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ABSTRACT 

The size of scientific data has been increasing rapidly in a variety of domains. 

The scientific data is represented as array data and is managed by a diverse scientific 

data format such as HDF, NetCDF and MDSplus. Even though the existing array DBMSs such 

as SciDB and RasDaMan manage array data, there are challenges in loading data into the 

array DBMS. The data loading process of the distributed array DBMS incurs the signifi-

cant overheads since the inefficient four transformation steps of file format incur the 

expensive disk I/O.  

In this paper, we propose a distributed in-situ analysis method DISCAN that can 

process a scientific query efficiently and directly over raw scientific array data in 

distributed array DBMSs. Our approach eliminates unnecessary write operations during 

the data loading and processes only the data required in query. Our in-situ processing 

consists of two phases, HDF merger and DISCAN. HDF merger is responsible for managing 

raw scientific data in order to distribute the scientific data to nodes. DISCAN is com-

posed of Local Map that transforms the raw scientific data into the internal data rep-

resentation of DBMS and Global Map that replaces the transformed data according to a 

partitioning policy of the DBMS. DISCAN reads only the data required during query pro-

cessing using the well-defined scientific data format libraries. We evaluate the per-

formance of DISCAN across real-world scientific dataset. Experimental results show that 

DISCAN outperforms the processing query after data loading of the distributed array 

DBMS by up to more than 60 times. 

 

Keywords: In-situ processing, data loading, array DBMS, scientific data format 
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Ⅰ. INTRODUCTION 

 

In the era of information, massive data is explosively generated in the business 

as well as the science since scientific observation instrument and computing simulation 

has been developed rapidly. For example, in the case of the physics, Large Hadron Col-

lider experiments observe particles generated by the collision. It generates the 30 

petabytes of data annually and stores dozens of gigabytes of data per second for future 

analysis. At the astronomy, Large Synoptic Survey Telescope (LSST) that observes the sky 

to find stars, planets and other objects produces more than the 30 terabytes of data 

every night. 

Most scientific data can be represented as an array. For example, one-dimensional 

array data is DNA sequence data. Two-dimensional array data is the map data, the graph 

data and MS/MS spectrum data. Three-dimensional array data is the satellite data that 

has two-dimensional map data and one-dimensional time data. In the fields of analyzing 

scientific data, larger numbers of scientific data formats are used to manage scientific 

data and support array. The Hierarchical Data Format (HDF) [1], the Network Common Data 

Form (NetCDF) [2], MDSplus [20] and ROOT [21] are file format to manage scientific data. 

Especially, NASA supports satellite data as HDF. The array data stored in these file 

formats is accessed through a high-level interface that is optimized to utilize the max-

imum bandwidth of disk I/O. Scientific file format libraries also optimize to store and 

retrieve consecutive data. However, the libraries do not support query interface like 
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SQL. Thus, users should code a custom application for simple analysis of scientific da-

ta. Compare with Database management system (DBMS), users are able to easily analyze 

scientific data through declarative SQL queries. 

Analyzing array data is barely suitable for relational DBMSs since the DBMSs are 

developed to analyze relational data. The various array DBMSs have been developed to 

efficiently manage and manipulate array data, such as Titan [3], T2 [4], RasDaMan [5], 

ArrayDB [6], (S)RAM [7, 8], and SciDB [9]. Since the scale of data has been increasing, 

processing the data is beyond the single array DBMS. Hence, the distributed array DBMS 

has been researched like SciDB. The distributed array DBMS has approach is similar to 

Hive [11] supporting SQL query processing based on Hadoop [10]. The architecture of the 

distributed array DBMS consists of a master node and slave nodes called shared-nothing 

architecture. The one of major characteristics of shared-nothing architecture is scale-

out approach which is able to add the nodes easily. Scale-up approach upgrading the per-

formance of a machine has the limitation of cost-efficiency [12]. However, scale-out 

approach solves the limitation since low-priced commodity machine is added in the clus-

ter. 

In the distributed array DBMS, The master node generates a query plan using sub-

mitted a query and assigns the job to slave nodes. Each slave node executes the appro-

priate operators for query plan and sends results to master node. In order to analyze 

data in a DBMS, DBMS should load the data to the database. Data loading is to store data 

as an optimized format to process the query on the DBMS. Transformation of file format 

causes disk I/O since the transformation process reads the existing file and then cre-
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ates the new file. Thus, the data loading becomes significant overhead depending on the 

increase of data size. For example, it takes about 5 hours to load 1TB data into DBMS 

using HDD. Typically, the valuable information of scientific data is the part of the 

entire data. Although users want to analyze the part of scientific data, the entire data 

should be loaded to DBMS. Relational data is generated slowly and is used by lots of 

queries. On the other hand, scientific data is generated rapidly and the number of que-

ries is less than relational DBMS. Thus, loading all the scientific data to DBMS is in-

efficient. In addition, array DBMS does not support loading scientific data to the DBMS. 

Scientific data should be transformed to data loading format in order to load scientific 

data. Data loading process is time-consuming since it needs multiple disk I/O.  

In order to solve the overhead of data loading, there have been a number of ef-

forts to execute query on raw file without data loading called in-situ processing. The 

existing in-situ processing is able to process text files like CSV without data loading. 

Since the text file does not be optimized to process a query on DBMS, the in-situ pro-

cessing uses the ways to index data position in a text file in order to perform in-situ 

processing effectively [13]. Accessing scientific data format which stores binary data 

is optimized by scientific data format libraries. 

 In addition, the distributed array DBMS is in no condition to adapt the existing 

in-situ processing since the in-situ processing has been developed on RDBMS of single 

system. Adapting in-situ processing to distributed array DBMS considers the characteris-

tics of the DBMS. The distributed array DBMS uses the chunking mechanism which splits 

the array into sub-array having the same shape. In order to adapt in-situ processing on 
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the distributed array DBMS, it is needed to distribute data from storage server to SciDB 

instances and partition the data properly to process queries on the distribute array 

DBMS.  

In this paper, we propose Distributed In-situ SCAN operator (DISCAN) that allows 

the distributed array DBMS to execute query over raw scientific files without data load-

ing. DISCAN removes the inefficient portion of the existing data loading process of the 

distributed array DBMS and is able to process queries over raw scientific files. The one 

of the important characteristic of array is to manage sorted data based on dimensions. 

While transforming scientific data file into a DLF file, the characteristics of array is 

removed. We design DISCAN as in-situ processing without the preprocessing that removes 

the characteristic of the array. In order to read data needed in the query, DISCAN modi-

fies query plan and uses well-defined scientific data format libraries. We evaluate the 

performance of DISCAN on the cluster consisting of 10 nodes and experiment with a real 

satellite observation data of NASA, called Moderate Resolution Imaging Spectroadiometer 

(MODIS). Our experiments show that DISCAN outperforms the existing data loading process 

of the distributed array DBMS by more than 60 times on the same MODIS dataset. 

Our contributions are summarized as follows: 

 We design and develop DISCAN that is the scan operator for in-situ pro-

cessing over raw scientific data format on the distributed array DBMS. 

 We modify the query plan and utilize well-defined scientific data format 

libraries in order to efficiently access raw data needed in the query. 
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 We implement DISCAN in the SciDB and evaluate its performance across real-

world dataset. DISCAN shows that remarkable performance improvements can 

be achieved.  

The remainder of the paper is structured as follows. First, we introduce back-

ground about array DBMS and data loading in Section 2. Section 3 presents related work 

about in-situ processing. We then describe DISCAN in Section 4. Section 5 follows with a 

description of the experimental setup and presents the performance evaluation. We con-

clude and discuss future work in Section 6. 
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Ⅱ. BACKGROUND 

 

2.1 Array DBMS 

Since Typical business DBMS is developed to analyze efficiently business data 

which represents relational table, it is unsuitable about analyzing scientific data that 

represents an array. Various array DBMSs are developed using an array as a data model to 

handle efficiently array. RasDaMan and SciDB are array DBMSs which are widely used in 

the scientific data analysis. 

RasDaMan has been developed ahead of SciDB. The system supports multi-dimensional 

array and has a client/server architecture as shown in figure 1, unlike SciDB has a 

shared-nothing architecture. The architecture consists of RasDaMan engine processing 

data and base DBMS storing data. When a client submits query to RasDaMan, RasDaMan reads 

data needed in the query from base DBMS and then executes the query. At this time, base 

DBMS stores and manages only data and query is executed in RasDaMan. 

 

Figure 1. Architecture of RasDaMan. 
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RasDaMan stores array data as chunk which splits an array into a sub-array. There 

are two ways to create chunk. The regular chunking splits array into the same shape of 

all the chunks. The irregular chunking creates chunks to the different shape. RasDaMan 

stores chunk using the irregular chunking method. Figure 2 shows that the irregular 

chunking method is more efficient than other method. When attempting to access no.1 area 

indicated by a green color in order to process queries in Figure 2, Figure 2(A), 2(B) 

and 2(C) are the three strategies of each the linear subdivision, the regular chunking, 

and the irregular chunking for accessing the green area. 

 

Figure 2. The example of chunking strategies. 

 Linear subdivision strategy reads data sequentially without the use of chunking 

mechanism. Thus, linear subdivision strategy reads six chunks in order of {a, b, c, d, 

e, f} to access green area. Although the regular chunking strategy reads four chunks in 
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order of {a, b, c, d}, unused data is read from disk. The irregular chunking strategy 

used in RasDaMan accesses two chunks of {a, b} to read number 1 region. Thus, the irreg-

ular chunking strategy is more efficient than other strategies since the strategy occurs 

the least number of disk I/O.   

In addition to  the requirement of using an array as a data model, other require-

ments that scientists hope at DBMS for analyzing scientific data is as follows[14]. 

• Array data model 

• Massive scale of data processing 

• No overwrite storage system that does not update result after query processing 

• Provenance method tracking process of data analysis 

• Processing error data involved in scientific data 

• Version control for scientific data generated periodically 

SciDB has been developed to satisfy all the requirements for DBMS which scientist 

hope to analyze scientific data. Figure 3 represents the architecture of SciDB. The sys-

tem uses an array as a data model and has shared-nothing architecture using at Hadoop 

Distributed File System (HDFS) [15]. In common with Other array DBMS, SciDB also stores 

chunk when storing data. In order to handle query failure at a node, chunk is replicated 

to multiple nodes. SciDB uses regular chunking strategy when splitting data into chunk. 

SciDB instances is a group of processes to operate query in SciDB. Multiple SciDB in-
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stances can exist on one node depending on configuration. SciDB consists of coordinator 

node and work nodes in order to execute the query. Coordinator node is responsible for 

managing position information of the loaded chunk and setting up a query plan for sub-

mitted query. Work node executes operation of query plan using the chunk stored in each 

node. 

 

Figure 3. Architecture of SciDB. 

 

2.2 Data loading 

In order to analyze data in the raw file, DBMS transforms the raw file into data 

representation used in the DBMS and then store the data in database storage. The process 

is called data loading. Data loading separates into five components of figure 4. Each 

component is as follows. 
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Figure 4. Raw file access processing in DBMS. 

 READ: reads data from the raw file. In order to optimize READ component, 

there is the way to read data with page as a unit and the way to cache 

pages in memory buffer. 

 TOKENISE: splits data read at READ component into attributes. Indexing 

attribute position in data and reading data until required attribute, 

called selective tokenizing[13], are used to optimize TOKENISE component

 PARSE: converts data of each attribute into binary representation that 

is able to process in DBMS. This component uses selective parsing [13] 

that converts only required tuples. 

 MAP: maps converted binary representation on data representation used in 

DBMS. For example, DBMS that uses column storage maps data on data rep-

resentation divided by column. 
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 WRITE: stores converted data in disk. In the case that READ component 

and WRITE component access disk simultaneously, both components should 

be executed asynchronously to remove interference about disk access.  

While three components of TOKENISE, PARSE, MAP are considered the Extract phase, 

data loading process of DBMS is to execute components in order of READ → Extract → 

WRITE. In other words, data created in Extract phase is stored in the storage of DBMS by 

WRITE component. DBMS can execute queries after finishing data loading. WRITE component 

takes up the largest part of the data loading time. 
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Ⅲ. RELATED WORK 

There have been a number of efforts to execute query on raw files without data 

loading, called in-situ processing. There are external tables [16, 17] as the basic ex-

ample of in-situ processing on relational DBMS. External tables is the way to use a CSV 

format file to process the query as if the CSV format file is loaded in DBMS. Although 

schema of the raw file is defined in database catalog, the actual data does not be load-

ed into the DBMS. The raw file remains the same. External tables passes data converted 

by Extract phase to execution engine of DBMS. The in-situ processing is executed in or-

der of READ → Extract → Execution engine in Figure 4. Disk I/O of in-situ processing 

is less than disk I/O of data loading since in-situ processing removes disk I/O when 

writing data converted by Extract phase and reading data to process query. 

In order to overcome limitations of external tables, NoDB [13] improves perfor-

mance of in-situ processing through improvement of each component that processes raw 

files in Figure 4. In-situ processing adapted to NoDB reduces the execution time through 

three optimizations as follows: 

 Selective tokenizing: reduces the tokenizing costs by tokenizing data un-

til the required attributes for a query. 

 Selective parsing: reduces raw file access costs. NoDB delays converting 

data into binary representation until determining required data for a que-

ry. 

 Positional map indexing: reduces parsing and tokenizing costs. The posi-
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tional map is created on-the-fly during query processing. Position infor-

mation about data in raw file is maintained to navigate and retrieve data 

faster. Figure 5 shows an example of a positional map.  

 

Figure 5. Positional map indexing [13]. 

SCANRAW [18] presents the performance improvement since each component of the Ex-

tract phase processing raw file is implemented using multiple threads suitable for the 

multi-core processor environment. In order to solve the limitation that in-situ pro-

cessing is worse than query processing after data loading in the case of continuous que-

ry processing about the same raw file, SCANRAW also apply speculative loading that loads 

a slight data before or after query processing. Figure 6 represents a parallel in-situ 

processing of SCANRAW. TOKENISE and PARSE components are executed by multiple threads 

accessing other parts of the data. PARSE component involves MAP component of processing 

raw file in order to show simply a structural representation. Basically, SCANRAW is to 

execute external tables method in parallel. However, if a query uses CPU resource inten-

sively, SCANRAW loads data using idle I/O bandwidth by speculative loading. 
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Figure 6. The data processing of SCANRAW [18]. 

SCANRAW implements three buffers among READ, TOKENIZE, PARSE, and WRITE components 

in order to execute external tables as a pipeline. The role of each buffer is as fol-

lows: 

 Text Chunks Buffer: stores data read from raw file with chunk as a unit 

and then provides input data used by TOKENIZE threads.  

 Positional Buffer: has text chunk which is output of TOKENIZE threads and 

the positional map which is position information about data in the raw 

file. Data in positional buffer is passed as input of PARSE threads. The 

input data is converted to binary representation and is mapped on data 

representation of DBMS.  

 Binary Chunks Buffer: passes data in this buffer to the execution engine 

by priority. If processing query requires intensive CPU resource, the data 

is stored in DBMS storage since speculative loading loads data using idle 
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disk I/O. The remaining data in this buffer can be used as in-memory cach-

ing. 

However, in the case that a query requires disk I/O intensively, no data is loaded 

into the DBMS. Thus, SCANRAW executes safeguard mechanism [18] to load a small amount of 

data after finishing a query. When SCANRAW starts next query, Safeguard mechanism stores 

data in binary chunks buffer into DBMS after the data is used as cache. For example, we 

assume that there are raw file which consists eight chunks of (1, 2, 3, 4, 5, 6, 7, 8) 

and binary chunks buffer which is able to have three chunks like figure 6. After first 

query, the remaining chunks in binary chunks buffer are chunk 6, 7, and 8. Thus, safe-

guard mechanism writes them into DBMS after SCANRAW passes them to the execution engine. 

A second query processes the chunks in the order of {6, 7, 8, 1, 2, 3, 4, 5}. The status 

of binary chunks buffer after finishing the second query equates to figure 6. Since 

chunk 6, 7, and 8 are delivered from the cache, the second query is faster than first 

query. The third query processes the chunks in the order of {3, 4, 5, 6, 7, 8, 1, 2}. If 

the same work is performed repeatedly, all the chunks are loaded into DBMS after the 

fourth query. 

Scientific Data Service /Query (SDS/Q) [19] is the in-situ processing system for 

HDF5 that is the one of standard scientific data formats. The system is implemented 

suitably on the supercomputer environment that has the large capacity of main memory and 

parallel file system. Since SDS/Q is able to use the large capacity of memory, the phi-

losophy of SDS/Q is to use in-memory engine that is faster than execution time of the 

disk based engine. Bitmap indexing used in SDS/Q is more suitable for analyzing multi-
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dimensional array than positional map indexing used in NoDB and SCANRAW. 
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Ⅳ. DISCAN 

 

In this section, we propose the distributed in-situ scan operator processing query 

on raw scientific data without data loading. First, we introduce to modify the query 

plan to adapt DISCAN. In addition, we present components and logic of DISCAN. 

 

4.1 In-situ processing 

 

In order to analyze scientific data, the array DBMS like SciDB should load the da-

ta into the storage of the DBMS. Data loading is typically a time-consuming process 

since multiple disk I/O is used. Since SciDB is the most popular distributed array DBMS, 

We explain The data loading of SciDB to verify overhead when loading data. Figure 7 

shows the data loading process of SciDB. The data loading process is composed of three 

steps of distribution, loading, and redimension steps. 

 Distribution step: splits CSV file which has n lines into the number of 

SciDB instance and then distributes them into each SciDB instance. 

 Loading step: transforms the distributed CSV files which have n/k lines 

into data loading format and then loads them into SciDB as 1-D array for-

mat. 

 Redimension step: shuffles the loaded 1-D array in order to match 1-D ar-

ray to the schema of the existing scientific data.  
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Figure 7. Data flow of SciDB data loading. 

For example of loading the distributed data to SciDB, figure 8 represents the 

transformation of data formats during data loading. The csv2scidb operation which is the 

external utility transforms CSV file which has four attributes of (event, year, person, 

time) to DLF data. The DLF data has a line number of CSV file as the dimension of a 1-D 

array and contents of a line as the cell of the 1-D array. SciDB starts the load opera-

tion after executing csv2scidb. The load operation of SciDB loads DLF data into 1-D ar-

ray since DLF data has a 1-D array schema. If the load operation finishes, SciDB data 

loading is progressed until loading step at figure 7. After loading 1-D array in SciDB, 

users should perform redimension step in order to analyze array as the schema of the 

existing scientific data. In the figure 8, Redimension step is the process converting 

(year, person) of 1-D array into dimensions of the 2-D array. 
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Figure 8. Data layout transformation in SciDB data loading. 

In order to evaluate the performance of SciDB data loading, the experiments use 

cluster consisting of 11 nodes. Each node has Intel Xeon E3-1240 4 core 3.4GHz CPU, 34GB 

RAM and 4TB HDD of 7200RPM. The network uses 1Gbps Ethernet. Table 1 shows the data used 

in experiments. The kinds of data is SST, chlor_a, Par, NSST and Rrs_667 of MODIS Aqua 

Level 3 and is converted to CSV file. Figure 9 shows the performance of SciDB data load-

ing.  

Table 1. Data information. 
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Figure 9. The performance of SciDB data loading. 

Each data is loaded to a 3-D array which has dimensions of latitude, longitude and 

date after loading CSV file to a 1-D array. Figure 9 presents that X axis and Y axis 

represent the kinds of data and the elapsed time of data loading. Since each data is 

stored in a file, CSV file is split and distributed appropriately in order to load to 

SciDB that has distributed system. And then SciDB loads them to the 1-D array. The 

elapsed time of the two process is the blue box in figure 9. The green box represents 

the elapsed time of rediemnsion step. Loading 580GB of chlor_a takes about 14 hours. 

Consider a scientist wants to analyze the red tide phenomenon using chlor_a data. Alt-

hough the data wanted to analyze is the part of the entire data, the scientist should 

wait about 14 hours to analyze the red tide phenomenon. Thus, in-situ processing is 

needed to reduce the time meaningless to scientists. 

In order to load scientific data to SciDB, raw scientific file needs to transform 

to an intermediate format like CSV format called preprocessing. The process that scien-
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tific data is loaded in SciDB is showed at Figure 10. 

 

Figure 10. The entire process of SciDB data loading. 

Preprocessing transforms raw scientific data to CSV file. Raw scientific data los-

es the characteristic of multi-dimensional array since CSV file has the 1-D array sche-

ma. Redimension step restores the characteristic of scientific data. In order to load 

scientific data to SciDB, Users execute the commands of (a), (b), (c), and (d) in figure 

10. The command (a) is to use the external custom utility that transforms raw scientific 

data to CSV file. And then users can execute the utility supplying by SciDB. The utility 

loads CSV file to SciDB as 1-D array. To restore the existing scientific data schema, 

users should execute a query for redimension step. From now on, users can analyze data 

using to submit queries to SciDB. In the case that scientific data is generated fre-

quently, scientists want to analyze the data always performs the work which inputs the 

four commands of (a), (b), (c), and (d). However, in-situ processing requires the less 

number of commands to users. Figure 11 shows distributed in-situ processing. 
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Figure 11. The proces of in-situ processing. 

In-situ processing adapted to SciDB can process queries without transforming raw 

scientific data to data representation of SciDB. Commands (a) and (b) of figure 11 is to 

perform queries without data loading in SciDB. HDF merger executed by the command (a) 

merges multiple scientific data as the k files, k means the number of SciDB instances. 

And then HDF merger distributes them to SciDB instances. After distribution, users can 

analyze scientific data using command (b) that is the same command (d) of figure 10. If 

a user submits a query, SciDB executes Distributed In-situ SCAN operator (DISCAN) which 

consists of Local Map and Global Map components. Local Map, which maps scientific data 

existing on the local to the internal data representation of SciDB, is performed by 

SciDB. SciDB stores chunks to SciDB instance depending on the chunk placements policy, 

called chunk partitioning. Since chunk placement is guaranteed to process queries in 

SciDB, DISCAN performs Global Map to replace chunks. SciDB performs the remaining work 

using replaced chunks. DISCAN supplies the convenience to users and outperforms the ex-
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isting data loading by more than 60 times. 

 

4.2 Modification of a query plan 

In order to execute in-situ processing on SciDB, in-situ analysis path and in-situ 

analysis layer are implemented on SciDB. Figure 12 shows the architecture of SciDB 

adapting in-situ processing. In-situ analysis path is responsible for controlling physi-

cal data flow. In-situ analysis layer optimizes data access for a query. After client 

submits query to SciDB, SciDB instance reads scientific data through in-situ analysis 

path without transforming to data format. If all data is not required to process a que-

ry, in-situ analysis layer supply information for the required data and SciDB instance 

can read only the required data. 

Distributed array DBMS like SciDB processes a query using multiple operators. The 

operator performs the specific function needing to query in DBMS. For example, scan op-

erator is responsible for reading data in database and multiplication operator executes 

to multiply two arrays. When a query is submitted, Distributed array DBMS generates a 

query plan composing the tree of operators. Processing a query is to execute operators 

from the bottom of the tree to the top of the tree. The bottom operator of tree is al-

ways the scan operator. To perform in-situ processing on SciDB, the scan operator should 

change in-situ scan operator that is able to read scientific data and map the data on 

the internal data representation of SciDB.  
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Figure 12. The architecture of SciDB with in-situ processing. 

Figure 13 presents to change scan operator to in-situ scan operator in the query 

plan. When a query joins two partial arrays, query plan of figure 13(a) is generated. 

The bottom of the query plan consists of scan operators that reads an array required 

during query processing. In order to process a query without data loading, query plan 

should change scan operator to in-situ scan operator like figure 13(b). The operator of 

SciDB guarantees that both the input and the output of operator should be an array. 

Thus, in-situ scan operator generates an array using data read in scientific data files. 
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Figure 13. The modifying query plan for in-situ processing. 

Typically, raw scientific data is stored in single machine. The scientific data 

should be distributed to the each node of SciDB since SciDB is the distributed array 

DBMS. If processing a query with in-situ scan operator requires multiple scientific 

files, in-situ scan operator opens and closes the file stream for all the files. Opening 

and closing the file stream is a significant overheads if the number of files increases. 

Thus, the merging scientific data is needed to guarantee the opening and closing file 

once. HDF merger merges scientific data as files of a number of SciDB instance. And then 

the merged files are distributed to SciDB instances. Figure 14 shows the need of HDF 

merger. 
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Figure 14. The need of HDF Merger. 

HDF merger is responsible for merging multiple HDF files which are scientific da-

ta. Figure 15 shows the example of HDF merger. Consider a raw file has 2-D array data 

that has the dimensions of latitude and longitude and multiple files which has the date 

from 1/1/2014 to 1/12/2014. We assume that The number of SciDB instances is three. HDF 

merger merges the twelve raw files as three HDF files. A merged HDF file has 3-D array 

data and information of the dimensions.   

 

Figure 15.  The example of HDF merger. 
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4.3 The distributed in-situ scan operator 

The merged files are distributed and stored in each SciDB instance. Each SciDB in-

stance has one HDF file that stores the part of the entire scientific data. If query is 

submitted to SciDB after distribution, SciDB generates a query plan that the bottom of 

the tree is DISCAN and then assigns the work to each node. Each node executes DISCAN to 

read scientific data. DISCAN starts Local Map. The object of Local Map is to map scien-

tific data on array which is SciDB internal data representation. Figure 16 shows the 

components of DISCAN. Local Map is consists of the three steps of Filtering, READ, and, 

Building. 

 

Figure 16. The components of DISCAN 

The filtering step gets the filter information of query. When processing array da-

ta, query requires commonly the part of the entire data. These queries are called selec-

tive query. Figure 17 presents the selective query retrieving the partial data. Subarray 
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(A, 2, 1, 3, 3) is a query to retrieve 3 X 2 array indicating the green region in Array 

A. If the query is executed after data loading, DBMS can retrieve 3 X 2 array after 

loading array A. However, DISCAN is able to process the query with accessing 3 X 2 array 

data. To determine the data required by the query, the Filtering step of Local Map is 

executed. First, Filtering step searches the query plan of SciDB to find a filtering 

operator which scans the partial array. The kinds of filtering operator are Between, 

Subarray, and Slice. The middle picture of figure 17 is the query plan generated when 

Subarray (A, 2, 1, 3, 3) is submitted to SciDB. The Filtering step acquires the filter-

ing operation and provides the information to READ step. 

 

Figure 17. The example of selective query. 

READ and Building step is the important step of in-situ processing. Figure 18 

shows the processing of READ and Building step. READ step reads only the needed data 

using the filtering information provided to Filtering step. When reading scientific da-

ta, the unit of the read is a chunk. If data is read sequentially, distributed in-situ 

processing needs the sort phase. SciDB stores array data as a chunk that array is divid-

ed and the chunk stores the values in order of dimensions. Thus, DISCAN should sort data 



- 29 - 

based on chunk Id and position in the chunk.   

Figure 18. READ and Building step of Local Map 

Building step is responsible for mapping chunk read in scientific data on SciDB 

array. In order to map the read data on SciDB, DISCAN calculates chunk Id and position 

in the chunk. The information is calculated by Coord2pos() and mapchunkPosToId(). READ 

and Building step finishes Local Map after converting all the scientific data to SciDB 

array. The created SciDB array in Local Map does not be used in other operator since the 

SciDB array does not be guaranteed depending on chunk partitioning. After finishing Lo-

cal Map, DISCAN executes Global Map to replace chunks according to chunk partitioning 

based on Hashing. Figure 19 shows the work of Global Map. In the SciDB array created 

after Local Map, the certain chunks should be in other instance that since the chunks 

are unnecessary in the local instance. The chunks are sent to other instance correspond-

ing to chunk partitioning via network. Global Map is implemented by scatter/gather of 

MPI in order to transmit chunk. Scatter step sends chunks to other instance. Gather step 

is responsible for receiving the chunks. After receiving the chunks, the chunks are 

merged if chunk Id of the chunk is the same. Finally, completed array can be used in 

other operator.  



- 30 - 

Figure 19. The work of Global Map. 
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Ⅴ. PERFORMANCE EVALUATION 

 

In this section, we evaluate DISCAN that is the distributed in-situ scan operator 

processing query on raw scientific data without data loading. First, we show the perfor-

mance comparison results of DISCAN and query processing after the data loading. In addi-

tion, we compare with MATLAB which is the popular matrix processing system. 

In order to evaluate the performance of DISCAN, we perform the experiments in our 

cluster. The cluster consists of ten nodes. Each node has Intel Core i7-5930K and 32GB 

memory. All the nodes are connected via 10G Ethernet. The used data is 12 datasets of 

MODIS Aqua L3M which is satellite data. The data format is HDF format and data size is 

4.2GB per a dataset. Figure 20 shows to compare with DISCAN and query processing after 

data loading. The query is SELECT count(*) FROM Array, counts the number of cells in 

Array. CSV data transformed a dataset has the size of 33GB. In figure 20, data loading 

time takes 60 minutes. Each step of data loading consists of preprocessing step, split & 

distribution step, DLF transformation step, loading 1-D array step and redimension step. 

The most time-consuming step of the data loading is split & distribution step. While the 

data loading process takes a long time, query processing time just takes 0.01 minutes. 

Our in-situ processing takes 0.98 minutes to complete all the processing. DISCAN outper-

forms the processing query after the data loading by more than 60 times.  
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Figure 20. The performance of DISCAN and query processing with data loading. 

Since query of figure 20 scans all the data, DISCAN does not expect to improve the 

performance with selective query. Thus, we evaluate real selective queries used to find 

the red tide phenomenon of the coast of Korea in order to verify the performance with 

selective query. Our data has the entire data of earth. The real queries requires about 

0.7% of the data. Figure 23 shows the performance of selective query. The query finding 

red tied needs to access multiple dataset. SciDB loading of figure 20 is the elapsed 

time about loading dataset required during query processing. After completing data load-

ing, query processing takes just 1 ~ 2 seconds. In order to process four queries finding 

red tide, Queries FRTD and morel need two datasets, query SS needs three datasets and 

query TSF needs four datasets. SciDB data loading takes 360 seconds to load a dataset. 

Thus, the loading datasets takes 720, 1080, and 1440 seconds according to the number of 
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dataset. Typically, in the case of real query processing, the 12 datasets are loaded to 

process four queries. DISCAN takes 9.5, 14.7 and 22.2 seconds according to the number of 

datasets required. In the case of selective query, DISCAN show that remarkable perfor-

mance improvements can be achieved by more than 75 times. 

 

Figure 21. The resutls of selective query finding red tide. 

MATLAB is the most popular matrix processing system on a single machine. Since 

MATLAB supports to access HDF data directly, we compare with DISCAN and MATLAB. Figure 

22 presents the experimental results for various selective queries comparing with DISCAN 

and MATLAB. The size of data is 4.2GB scientific data. The query is SELECT avg(*) FROM 

Array GROUP BY first_dim. MATLAB does not support to access the partial data for selec-

tive query even if it supports to read HDF data directly. Thus, MATLAB always takes the 
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same time. DISCAN takes 9 seconds more than MATLAB when processing a query that has se-

lectivity 100%. Since distributed system is suitable for processing large-scale data, 

the initializing the job on the system becomes overheads. However, in the case of other 

query that has less selectivity than 100% selectivity, DISCAN outperforms MATLAB by more 

than 6.6 times. 

 

Figure 22. The performance comparing with MATLAB for selective query. 

We verify that DISCAN shows better performance than MATLAB as the size of data in-

creases. Figure 25 shows the experiment about the data scalability. The experiments uses 

data of 4.2GB, 8.4GB, and 12.8GB. Green line in figure 23 is the results of MATLAB. Blue 

and red lines are the results of DISCAN that has selectivity 50% and 100%. Although 

MATLAB shows the most performance in the case of 4.2 GB data, DISCAN outperforms MATLAB 
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as the size of data increases. Especially, DISCAN shows the performance improvement more 

than 13 times when analyzing 12.8 GB data. 

 

Figure 23. The perfomance according to the data scalability. 

We evaluate the performance of fundamental operation when analyzing matrix. The 

synthetic 2-D array data is used in this experiment. The kinds of data are 0.4GB of 

10000 X 10000 array, 1.5GB of 20000 X 20000, and 3.4GB of 30000 X 30000 array. In the 

cast of multiplication, the same size of two data are used to multiply the data. The 

queries used on the experiments are the transpose, the multiplication and the SVD. The 

transpose is less computation than other queries. We measure the scan performance of 

DISCAN, the operation performance of SciDB and the performance of MATLAB. This experi-

ment of transpose result in figure 24. MATLAB does not process 30000 X 30000 array since 

the array does be assigned at the memory. Both SciDB with DISCAN and MATLAB have similar 
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performance at the results of 0.4GB and 1.5GB. In the case of transpose operation, SciDB 

operation finishes in 1 ~ 2 seconds since transpose has less computation. In other 

words, processing transpose operation takes up the most time to scan data. Since hard-

ware is the same, SciDB with DISCAN and MATLAB have the same performance of disk scan. 

However, SciDB with DISCAN is able to process large-scale data which is processed in 

MATALB.  

 

Figure 24. The result of transpose operation. 

In the case of lots of computation, MATLAB outperforms SciDB with DISCAN. Figure 

25 and 26 shows the results of multiplication and SVD. SciDB operation has the most time 

of the elapsed time. We can know that SciDB operation is excessively slower than MATLAB. 

Thus, SciDB operation needs the study for optimizing operator. 
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Figure 25. The results of multiplication operation. 

Figure 26. The results of SVD operation. 

If DISCAN is used continuously for the same data, the accumulated time of in-situ 

analysis exceed the data loading time. Figure 27 presents the accumulated time when us-
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ing DISCAN continuously for the same data. The accumulated time of in-situ analysis is 

larger than the data loading time if in-situ analysis for the same data is executed more 

than 62 times. The data loading is to transform raw data into the data format optimized 

to process queries on the DBMS. Thus, query processing after data loading takes less 

time than in-situ analysis. However, the existing data loading takes a long time since 

the raw data is transformed four times unnecessarily. DISCAN can process queries on DBMS 

without the transformation of data formats. If the result of in-situ analysis is stored 

in the DBMS, it is to load data as one data format transformation.  

 

Figure 27. The cumulative time for a sequence of queries. 

The performance of data loading using DISCAN is shown in figure 28.  The data used 

in the experiment of figure 28 is 300GB of HDF data. If the data is transformed into CSV 

data, the size of the CSV data becomes about 2.3TB. The SciDB data loading of figure 28 

is evaluated proportionally for the data loading of small data since the data loading of 
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large data takes a long time. The data loading using in-situ analysis completes the 

loading using 10% time of the existing data loading time. Thus, DISCAN shows superior 

performance compared to the query processing after data loading. In other words, The 

time until the first query processing is reduced about 61 times. And Data loading time 

is reduced about 10 times in the case of large data. 

 

Figure 28. The data loading using in-situ analysis. 
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Ⅵ. CONCLUSION 

In this work, we propose DISCAN that is the distributed in-situ analysis method in 

the distribute array DBMS. Our in-situ processing considers the approach to improve the 

performance of data loading in SciDB. DISCAN supports the in-situ processing over raw 

scientific data and optimization about selective query. The in-situ processing of DISCAN 

ensures to process a query at upper operator since the two important components, Local 

Map and Global Map, is implemented. Local Map maps scientific data on SciDB array and 

Global Map shuffles the data generated after Local Map depending on chunk partitioning. 

DISCAN also takes advantage of well-defined scientific data format libraries in order to 

process the partial data in scientific data.   

We implement DISCAN in a state-of-the-art distributed array DBMS and evaluate its 

performance across real-world datasets. DISCAN responds more 60 x faster than the query 

processing after data loading.  
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요 약 문 

분산 환경 기반 시스템에서 과학 기술 빅데이터 in-situ 분석 

방법 

최근 과학 기술 데이터에 대한 분석 수요가 크게 증가하면서 SciDB 와 같은 array 

DBMS 들이 널리 사용되기 시작했지만, 이들 시스템들은 데이터 로딩의 오버헤드가 매우 크고 

로딩을 완전히 끝내기 전에는 데이터 분석을 할 수 없다는 문제점을 가지고 있다. 데이터를 

DBMS 에 로딩하지 않고 RAW 데이터에 대해 in-situ 분석방식을 적용한다면 과학 기술 

데이터의 분석의 속도와 편의성을 크게 향상 시킬 수 있다. 

본 논문은 분산 환경 기반의 과학 기술 데이터에 대한 in-situ 분석 방법을 the-

state-of-the-art distributed array DBMS 에 적용하는 방법을 다룬다. In-situ 분석방법을 

적용하기 위해 HDF merger 와 in-situ scan operator 인 DISCAN 을 구현한다. HDF merger 는 

다수의 RAW 파일들을 SciDB 의 instance 에서 disk I/O 성능을 최대한 활용하기 위해 in-

stance 당 하나의 파일로 병합하다. DISCAN 은 SciDB 에서 질의를 분석 시 동작하는 것으로 

로컬에서 RAW 파일의 데이터를 SciDB 내부 자료 구조로 변환하는 Local Map 과 instance 들 

간에 chunk 들을 재배치하는 Global Map 으로 구성된다.  

DISCAN 은 질의에 따라 데이터 로딩 후 질의처리 하는 것에 비해 최대 6123% 

성능을 개선한다. 또한, 대한민국 근해 적조 탐색을 위한 실제 질의에 대해서도 모든 데이터 

셋을 로딩하지 않아도 되며 부분적인 데이터 접근을 통해 75 배 이상의 성능을 개선한다.  

 

 

핵심어: 데이터 로딩, 과학 기술 데이터, 분산 환경 시스템. In-situ 분석방법, array 

데이터 베이스 
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