However, 

because PrimerBank relies on the pre-designed primers, it does not allow users to adjust 

the filtering constraints, which might be important in the context of qPCR experiments 

requiring a full set of primer pairs that satisfy the same constraints. A comparison of other 

existing tools is summarized in Table 2.1. 
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Table 2.1. Comparison among websites for primer design. 

Method Batch 
designing 

Filtering 
constraints 

Homology 
test 

Scoring 
(Ranking) 

TaqMan 
probes 

Primer3Plus  X O X O O 
BatchPrimer3  O O X O O 

Primique  O O △ O X 

QuantPrime  O O △ O X 

Primer-BLAST  X O O △a O 

PrimerBank  X X O X X 
O: fully supported  
△: partially supported  
X: not supported 
a Primer-BLAST ranks the designed primer pairs not by penalty scores, but by specificity 
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III. MRPRIMER: Batch-style primer design method 
 

3.1 Overview  

MapReduce 

MRPrimer is based on the MapReduce framework, whose dataflow is shown in Figure 3.1. 

One round of MapReduce consists of two user-defined functions, Map and Reduce. Here, 

Reduce is optional, and so can be omitted. The input data for a round is distributed over 

the disks of a cluster of computers. The partial data in each computer is processed by Map 

functions, shuffled via network, processed by Reduce functions, and then stored in disks, 

which is again fed to the Map functions of the next MapReduce round. The input/output 

format of data, i.e. signatures of Map and Reduce functions are formally defined as follows. 

Map: 〈k1, v1〉 → list(〈k2, v2〉) 

Reduce: 〈k2, list(v2)〉 → 〈k3, v3〉 

The Map function takes a pair of key and value, 〈k1, v1〉, as input (e.g. k1 is a sequence ID, 

and v1 is the sequence itself), and then returns a list of pairs 〈k2, v2〉 in a different domain, 

as output. The Reduce function takes a pair of key and list of values, i.e. 〈k2, list(v2)〉, as 

input, and then returns a pair of key and value, i.e. 〈k3, v3〉 in a different domain, as output. 

Here, we note that v2 in the output of Map becomes list(v2) in the input of Reduce, since 
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the shuffle process gathers all v2s having the same k2, which are scattered over computers, 

into a single list of v2 on a single computer. MRPrimer largely relies on that feature of 

MapReduce for performing large-scale and complicated computation efficiently. 

 

MRPrimer method 

The flow of MRPrimer consists of seven steps (Figure 3.2). Each step corresponds to a 

single MapReduce round, which again consists of Map and Reduce. The output of Reduce 

of each round becomes the input of Map of its next round. MRPrimer takes a DNA 

sequence database and a set of filtering constraints, as input, where the set of filtering 

constraints include at least seven constraints for single primer, five constraints for primer 

pair, and two kinds of validation constraints. Then, through seven steps, it returns all 

feasible and valid primer pairs existing in the database and satisfying all constraints set by 

users. 

The two kinds of validation constraints are 5’ cross-hybridization filtering 

constraint and general cross-hybridization filtering constraint. The former means the 

maximum number of mismatched residues at the 5’ end of a candidate primer that might 

Map Reduce

Map Reduce

Map Reduce

Map Reduce

Map Reduce

shuffle

Input
data

Output
data

Figure 3.1. Dataflow of the MapReduce framework. 
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cross-hybridize off-target sequences and so should be filtered out. For instance, we assume 

that a candidate primer is the same with any subsequence of an off-target sequence at the 

3’ end and has only two mismatches at the 5’ end. Then, that candidate primer might cross-

hybridize the off-target sequence due to the high similarity between both, especially at the 

3’ end, and thus we filter out the candidate primer. The default value for this constraint is 

four, i.e. the candidate primers of up to four mismatches at the 5’ end (and all matches at 

the 3’ end) are filtered out. That value can be changed by users. The latter refers to the 

maximum number of mismatched residues spread over a candidate primer. It is sufficient 

to use a smaller value for this constraint (e.g. two) than for the former constraint. Hereafter, 

we denote the latter value as #mismatch. 

Among seven steps of MRPrimer, an important ones are single primer filtering 

(Step 2), homology test (Step 3-5), and pair primer filtering (Step 7). Different from other 

steps, Step 3 (5’ cross-hybridization filtering round) and Step 4 (general cross-

hybridization filtering round) take two kinds inputs, Map1 and Map2, for binary join 

computation between both. Here, Map1 indicates a set of all possible subsequences from 

off-target sequences, and Map2 indicates a set of candidate primers passed from the 

previous step. The series of Steps 4 and 5 is repeatedly performed until checking the 

general cross-hybridization filtering constraint is finished. For instance, if #mismatch = 2, 

the series of steps is performed twice, i.e. at #mismatch=1 and at #mismatch=2. Although 

Step 6 takes a single input, it splits the input into two sets, a set of forward primers and a 

set of reverse primers, and then performs self-join computation between both. In Figure 

3.2, the boxes in the right part show the input/output formats of Map and Reduce of each 

MapReduce round. We explain the method used in each step in more detail. 
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.  

Candidate primer 
generation

Input sequences,
filtering constraints

5’ cross-hybridization 
filtering

Single filtering

Duplicate removing

General cross-
hybridization filtering

Output sorting

Pair filtering

Step1

Step2

Step3

Step4

Step5

Step7

Map/I: <k1:sid, v1:S>
Map/O: list(<k2:P, v2:sid⊕pos>) 
Reduce/I: <k2:P, list(v2:sid⊕pos)>
Reduce/O: <k3:P, v3:sidset⊕sid⊕pos> 

Map/I: <k1:P, v1:sidset⊕sid⊕pos>
Map/O: list(<k2:P, v2:sidset⊕sid⊕pos>)

Map1&2/I: <k1:P, v1:sidset⊕sid⊕pos>
Map1&2/O: list(<k2:sufP, 

v2:preP⊕sidset⊕sid⊕pos>) 
Reduce/I: <k2:sufP, 

list(v2:preP⊕sidset⊕sid⊕pos)>
Reduce/O: <k3:P, v3:sidset⊕sid⊕pos>

Map1&2/I: <k1:P, v1:sidset⊕sid⊕pos>
Map1&2/O: list(<k2:seed⊕seedpos⊕|P|, 

v2:sidset⊕sid⊕pos⊕preP⊕sufP>) 
Reduce/I: <k2:seed⊕seedpos⊕|P|, 

list(v2:sidset⊕sid⊕pos⊕preP⊕sufP)>
Reduce/O: <k3:sidset⊕P⊕sid⊕pos, v3:filtered>

Map/I: <k1:sidset⊕P⊕sid⊕pos, v2:filtered>
Map/O: list(<k2:sidset⊕P⊕sid⊕pos, 

v2:filtered>) 
Reduce/I: <k2:sidset⊕P⊕sid⊕pos,

list(v2:filtered)>
Reduce/O: <k3:sidset, v3:P⊕sid⊕pos>

Map/I: <k1:sidset, v1:P⊕sid⊕pos>
Map/O: list(<k2:sid, v2:sidset⊕P⊕pos>) 
Reduce/I: <k2:sid, list(v2:sidset⊕P⊕pos)>
Reduce/O: <k3:sidset⊕sid, v3:f.P⊕f.pos⊕r.P⊕r.pos> 

Map/I: <k1:sidset⊕sid, v1:f.P⊕f.pos⊕r.P⊕r.pos>
Map/O: list(<k2:<sidset, penalty>, 

v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos>)
Reduce/I: <k2:<sidset, penalty>,    

list(v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos)>
Reduce/O: <k3:sidset⊕f.P⊕r.P, v3:sid⊕f.pos⊕r.pos>

#iteration < 
#mismatch

No

Yes

Step6

#iteration 1

#Iteration++

Map1

Map1

Map2

Map2

binary
join

binary
join

self-join

Resulting primer pairs

Figure 3.2. Overall flow of the seven-step MRPrimer method. 



- 21 - 

 

3.2 MRPrimer algorithm 

3.2.1 Step 1: Candidate primer generation round 

The Map of this step takes a DNA database, which is a set of pairs of sequence ID, sid, and 

sequence data, S, 〈k1:sid, v1:S〉, and extracts all possible subsequences of the lengths 

between the minimum length, minL, and the maximum length, maxL. The lengths minL 

and maxL are specified by users as one of the single-primer filtering constraints. The Map 

also extracts their reverse complementary primers while tagging them with “reverse 

primers”. All outputs of Maps of all computers are shuffled and fed into each Reduce, 

which again transforms its input to the output format 〈k3:P , v3:sidset⊕sid⊕pos〉. Here, P is 

a candidate primer, sidset the set of sequence IDs where P occurs, sid a specific sequence 

ID where P occurs, and pos the position where P occurs within the sequence of sid. Three 

values of sidset, sid, and pos are concatenated with each other using a character operator 

⊕, and thus v3 becomes a single text value. For the operator ⊕, we can use any character 

that does not occur in sequence data (e.g. ‘-’). Figure 3.3 presents the Map and Reduce 

algorithms for Step 1.  
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Algorithm 1. Step1-Map
Input: <k1:sid, v1:S> // sid is the ID of a sequence S

Output: list(<k2:P, v2:sid⊕pos>)
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

for pos = 0 to |S|-minLen
for len = minLen to maxLen

if (pos + len ≤ |S|) then
P = S[pos:pos+len];         
emit(P, sid⊕pos); // concatenation ⊕
rP = reversePrimerGen(P); // reverse primer
P = reverseTag(rP); // reverse primer tag
emit(P, sid⊕pos+len); // concatenation ⊕
end if

end if
end for

end for

Algorithm 2. Step1-Reduce
Input: <k2:P, list(v2:sid⊕pos)>

Output: <k3:P, v3:sidset⊕sid⊕pos> // sidset is a                  
concatenation ⊗ of sids covered by P

1:
2:
3:
4:
5:
6:
7:

sidset ← ø;
foreach v in list(v2:sid⊕pos)

sidset ← sidset⊗v.sid;  // concatenation ⊗
end for
foreach v in list(v2:sid⊕pos)

emit(P, sidset⊕v.sid⊕v.pos);
end for

Figure 3.3. The Map and Reduce algorithms for Step 1. 
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3.2.2 Step 2: Single filtering round  

This step applies six filtering constraints for a single primer to the candidate primers passed 

from Step 1. The constraints include melting temperature, GC content, self-

complementarity, 3’-end self-complementarity, contiguous residue, and Gibbs free energy. 

Checking of a single filtering constraint can be defined as a binary function. The function 

length() checks if a primer satisfies the length constraint. It can be defined as  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ |𝑝𝑝| ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

, where p is a primer, minL is a minimum length, and maxL is a maximum length. The 

primer length was already checked in Step 1. The function temp() checks if a primer 

satisfies the melting temperature constraint, which can be defined as  

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑇𝑇𝑇𝑇(𝑝𝑝) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠  

, where Tm() is a function to calculate a melting temperature, minT is a minimum 

temperature, and maxT is a maximum temperature. There are various Tm() functions. To 

date the most accurate formula, the nearest neighbor method, which returns as below, can 

be used. 

𝑇𝑇𝑇𝑇(𝑝𝑝) =
∆𝐻𝐻˚ × 1000

∆𝑆𝑆˚ + 𝑅𝑅 × ln �𝐶𝐶𝑇𝑇4 �
− 273.15 

, where ∆H˚ is the enthalpy change, ∆S˚ is the entropy change, R is the gas constant 

1.9872cal/K-mol, and 𝐶𝐶𝑇𝑇  is the total molar strand concentration. For calculating the 

melting temperature and the value of free energy, we adopted the nearest-neighbor 

thermodynamic model [40], which is an improved model of the previous one [41] used in 
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Primer3Plus [21]. The function GCcontent() checks if a primer satisfies the GC content 

constraint. It can be defined as  

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐺𝐺𝐺𝐺(𝑝𝑝) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

, where GC(p) is the ratio of base-nucleic acid codes G and C in the primer p, minR is the 

minimum ratio, and maxR is the maximum ratio. In order to prevent hairpin formation, the 

function selfComplementary() checks if any sequences of a primer bind to anywhere its 

complementary sequence. It can be defined as  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 |𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝| < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  

The function repeatSeq() checks whether a primer containing contiguous residues, which 

can be defined as 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 |𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝)| ≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

, where repeat(p) is the length of contiguous sequences in primer p, and maxRS is the 

maximum length of allowed repetitive sequences. The function freeEnergy() evaluates the 

free energy (∆G) for annealing stability of the 3’end of primer to minimize nonspecific 

amplification. The function can be defined as  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑝𝑝, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ) ≥ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

, where deltaG(p, numBase) is the value of free energy determined by the most accurate 

nearest neighbor thermodynamics method [40], and bindLen is the specific length of the 

binding nucleic acid bases at the 3’-end of the primer p. All of these constraints can be 
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specified by users when starting the program. There is no Reduce function in this step. 

Figure 3.4 presents the Map and Reduce algorithms for Step 2.  

 

3.2.3 Step 3: 5’ cross-hybridization filtering round 

This step takes two inputs, Map1, which is the output of Step 1, i.e. all possible 

subsequences, and Map2, which is the output of Step 2, i.e. a set of candidate primers that 

passed all single filtering constraints. The purpose of this step is eliminating a candidate 

primer that violates 5’ cross-hybridization filtering constraint. While performing all pair 

join between two sets, if a primer from Map1 and a primer from Map2 are identical with 

each other except at the 5’ end, the primer from Map2 is filtered out. Figure 3.5 shows an 

example of this step, where the primer (b) is identical with the primer (a) except at the 5’ 

Algorithm 3. Step2-Map
Input: <k1:P, v1:sidset⊕sid⊕pos>
Output: list(<k2:P, v2:sidset⊕sid⊕pos>)
1:
2:
3:
4:
5:
6:

if (isReverse(P))
P = reverseUntag(P);

end if
if (singleFiltering(P)) then

emit (P, sidset⊕sid⊕pos); // concatenation ⊕
end if

Algorithm 4. Step2-Reduce
Input: <k2:P, list(v2:sidset⊕sid⊕pos)>

Output: <k3:sidset, v3:P⊕sid⊕pos> // sidset is a                  
concatenation ⊗ of sids covered by P

1:
2:
3:

foreach v in list(v2:sidset⊕sid⊕pos)
emit (sidset, P⊕v.sid⊕v.pos);

end for

Figure 3.4. The Map and Reduce algorithms for Step 2. 
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end, and so is filtered out. The primer (c) is similar with the primer (a), and so should be 

removed. However, it does not violate 5’ cross-hybridization constraint, which will be 

filtered out in the next step. Figure 3.6 illustrates the Map and Reduce algorithms for Step 

3. 

 

 

ATGCCTAGACGG … AATGATGACATTGCCAAGAG …  
(a)…

…

Map1

ATGGGAACACGGATC … AACAATGACATTGCCAAGAG … 
(b)

ATGCCCCCTTCGGA … AATGATGAGATTGCCAACTG …
(c)

ATGCGTATA … AATGAATGACATGTGCAGAC …
(d)   

Map2

violate 5’ cross-
hybridization, so 
filtered out

violate general cross-
hybridization,
but, passes

passes

Figure 3.5. An example of the 5’ cross-hybridization filtering step. 

Algorithm 5-1. Step3-Map1
Input: <k1:P, v1:sidset⊕sid⊕pos>  // Step1 output
Output: list(<k2:sufP, v2:preP⊕sidset⊕sid⊕pos>) 
Variable: prefixLen // length of 5’ subprimer
1:
2:
3:
4:

preP = round1Tag(preP);
preP += P[0:prefixLen-1];
subP = P[prefixLen:|P|];
emit(sufP, preP⊕sidset⊕sid⊕pos); // concatenation ⊕

Algorithm 5-2. Step3-Map2
Input: <k1:sidset, v1:P⊕sid⊕pos>  // Step2 output

Output: list(<k2:sufP, v2:preP⊕sidset⊕sid⊕pos>) 
Variable: prefixLen // length of 5’ subprimer
1:
2:
3:

subP = P[prefixLen:|P|];
prefix = P[0:prefixLen-1];
emit(sufP, preP⊕sidset⊕sid⊕pos); // concatenation ⊕
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3.2.4 Step 4: General cross-hybridization filtering round 

This step also takes two inputs, Map1, which is the output of Step 1, i.e. all possible 

subsequences, and Map2, which is the output of Step 3, i.e. a set of candidate primers that 

passed both the single filtering constraints and 5’ cross-hybridization filtering constraint. 

While performing all pair join between two sets, if a primer from Map1 and a primer from 

Map2 are identical except a given number of mismatches, i.e. #mismatch, the primer from 

Map2 is filtered out. 

Algorithm 6. Step3-Reduce
Input: <k2:sufP, list(v2:preP⊕sidset⊕sid⊕pos)> 
Output: <k3:P, v3:sidset⊕sid⊕pos>
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

R1, R2← ø;
foreach v in list(v2:preP⊕sidset⊕sid⊕pos)

preP⊕sidset⊕sid⊕pos ← v   // decomposition
if (!isRound1Tagged(prefix)

R2 ← preP⊕sidset⊕sid⊕pos;
else

prefix = round1Untag(prefix);
R1 ← preP⊕sidset⊕sid⊕pos;

end if
foreach r2 in R2

isFilter = false; 
foreach r1 in R1

if (r2.sidset != r1.sidset) then
isFilter = true; 
break;

end if 
end for
if (!isFilter)

P = r2.prefix + subP
emit (P, r2.sidset⊕r2.sid⊕r2.pos)

end if 
end for

Figure 3.6. The Map and Reduce algorithms of Step 3. 
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In order to compute this step efficiently, Map of this step splits each primer into 

multiple seeds and transforms the input 〈k1:P, v1:sidset⊕sid⊕pos〉 to the output list(〈k2:seed, 

v2: sidset⊕sid⊕pos⊕preP⊕sufP〉). According to the theorem, a sequence of length m with 

at most k mismatches must contain a seed exactly matched of at least m/(k+1) residues 

[42-44]. In the output format, preP means the left part of seed in a primer, and sufP means 

the right part of seed in the primer. So, the concatenation of preP, seed, and sufP is equal 

to the original P. All outputs of Maps are shuffled, and then all primers from Map1 and 

Map2 having the same seed are collected in the input of a specific Reduce. Thus, each 

Reduce can check general cross-hybridization filtering constraint on each set of primers 

having a common seed.  

Figure 3.7 shows an example of that checking. Compared to the primer (a) from 

Map1, the primers (c) and (d) from Map2 have two and ten mismatches, respectively. When 

checking a single mismatch, i.e. #mismatch=1 in Figure 3.7B(i), the seed size becomes 

nine, and there is no common seed among (a), (c), and (d). Thus, the primers (c) and (d) 

are not collected together with the primer (a), and do not get filtered out. However, in the 

next iteration, i.e. #mismatch=2 in Figure 3.7B(ii), the seed size becomes six, and there is 

the common seed between (a) and (c), and between (a) and (d). The primers (a) and (c) are 

collected in a specific Reduce, the number of mismatches in the preP and sufP parts in both 

primers is checked as two, and so the primer (c) is filtered out. Since the number of 

mismatches between the primers (a) and (d) is so high, the primer (d) passes. If a primer 

passes successfully, v3:filtered is set to true in the output of Reduce. Otherwise, it is set to 

false. Figure 3.8 shows the Map and Reduce algorithms for Step 4. 
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ATGCCTAGACGG … AATGATGACATTGCCAGCCA …  
(a)

ATGCCCCCTTCGGA … AATCATAGTGTCTACAACTC …  
(b)

(i) #mismatch=1 (seed size=9)

(a) AATGATGACATTGCCAGCCA

(c) AATAATGACATTGCCAGACA

(d) AATGATAGTGTCAACAACTC

(ii) #mismatch=2 (seed size=6)

(a) AATGATGACATTGCCAGCCA

(c) AATAATGACATTGCCAGACA

(d) AATGATAGTGTCAACAACTC

No common seed, 
so, both (c) and (d) pass

A

B

…
…

ATGGGAACACGGATC … AATAATGACATTGCCAGACA … 
(c)

ATGCCTCAACCCTTCGGA … AATGATAGTGTCAACAACTC …
(d)

Map1

Map2

Common seed, checked, 
(c) is filtered out, and (d) passes

Figure 3.7. An example of the general cross-hybridization filtering step. 
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Algorithm 7-1. Step4-Map1
Input: <k1:P, v1:sidset⊕sid⊕pos>  // Step1 output
Output: list(<k2:seed, v2:sidset⊕sid⊕pos⊕preP⊕sufP>) 
Variable: seedLen // length of non-overlapping subsequenes

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

sidset = round1Tag(sidset);
for index = 0 to |P|-seedLen+1

seed = P[index:index+seedLen-1];
if (isReverse(P))

seed = reverseTag(seed);
end if
preP = P[0:index-1];
sufP = P[index+seedLen:|P|];
emit (seed, sidset⊕sid⊕pos⊕preP⊕sufP);
index += seedLen;   

end for

Algorithm 7-2. Step4-Map2
Input: <k1:P, v1:sidset⊕sid⊕pos>  // Step3 output

Output: list(<k2:seed, v2:sidset⊕sid⊕pos⊕preP⊕sufP>) 
Variable: seedLen // length of non-overlapping subsequenes
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:

for index = 0 to |P|-seedLen+1
seed = P[index:index+seedLen-1];
if (isReverse(P))

seed = reverseTag(seed);
end if
preP = P[0:index-1];
sufP = P[index+seedLen:|P|];
emit (seed, sidset⊕sid⊕pos⊕preP⊕sufP);
index += seedLen; 

end for
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Algorithm 8. Step4-Reduce
Input: <k2:seed, list(v2:sidset⊕sid⊕pos⊕preP⊕sufP)>
Output: <k3:sidset⊕P⊕sid⊕pos, v3:filtered>
Variable: filterHashSet// HashSet storing false primer candidate

numMismatch // minimum number of mismatch bases 
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

R1, R3 ← ø;
foreach v in list(v2:sidset⊕sid⊕pos⊕preP⊕sufP)

sidset⊕sid⊕pos⊕preP⊕sufP ← v   // decomposition
if (isRound1Tagged(sidset))

sidset = round1Untag(sidset); 
R1 ← sidset⊕sid⊕pos⊕preP⊕sufP;

else
R3 ← sidset⊕sid⊕pos⊕preP⊕sufP;

end if
end for
foreach r3 in R3

P = r3.preP + r3.seed + r3.sufP;
if (isReverse(r3.seed))

P = reverseTag(P);
end if
if (!filterHashSet.contains(P))

filtered = false; 
foreach r1 in R1

if (r1.sid r3.sidset) then
if (countMismatch(r3.preP, r1.preP,   

r3.sufP, r1.sufP) numMismatch)
filtered = true;
break;

end if
end if

end for 
emit (r3.sidset⊕P⊕sid⊕r3.pos, filter);
if (filtered)

filterHashSet ← P;   
end if 

end if
end for

Figure 3.8. The Map and Reduce algorithms of Step4 
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3.2.5 Step 5: Duplicate removing round 

After Step 4, there still might be false-positive primers violating the general cross-

hybridization filtering constraint. For instance, in Figure 3.7, primer (d) passes when it is 

checked against primer (a). However, it should still be filtered out because it is very similar 

to another primer (b) in Map1. Because there are three seeds in primer (d) at the iteration 

of #mismatch = 2, a total of three output pairs, 〈k3, v3〉, are produced for (d) in the output 

of Reduce in Step 4. Among them, filtered of primer (d) checked with primer (a) is true, 

whereas filtered of primer (d) checked with primer (b) is false. They have the same 

sidset⊕P⊕sid⊕pos, and so are collected in Reduce in Step 5. If filtered of any of them is 

false, Reduce of Step 5 does not return the corresponding primer (e.g., primer (d)) as output, 

i.e., the primer is filtered out. The series of Steps 4 and 5 is performed repeatedly until 

checking of the general cross-hybridization filtering constraint is finished. Figure 3.9 

presents the Map and Reduce algorithms for Step 5. 

Algorithm 9. Step5-Map
Input: <k1:sidset⊕P⊕sid⊕pos, filtered>

Output: list(<k2:sidset⊕P⊕sid⊕pos, v2:filtered>) 

1: emit(sidset⊕P⊕sid⊕pos, filtered);

Algorithm 10. Step5-Reduce
Input: <k2:sidset⊕P⊕sid⊕pos, list(v2:filtered)>
Output: <k3:sidset, v3:P⊕sid⊕pos>
1:
2:
3:
4:
5:
6:
7:
8:
9:

falseCount = 0;
foreach v in list(v2:filtered)

if (!v)
falseCount ++; 

end if
end for
if (falseCount == 0)

emit (sidset, P⊕sid⊕pos);
end if

Figure 3.9. The Map and Reduce algorithms of Step 5. 
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3.2.6 Step 6: Pair filtering round 

In this step, Map first transforms the output of Step 5 into the format 〈k2:sid, 

list(v2:sideset⊕P⊕pos) 〉 such that all candidate primers belonging to the same sequence 

are collected in a specific Reduce. Then, Reduce splits the candidate primer of each group 

into two sets, a set of forward primers and a set of reverse primers, using tags addressed in 

Step 1, and performs self-join computation between them. In self-join computation, 

Reduce applies five filtering constraints to each candidate primer pair. These constraints 

include length difference, melting temperature difference, product size, pair-

complementarity, and 3’-end pair-complementarity. They also can be defined as a binary 

function as follows.  

The function lengthDiff() checks the difference between lengths of a forward 

primer fp and a reverse primer rp, which can be defined as 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑓𝑓𝑓𝑓, 𝑟𝑟𝑟𝑟, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎(|𝑓𝑓𝑓𝑓| − |𝑟𝑟𝑟𝑟|) ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  

Similarly, the function TmDiff() checks the difference between Tm values of a 

forward primer fp and a reverse primer rp, which can be defined as  

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑓𝑓𝑓𝑓, 𝑟𝑟𝑟𝑟, 𝑡𝑡𝑡𝑡𝑡𝑡) = � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇𝑇𝑇(𝑓𝑓𝑓𝑓) − 𝑇𝑇𝑇𝑇(𝑟𝑟𝑟𝑟)) ≤ 𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  

The function productSize() checks if the product(or amplicon) size is within a 

certain range, which can be defined as  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓𝑓𝑓, 𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

= � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑝𝑝𝑝𝑝𝑝𝑝(𝑟𝑟𝑟𝑟) − 𝑝𝑝𝑝𝑝𝑝𝑝(𝑓𝑓𝑓𝑓) + |𝑟𝑟𝑟𝑟| < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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, where pos(p) is the nucleotide position of the primer p in a sequence. The function 

complementary() checks if a forward primer is not the complement of a reverse primer, or 

vice versa, which can be defined as 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑓𝑓𝑓𝑓, 𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

= � 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖 |𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 3′𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟| < 𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  

They all can be specified by users when starting the program. In the output of 

Reduce, f.P means a forward primer, r.P means the corresponding reverse primer, f.pos 

means the position of f.P, and r.pos means the position of r.P (Figure 3.2). Figure 3.10 

shows the Map and Reduce algorithms for Step 6. 
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Algorithm 11. Step6-Map
Input: <k1:sidset, v1:P⊕sid⊕pos>
Output: list(<k2:sid, v2:sidset⊕P⊕pos>) 

1: emit(sid, sidset⊕P⊕pos);

Algorithm 12. Step6-Reduce
Input: <k2:sid, list(v2:sidset⊕P⊕pos)>
Output: <k3:sidset⊕sid, v3:f.P⊕f.pos⊕r.P⊕r.pos> 

// f is a forward primer and 
r is a reverse primer

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

fp, rp ← ø;
foreach v in list(v2:sidset⊕P⊕pos)

sidset⊕P⊕pos ← v   // decomposition
if (!isRvsPrimer(P))

fp ← sidset⊕P⊕pos;
else

P = reverseUntag(P); 
rp ← sidset⊕P⊕pos;

end if
foreach f in fp

foreach r in rp
if (f.pos < r.pos and

pairFiltering(f,r)) then
sidset ← f.sidset r.sidset;
emit (sidset⊕sid, f.P⊕f.pos⊕r.P⊕r.pos)

end if 
end for

end for

Figure 3.10. The Map and Reduce algorithms of Step 6. 
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3.2.7 Step 7: Ranking round 

The output of Step 6 is not convenient for users because it is unordered. Among millions 

of primer pairs, users might have difficulty in choosing a few. The primer pairs passed to 

Step 6 might not be equally effective even if they satisfy all the given constraints. Thus, 

the final step of MRPrimer, i.e., Step 7, determines their ranking by calculating a penalty 

score for each primer pair. The ranking is determined within a specific target sequence(s), 

and so users can easily pick the top-1 primer pair for each target sequence. The calculation 

of penalty scores follows the method of Primer3Plus [21], which adds penalty scores of 

seven constraints for single primers and five constraints for primer pairs. In general, for 

the constraints having a range (e.g., melting temperature), the median value has the lowest 

penalty. For the other constraints (e.g., self-complementarity), the smallest value, typically 

zero, has the lowest penalty. Each penalty score for each constraint is normalized between 

0 and 1. Primer pairs with low scores have high rank for the corresponding target sequence. 

After calculating a penalty score for each primer pair, Map of Step 7 emits 〈k2: 

sidset⊕penalty, v2: sid⊕f.P⊕f.pos⊕r.P⊕r.pos〉. Then, Reduce takes the pairs grouped by 

sidset, and at the same time ordered by penalty, which is possible through so-called 

secondary sorting provided by MapReduce. Finally, Reduce transforms those ordered 

primer pairs into the format 〈k3: sidset⊕f.P⊕r.P, v3: sid⊕f.pos⊕r.pos⊕penalty〉, which 

means that a primer pair, 〈f.P, r.P〉, for amplifying a set of sequences of sidset occurs at 

〈f.pos, r.pos〉 in sid. Figure 3.11 describes the Map and Reduce algorithms for Step 7. 
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Figure 3.11. The Map and Reduce algorithms of Step 7, Ranking. 

Algorithm 13. Step7-Map
Input: <k1:sidset⊕sid, v1:f.P⊕f.pos⊕r.P⊕r.pos>
Output: list(<k2:<sidset, penalty>, v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos>)
Variable: PrimerPenaltyWeight
1:

2:

penalty = PrimerPenaltyWeight *
(SinglePanalty (f.p) + SinglePanalty (r.p));

emit(<sidset, penalty>, sid⊕f.P⊕f.pos⊕r.P⊕r.pos);

Algorithm 16. Step7-Reduce
Input: <k2:<sidset, penalty>, list(v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos)>
Output: <k3:sidset⊕f.P⊕r.P, v3:sid⊕f.pos⊕r.pos>
1:
2:
3:

foreach v in list(v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos)
emit (sidset⊕f.P⊕r.P, sid⊕f.pos⊕r.pos);

end for

Algorithm 14. Step7-Partitioner
Input: <k2:<sidset, penalty>, v2:sid⊕f.P⊕f.pos⊕r.P⊕r.pos>
Output: PartitionID

Variable: numReduceTasks
1: return(sidset[0] % numReduceTasks);

Algorithm 15. Step7-KeyComparator
Input: <K1: <sidset, penalty>, k2: <sidset, penalty>>

Output: comparisonResult
1:
2:
3:
4:

comparisonResult = compareTo(k1.sidset, k2.sidset);
if (comparisonResult == 0)

return compareTo(k1.penalty, k2.penalty);
return comparisonResult;
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3.2 Experiments for biological validation 

3.3.1 Data and methods 

Validating the completeness and ranking method of MRPrimer 

To show the completeness and superiority of MRPrimer in terms of the number of primer 

pairs designed, we compare the results of MRPrimer with PrimerBank, which is one of the 

largest databases of primers that has been built and updated over the past several years [7, 

8, 45, 46]. PrimerBank uses the human and mouse genes databases of the NCBI RefSeq 

project [47-49]. There are multiple versions of the RefSeq database, specified by their 

release dates. Unfortunately, the version of the RefSeq database used for PrimerBank is 

out of date, and is therefore no longer available. Thus, we use the oldest version available 

for comparison because it is the version most similar to that used for PrimerBank. That 

version (released on 07/11/2007) contains a total of 22,942 human mRNA sequences and 

a total of 27,305 mouse mRNA sequences. For a fair comparison, we use the exact same 

set of filtering constraints as were used to construct PrimerBank [7]; these constraints are 

summarized in Table 3.1. 

 

 

 

 

 



- 39 - 

 

Table 3.1. The Summary of the constraints for filtering used in the PrimerBank. 

 Parameter Value 

Each primer 

primer length 19~23 bp 
melting temperature (TM) 60~63℃ 

GC content 35~65% 
self-complementarity < 5-mer 

3’ self-complementarity < 4-mer  
Contiguous residue < 6-mer 

Gibbs free energy (∆G) ≥ -9 kcal/mol 

Primer pair 

length difference ≤ 3-mer 
TM difference ≤ 5℃ 
product size 100~250 bp 

pair-complementarity < 9-mer 
3’ pair-complementarity < 4-mer 

 

In addition, to show the effectiveness of ranking method of MRPrimer, we 

extracted the validated primer pairs that specifically cover mouse olfactory receptor (OR) 

sequences from PrimerBank and analyzed them using the ranking method of MRPrimer. 

Among 27,305 mouse mRNA sequences of the RefSeq database, there are 990 mouse OR 

genes. We searched for the NCBI Gene IDs of those genes in the PrimerBank 

(http://pga.mgh.harvard.edu/primerbank/index.html) and collected 778 validated primer 

pairs covering 768 mouse OR genes. MRPrimer can also find 772 out of 778 primer pairs, 

and so we can rank those 772 primer pairs, which are common between PrimerBank and 

MRPrimer, according to the ranking method of MRPrimer. The ranking results revealed 

the rationality of our ranking method. Six primer pairs were not found by MRPrimer 

because the six sequences containing them are not present in the version of the RefSeq 

database (released on 07/11/2007) used for our experiments. 
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qPCR analysis of MRPrimer 

To validate the quality of primer pairs designed by MRPrimer, we performed qPCR 

experiments using the mouse CCDS database rather than the RefSeq database 

(http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi). It provides a gold standard for 

coding-region locations [50, 51]. In the CCDS datasets, there are currently a total of 29,064 

human gene DNA sequences (the last update was 29/11/2013) and a total of 23,874 mouse 

gene DNA sequences (the last update was 07/04/2014). We primarily used mouse genes 

for our qPCR analysis. 

We randomly selected 96 OR genes and 99 non-OR genes (including pheromone 

receptors, G proteins, ion channels, signaling molecules, etc.). Thus, we performed a total 

of 195 qPCR experiments. For each gene, we selected the top-1 primer pair for that gene, 

according to the ranking method of MRPrimer. We summarize the forward and backward 

primers designed and selected automatically by MRPrimer in Appendix Tables S1 and S2. 

We followed the MIQE guidelines [52] for the qPCR experiments. 

 

Comparative analysis between MRPrimer and PrimerBank 

To demonstrate the effectiveness and superiority of MRPrimer for qPCR, we performed 

both qPCR and sequencing analyses and compared the results with those obtained using 

PrimerBank. Because the primers of both MRPrimer and PrimerBank easily succeeded in 

amplifying normal target sequences, we compared their performance using “difficult” 

target sequences, i.e., OR genes that have many homologous regions and, therefore, often 

fail in qPCR experiments [45]. OR genes form the largest multigene family in mammals 
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[53]. These genes share many homologous regions; consequently, it is difficult to design 

valid primer pairs for them [45]. A number of studies reported the expression of ORs in 

olfactory as well as non-olfactory tissues [54, 55]. For such studies, qPCR using valid 

primer pairs is an effective and simple way to detect OR genes [54, 55]. 

To prepare the mouse OR genes, we searched for the NCBI Gene IDs of the mouse 

OR genes from CCDS database in PrimerBank and collected 860 validated primer pairs, 

each of which amplifies a single OR gene. We first checked their specificity using Primer-

BLAST. Among the 860 primer pairs, 599 primer pairs were of high quality (i.e., high 

specificity). These 599 primer pairs were 100% matches to their intended expected target 

genes, and the possibility of matching an off-target gene was no more than 80%. Among 

the remaining 261 primer pairs, 96 were 100% matched with the expected target genes, 

and the possibility of matching an off-target gene was no more than 85%. These 695 (599 

plus 96) primer pairs are considered highly specific for their target genes. Among the 

remaining primer pairs, 75 primer pairs were 95% matched, and 69 primer pairs were 90% 

matched to both target and off-target genes. These 144 (75 plus 69) primer pairs can 

amplify target genes along with off-target genes (i.e., wrong target or multi-target). We 

selected about 6% of the pairs corresponding to the 695 highly specific genes (i.e., 40 

primer pairs) and about 24% of the pairs corresponding to the 144 less specific genes (i.e., 

34 primer pairs). Next, we selected 74 primer pairs from the results of MRPrimer for the 

same 74 genes. The selection ratios differed (6% vs. 24%) because the 695 genes are 

relatively easy to amplify, whereas the 144 genes are relatively hard. We also note that the 

74 OR genes used for this experiment are distinct from the 96 OR genes in the above 

experiment; furthermore, they represent harder target sequences. We summarize the 
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forward and backward primers for the 74 genes of MRPrimer and PrimerBank used in our 

experiments (Appendix Table S3).  

To identify amplified samples, we compared the sequences of qPCR amplicons 

with the expected gene sequences using NCBI BLASTn 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and checked the percent identity between the two 

sequences. For BLAST analysis, we applied the following criteria, used in a previous study 

[45]. If more than 50% of the length of an expected PCR product sequence matches with 

only the expected target sequence, multiple genes, or another gene with 100% identity 

between the sequences, it is considered to be target-specific, multiple-target, or wrong 

target, respectively. Finally, if a qPCR product sequence does not match with at least 50% 

of the length of its expected target sequence, it is considered to be a sequencing failure. 

 

3.3.2 qPCR analysis 

For validation of MRPrimer, we performed qPCR using the top-1 primer pairs designed 

and selected automatically by MRPrimer, covering 195 genes randomly selected from 

among the mouse CCDS database (Appendix Table S1 and S2). The qPCR results reveal 

that all primer pairs designed by MRPrimer successfully amplified the corresponding target 

genes (Figures 3.12 and 3.13). Each of the qPCR melting curves clearly yielded a single 

peak, suggesting that each qPCR product is a single product without off-target gene 

amplification. We confirmed the qPCR products by sequencing analysis (data not shown), 

indicating that MRPrimer specifically amplified the corresponding target genes. 



- 43 - 

 

 

A

B 0.04

0.03

0.02

0.01

-d
F/

dT

66 70 74 78 82 86 90 94
Temperature (°C) 

6.000

4.800

3.600

1.200

4 8 12 16 20 24 28 32
Cycle

Fl
uo

re
sc

en
ce

2.400

36 40 44

Figure 3.12. Verification of 99 primer pairs for non-OR genes using qPCR analysis. 
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Figure 3.13. Verification of 96 primer pairs for OR genes using qPCR analysis. 
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3.3.3 Comparative analysis  

For this comparative analysis, MRPrimer yielded similar results in qPCR analysis, and 

better results in sequencing analysis, relative to PrimerBank. Before starting the 

experiments, we analyzed primer sets (see Section 3.3.1). The selected 74 primer sets 

(Appendix Table S3) from MRPrimer and PrimerBank were used to perform qPCR. The 

result (Figure 3.14) shows that both MRPrimer and PrimerBank primers successfully 

amplified even the difficult target sequences like OR genes. 

 

However, the sequencing analysis yielded somewhat different results. We 

examined all PCR products by sequencing and compared the qPCR amplicon sequences to 

the expected gene sequences by NCBI BLASTn. Figure 3.15 shows the sequencing results. 

Among the MRPrimer 74 qPCR amplicons, 64 samples (86.48%) were target-specific, and 

these samples were 100% matched to the only expected target. Four samples (5.4%) were 
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Figure 3.14. Comparative analysis between MRPrimer and PrimerBank using qPCR analysis. 
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matched to both the expected target and an unexpected target at the same time (multi-

target). Only one sample was matched to another gene (wrong target). The remaining five 

samples (6.75%) did not satisfy our criteria for sequencing analysis. On the other hand, 

among the 74 PrimerBank samples, 57 (77.02%) were target gene specific, 9 (12.16%) 

were matched to multiple genes (multi-target), 1 was matched to another gene (wrong 

target), and 7 (9.45%) did not satisfy our criteria for sequencing analysis. Based on these 

results, we confirmed that a single qPCR peak does not indicate the amplification of a 

specific single target. Because we intentionally selected difficult target sequences for this 

comparative analysis, the target-specific ratio of 86.48% does not indicate the overall 

effectiveness of MRPrimer. These findings suggest that primers designed by MRPrimer 

were more effective than PrimerBank primers. 
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Figure 3.15. Comparative analysis between MRPrimer and PrimerBank using sequencing 
analysis. 
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3.3 Experiments for computational performance 

3.4.1 Data and setup 

To demonstrate the computational efficiency and scalability of MRPrimer, we measured 

the elapsed time required for design of complete sets of validated primer pairs for the 

human and mouse CCDS databases. We conducted most of the computational experiments 

on a MapReduce cluster of one master node and 40 slave nodes, in which each node 

consisted of two Intel Xeon 8-core 2.6 GHz CPUs with 64 GB memory and a 6 TB HDD. 

Those nodes are connected with each other via a 1 Gbps network. All computing nodes 

were running on CentOS Linux version 6.4 and Apache Hadoop version 1.2.1. For the 

Hadoop configuration parameters, we set the number of Map per node to 4, the number of 

Reduce per node to 4, the Java heap memory size for Map to 8 GB, and the Java heap 

memory size for Reduce to 16 GB. 

 

3.4.2 Result of completeness and effective ranking system  

In terms of the number of primer pairs designed, MRPrimer found a much larger 

number of feasible and valid primer pairs than PrimerBank under the same filtering 

constraints (Table 3.1). Table 3.2 shows the number of primer pairs designed by MRPrimer 

and the number of genes covered by those primer pairs, relative to the corresponding values 

for PrimerBank. In Table 3.2, we show that PrimerBank yields a coverage ratio of 94% for 

their RefSeq database, which is not available now. In terms of the version of the RefSeq 

database released on 07/11/2007, which is the available version most similar to that used 

for PrimerBank, the coverage ratio decreases to 78% for human genes and 69% for mouse 
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genes. The size of the RefSeq database is increasing continuously, and the latest version 

(released on 03/02/15) contains a total of 99,722 sequences for human and 128,898 

sequences for mouse. However, the number of primer pairs in PrimerBank is fixed, and 

has not increased since 2012. Because PrimerBank consists of primers collected manually, 

it is extremely hard to update it according to the release of a new version of the RefSeq 

database. By contrast, MRPrimer is not a static collection, but a program that can generate 

a collection immediately when given a new version of a database. For the same RefSeq 

database, the coverage ratios for MRPrimer (88% and 81%) are much higher than those 

for PrimerBank (78% and 69%). In addition, for up-to-date human and mouse CCDS 

databases, MRPrimer exhibits the highest coverage ratios ever: 95% for human and 96% 

for mouse. These impressive ratios are mainly due to the high quality of the CCDS database. 

Table 3.2. The statistics of PrimerBank and the results of MRPrimer. 

N/A indicates data sets that are not available. 
a Statistics are from PrimerBank [7]. 
b Statistics are the same as with a , but the data set is the RefSeq database (released on 07/11/07), the available data set most 
similar to the one used for a. 
c The data set and filtering constraints (Table 3.1) are the same as in b. Statistics are from MRPrimer. 
d The data set is the CCDS database, and the filtering constraints are the same as in b. Statistics are from MRPrimer. 

 

MRPrimer yielded effective ranking results for a large number of the resultant 

primer pairs. We extracted a total of 772 common validated primer pairs that specifically 

cover mouse OR sequences and analyzed them using the ranking method of MRPrimer. 

  PrimerBanka PrimerBankb MRPrimerc  MRPrimerd 

Data sets Human 
N/A 

Mouse 
N/A 

Human 
22,942 

Mouse 
27,305 

Human 
22,942 

Mouse 
27,305  Human 

29,064 
Mouse 
23,889 

# of primer 
pairs 129,692 118,886 129,692 118,886 63,419,755 86,867,667  63,632,594 84,226,391 

# of genes  
covered 17,973 18,955 17,973 18,955 20,199 22,253  27,980 22,798 

Coverage 
ratio 94% 78% 69% 88% 81%  95% 96% 
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Figure 3.16A shows the relationship between ranks and penalty scores of those 772 primer 

pairs. MRPrimer calculates a penalty score for each primer pair and determines the ranking 

among primer pairs for a specific target sequence, as described in Step 7. Because there 

are different numbers of primer pairs for each target sequence, we normalized the ranks to 

between 0% and 100%, denoted as relative rank in the figure. Figure 3.16A shows the 

strong correlation between ranks and penalty scores. Primer pairs with small penalties have 

high rank (i.e., small %).  

Figure 3.16B shows three sets of filtering constraints. X is a relatively relaxed 

constraint, Y is the set of constraints used in PrimerBank, and Z is a relatively strict 

constraint. According to X, Y, and Z, the 772 primer pairs can also be categorized into the 

corresponding three groups designed by using X, Y, and Z (denoted as blue, red, and green 

dots, respectively). Although the authors of PrimerBank claimed that they used the Y 

constraints to construct PrimerBank, we observed that the primer pairs in PrimerBank did 

not strictly follow the Y constraints, but instead followed the X constraints, which are 

looser. Groups X, Y, and Z contain 737, 28, and 7 primer pairs, respectively. Some primer 

pairs (blue dots) exist in the area of Y or Z because a primer pair that satisfies all constraints 

except one (or a few) could have a low penalty score and a high rank. Along with this, we 

suggest that primer pairs following strict constraints have high ranks and small penalty 

scores without loss of generality. Because a primer pair with a low penalty score has a high 

chance of success in amplifying a target sequence [21], and MRPrimer returns the resultant 

primer pairs ordered by rank, users simply need to select the top-1 primer pair, i.e., the 

probably best primer pair. 
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3.4.3 Results of the coverage and specificity  

MRPrimer finds all possible primer pairs regardless of their coverages, that is not only all 

the primer pairs of coverage = 1, but also, all the primer pairs of coverage > 1. Due to the 

completeness and exactness of MRPrimer, it could find a primer pair having very high 

coverage. Figures 3.17A and 3.17B show the number of primer pairs and the number of 

unique genes covered by primer pairs, at each coverage for human and mouse CCDS data 

sets, respectively. MRPrimer could design a huge number of primer pairs of up to coverage 

= 25 for human CCDS data set and up to coverage = 20 for mouse CCDS data set. While 

considering the primer pairs of MRPrimer are not degenerate ones, those high coverages 

are quite impressive. For human CCDS data set, the number of primer pairs of coverage = 

1 is 25,181,775 (67.6%), whereas that of primer pairs of coverage > 1 is 12,054,846 

(32.4%). The number of primer pairs tends to decrease while the coverage increases. 

A
Parameter Constraints sets

X Y Z

Each 
primer

primer length (bp) 19–23 19–23 19–23
melting temperature 

(TM, ℃) 57–62 60–63 58–62

GC content (%) 35–65 35–65 45–55
self-complementarity <14-mer <5-mer <5-mer

3’ self-complementarity - <4-mer <4-mer 
contiguous residue <6-mer <6-mer <6-mer
Gibbs free energy 

( G, kcal/mol) ≥-9 ≥-9 ≥-9 

Primer
pair

length difference <5-mer ≤3-mer ≤3-mer
TM difference (℃) ≤5 ≤5 ≤3
product size (bp) 60–800 100–250 100–200

pair-complementarity <9-mer <9-mer <7-mer
3’ pair-complementarity - <4-mer <4-mer

B
ZYX

Figure 3.16. The advantage of the ranking method of MRPrimer. 



- 50 - 

 

However, in some cases, e.g. when the coverage increases from 24 to 25, the numbers of 

primer pairs also increase. This is because MRPrimer only designs a kind of essential 

primer pairs, i.e. does not produce a primer pair only covering a proper subset of the genes 

that are covered by another primer pair. 
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MRPrimer starts with all possible subsequences generated in Step 1 and eliminates 

the candidate primers violating filtering constraints gradually, as following the flow of 

single primer filtering (Step 2), 5’ cross-hybridization filtering (Step 3), general cross-

hybridization filtering (Step 4-5), and pair primer filtering (Step 7). This series of filtering 

improves the specificity of the resulting primer pairs designed by MRPrimer as a result. 

Figures 3.18A and 3.18B show the number of primers (or primer pairs) passed in each 

major step, for human and mouse CCDS data sets, respectively. The general cross-

hybridization filtering again is divided into two sub-steps of #mismatch=1(i.e. relatively 

low specificity) and #mismatch=2(i.e. relatively high specificity). Different from the 

existing methods like PrimerBLAST, MRPrimer allows users to increase or decrease the 

specificity of resulting primer pairs in homology tests, by adjusting #mismatch. In Figure 

3.18A, the number of primers for human genes decreases gradually to 7,253,513, and self-

join computation on them in Step 6 generates much more results, 37,236,621, which are 

primer pairs, not single primers. Likewise, in Figure 3.18B, the number of primers for 

mouse genes decreases gradually to 8,508,645, and self-join computation on them 

generates 48,532,297 primer pairs. 
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3.4.4 Results of the computational efficiency and scalability  

MRPrimer showed a good performance in terms of computation time. Table 3.3 shows the 

elapsed times of MRPrimer at each step for human and mouse CCDS data sets. Even 

though MRPrimer designs all feasible and valid primer pairs, without omitting any one, it 

finishes within one or two hours. Once obtaining the results, users do not need to run it 

again and just need to pick the primer pairs, especially the top-1 primer pair, from the 

results that they want to use for experiments, unless the filtering constraints are changed. 
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Figure 3.18. The number of primers (in orange) and primer pairs (in blue) passed in each 
major step of MRPrimer. 
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Table 3.3. The elapsed times (sec.) of MRPrimer from Step 1 to Step 7 for human and mouse 
CCDS data sets (Step 4 and 5 are performed two times at #mismatch=1 and at #mismatch=2). 

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Total 

human 69 60 65 3,648 56 586 29 4,513 

mouse 50 50 59 2,590 55 224 30 3,058 

 

MRPrimer also showed fairly scalable performance in terms of database size (i.e. 

the number of DNA sequences). To show this feature authentically, we used a much larger 

DNA database, 105,180 DNA sequences of Homo sapiens from the Ensembl site 

(http://asia.ensembl.org/biomart/martview/). Figure 3.19 shows the elapsed times of 

MRPrimer while varying the number of sequences from 12,500 to 105,180 (i.e. an entire 

database). Even for 105,180 sequences, MRPrimer designs all feasible and valid primer 

pairs within a reasonable time of less than seven hours. Since MRPrimer is based on 

MapReduce, users can reduce the time easily just by adding more computers to the cluster. 
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Figure 3.19. The elapsed times of MRPrimer as varying the database size. 
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Furthermore, MRPrimer was very efficient in terms of computational resource, i.e. 

the number of computers or the computing power of each computer. To show this feature, 

we perform the same experiments for human and mouse CCDS data set with a small-scale 

cluster of commodity PCs as well. The cluster consists of one master PC and ten slave PCs, 

where each PC consists of Intel i7-4770 4-core 3.4GHz CPU and 16GB memory, and 3TB 

HDD. Here, we use the same number of mappers and reducers, i.e. 4 and 4, respectively, 

but use smaller java heap memory sizes, 4GB for Map and 8GB for Reduce, due to the 

small memory capacity of PC. Table 3.4 shows the elapsed times of MRPrimer, which still 

finishes within a short time of two or three hours. 

Table 3.4. The elapsed times (sec.) of MRPrimer from Step 1 to Step 7 for human and mouse 
CCDS data sets with a smaller cluster of less-powerful computers (Step 4 and 5 are 
performed two times at #mismatch=1 and at #mismatch=2). 

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Total 

human 303 106 165 7,583 56 557 69 8,839 

mouse 259 91 110 3,880 50 272 70 4,732 
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IV. MRPRIMERW: Web-based primer design method 
 

4.1 Overview  

In this chapter, we describe the MRPrimerW, which performs complete homology testing, 

supports batch design of primers for multi-target qPCR experiments, supports design of 

TaqMan probes, and ranks the resulting primers to return the top-1 best primers to the user. 

To ensure high accuracy, we adopted the core algorithm of a previously described 

MapReduce-based method, MRPrimer, but completely redesigned it (i.e., seven 

MapReduce rounds into two parts: offline processing and online processing) to allow users 

to receive query results quickly in a web interface, without requiring a MapReduce cluster 

or a long computation.  

Offline processing by MRPrimerW, which is independent of user queries, 

generates all validated candidate SYBR Green primers and TaqMan probes satisfying 

homology tests. Homology testing on an entire sequence database can be achieved by a 

large-scale self-join computation without specifying a target sequence. Because this stage 

of processing performs homology tests for every candidate primer and probe against the 

entire sequence database via a non-heuristic approach, the resultant primers and probes are 

all target gene–specific, and at the same time no valid (i.e., target gene specific) primers 

and probes are missed. Offline processing takes at least several hours on a cluster of 

computers (e.g., ten PCs). On the other hand, the online processing stage is responsive to 
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user queries, i.e., a specified set of target genes. This stage quickly searches for the best 

primer pairs for the target genes and shows them to the user, and in particular returns the 

best pair among all valid primers that satisfy user-specified filtering constraints for the 

corresponding target gene. Along with SYBR Green primer pairs, online processing returns 

TaqMan probes for the target gene, if applicable. As with MRPrimer, the criteria used for 

ranking the primers in MRPrimerW are the same as those used in Primer3Plus [32]. 
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Figure 4.1. Overall flow of the MRPrimerW method. 
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4.2 Offline processing part 

Offline processing by MRPrimerW takes as input a DNA sequence database and several 

filtering constraints, and yields as output all possible primers that satisfy both homology 

testing and given filtering constraints (Figure 4.1A). As an input source DNA sequence 

database for MRPrimerW, we used the consensus coding sequence (CCDS) database for 

human and mouse genes (https://www.ncbi.nlm.nih.gov/CCDS/) (Table 4.1). We selected 

these templates because the gene annotations have been defined by extensive manual 

curation and are represented consistently in the NCBI, Ensembl, and UCSC Genome 

Browsers [56-58]. The most up-to-date CCDS datasets contain 31,394 human gene 

sequences (Release 18, the last update was May 12, 2015) and 24,833 mouse gene 

sequences (Release 19, the last update was July 30, 2015). About 1% of human and mouse 

genes in CCDS do not have any target gene–specific primers; as a result, the offline 

processing stage produced valid primers for 31,376 human genes (99%) and 24,797 mouse 

genes (99%), comprising 165,923,450 and 176,039,685 distinct primers, respectively. 

Table 4.1. Statistics of MRPrimerW primers. 

 Human Mouse Both species 
Total number of genes 31,394 24,833 56,227 

Number of covered genes 
(%) 31,376 (99%) 24,797 (99%) 56,173 (99%) 

Number of valid primers 165,923,450 176,039,685 341,963,135 
 

For filtering constraints, MRPrimerW considers eight parameters for each primer 

and five parameters for each pair, as in MRPrimer (Table 4.2). Most of these constraints 

are checked during online processing. However, four parameters (primer length, melting 

temperature, GC content, and contiguous residue) are checked during offline processing, 
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because primers with values out of the appropriate range (e.g., primer length 10 bp) are 

non-functional in general; consequently, they do not need to be considered during online 

processing. Table 4.2 shows the list of filtering constraints used in offline and online 

processing. The parameter ranges in the ‘Online’ column indicate the default settings, 

which can be adjusted in each web search. 

Table 4.2. List of filtering constraints used in offline and online processing of MRPrimerW. 

 Parameter Value range 
Offline Online (default)** 

each primer 

primer length 17–27 bp 19–23 bp 

melting temperature (TM)* 56–64℃ 58–62℃ 
GC content 30–70% 40–60% 

self-complementarity - <5-mer 
3’ self-complementarity - <4-mer  

Contiguous residue <5-mer <6-mer 
Gibbs free energy (∆G) - ≥-9 kcal/mol 

Hairpin  <3-mer 

Primer pair 

length difference - ≤5-mer 

TM difference - ≤3℃ 
product size - 100–250 bp 

pair-complementarity - <5-mer 
3’ pair-complementarity - <4-mer 

- indicates not applicable. 
* To calculate the melting temperature, we adopted the nearest-neighbor thermodynamic model 
[40]. 
** The value ranges in this column indicate the default setting, which can be freely adjusted by 
users. 

 

Offline processing consists of five MapReduce rounds (Figure 4.1A). The first 

and second rounds generate all possible subsequences satisfying the four filtering 

constraints described in the ‘Offline’ column of Table 4.2 for forward and reverse primers.  

The next three rounds perform homology tests on the resultant candidate primers 

against the entire CCDS database. It extracts all possible subsequences from the database 



- 59 - 

 

as candidate primers and compares all possible pairs among them for homology tests. This 

requires large-scale computation on a tremendous number of pairs. The 5’ cross-

hybridization filtering round (Round 3) eliminates candidate primers that are the same as 

any subsequence of an off-target sequence at the 3’ end and has only a few mismatches (up 

to four mismatches) at the 5’ end, and thus might cross-hybridize with an off-target 

sequence due to their high complementarity, especially at the 3’ end. The general cross-

hybridization filtering round (Round 4) eliminates candidate primers that are similar to any 

subsequence of an off-target sequence (up to two mismatches anywhere). The duplicate 

removal round (Round 5) eliminates false-positive primers that still violate the general 

cross-hybridization filtering constraint. Rounds 4 and 5 are iterated until the checking of 

the general cross-hybridization filtering constraint is completed. The details of offline 

processing algorithm flow are shown in Figure 4.3. The large-scale computation of each 

round of homology testing relies on distributed data processing in MapReduce. 

Figure 4.2 explains how MRPrimerW eliminates primers that are homologous to 

off-targets. In the figure below, we assume there are four 20-mer candidate primers of (a)-

(d) that occur in different sequences from each other. In terms of the candidate primer (a), 

other candidate primers (b) and (c) are homologous with (a), and so, they are all filtered 

out in homology tests. The candidate primer (d) is not homologous with (a), and so, passes 

the homology tests. Two kinds of homology tests are used: 5’ cross-hybridization and 

general cross-hybridization. The former test considers up to four mismatches (in nucleotide) 

at the 5’ end as being homologous, where the 5’ end is the starting point of primer annealing. 

In general, a primer can successfully amplify a target gene although its 5’ end is not exactly 

matched to target gene, if its 3’ end is exactly matched to the target. The candidate primer 
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(b) belongs to this case, and the red colored nucleotides in the primer indicate the 

mismatches. Here, the candidate primer (b) might amplify not only Sequence j, but also 

Sequence i, and thus, should be filtered out. The latter test considers up to two mismatches 

anywhere as being homologous. The candidate primer (c) belongs to this case. However, 

candidate primer (d) does not belong to either of these cases. The offline processing part 

of MRPrimerW performs this kind of homology tests over all possible pairs between all 

possible subsequences, which are extracted in a sliding window manner from the database. 

 

For TaqMap probes, we performed the same offline processing algorithm flow 

with a different set of filtering constraints (Table 4.3). In detail, we have extracted all 

possible candidate TaqMan probes satisfying both the TaqMan probe constraints (Table 

4.3) and homology tests from the database. Then, we have loaded the candidate probes into 

a TaqMan probe index in the main memory. If a user selects the TaqMan probe design 

option in the query web page, MRPrimerW returns a TaqMan probe for each target gene. 

 

Figure 4.2. An example of how MRPrimerW eliminates primers that are homologous to off-
targets.  
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Table 4.3. Summary of the filtering constraints used for TaqMan probe design. 

Parameter Value range 
primer length 18–30 bp 

melting temperature (TM) 68–70℃ 
GC content 30–80% 

self-complementarity <5-mer 
3’ self-complementarity <4-mer  

Contiguous residue <6-mer 
Gibbs free energy (∆G) ≥-9 kcal/mol 

Hairpin <3-mer 
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4.3 Index building part 

After offline processing, we create a set of indices based on the results, which are then 

loaded into the main memory of the web server for online processing (Figure 4.1B). The 

detailed structures of the indices are illustrated in Figure 4.4. Nine indices are built: seven 

gene annotation indices (A-C), one primer index (D), one probe index, and one cached 

primer pair index (E). All indices follow the structure of a key–value database, in which 

each row is a pair of key and value. Annotation data were downloaded from GenBank ftp 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/).  

Online processing supports six kinds of queries (i.e., ‘Search by’ options) 

including NCBI gene symbol, NCBI CCDS ID, NCBI gene ID, GenBank accession 

number, GenBank alias, and keyword. Accordingly, six partial annotation indices are used 

for the various query types (Figure 4.4A and 4.4B). The six annotation indices include 

(4.4A) GenBank Accession number and NCBI CCDS ID as hash structure indices with 

unique identified annotation, and (4.4B) NCBI gene symbol, NCBI gene ID, GenBank 

aliases, and keyword (gene description) as list structure indices having duplicated 

annotation. The key, portions of the indices formatted as “Species:searchtype:query,” are 

used for matching with user queries. For instance, if a user sets the query type to ‘NCBI 

Gene Symbol’ and inputs “Adcy6 Anxa2 Cacna1c” in the text field of the website, those 

three symbols are used to match with key portions of the corresponding index. The value 

portions of the indices are single sequence IDs (sids) or lists of sids in which the key occurs 

in the full annotation index and the primer index. 

The full annotation index, which simply combines all six kinds of annotation 

information, is used to generate the resulting web page (Figure 4.4C). The primer index 
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contains primer sequences and positions (Figure 4.4D). The hash index contains the primer 

sequence and position in the sequence of the sid. The key portion, formatted as 

Species:sid+len(*), where len is primer length and * tag refers to the array of reverse 

primers, is a pair of sid and primer length, and the value portion, an array of primer data 

with p (primer sequence), sid, and pos (position) concatenating + tag, is a pair consisting 

of the primer sequence and the <sid, pos> where the primer sequence occurs. For example, 

when a user inputs gene symbol ‘Olfr156,’ MRPrimerW first accesses the partial 

annotation index for NCBI Gene Symbol and finds a sid corresponding to ‘Olfr156’. Then, 

using the sid as the key, MRPrimerW retrieves a set of candidate primers, especially their 

sequences and positions, from the primer index, which are subjected to online processing. 

The structure of the probe index is the same as (4.4D), but the content is a little different 

from that of the primer index. The key is formatted as Species:taqman:sid, and the value is 

the array of probe data of probe+sid+pos.  

The cached top-1 primer pairs hash index contains pre-computed top-1 primer 

pairs for each target (4.4E). The key is formatted as Species:top:sid and the value is the 

array of primer data formatted f.p (forward primer), f.pos (forward position of f.p), r.p 

(reverse primer), and r.pos (reverse position of r.p) in the sequence sid. 

In addition, for the case of the set of user queries that may be amplified by relaxing 

filtering constraints, MRPrimerW returns a list of the filtering constraints and how the 

constraints should be adjusted. We build constraints metadata index which contains 

minimum and maximum values for each single filtering constraints for all target genes. 

The key portion is formatted as Species:meta:sid and the value is the array of constraints 

metadata concatenating + tag. Before retrieving all candidate primers containing the user 
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query from indices, constraints metadata are retrieved and examined whether the values of 

user given single filtering constraints are between the minimum and maximum values of 

metadata. If not, MRPrimerW returns the single filtering constraints and suggestion values. 

For pair filtering constraints, the metadata can be varied depending on single filtering 

constraints. The pair filtering constraints metadata is calculated while performing pair 

filtering step without loading index. If the pair filtering step fails to design primer pairs, 

MRPrimerW outputs the pair filtering constraints and how the constraints should be 

adjusted.  
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4.4 Online processing part 

Online processing consists of three steps that check the filtering constraints provided by 

the users and rank the primers to return the top-1 best primers (Figure 4.1C). The first step 

takes the user query and uses the indices to retrieve all candidate primers containing the 

query. While extracting the candidates, MRPrimerW applies eight filtering constraints for 

each primer, described in Table 4.2. Here, the constraints for length, melting temperature, 

GC content, and contiguous residue must be within the range pre-defined in offline 

processing. Figure 4.5 illustrates the flowchart of the searching and single filtering step.  

The second step applies five filtering constraints for primer pairs, described in 

Table 4.2. For this purpose, MRPrimerW performs a self-join computation on each group 

of candidate primers from the same target sequence, i.e., it joins forward primers and 

backward primers into the same group. This pair-filtering step may take a long time if the 

length of the input query (i.e., the number of gene symbols) is long or the number of 

candidate primers retrieved is very large. Figure 4.6 shows the flowchart of the pair 

filtering step.  
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Figure 4.5. Flowchart of searching and single filtering step. 
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Figure 4.6. Flowchart of pair filtering step. 
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The final step calculates the penalty scores of the primers obtained in the previous 

step and sorts the primers according to their scores. Then, it returns the top-1 best primer, 

i.e., the primer with the lowest penalty score, for each target sequence. The penalty score 

is calculated according to the method used in Primer3Plus [21]. Figure 4.7 shows the 

flowchart of output sorting step. If the user inputs 12 target genes, MRPrimerW shows the 

12 top hits, which can be used for qPCR experiment in most cases. However, if some of 

the target genes have no top-1 best primers, the user can relax the filtering constraints (i.e., 

using Advanced Settings) and click the search button to design a set of top primers that 

satisfy the same stringent filtering constraints and are target gene–specific. If a user selects 

the TaqMan probe design option, MRPrimerW returns a TaqMan probe for each target gene, 

where the probe is located between forward and reverse primers. Since in many cases users 

do not change default settings on filtering constraints, the response time can be improved 

by using the cached top-1 primer pairs index, which stores the top-1 primer pairs under the 

default setting for sequences of the database in key-value format in the main memory of 

the web server (Figure 4.4E). 
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4.5 Web interface  

The MRPrimerW web server is implemented using Redis (http://redis.io/), an in-memory 

key–value store, for data management. Redis supports various kinds of data structures for 

various types of values, including string, hash, list, set, and sorted set. Among these, 

MRPrimerW uses hash and set for annotation and primer indices (Figure 4.4). In detail, for 

the server side, we adopted phpredis (https://github.com/phpredis/phpredis) for 

communication between Redis and PHP, and AJAX (asynchronous JavaScript and XML) 

for client–server communication. For the client side, MRPrimerW generates web pages 

using HTML with CSS and bootstrap (http://getbootstrap.com/) for styling interactive user-

interface components. For dynamic HTML behavior, we used JavaScript and jQuery. 

Start of Sorting step

Calculates pair penalty of a primer pair adding forward primer 
penalty and reverse primer penalty  

End of Sorting step

<key: species:sidset, value: array(sid+f.p+r.p+f.pos+r.pos)>,
<key: species:sidset, value: array(probe+sid+pos)>

<key: species:sidset, 
value: sid+f.p+probe+r.p+f.pos+probe.pos+r.pos>

For the top-1 primer pair, find probe which located between 
forward and reverse primers

Figure 4.7. Flowchart of output sorting step.  
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MRPrimerW supports most major web browsers including Microsoft Internet Explorer, 

Google Chrome, Apple Safari, and Opera. 

Figure 4.8 illustrates an example query of MRPrimerW. MRPrimerW allows the 

user to choose species (human or mouse) and query type (NCBI gene symbol, NCBI CCDS 

ID, NCBI gene ID, GenBank accession number, GenBank aliases, or keyword), and then 

enter the input query. The user can select the TaqMan probe design option to design 

TaqMan probes as well as SYBR Green primers. MRPrimerW also provides a feature that 

sends the query result to a user via email. If a user enters his/her email address in the query 

web page, the web server sends an email containing a link to the result page to the user 

after query processing is completed. The users do not need to wait to get a query result and 

the result page accessible via the link in the email is available for two weeks (i.e., 14 days). 

In Advanced Settings, the user can adjust single- and pair-filtering constraints. 

MRPrimerW provides six example queries for single target genes and another six example 

queries for multiple target genes, in particular, 24 genes related to signaling molecules.  
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Figure 4.9 illustrates the results of the example query for nine target genes 

(SAMD11, TNF, IL10, TP53, A1CF, UBE2J2, HES4, THDP1, KFK2), where the species 

is human and the search type is NCBI Gene Symbol. Among nine target genes, we assume 

that three target genes will have primer pairs that amplify each of them solely (case 1: IL10, 

SAMD11, TNF), two target genes will have only less target-specific primer pairs that may 

amplify multiple targets (case 2: TP53, A1CF), two target genes will have target-specific 

Figure 4.8. Input interface of MRPrimerW. 
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primer pairs, but the given filtering constraints are too strict to return them (case 3: UBE2J2, 

HES4), and two target genes will have typos in their symbols (case 4: THDP1, KFK2).  

Then, resultant web page shows four tables, each of which contains the primers 

for each of the above cases. In detail, the first table (for case 1) shows three top-1 primer 

pairs satisfying the same stringent and uniform constraints. The table shows forward and 

backward primer sequences, TaqMan probe sequences, gene symbol, GenBank accession 

number (with a link to detailed gene information from GenBank and primer information), 

penalty score, melting temperatures (TM), amplicon size, and primer positions.  

The second table (for case 2) shows a set of less target-specific primers that may 

amplify multiple targets for two target genes. In other words, there is no target-specific 

primer for the target gene. The indices of MRPrimerW contain both the primers amplifying 

a single target and the primers that may amplify multiple targets (i.e., less specific). Highly 

homologue genes (e.g. TP53, A1CF) do not have any primer pair that amplifies the 

corresponding gene solely. The approach that does not show the results may be too strict, especially 

compared with the existing tools. For such target genes, the existing tools may return some results 

because they cannot perform homology tests on the entire set of genes. We think that even less 

target-specific primers, which may amplify multiple targets, could have practical use in qPCR 

experiments. Thus, users can use such less target-specific primers if and when necessary. The 

format of the second table is the same as that of the first table.  

The third table (for case 3) shows the set of genes that have the top-1 primer pair 

that amplifies the target gene solely but may be amplified by relaxing filtering constraints 

and how the constraints should be adjusted for each gene. MRPrimerW returns a list of 

filtering constraints that require adjustment. How the constraints should be adjusted for 
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each of the target genes belonging to this case is shown in the third table in the output web 

page.  

The fourth table (for case 4) shows the set of genes given by the user that may be 

wrong or have typos so that cannot be identified in the annotation indices of MRPrimerW. 

With this information, users can modify their queries or input parameters to obtain primers 

for query genes having no results. 

In addition, the headline of each table shows the number of query genes belonging 

to the table. For example, among 100 query genes, if 80 genes have suitable target-specific 

primer pairs, 10 genes have less target-specific primer pairs that may amplify other genes, 

7 have no results because the parameters are too strict, and 3 have no results because of 

typos. The headlines of four result tables show 80, 10, 7, and 3, respectively, and so, users 

can easily figure out the problematic query genes. 
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Figure 4.9. Output interface of MRPrimerW. 
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V. CONCLUSIONS 
 

In this dissertation, we proposed MRPrimer and MRPrimerW that could overcome the 

drawbacks of existing design methods, while also integrating several desirable features 

required by researchers in this field into a single method. Design of high-quality primers 

for multiple target sequences is essential for qPCR experiments, but is a challenging due 

to the need to consider both homology tests on off-target sequences and the same stringent 

filtering constraints on the primers. 

In Chapter 3, we propose MRPrimer that can design all possible feasible and valid 

primer pairs for an entire DNA database. The seven steps of MRPrimer are following. Step 

1 receives a given DNA sequence database to extract partial sequences for candidate 

primers having all possible lengths between the minimum length and the maximum length 

Step 2 excluds the primers which do not satisfy input single filtering conditions when the 

candidate primers extracted in Step 1 are subjected to the single filtering conditions. Step 

3 performs pair-joining Map1, which includes all the possible partial sequences obtained 

in Step 1, and Map2, which includes candidate primer sets satisfying the single filtering 

conditions obtained in Step 2, and removing the primers for Map2 when the primers for 

Map1 and Map2 have the same sequences other than the 5’ termini thereof. Step 4 performs 

pair-joining Map1, which includes all the possible partial sequences obtained in Step 1, 

and Map2, which includes candidate primer sets satisfying the single filtering conditions 
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and 5’ cross-hybridization filtering conditions obtained in Step 3, and removing the primers 

for Map2 when the primers for Map1 have the same sequences as the primers for Map2 

except the sequences having a given mismatch number (#mismatch). Step 5 removs false-

positive primers which still remain from the results of Step 4 and do not satisfy general 

cross-hybridization filtering conditions. Step 6 divides the primers remaining from the 

results of Step 5 into forward primer sets and reverse primer sets and excluding the primers 

which do not satisfy the filtering conditions for self-join calculation when the divided 

forward and reverse primer sets are subjected to the filtering conditions. Finally, Step 7 

calculates penalty scores for the primer pairs passing Step 6, and sorting the primer pairs 

in the same sidset groups according to the calculated penalty scores (Step 7). 

Our biological and computational validation results in Section 3.3 and 3.4 indicate 

that the resultant primers are very useful and effective for qPCR and sequencing analyses. 

We can summarize its major advantages in terms of practical usage as follows.  

First, MRPrimer performs both single/pair primer filtering and homology tests, in 

a combined and integrated manner. Furthermore, it automatically sorts the resulting primer 

pairs for each target sequence, based on penalty scores. Thus, users do not need to be 

concerned about mistakes when validating a candidate primer. Because it produces a 

complete set of primer pairs, users can repeatedly reuse the results, unless filtering 

constraints need to be changed. 

Second, MRPrimer designs all feasible primer pairs strictly, following the same 

filtering constraints. For example, it can design a large number of primers that follow a 

very strict constraint on product size (e.g., between 100 and 150 bp) for a given set of tens 

of thousands of sequences all at once. This powerful feature would be especially useful for 
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qPCR experiments. 

Third, MRPrimer is computationally efficient and scalable, and able to design 

entire primer pairs for a whole DNA database within a few hours using only a small-scale 

cluster of PCs. Even for a database of 105,180 DNA sequences, it could design all primer 

pairs within 7 hours. This feature is very useful, especially for sequence databases that are 

updated frequently, like the RefSeq database. 

In Chapter 4, we proposed MRPrimerW web server, a straightforward but 

powerful tool for designing high-quality primer pairs that can be used simultaneously to 

detect multiple target genes in qPCR experiments. MRPrimerW overcomes the major 

drawbacks of existing web servers for primer design by enabling users to freely adjust 

filtering constraints, performing complete homology tests, supporting batch designing for 

qPCR, supporting TaqMan probe design, and supporting ranking of primers.  

These powerful features were achieved by performing large-scale computation for 

homology testing on all possible candidate primers in an exact manner, and then 

materializing the resultant valid primers in eight kinds of indices in the main memory of 

the web server. Based on these indices, the web server quickly performs online processing 

in three steps and returns a complete set of the top primer pairs corresponding to the user’s 

query. 

The current version of MRPrimerW is built based on the CCDS database, a 

collection of coding sequences from human and mouse. We think it is important to include 

other popular model organisms such as rat, monkey, Arabidopsis, yeast, nematodes, and 

bacteria. Thus, we have a plan to do this in future work. 
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In conclusion, we believe that we have developed an advanced technology, a 

straightforward but powerful method for designing high-quality primer pairs and for 

increasing the efficiency and specificity of experiments involving PCR. We also believe 

that MRPrimer, MRPrimerW or a variation of MRPrimer could be very useful for other 

application areas such as DNA construction and genetic engineering. If there is a specific 

fragment to be amplified from a given DNA template, there are a variety of putative primers 

that could accomplish this. An MRPrimer-style method of screening and ranking in parallel 

could be very effective at designing ideal primer pairs for that purpose. For example, it 

could be effectively used to alleviate the problem of lack of novel primer pairs for detecting 

unauthorized genetically modified organisms (GMOs) in the collection of GMO detection 

methods, called GMO Detection method Database (GMDD) [59, 60].  
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요 약 문  

 

맵리듀스 기반의 특이성 조건을 만족하는 유효한 모든 프라이머들을 

빠르게 디자인하는 방법 

 

프라이머 디자인은 중합효소 연쇄반응법 (PCR)에 있어서 가장 기본이 되는 기술이며 

일반적으로 사용되는 기술이다. 많은 방법들이 프라이머 디자인을 위해 제안되었지만, 

이들은 유효한 프라이머를 디자인 하기 위해 BLAST와 같은 추가적인 툴을 사용하여 

비 표적 서열에 대한 상동성 테스트를 포함하여 많은 노력과 주의를 필요로 한다. 또한, 

이 방법들은 같은 엄격한 제약 조건을 만족하는 다수의 표적 서열에 대한 프라이머를 

필요로 하는 정량적 중합효소 연쇄반응법 (qPCR)에 적합하지 않다. 이에 본 

학위논문에서는 기존 방법들의 단점을 극복한 완전히 새로운 방법을 제안한다.  

     본 학위논문의 첫 번째 파트에서는 기존 연구들의 문제점들을 모두 해결하기 위해 

맵리듀스 기반의 완전한 프라이머 디자인 방법인 MRPrimer를 제안한다. MRPrimer는 

주어진 서열 데이터베이스에서 사용자에 의해 주어진 여러 제약조건들을 만족하면서 

동시에 상동성 테스트를 통과한 모든 가능한 프라이머들을 찾는 것이다. MRPrimer는 

범용 컴퓨터들의 클러스터와 그 클러스터 상에서 작동하는 7단계로 구성된 맵리듀스 

알고리즘으로 구성되어 프라이머 디자인 시 특이성 검증을 동시에 수행하는 것은 기존의 

방법들이 제공하지 못했던 특징이며, 상기 특이성 검증 조건은 다시 5‘ cross-

hybridization filtering 조건과 general cross-hybridization filtering 조건으로 

구성된다. 또한, 주어진 DNA 서열 데이터베이스 상에 존재하는 모든 적합한 프라이머 
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쌍들을 빠짐없이 구하며, coverage가 1인 primer들 뿐만 아니라 coverage가 1보다 큰 

프라이머들도 모두 구하는 것을 특징으로 한다. 마지막으로, 사용자가 결과 프라이머들 

중 생물학적 실험의 성공률이 높은 프라이머들을 쉽게 선택할 수 있도록 랭킹 기능을 

지원하는 특징을 가진다. 343개의 프라이머 쌍에 대해 정량적 중합효소 연쇄반응법 

분석과 시퀀싱 및 비교 분석을 통해 MRPrimer로 디자인한 프라이머들은 매우 

안정적이고 효과적인 것으로 나타났다. 또한, MRPrimer는 효율적이고 확장성이 높아 

RefSeq 데이터베이스와 같이 자주 업데이트되는 데이터베이스에 대해 유효한 

프라이머를 디자인 하는데 매우 유용하다.  

     프라이머 디자인에 대한 기존의 웹 사이트들은 상동성 테스트를 위한 BLAST와 

같은 추가의 툴 사용, 프라이머 랭킹 미지원, TaqMan probe 미지원, 그리고 다수의 

표적에 대해 동시에 디자인 하지 못하는 등 여러 단점을 가지고 있다. 또한, 대규모 

계산에 대한 오버헤드 때문에 몇 웹 사이트들은 휴리스틱한 방법을 사용하거나, 제한된 

범위 내에서 상동성 테스트를 수행한다. MRPrime는 고품질의 프라이머를 디자인 할 수 

있지만, 컴퓨터 클러스터에서 작동되고 제약조건을 조정할 때마다 수 시간의 런타임이 

요구되기 때문에 일상적인 사용이 불편하다.  

     본 학위논문의 두 번째 파트에서는 구글 검색 시스템과 같이 맵리듀스의 

클러스터나 긴 계산을 요구하지 않고 웹 인터페이스에서 사용자가 최고의 프라이머를 

디자인 할 수 있도록 MRPrimer의 온라인 버전인 MRPrimerW를 제안한다. 

MRPrimerW는 완전한 상동성 테스트를 지원하고, 정량적 중합효소 연쇄반응법 실험을 

위해 다수의 표적에 대해 프라이머 디자인을 제공하며 TaqMan probe 디자인을 

지원하고, 결과 프라이머의 순위를 계산하여 가장 순위가 높은 top-1의 프라이머를 

제공한다. 높은 정확성을 보장하기 위해 MRPrimer의 핵심 알고리즘을 적용하면서, 
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사용자가 웹 인터페이스를 통해 빠르게 질의에 대해 결과를 얻을 수 있다. 

MRPrimerW는 프라이머 디자인 서비스를 제공하며 사람과 쥐 전체 유전자의 99%를 

커버하는 341,963,135개의 유효한 프라이머 세트를 갖고있다.  

     요약하여, 본 학위논문에서는 기존 방법의 단점을 극복한 프라이머 디자인을 위한 

새로운 방법들을 제안하였다. 대규모 DNA 데이터베이스의 경우, 동시에 다수의 

제약조건을 고려하고 특이성 검증을 통해 가능한 모든 유효한 프라이머 쌍들을 디자인 

할 수 있는 MRPrimer를 제안하였다. 또한, 웹 인터페이스에서 주어진 사용자의 질의에 

대해 완전한 상동성 테스트를 지원하고, 정량적 중합효소 연쇄반응법 실험을 위해 

다수의 표적에 대해 프라이머 디자인을 제공하며 TaqMan probe 디자인을 지원하고 

프라이머 랭킹을 지원하는 MRPrimerW를 제안하였다. 제안된 방법들은 중합효소 

연쇄반응법을 포함하는 모든 실험에서 그 효율성과 특이성을 높이는데 유용하게 활용 될 

수 있는 방법들이라 사료된다.  

 

핵심어: 맵리듀스, 프라이머 디자인, 중합효소 연쇄반응법, 상동성 테스트 

 



- 93 - 

 

 

Appendix 

Table S1. Primers for non-OR genes used in the biological experiments for MRPrimer. 

Gene Sequence Size 
(bp) Gene Sequence Size 

(bp) 

Vmn1r26 
F TTTATTCCTCCGGTCTGTGCCA 

100 Gcg 
F CACCAGCGACTACAGCAAATAC 

169 
R TAGTGGACCTGTATGGTGGAGAT R CTGGCCCTCCAAGTAAGAACT 

Vmn1r54 
F ACTACATCGTGCTCTCTGGCA 

180 Rtp1 
F TACCCTCTTTCCCCACGTTCT 

180 
R GAGGGAAAAGCTGGTGATATGG R ACACATTGTGCTTGAGGTTGGG 

Vmn1r65 
F GAGGACAACAGAAGAAGTGGCT 

142 Rtp4 
F TTCCTCCCCATCAAAGAGCTG 

170 
R TTGGATGATCTGAATGGGCCTC R GGGCAAATGCAGCAATAGACA 

Vmn1r66 
F ACATCCACAGCTCTCAGGTTTC 

164 Rtp2 
F CGAGCAGTGTTACGATGAGGAT 

174 
R GACCATCACCAGACACCAACT R TTCTTGGAGGCATCGGTATAGG 

Vmn1r70 
F AGAGTTTGCAGGGGATTTTCC 

142 Gnas 
F TACGATCAGGACGACTACGAGAC 

175 
R AGCACAGGACCAGAGAAGAAC R GAGTGAGTGACTGGTTGAAGGT 

Vmn1r71 
F CCAACACATCCGTAGCACTCA 

109 Gnaq 
F GGTTGATGTGGAGAAGGTGTCT 

183 
R GGTGAGAGAACAAAAGGCCAGA R TGTGTAGGCAGATAGGAAGGGT 

Vmn1r72 
F TAACTCCAAAGGGCTGATGCT 

178 Gnai2 
F CTTATGACTTGGTGCTGGCTGA 

183 
R TGAAAACCATGAGCAGTAGGC R ACTCAGGGAAACAGATGGTCAG 

Vmn1r73 
F ACTAAGAGTATCAGGTCCCAGGT 

101 Gnao1 
F TCACCCTTGACCATCTGCTTTC 

107 
R ACAATGCAGCTCCCACATTTC R TTGTTGGGTGAGCGGTTTTTG 

Vmn1r78 
F TCTACTCTGCTTCTCTGATGGCT 

160 Gna11 
F TCCGCACAATCATCACCTACC 

136 
R GATAGTTTTGGTGGCTTGGTCC R CTCTGTGGCCCATCAAACTCA 

Vmn1r80 
F GTTACGGCCTACTCCAAATACC 

139 Gna12 
F CTAGAAAGGCCACCAAGGGAAT 

152 
R GAAAGCAGGGTAGAAACAGGTT R CGAGGACACCATGAACAGGATA 

Vmn1r84 
F GGTCTGTGTTTGAGCATCATGG 

178 Gnai3 
F GCAGATGATGCCCGACAGTTA 

136 
R TGGAGTAGGAGAGGACAAAGGT R ATTCCCTGGACCTGCTAAAGC 

Vmn1r87 
F CTCATCAGAAGAAGCCCGTAGA 

175 Gnat2 
F TGGACGTCATCAGGAAGTTGT 

186 
R GAAAGGCCCCTAGTAACACTGT R CGATGATGCCTGTTGTCTTGAC 

Vmn1r89 
F CTTCTCCTCACTCACGATCTCT 

110 Gnaz 
F CAGAGAGCAAGGGTGAGATTACA 

139 
R CTACTGTGGAGATGCTGGGAT R AGGTCGTTCAGGTAGTAGGCT 

Vmn1r179 
F ACCAATCGACACTACAGAGGC 

156 Gnal 
F TGGGACGATGAAGGAGTGAAG 

124 
R ACTCCAATGCCTCACAAATGC R GGTCTGTGGGTGTGTAGTCAA 

Vmn1r195 
F GGCATTGCAGGCTGTAAAACT 

181 Gnai1 
F CGGAAGAGGAGTGTAAGCAGTA 

152 
R TACAAAGGAGGAGGAGAGAGGG R CCCAGCAAGCACGAAAAGTT 

Vmn1r211 
F GCTGTAAAGTTGCTGTCTACCTG 

165 Cacna1c 
F GCAGCGTAAGGATGAGTGAAGA 

170 
R GGCAGAGGAGTGAGGAAAGAAT R TAGAGAGGCAGAGCGAAGGAA 
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Vmn1r212 
F GGAGTTCTGACTGGATTTTGGC 

135 Cacna1i 
F AAACGTGCTCCTGCTCTGTTT 

159 
R AACCTTCTTGGTGGGATCTGA R TCGTCCTCTTCTGGTTGGTAGT 

Vmn1r228 
F GGGACATGGCAGTAGGAATAGT 

170 Cacnb1 
F AGATGACCGACAACAGGAACC 

100 
R GGAGAGAAGGATCAAGGCGTTG R CAGCCCTCCAGCTCATTCTTAT 

Vmn1r230 
F GCCAGGAATTTGGGAACAGGAA 

124 Kcnk16 
F GTCATTCTCATCTTCCCACCCA 

117 
R CTGTGGGCTTTCGTTTGTGTT R AACAACATAGTCCCCGAAGCC 

Vmn1r231 
F TCGCATGAATCAAGAGCCACT 

127 Kcnh2 
F ACCTGCTTACTGCCCTCTACT 

133 
R TAATCATCCACCAGCCAGCAC R GACTTTCCAGGACGGGCATAT 

Vmn1r232 
F GGAACATGGCAATAGGAGTAGGA 

183 Kcnc3 
F CAGAAGACAAGAGCCCAATCAC 

128 
R GGGGGAAACCTTTGGAGATAATG R GCGGGACTTCTCGTAACCTTT 

Vmn1r233 
F CTGGTCTCTGGCAAATGTAGCT 

139 Kcnh6 
F TACAGCAAATGCCCCCAAGTC 

105 
R GGCTAGAGGCTTTGGGGAAAT R GTCTGTTCATCTGGGCTTGGA 

Vmn1r234 
F GTGCATCAGCTCTTCCCTATACT 

199 Kcnj11 
F TCGTGTCCAAGAAAGGCAACT 

110 
R GCACACAGCACCAGGGATAAT R AGTGTGTGGCCATTTGAGGTC 

Vmn1r236 
F CTGTACTATGTAAAGGAGTGCCC 

139 Kcnk12 
F CTACTTCTGCTTCGTCACCTTCA 

159 
R CTAAGAAATGAGGTGCTGCCA R ATGGAGATGACGTTGAAGAGCG 

Vmn1r237 
F TCCTGGGCAACTCCTTCTTAGT 

160 Kcnn1 
F TTAACCGCGTCACCTTCAACA 

157 
R TTCAACCCAAAGGCAGACACA R CTGGTCACTTCCTGCTTATCGT 

Vmn1r194 
F CTGTTCGTGATCTCGTCTTCCA 

138 Kcnc4 
F GGAGGTAGAAACAGAGCCCATT 

185 
R CTCTGATCTCTGGGCTGAAAGT R ACAAACCACTCAATCCCACCTC 

Vmn1r235 
F GGCTTCTGCTCTGTTTGTCTTG 

192 Kcnb1 
F GGAGAAAAATGGAGAGGGCGT 

180 
R GGACTCCGTGGATGATTGTGA R TTCAAGTGCTGCGGACTAGAC 

Vmn1r67 
F GGTGTGTACCTTCCTGGCATT 

174 Kcnj9 
F TCGTCTCACCTCTCGTCATCA 

178 
R CTGAGTCTGGGCACAAAAGTAC R CACAACACTTCATCCACCAGGTA 

Vmn1r1 
F CTGCTCTCTCTGGGTTGTTAGT 

170 Kcnd1 
F ACTGCAGCCCTGGTTTTCTAC 

128 
R GGGAAATGCTGGTGTTGTGAA R TCACCACACGACTGCTCTTTG 

Vmn1r196 
F CACAGTGGTCCAAGCAGTTATC 

156 Kcnk1 
F TTGTCACCGTTTCCTGCTTCT 

157 
R GCTGTGTCTCTGATGGAAAGGA R AACTTCTGGTTGTAGCCTTCCC 

Vmn1r224 
F ACATTGGCTCCAGAACATCTCC 

141 Scn1b 
F ACGTCTACCGTCTCCTCTTCTT 

171 
R CCAGCCACCAACCAGGATTATA R CCATCTCTGCCACAAGCCATAT 

Vmn1r77 
F ATTGGCCCCTTCTGCTTAGTCT 

160 Clcn4-2 
F TGGAGTCTTTGGGGGTTTATGG 

114 
R AGAGTACAGCTCGCACATGATC R ACCGCAATAACCTCCAACACT 

Vmn1r88 
F CCTACGTTTGTCTCCTGGCTTA 

145 Clcn3 
F GAGCATCTCGAGCAACTAAAGC 

162 
R CACGGCCAACGAGAGTCATAT R TTCTGTCTCCTCTCTGTCCTCA 

Vmn1r82 
F AACTCTGGCCAACTCCTTGTC 

181 Clcn6 
F ATCCTTGGGGAGACACAGGAA 

152 
R GATTATGGCCGCTTGGAAACA R CACTTCACCGCCTCGTATCTT 

Taar1 
F GCGGCTGTTCTCCCTTCTTTA 

188 Clcn7 
F CGACACAGCGTCTAATCACAAC 

136 
R GCTTTGTGGTGCTTGGCTTTT R GGACCTCTCCACAAACACCTT 
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Taar2 
F GAGGCTTACGCTGATGGAATTG 

147 Plcg1 
F CGACAGCACCAAGCAAAAGAC 

116 
R GCCGTAAATCCCCACCATCAT R CAAAGCGCAGAAAGGCAAACT 

Taar3 
F GCGAACACAAAAGGAGCAGTAG 

191 Plcb4 
F AGTGAAGGCAAGGAAGGACAAG 

154 
R TACCCGAGCCATACCAGAAGAT R CGCTGCAGACACACAATATCC 

Taar4 
F GGCCCTCTCAGAAAGCAAAATG 

104 Plcb3 
F TTAATCGGCGGCACATCACT 

133 
R AGGGTAGCCAACACAACACAA R AGCTTGGGTTCCTCTTCCTCTA 

Taar5 
F TGTCAAGCGGGAAAGAAAAGC 

126 Pld3 
F TCCTTCTACTGGACCCTCACAA 

124 
R AGGGGTGGGGTGATGAAGTTA R CAGCGATGCGAACCTTTACAC 

Taar6 
F CAGAGTGGCGAGAAGAGAAAGAA 

137 Sstr3 
F GCGAACAGCCTTCATCATCTAC 

100 
R AAATGTAGGCAGGGGTGATGAAG R CGACCGCACCTTTACCACAAT 

Taar9 
F CCTCCTTCTGTTTTGCGTCTCT 

119 Insig1 
F GCTGTATTGCCGTGTTCGTT 

111 
R GCACAGTCCAGAAACCGATACA R TCCACCACAAACCCAAAGAGA 

Fpr1 
F GGTTCATCATTGGGTTCAGCAC 

124 Anxa2 
F GAGACGGTGATTTTGGGCCTAT 

127 
R ACAAAGGAGAGAACCCGCAAA R GGTTGGTTCGTGAGCAGATGAT 

Fpr2 
F TCCCTGCCTTATAGTCTTGAGAG 

108 Anxa4 
F AGAGAAGAGATGGGGGACAGA 

168 
R TGGGGCCTTTAACTCAATGTCT R GCCAACAGGGCATCTTCAAAG 

Fpr3 
F CATTCTCACTTTGCCCCTTTTCC 

100 Pde6d 
F GTGGTTCTTCGAGTTTGGCTT 

119 
R AACAGAGTTGCCCCAGGATAC R TGATGACATTGCCCGTTAGGA 

Ifnar2 
F ACTGGCCCCTATGAGAGAAGAA 

191 Pde3b 
F CCGTCGTTGCCTTGTATTTCC 

164 
R TCGTCTAGGAGGATGGTGTCTT R CTTGGGTCAATCAGCAGGTCT 

Reep2 
F ACCCTGTACCCAGCCTATTCTT 

157 Pde10a 
F GGACAGAGACAAGCGAGATGAA 

160 
R GCTCAAAGTAGAAGGGGAACCA R GCGAATTACCTTCTCCCACTGA 

Reep3 
F GTGGTGCTGGTGTTTGGAATG 

121 Adcy6 
F GACCAACTGCGTAAGGACCAT 

178 
R CAGTGTAGAGGGCAAAGACGAT R TCAGGGTGGAGTATGGGAACA 

Reep5 
F GTGGCTTTGTATCTGGTGTTCG 

102 Adcy9 
F AATGAAACAAGGGGACGAGGAG 

119 
R GGGACTCTCGATGGCTTTCAT R TAAAGGGGCGGAATGCTATCG 

Reep1 
F TACAAGGCTGTGAAGTCCAAGG 

157 Syt13 
F AGAACCTCCACTCCAACCAATC 

110 
R GCCAGGCTACAAACGCTATTT R GGCCCGTTTTGTCTGTTTCTT 

Syt7 
F GAAAGCCATCAACGACCTAGAC 

120  
R TAAGGGGCGTAGGGTGAAATG 
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Table S2. Primers for OR genes used in the biological experiments for MRPrimer. 

Gene Sequence Size 
(bp) Gene Sequence Size 

(bp) 

Olfr631 
F GTGGCCATTTCAGGCAATTGT 

190 Olfr1208 
F GGGTGATGTCCATTCTGACCTT 

197 
R GGATTTGGCAGGCTCCAAAAT R CTTGTCGTCCCCAACAGAATCA 

Olfr1133 
F CTTGTGGCTGTTGCCTATGCA 

197 Olfr1230 
F TGTTCCCGTTGTTGCAACTAG 

155 
R CACCCTACCACACAGCCAATTA R TCCTTCAGAGCTGGAAGACTTT 

Olfr560 
F GTCATGGAATCCTCAGTGCTGTT 

158 Olfr1234 
F GCAAGGCCTACATCCACATTTC 

165 
R GCGACCATCGGTGTCAACATTA R TAGCCCACTTACGATGGAGCTA 

Olfr855 
F GTCTCATCTTCAGCCTCTTCCT 

164 Olfr1239 
F GTTGTGGTCAGCCCAAGTTTAG 

169 
R GATGACTGTGGCTGTGCTTAAA R GTCCTATGAAAAGCTGGCTCATG 

Olfr1010 
F GCTACCAGGCTGTGCTCTATTT 

107 Olfr1240 
F AGTCATCGTTGTTTGCTACCTC 

101 
R GCGGATCTTCAGAATGGCTACA R AAGTGTCAGTACATGCTAAGCCC 

Olfr1055 
F CCAGCTGACCTTCTTCAGCATAT 

148 Olfr48 
F TGTGGGCTTGACTCAGAACAT 

112 
R AGGTATTGCCACCAGAACATGAC R GCTGCTGATGGTGACCATGATA 

Olfr16 
F TTAGGCACTGGCCTGGTTATG 

196 Olfr1258 
F GTTGGTCTCCTATGTGGTCATTC 

156 
R ATATCAGCCCTATGGGCACAAG R GACAAAGTGGCTGAAGGTCTCA 

Olfr1406 
F GCCATATTCAGGCTGCCATTTT 

141 Olfr1260 
F CTGTGACCTTTTCCCGCTCTTA 

173 
R GGCTGTGATGACCATAAGGCTA R CCTTCAGCTGTTCTTCAGTGCTA 

Olfr218 
F CCTAACGCTGTACCTTCTGACT 

160 Olfr1262 
F GAGCACCATATCCTTCAATGGC 

185 
R GCCAGCTAGCATTCGTGGAATA R CGATTCCAGCTGCTACCACTAA 

Olfr1404 
F GGCGTGGTCTTCATCTCCTAT 

170 Olfr140 
F TAGTCCACGCAATGTCACAGA 

148 
R AGCAAGCTCTGGGACTTAGGT R GGGGCTGAAGGTAATCGTGATA 

Olfr432 
F CTGGCATGCTCGGCTTTATA 

100 Olfr1278 
F CCAGGGTTGTGTCTTCCAGATAT 

167 
R CAGCACAGCTCTCACAATACCT R CCCAAGCACCAGATAGAAGCATA 

Olfr429 
F CTGGGCCAGTGGTGGAAATTT 

199 Olfr1279 
F GTGCACTGATGGAGACAAGTT 

152 
R TGCAAGTAGGAGCTGAGGATCA R TGACAAGCGCCTTTGACAAG 

Olfr417 
F ATAGACAAGGACAGCCGCATTT 

172 Olfr1284 
F AAGCATCATCGTGGGAAACCT 

125 
R GTCCACATGCAACATTGGTCAT R CTGTGGTAGAGGAAAGTCCAACA 

Olfr248 
F CCATCTGCAATGCCCTCAAATA 

187 Olfr1289 
F TGGCTACTGCATGGGCAATT 

170 
R AGCCTCAGAACTGCCCTCATA R GGCAATGACCATGATGTCTAACC 

Olfr345 
F CACCCTCTGCACTATTCACAAA 

174 Olfr1301 
F TGACCATTGTGTTGGTGCAGTA 

191 
R CAACCAGTCAGAGAGGTCACA R GCAGTTGCACAACTGCCAAAA 

Olfr50 
F GTTCTGCTAGTGATGGTGTCCT 

200 Olfr1305 
F CCACGGATGTGCCTGCTAATAT 

158 
R GTGATGACCACCACTGCTAAAG R GTGCATGCAAGCTTGACAAGT 

Olfr350 
F CTCTTATGGTCACATTGTGGCC 

179 Olfr1311 
F ACTTGGCCCTTCCCTTCATCA 

138 
R CAGAAGCAACTATGCCCTTGTC R CTGGGAGCAGAGTTTCCTCATT 

Olfr354 F TGACCAACTGTCCTGCCCTTAT 174 Olfr71 F AGCGGCTACTCTTTCCTCTGT 177 



- 97 - 

 

R CAGCTAGAAACACCAAGCCCAT R CCAGCATCAGGGGTACAAAAGT 

Olfr356 
F CTCAGCAGTCTGCCTGTTCTA 

180 Olfr275 
F TGGAAACTGGACCTGTGATTCA 

165 
R AGGAACCTTCTCAAGGCACTT R GCAACATTGGCAATGGGAGAA 

Olfr362 
F GAGATGCTGGGGGCAATGTTAA 

199 Olfr273 
F AGGTCTTAGCTGTCCTCAAGCT 

161 
R GCAGCTGAAGGCAATCGTAAGA R CCCTGTGGCTGAGTTCATTCT 

Olfr368 
F CTTCACCCGGTCCAGAGTTAT 

140 Olfr1340 
F GACCTGGATTTTTGCAGCTATGG 

101 
R GTAGCACCATGCCCACATTTC R CCAGGGCTATGCATAGGGTTT 

Olfr988 
F CATGGGCTTCCTAAATGCTTCTG 

185 Olfr38 
F CACAAGGCTGGTCATCACATC 

127 
R GTACAGTGCTCACTAGGTTGAAC R AGCAAGGGTTTCACAGGCTAT 

Olfr992 
F AGCCACTTTAGTGGGCAACATT 

181 Olfr452 
F CACAAGGCTGGTCATCACATC 

140 
R TCCTGTGAAGGAGATGGATGGT R CCAATCGGACCACAGCTAGAAT 

Olfr1009 
F ACCATGACGGGAAACTTAGGT 

120 Olfr450 
F CTTAGCCTTGGGTGGTTCTGA 

192 
R CACGACTGACGAGAAGCAAAT R AGAGGAAGACGGAAGGTGATTAC 

Olfr1014 
F CTGGATCTTGGATTGTCCACAGT 

128 Olfr307 
F ACCCTTGACCTACAGCTCCAA 

147 
R TCAGTATACCCAAGTCCAGCAG R GGCACAAGCCAGAACGGAAATA 

Olfr17 
F CAGCACTGCCATCCTCACATA 

176 Olfr305 
F TTCATGGCTCTCCTTGGATCAG 

153 
R GGCCCAGAGTTCTGTGAATGA R TAATCCAGTGCCCCAGGAAAC 

Olfr1022 
F CAACACTGCAGTGATGGATTTC 

117 Olfr552 
F GTGGGGACACACGCTTCAATA 

114 
R CACAGGTTTCCTGTCAGTGTT R GGAGAACAGCACGAAGGATGAA 

Olfr1030 
F CATATGCTGCGTGTTTAGTCCAG 

193 Olfr553 
F CACCTCTGATGCCAGGTTTAAA 

131 
R AGGCCACTAAGGAAGCCATAGA R GGATATGCGAAGGCACATTGT 

Olfr1043 
F GCCAAATGCGCTGGTGAATTT 

180 Olfr556 
F CCGTCATGTGATGCTGGGAATTA 

166 
R CGCGGCATGAGAATGACATAGA R GGGGTCAGCACATGCTAACTT 

Olfr1052 
F GCTCAGCTTCTGGACGACAAAA 

113 Olfr575 
F ATCCCATAAAGAGCGCCTCAAG 

104 
R ATACTGGGAGCTTGGCTGAATG R AGCGGTGCATGGATGCTAAA 

Olfr1079 
F CCTTGGCTCCTATCTGCTCATCT 

118 Olfr577 
F CCCATTGCCTTTCATGCTCAAA 

160 
R CCCATAAAAGACAGAAACCACGG R GTCCACTCCCACTGTAGAAACA 

Olfr1089 
F TAGGCATCACTAATCGGCCTG 

122 Olfr592 
F CAACGCTGTGTATGGCCTTTT 

134 
R CAGTCGAGGGTCCACTATTGT R TGCTGAGGGCTTTTAACCGT 

Olfr1090 
F ACAACCTCAGTCCAGTCATTCTG 

138 Olfr599 
F GTCGTTCTGGTGGTTGCAATT 

180 
R CTCCAAGTCCTATGTAGGGCAAA R AGCCACAAAGAGCCCATATGAT 

Olfr1093 
F TGGAGTTGTGCATGGTGCTAT 

167 Olfr606 
F CAGCCTTACTTCGGAGTGCTAT 

191 
R CAATCAAGCCCACCAAGTACAA R ATCCATTCCCCACAGCATAAGA 

Olfr1106 
F GTGTTGGGATCGTGCTTAGGA 

171 Olfr622 
F AGGTCTAGTTGGCCTGATGAGA 

179 
R CACCAAAAGCAGCAGTTCATTC R GGGCCACTGAAATTCCATATGC 

Olfr1111 
F TGCAGATGCTGAGTGCCTTAT 

146 Olfr65 
F TGTCATGGGCATTGCTTCTACAG 

148 
R AGGTCACGCTTCCGCTAAAA R GTGGACGACATGAGGAACATTCT 

Olfr1112 F CCTAGCTTGTGGGGACACTTTTA 142 Olfr648 F CATAGCTGTGGTGGGAAACTGTA 186 
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R CCCAGTTGCAGATGGAAGCTT R AGGCAGCCTGGAAATGTGATT 

Olfr1124 
F GTGCTGCATTCTTATCCTGGGA 

153 Olfr661 
F AAATTCCACTCATCCCGGTTCTG 

126 
R CCACTTATCCAGGAGCCAATCA R CCAGCCTGAGCACCTTGTATAA 

Olfr1128 
F GGGGTCTTTGGAGATACAGAATG 

138 Olfr6 
F CGAGTTGCCTTCTGTGGCAATA 

151 
R TGCATAGGCAACAGCCACAAG R CAGTGGCTGAGAGTGGGAATAT 

Olfr1136 
F GGCTGTTTTCTCCAACTCCTGA 

133 Olfr885 
F GTGCCTTGTCCCACATAGTTT 

167 
R CTCTACTAGACATGTCCACAGCA R GGGCACTGTTATATTGACACCA 

Olfr1152 
F GACCATCAGCTTCACATCCCAA 

113 Olfr933 
F GACTTTGCTCACTGCTAGTGTTG 

167 
R CTCTTGGCAAGCAGGTCCAATA R CAGCTTTATGTCAGAGCAGGAG 

Olfr1157 
F CCCTGGCATGTATGGTCCAATT 

168 Olfr768 
F AATGGCGTCTGGGGACAATAC 

181 
R GGTAGCATCCAGACACCAGTAT R GAACTGGATGCAGACCCTGTTG 

Olfr74 
F TGCTAGCCCTTTCTTCCTCTGA 

147 Olfr788 
F AACTGTGCTGCCCAACTCTTT 

141 
R CACTGGCTGAACGCATCTTAAG R GGTGCAGAGTTTCCTGTTCATG 

Olfr1161 
F CTCAAGATGCAATCATCCAGGGG 

144 Olfr812 
F ACCAGTCAGGAGAGTTAGAGTTC 

120 
R CACTTTGAATGTGAGCTGGGAG R TCGTTAAGTTCCCCATCATGC 

Olfr1162 
F AGTCGTTAAAGTGGCCTCTGT 

131 Olfr827 
F AAGGAGTGTCTGTGTCCAGTTG 

113 
R ACTGAAGAGGGATCTTTGTGCTC R CAATGACCCTAGAGGCACAAAA 

Olfr1164 
F TGAGGCTTGTTGCCTCTTGAT 

146 Olfr1389 
F GGTTTCTGGCCTTGTGAACTC 

148 
R CGATCCCATGACAGACACCAATA R CATCTTGACCTCCGTTCCATTAG 

Olfr1176 
F CCCCACTAAAGGAGCACTACAA 

109 Olfr51 
F ACCTGCATGCTCTCTTGCATA 

160 
R TGACTTGAGCACGCAGTATAGA R ACCAATCCACCAATGGTGAAG 

Olfr1179 
F CTTGCTGTGCTGGTGCTTTTA 

185 Olfr11 
F CGCTGTGGCCACTATGTCATA 

199 
R CAGTCCCATCATGCCTGAATTG R GACCTTCGGCAGATTGGATTTTC 

Olfr1180 
F CTTCATTTCCTTGGTGCCATTG 

166 Olfr745 
F CTTCTGGTGCTGGTCGAACTA 

131 
R GACTGGCTGAGTGCACAAATC R CTTCTGCATTCCTGCAGGATTC 

Olfr1184 
F GCCATGCACTTCTTTGGAATGA 

129 Olfr283 
F TCGGAAACTTCCTCCTGATACT 

150 
R GATCAGGATATGGCACCTGCTT R GGAGTAACCCTGAGCCGTAAAA 
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Table S3. Primers used in the comparative biological analysis. 

 MRPrimer PrimerBank 

No. Gene Sequence Size 
(bp) Sequence Size 

(bp) 

1 Olfr613 
F TGGTTAGAGCGGAGCAGAATC 

247 
F CCTTCTGGTTAGAGCGGAGC 

110 
R AGTGGAGCACAGATAGCAACC R CCAAGACACTAGGCATTGTTGAC 

2 Olfr911-ps1 
F TGGGGCTGGAAAATGGTTCTT 

124 
F TTGTGCCCAGTGTTATCATCTTT 

120 
R TTCCCCACTGCTGTTGTTGT R CAGCAAGTATATGGGAGCTACAG 

3 Olfr130 
F GTCGCACATGCTGGTAGTAGT 

223 
F TGACACTGGTAGGCAACACAG 

176 
R AAGAATTTTCTTCCCAGTGCTGT R TGTGGCAGTAATTGTCTTGGC 

4 Olfr235 
F GGCTGTAACCTGGAACTTTTCC 

127 
F GTGTTTTGGAATAGCAAATGCCT 

180 
R GGGGGCTGTGGAAGTGATATAG R GAGCTGGATCGCAAATAGACAA 

5 Olfr1053 
F GTGAATGTGCTACCCAGTTGTC 

172 
F CATCACTGCCTGGGTTCATCT 

108 
R CTGTAGAGGTACGGGATGCC R GGTTGCCCATGACTGTGACT 

6 Olfr611 
F GAGGAGGCTCTACTTTTGTCGT 

134 
F TTCCCCACACTGTTGAGAATCT 

141 
R CCAAGGTAGAGAGCACCACAA R CACATACCAATCGAAGGCCAT 

7 Olfr1303 
F CTGCTCTGTTACTTCCCCCAA 

120 
F GTGTCTGCGTTTGTGTTTCTG 

106 
R ACCATCTCCACTCCACCAACT R GGATGTTTCCAGCCATGCTTAAT 

8 Olfr401 
F CCCACAGGCTTACAGTTCCAT 

187 
F TATTCCCTCTATGTTGGGTCGG 

150 
R CAGGATGAGGCCACCAAAATTC R CAGATGGCTAGGAAGCGGT 

9 Olfr118 
F TGCTCCCCACTCCATTACTCA 

233 
F CACTTGCTTGTGGCGATACAT 

153 
R ACTACGGCCACAAAGATTGCA R CTTTATGGCGACCCTCAGGTG 

10 Olfr340 
F CATCAGTCGCATCTCCAAAAATG 

250 
F TTGGGACTCCCCATTCGAG 

195 
R AGGGAGTTGGCAGTAGATAAAGT R TGGAGATGCGACTGATGAGAA 

11 Olfr1295 
F CTCCAGGGACTTTCCCACTCA 

198 
F GGGGTTGTGGTTGTAACTTGC 

104 
R AGGAGTGATGTTTGAGGAAAGAC R GACAAAGCCTTAGATGCTCCAG 

12 Olfr453 
F TCTGGGCTTAGGAGGGATTGA 

145 
F CCTGGTGGATGTGTCTTATGC 

135 
R ACCACCGACCCAAGAAACAAT R AACTCAATCCCTCCTAAGCCC 

13 Olfr510 
F TGGCTTCCATTGACATAGCCA 

100 
F ACCACACTGTAGTCACAGAGT 

123 
R ATGCCACACCCAATGTAGGAT R TGGTGCTTAGATTCCCAGACA 

14 Olfr539 
F TCTGTACCTCTTCTGTGATTCCT 

245 
F GTGGTCCCAAGGTTATCACCC 

156 
R AAGACCGATGAACCATACAACCA R TGCAGCCATAAGACAACAAGG 

15 Olfr1388 
F GGCCTTCTTTTTGGTGGGATTC 

127 
F TCTCTCTCGACTGGACCTTCG 

153 
R GTCCAGTCGAGAGAGAGCAAT R ACACACCTTTCATAGCTGATGG 

16 Olfr1443 
F GACTGGAAACTTGGGGATGCT 

121 
F ATGGAGAACAGGACAGAGGTG 

143 
R TGGGGTAACAGCAGAGGAGTA R AGAATCAGCACAAGCATCCCC 

17 Olfr1494 
F AGTCCCATTCCTGCTGATTTGT 

167 
F CCCTCTACACTACAGCCTCAT 

147 
R AGCGGGGCCTCAGATATACA R TGGTTGATTTCCTGGTCATGTC 
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18 Olfr1204 F CCGCAGTTGCAGAAAATCTTG 201 F TCACACAGAATCCGCAGTTG 113 

R ATGGAAAGTATCAGCAAGCAGTT R CAGTTGGCTGTTTGTAATGGTG 

19 Olfr635 F AAACACCACCATCCTAACCGTTA 188 F CCATCCTAACCGTTATCCGCA 117 

R GGAAGAAGAACTGGGCAAAACA R GCATGACTGTAGGGAGTGTGG 

20 Olfr694 F CAGCCCTGTACTTTTTAGCCATA 122 F GAGCTGCTCTGTGCCACTATC 173 

R AAGCAAGTCCATGAGAGAGAGC R ATGGCCTTTGGAGTGATGACT 

21 Olfr1511 F CGCCAGCAAGGTTATCGCATT 165 F TTCTGGGTGTGCTCTCCTTC 101 

R GTGCACAACTTCCCATTCATGA R ACCAAATGCGATAACCTTGCTG 

22 Olfr960 F AGCAACCTCTCTATCTCTGACAT 148 F AGCCTGTGAAGATTCCTCTCT 230 

R AGCACAAAACGCATCCAATACA R GGTTGGGCTGTAGGTAGATGAC 

23 Olfr1411 F CTCTCATATGATGGCTGTGTCCT 102 F CTGCCATTGCCCCTAATGC 210 

R ACAGATATCACCTTGCCCTGT R CCAGACGGGTACAGGTTGTAG 

24 Olfr619 F GCTCGCATACTTTGTGCTGTG 215 F GGCTCACCTATTGTGGGAAGA 74 

R GGATTGAGGGAGGGTGGTAGA R ACAGGCCAACCTGGCAATG 

25 Olfr122 F GCTGGTAATGCCCTCACGT 109 F AGGAGAACAGCTTGTCTGTCA 60 

R CCTCAAATAGGTGGCAGACGT R CTCCAGGGACCTCAGAGAACT 

26 Olfr1033 F ACCTTACAGCAGTTGGCATATTT 195 F TCCACCCCTCATCAAGATGG 258 

R ACTTCTTGGCAATCACTTTGTCC R GACTCCTCAGTGGGTCGTCT 

27 Olfr1331 F CCTTTGTTACCACCACCATGC 114 F TTTGGTCGTTACTCCAATCTCCC 240 

R TTATACCCAGGCCACCGAACAT R AGCAATGGTGTAAAAGCACTGT 

28 Olfr740 F TCCTGTTCGTTCCTTTCCTCTTC 178 F CCCGACCTCTGAGCATGAAG 83 

R TCAGAGGTCGGGCTTAGATACA R TCACAGGATTAACGAGTGGAGT 

29 Olfr190 F CTGGCTTTTGTGGATGCTTCC 162 F CTGTGACATCGTTCCATTGCT 263 

R TGCCATAGCTCCCAACAAGAA R CTTGGGACACGGGGAAAATATAC 

30 Olfr1465 F CATGAGTGGGCTCCTAAAAGGA 189 F ACATTGGGGACACCTTCAATC 254 

R AGACACACACACACACCTGAA R TGCGGCACAAGTGGATACAG 

31 Olfr1255 F CTCTTGGTCTCTTTGTTGCTGC 229 F AAAAGGAACGTGACTGAGTTCAT 244 

R GCTTTATCAATTGGCAGAGTGGT R GAAGGGAGTCCGCAATCAGC 

32 Olfr1392 F CTAACTCTCTTTGGGAACACTGC 203 F CTGGCCTGCACTAGAACTCAT 78 

R GTTATGAAGAGCTGAGACACACA R ATGGCAGTGTTCCCAAAGAGA 

33 Olfr799 F TCCATTGCCTATGCTGCTTGTA 214 F ACAGATGACATTAGGCTGCAAA 227 

R GGCTAATTGGTGGGAGAACGA R GCAATGGACTTATCCCCAGATG 

34 Olfr569 F GCCTTGTTGGCTATCACTGAC 109 F GGAATCCCAGGGTTGGAGAAT 87 

R GGATGAGGCAGGCGTTGTATT R GGTGATATTTCCAGTCAGTGCC 

35 Olfr1297 F CATTGCTTCAGGAGAGGTGGTAT 178 F GGTATTGTTGGCTTTAATGGCCT 372 

R CTGCAAAAGCACTACCACGTG R GCCTTGGAAGCTCCAGTTTTC 

36 Olfr967 F GATGTCCTATCAAGTCTGCACC 175 F GCTTTCTTGCTCCCCTACTTT 348 

R AAAAGTAGGGGAGCAAGAAAGC R GTTAGTGCGACCTTGACATCC 
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37 Olfr355 F TCCTTTCCCCACTTCCATTCAC 198 F GATGTGCCCTACTGGTGACC 336 

R AGCAATGCATAGGAAGGGAGTC R AAAAGAGGGTTACCACAGTGAAG 

38 Olfr1225 F CCACAGCTCTGAAGGGAAATTT 171 F TGTGGCAATCTTGTGATGGTG 265 

R GAATTGAGCAATGGGGTCAACAC R TGTGGGCTTTCAGAGAGTACA 

39 Olfr1079 F TCCTGATCATCCTTGGCTCCTAT 128 F ATGTCACAAACTGTATGTTGGGT 253 

R CCCATAAAAGACAGAAACCACGG R GCAGATAGGAGCCAAGGATGA 

40 Olfr918 F CCACAGGTCTGCTCAATGCTA 154 F TGCTACTCTTCTGTATCCAGTCC 251 

R AAGAAAGTTGGAGGAGGGGCA R CCAGCAAATGCCATCCCATAAG 

41 Olfr1336 F CCTCTTCTTAACTTGTCCTGCAC 142 F GAGTTGGGCAATGTGACCAGA 249 

R ATGGCATGCCTAGAACTGTCCT R CCCCATGAGTAGTGTGGGC 

42 Olfr1408 F ACAGTAAGGACCAAGACCAGCT 125 F AAGATTGCCTCATCTGATGGC 243 

R CCTACACAACACTTTCCGCAGA R CCTACACAACACTTTCCGCAG 

43 Olfr830 F TGTTGGCCATCAAGTGTGACTT 182 F CCTTATGAACCCCAGTTTCTGTG 75 

R AACTACAACAAAGCAGGCCTGG R TGCAGCAGACCATTTACAATACT 

44 Olfr1356 F CAGTCCTTCTTCTTTGGGTTGC 145 F AACCTGTCCATAGCTGACATCG 76 

R CGATGTCAGCTATGGACAGGT R TGCTTTGTGTGCGGATATTCT 

45 Olfr1353 F TCTGGTTCTGGTGTCTTGGATTG 101 F AACTTCTTGCTCACTATCATGGC 584 

R AGTGTGGGATTTCTGGCTGTG R ACGAAGAGTCTTTTTAGGGCAC 

46 Olfr828 F GCTCTTCATTCACTACCTCAGTC 144 F GGACTGATGGTGTTGCGGTT 444 

R TTGCCCTATTGATGTGCTTCC R CCTATTGATGTGCTTCCTCAAGG 

47 Olfr1145 F TGACTCAGACTCCGACTAAATCC 120 F CTGTCTGCACTGTTCTCCATC 391 

R GGAGATTGGGAAGAGCAGAGAA R TCTGAATTGGAATGCCACTTAGC 

48 Olfr995 F GTTGTCCCAATCATCAGCCTTTC 100 F TATGCCACATTTGCGACCAGT 326 

R TGACCAACACAGTGAACGTCA R AACACAGTGAACGTCAGGTTAAA 

49 Olfr978 F TGGCCCTGGTCTCTTCATCTA 174 F GGCCCTGGTCTCTTCATCTAC 63 

R TGAGGAAGCACAGACCCATAT R GGCCACAATTCCATCTACAGC 

50 Olfr693 F CGCCTCAGTTATCAGTCCCAAA 107 F CCATGTACCTCTTGCTTGAGC 67 

R TACCCAGTGCCAGTTCCAAGAA R TTGGGACTGATAACTGAGGCG 

51 Olfr967 F GATGTCCTATCAAGTCTGCACC 175 F GCTGGATTAACAAGCACACCA 72 

R AAAAGTAGGGGAGCAAGAAAGC R CGTTACTGCATAGATTCCGAGG 

52 Olfr653 F CTTCCACCCTCCCACATTTGT 112 F CCACCCTCCCACATTTGTTTT 78 

R ACCATTTCCAACCAGAGCAAGG R GAGCAGAAGGGAATAGCAATCC 

53 Olfr1284 F GTAAGCATCATCGTGGGAAACC 133 F GGACTCTCCAGTTCTTGGAAAAA 78 

R TGGGCACTGTGGTAGAGGAAAG R TCCCACGATGATGCTTACATAGA 

54 Olfr348 F GTAACACTGTCCACCACTTCTTC 161 F ACCCCCTCCACTATACAAGAATC 89 

R AGTGGCTCCAATGCGTCCATA R AAGGGCACCAGCAAATGATAA 

55 Olfr222 F GGTCATCCTGACAGTGCAATT 114 F CACCCCAAAGGACTTTATCCTC 103 

R GCATCATTCGCCGTAGTATCAG R CCCCAGCATAGCCAGAATGT 
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56 Olfr267 F CTGACTGCTCTGCTGGAAACTA 168 F ACCCGAGGTTAGAGATTGTTCT 111 

R TGGAATGGGCAGAAGGAGAATAC R TTTGAAGGCGTGAATCCAGGA 

57 Olfr433 F GGGCACTGACAAACTTATTGCCT 119 F CATGTCTCACTGCCAGTTTACC 105 

R TCTTTTCACTGACCCTCTTCACG R CATGCCACCTTGTGCTCAC 

58 Olfr461 F CCTTTTTGCGACCTTCCTTCT 181 F GGCACCAAAGAACTACACCAC 109 

R AAGAAGCCCCTGGAGCATATA R GACGTTTGTCAGCATGGACTA 

59 Olfr1344 F GCTTTGCACTCTCTGTACCCA 200 F GAACCCTCAATGATTCAGGAACC 129 

R AGAGGCTAGGATGAGGACCAAA R GGGCACCATTACCCAGCAC 

60 Olfr1358 F GCCTTGATTGAGACCTGCATGA 144 F CCATCCCTTGCGCTACTCTG 112 

R GCTCAGGAAGAAGATGCCAAGT R GAAGATCATGCAGGTCTCAATCA 

61 Olfr1420 F ATTAACCACTCACTCCACACCC 185 F GGGGTGCAGATGGTGATTTTT 177 

R TCAGCTCCACCCAAGAAAACA R CAGTGGTGCAATGGATGATGTAT 

62 Olfr1509 F CAACTGGGTGTTGGAGATTCTG 109 F CAACTGGGTGTTGGAGATTCTG 108 

R GAGACGTGGCGTGAAGACTAT R AGACGTGGCGTGAAGACTATG 

63 Olfr5 F GCTAGGTGGGCTATTGGTTTCT 186 F TTGTGGGCACAGAGTGCATT 133 

R AAGCAACCCCAAAGGATGACA R CCTAGCCATGAAATCATAGCCAA 

64 Olfr39 F CATGCAGTGCCTCACTCAAGT 166 F CAGATGATCCTAAATTGCAGCCT 113 

R CCAGCACATTAGCACAAGGAAG R GAGATGGGAATCAGAACTGACAG 

65 Olfr49 F ATTCCTGGGCTTTCTCCTGAC 185 F CTTCCCCAAGATGCTAACCAAC 172 

R GTCCTGTGATGATGTTGGTTAGC R GGTGGCATAACGCAAAGGG 

66 Olfr632 F CTTCTGTGCTGGGGGTGTTAT 128 F ATGAAGGTGTCTATTCCACCACG 100 

R GTCCAGAGCCATAGCAAATAGC R GCAGTGAAATCCAATGATGAGCC 

67 Olfr1444 F TTTCTTCTTCGTGGGGTTTGC 154 F GGTTGACAGATGACCCCAATC 117 

R GCCACAGGTGTAAGAGCCAAT R GGTGGGAATCCGAGAAGATGA 

68 Olfr424 F GGTTCCTGCATCTTTGGCTTTC 124 F GGATGGATACCCGTCTTCACA 127 

R CCAAACGCAACACAGGTTCAA R ATGGTCCTTTGCTTACTGATGAG 

69 Olfr460 F GTGGGAAACACGGTCATCATTG 127 F TCCTGGCTCTGTAAACCTACG 188 

R GCATCACGGGCACAATAACAG R CGGGCACAATAACAGTTGTAACC 

70 Olfr677 F AGCTTGTGCACCCATCAAGAT 156 F CCTTGTGGGAAACATCACCAT 175 

R GTGTTTAGCGCCTTCAATCGG R GCCCCCGAAACTGATCTCC 

71 Olfr218 F GAGCATGGCTATTGTCCAGGTTA 168 F CTGCAATCCTCTAAGGTATTCGG 102 

R AACACAAGGACACACACGCT R ACCTGGACAATAGCCATGCTC 

72 Olfr362 F TGCCCCACACTTTCCTCTTTT 136 F TGTGCCCCGAATGCTTCAC 122 

R GAGAGGCCACGCAAGAGATAAT R TTCCCCAATATGGTGGTCAGATA 

73 Olfr558 F TCCCTTTGTGTTCCCTCTACCT 153 F TCAATAGCAATGAATCCAGTGCC 114 

R TTGGCATGGATGAGGTGGAAA R GCACAGCAATAAGGTAGAGGGAA 

74 Olfr78 F CATGCCACCTTCCTGCTTATTG 138 F ATGAGTTCCTGCAACTTCACC 111 

R GCTCCGCTCTGTTCTCACTAT R TGCTACAGCATACATGGAAAGC 
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