creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis
A} Sl

A large-scale graph processing method for multi-at-

tribute graphs using GPUs and SSDs

Kyuhyon An (SF 7 & % £ £)

Department of Information and Communication Engineering



Master's Thesis
Ha} Sl

A large-scale graph processing method for multi-at-

tribute graphs using GPUs and SSDs

Kyuhyon An (SF 7 & % £ £)

Department of Information and Communication Engineering



A large-scale graph processing method for multi-

attribute graphs using GPUs and SSDs

Advisor Professor Min-Soo Kim

Co-advisor :  Professor Daehee Hwang

by

Kyuhyon An
Department of Information and Communication Engineering
DGIST

A thesis submitted to the faculty of DGIST in partial fulfillment of the
requirements for the degree of [Master of Science] in the [Department of In-
formation and Communication Engineering] . The study was conducted in ac-
cordance with Code of Research Ethics?

Approved by

Professor Min-Soo Kim ( Signature )
(Advisor)

Professor Daehee Hwang (_Signature )
(Co-Adbvisor)

! Declaration of Ethical Conduct in Research: I, as a graduate student of KAIST, hereby declare that
I have not committed any acts that may damage the credibility of my research. These include, but are
not limited to: falsification, thesis written by someone else, distortion of research findings or
plagiarism. I affirm that my thesis contains honest conclusions based on my own careful research under
the guidance of my thesis advisor.



A large-scale graph processing method for multi-at-

tribute graphs using GPUs and SSDs
Kyuhyon An

Accepted in partial fulfillment of the requirements for the degree of [Master of

Science]
Head of Committee AR (21
Prof. Min-Soo Kim
Committee Member g 4 3 (<)
Prof. Daehee Hwang
Committee Member z A 3 (<1

Prof. Jihwan Choi



Degree ?F 7+ &. Kyuhyoen An. A large-scale graph processing method for multi-

201522013 attribute graphs using GPUs and SSDs. Department of Information and
Communication Engineering. 2016. 39p. Advisors Prof. Min-Soo Kim,
Prof. Co-Advisors Daehee Hwang.

Abstract

The one of characteristics is simpeness of structure that provides facile data analysis. The importance of
graph processing is growing due to that. However the handling on large-scale graph using existing methods
becomes harder due to the increase of data size. The distributed graph system requires a lot of machine for
scalability. However network overhead increases linearly and is larger than processing time. Meanwhile GPU
is used as coprocessor for handling graph data via thousands of GPU cores. However all of existing methods
using GPU fail to process large-scale graphs due to lack of main memory.

In this paper, we propose the method GStream 2.0 that handles large-scale graphs which is larger than
main memory using a single machine. Proposed method is streaming the graph data from secondary storage to
GPU memory and launches graph algorithm on GPU device. Through streaming graph data via slotted page
format which is partitioning graph data with fixed size, proposed method handles large-scale graph which is
larger than GPU device memory. Performance is improved by avoiding intermediate data transfer and proposed
method is using the array for result of algorithm which is sorted in GPU device memory. For supporting graph
algorithm based on edge attribute, we extend slotted page format. Finally, we propose the extended model for
2-hop neighborhood algorithm.

Through experiments, we show that GStream 2.0 significantly outperforms the major methods and the

state-of-the-art methods.

Keywords: Graph processing, GPUs, SSDs, Stream, Parallel programming
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1. INTRODUCTION

The one of real-world data analysis is graph processing, such as shortest path finding, propagation simu-
lation, and correlation analysis. The graph processing is becoming major method in wide research area, due to
generality of modeling. The graph processing methods and systems is required scalability because the size of
graphs modeling real-world object increases fast with development of equipment and IoT era.

As single machine could not handle large-scale graphs, distributed system for graph processing have been
researched. One of graph processing model is Bulk-Synchronous Parallel (BSP) message passing model, such as
Apache Giraph [1, 11], Google’s Pregel [22]. In BSP message passing model, an execution of all vertex kernels
iterates via supersteps. Each vertex kernel in superstep receives all messages from the previous superstep and
sends the result of the current superstep to adjacency of vertex in the next superstep. Another of graph processing
model is Gather-Apply-Scatter (GAS) model, such as Apache Spark GraphX [10, 33, 35], PowerGraph [9, 20, 21].
In GAS model, Gather phase gathers the data for graph algorithm each vertex with their neighborhood. Apply
phase stores the result of each vertex with Gather phase data. Scatter phase updates adjacent edge and vertices.
These model handle large-scale graph using a lot of CPU and main memory with high bandwidth network.

Graph processing with coprocessor also have been proposed [7, 8]. Typical coprocessor is GPU due to
high computing power with thousands of core. GPU as coprocessor is widely used to high computing via mas-
sively parallel model. For large number of core, GPU has huge memory bandwidth. Only a few vertices is calcu-
lated or traversed at a time with conventional CPU, however a large number of vertices is calculated or traversed
at a time with GPU due to above characteristics of GPU. Considering the size of real-world graph data is growing
up to million or billion vertices, graph processing with GPU is proposed within several years.

Existing methods with GPU outperform those with CPU, however they have major problem. Most of them



convert from in-memory processing using CPU to in-memory processing GPU. They can handle only graph which

fit in the GPU device memory, however many real graphs do not fit in it. Previous proposed methods for graph

processing with GPU concentrate only performance of their method without considering the size of graph. Only

one method solve the lack of GPU device memory, TOTEM [7, 8]. For the problem, TOTEM partitions a graph

data into two part, one part in main memory, and the other in GPU device memory. GPU process only the part in

GPU device memory, and CPU process only the part in main memory. TOTEM can handle graph even if it is not

fit in GPU device memory, however partition of data brings many problems such as underutilization of the com-

putation power of GPU, partitioning overhead, message passing overhead between main memory and GPU. More-

over, TOTEM cannot handle large-scale graph which is larger than main memory due to in-memory processing.

We propose a fast and scalable disk-based graph processing method using GPUs, GStream 2.0. GStream

2.0 can handle RMAT32 (64 billion edges) graph which is failed to handle with other in-memory methods. In

GStream 2.0, the total graph is processed by GPU without underutilization of the computing power of GPUs.

Furthermore the partitioning of graph is not required. To overcome lack of GPU device memory and main memory,

we propose a concept of storing only updatable attribute data and moving topology data. In proposed method, the

entire graph data is stored in secondary storage such as SSD, the requested graph data is streaming to GPU device

memory, a graph algorithm is launched using GPU. For streaming topology, GStream 2.0 adopts the slotted page

format that contains topology data with fixed-size page. GStream 2.0 has three phase. In first phase, a chunk of

result data is copied to GPU device memory. In second phase, required topology data is copied to GPU device

memory with streaming and user-defined GPU kernel function is launched. Finally, result data is copied back to

main memory. For hiding overhead from copying data, required topology data is concurrently copied via asyn-

chronous GPU stream even user-defined GPU kernel function is being launched. For exploiting multiple GPU,

we also propose two strategies. The first strategy is for performance and the other strategy is for scalability. We

extend the slotted page format for the graph algorithm based on edge attribute. We also extend graph processing



model for 2-hop neighborhood algorithm. With no communication overhead and fully exploiting the GPU cores,

GStream 2.0 can achieve higher performance compared with the existing methods. Moreover, with no data dupli-

cation from graph partition and storing data on SSDs, GStream 2.0 can achieve higher scalability compared with

the existing methods. GStream 2.0 shows a stable scalability with increasing a GPU or a SSDs.

The main contributions of this paper are as follows:

® We propose a novel concept of storing only updatable attribute data and moving topology data

that is counter-intuitive in terms of the conventional models (e.g., GAS) of storing topology data

and moving attribute data.

® We propose a parallel graph processing method GStream 2.0 on GPUs that can perform graph

algorithms very efficiently for large-scale graphs (e.g., billions vertices) by fully exploiting the

asynchronous GPU streams.

® \We propose two strategies that can improve the performance or the scalability with exploiting

multiple GPUs and multiple storages.

® \We extend data format for edge attribute and processing model for 2-hop neighborhood algo-

rithm.

® Through extensive experiments, we demonstrate that GStream 2.0 consistently and significantly

outperforms the major distributed graph processing methods, GraphX, Giraph, and PowerGraph,

and the state-of-the-art GPU-based method TOTEM, across wide range of benchmarks.

® Especially, we show that GStream can process an RMAT32 graph within a reasonable time in a

single machine that the existing distributed methods fail to process by using 30 machines of a

total of about 2 TB memory.

The rest of this paper is organized follows. Section 2 reviews the data format adopted by GStream 2.0. In

Section 3, we propose the main concept of GStream 2.0. In Section 4, we propose two strategies for exploiting



multiple GPUs and storages. In Section 5, we present extended data format for edge attribute. In Section 6, we

present extended processing model for 2-hop neighborhood algorithm. Section 7 presents the results of experi-

mental evaluation, and Section 8 concludes this paper.



2. PRELIMINARIES

In this section, we explain the data formats in GStream 2.0. Since the limit of memory and the compression
for sparse graph, the various type of in-memory format for a sparse graph have been proposed, such as Diagonal
(DIA) [13], ELLPACK(ELL) [2], Compressed Sparse Row(CSR), Compressed Sparse Column (CSC), and Coor-
dinate list (COO) [3]. They usually require a contiguous memory and it comes a limit of graph processing.

Besides, there is an external memory (i.e., out-of-core) graph format called the slotted page format [12].
In slotted page format, a graph is represented in a set of fixed-size slotted pages. In a slotted page, there are two
parts, records and slots. The records are located from the start of the page. The slots are located from the end of
the page. A record represent edges of a vertex and consist of the size of the adjacency list, denoted as ADJLIST_SZ,
and the adjacency list of a vertex, denoted as ADJLIST. A slot represent vertex and consist of a vertex 1D, denoted
as VID, and the offset of matching record, denoted as OFF. An edge in adjacency list consist of physical ID of
destination. A physical 1D consist of two parts, the page ID (2-byte), denoted as ADJ_PID, and the slot humber
(2-byte), denoted as ADJ_OFF. The page ID is id of page which contains the slot of destination vertex. The slot
number is offset of destination vertex slot. With physical ID, graph algorithms can easily access to the physical
locations of neighbor vertices. This concept of physical ID is commonly used for performance in database area
[14].

Figure 1 shows an example of slotted page with example graph G. In Figure 1(a), the vo, v1, and vz have a
small number of edges, while v; has a large number of edges. In real graphs, node degree distribution follows
power-law distribution, few of high-degree vertices and a lot of low-degree vertices. Figure 1(b) shows that storing
of low-degree vertices in a single page SPo, which is called a Small Page (SP). In case a high-degree vertex cannot

be stored in a single page, a high-degree vertex is stored in multiple pages {LP1, LP,} which are called Large



Pages (LP) in figure 1(c).
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Figure 1. Example of Graph G and the slotted page of G



3. MAIN CONCEPT OF GSTREAM 2.0

In this section, we present the proposed method GStream 2.0. Section 3.1 explains the main concept of
GStream 2.0, and Section 3.2 describes the streaming scheme of GStream 2.0 in detail. Section 3.3 explains the

major types of graph algorithms, and Section 3.4 shows the algorithm of the GStream framework.

3.1 Main concept of GStream 2.0

In graph algorithms, there are two type of data, graph topology data (shortly, topology data) and attribute
data for vertices or edges. For example, Breadth-First Search (BFS) requires topology data and an attribute data
for levels of vertices (shortly, LV). Furthermore, PageRank requires topology data and two attribute data, one of
them is data for the previous PageRank values (shortly, prevPR) and the other is data for the next PageRank values
(shortly, nextPR). The attribute vectors consist of two type of vector, read-only vector and read/write vector. For
example, LV, the attribute vector of BFS is the read/write vector. For PageRank, prevPR is a read-only attribute
and nextPR is a read/write attribute.

The concept of most of the existing graph processing methods [9, 20, 22] is that storing topology data in
main memory and passing attribute data among machines. Since the size of transferred attribute data is smaller
than topology data, this concept is fitted for distributed shared-memory system with a lot of main memory and
low bandwidth network. However that concept is not fitted for graph processing with GPU, since GPU is con-
nected with main memory through high-speed interface and has the small device memory.

Here, we propose a concept of storing only updatable attribute data and moving topology data. The attrib-
ute data is stored limited device memory, and topology data is moved via a high-speed interface. Nevertheless the

size of transferred topology data is larger than attribute data, the overhead of moving topology data is hidden by

-7-



concurrent process of moving data and graph algorithm. The graph algorithm is described as user-defined GPU

kernel function and is launched using thousands of GPU cores.

GStream 2.0 has three phase for graph processing. First, GStream 2.0 copies read/write attribute data to

device memory. Second, GStream 2.0 processes graph algorithm for read-only attribute data and topology data

with streaming to device memory. Finally, read/write attribute data is copied back to main memory for synchro-

nization. Each attribute is conceptually divided into multiple subvectors, and topology data consists of multiple

fixed-size unit using the slotted page format. For example, prevPR for PageRank can be divided into multiple

chunk. Each chunk of prevPR matches a slotted page based on range of vertexID. GStream 2.0 requires GPU

device memory at least for attribute data and a single slotted page. In general, the size of attribute data is larger

than the size of a single slotted page, it is required to reduce the size of attribute data for large-scale graph pro-

cessing. The read-only attribute is not required keep in device memory since read-only attribute is not updated.

Only the read/write attribute have to be stored in device memory. For reducing the size of attribute data, only

read/write attribute is stored in device memory. For example, nextPR for PageRank is stored in device memory

during graph processing, however each subvector of prevPR is discard after end of kernel function for each

matched a slotted page.

Main memory buffer BOLE Device memory
r___?_t?!:l_k?%l_t_@ﬂ(ﬁ!?j(an_l 1. chuhk copy [—

| WA1| | WAW‘E Py ‘ WABuf |
: i | 3 synchronization _—~

[Ra] [RA T
T 2. strearhrﬁnqg_ ".{ ALY |
_...[opology data_ copy..---r+ _ SPBuf _|!
LsPy] -~ [sPsbi---" -t rPBur |
[P, T ’ —

Figure 2. The data flow of GStream 2.0



Figure 2 describes for the data flow of GStream 2.0. We suppose read/write attribute (shortly, WA) is

divided into W chunk, and read-only attribute (shortly, RA) is divided into R subvectors. We also suppose the

numbers of small pages and large pages are S and L. The number of RA subvetors is equal to S. RA; is matched

SPi. The three step in Figure 2 represents the data flow of three phase which is mentioned previous paragraph.

3.2 Asynchronous multiple streaming

For hiding overhead of topology copy, GStream 2.0 copies topology data from main memory to GPU

device memory using asynchronous multiple streaming. For streaming, it is required to divide fixed-size unit, and

GStream 2.0 adopts the slotted page format, one of graph format consist of fixed-size unit. In figure 2, there is

three buffers for streaming RA, SP, and LP in device memory, RABuf for RA to device memory, SPBuf for SP,

LPBuf for LP. WABUf in device memory is chunk buffer for WA.

GStream 2.0 exploits multiple GPU streams for streaming. Figure 3 shows the timeline of streams in

GStream 2.0. First, WA is copied to WABuUf. Then, each stream performs sequence of operations: (1) copying SP;

(or LP;) to SPBuf (or LPBuUf), (2) copying RAi to RABUf, and (3) executing user-defined kernel function for graph

processing. Only there is one copy operation to device memory at a time due to hardware specification [5], how-

ever kernel execution can overlap a copy operation or other kernel execution [5, 27]. The ratio between the copy

time of data (SP;, RA)) each kernel function and the execution time of kernel function, determines the number of

streams K. If a single kernel execution in stream; ends before data copy of the others, stream;is idle until ready to

data copy. In contrast if a single kernel execution in stream; ends after data copy of the others, stream; starts next

data copy immediately after kernel execution. In the former case, the performance does not improve with the

increase of number of stream. In the latter case, the performance improves with the increase of number of stream.

Table 1 shows the ratios of the transfer time to the kernel execution time for BFS and PageRank on three real data

set used in experimental evaluation. BFS has relatively high ratios due to random access of vertex in a slotted

-9-



page, while PageRank has relatively low ratios due to full access of vertex in a slotted page. Thus the number of

stream k, depends on graph algorithms. The maximum number of stream is 32, in current CUDA technology [5].

S|R S|R
stream, | WA |P|A Ksp PlA Ksp
101 k1|t
S|R SR
stream, PlA Ksp PlA Ksp
2|2 k+2lk+2)
S|IR S|IR
stream, PlA Ksp PlA Ksp
k| k 2k | 2k
" time

Figure 3. The time line of streams.

Table 1. The ratio of the transfer time to kernel execution time for BFS and PageRank on real data set.

Dataset
Twitter [18] UK2007 [32] YahooWeb [34]
Algorithm
BFS 1:3 11 2:1
PageRank 1:20 1:6 1:4

There is kernel switching overhead among SPs and LPs due to difference of execution flow between SP

and LP. For reducing overhead, GStream 2.0 divide two part of processing, one of them is to process for all of SP

and the other is to process for all of LP. First, GStream 2.0 performs processing for all of SP. The processing for

all of LP is started after all of processing for SP. After processing both of data, the updated WA is copied back to

main memory. Figure 4 shows the actual timelines of copy operation and kernel function for BFS and PageRank

when using 16 streams on a synthetic data. In Figure 4, the very short red colored bars before the long green

colored bar mean copy operation for a slotted page and RA to device memory. The long green colored bars mean

execution of a kernel function. The timeline for PageRank in Figure 4(b) is denser than that for BFS in Figure 4(a)

due to difference of the number of access vertex between both algorithms.

-10 -
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Figure 4. The actual timelines of copy operation and kernel function for BFS and PageRank.

3.3 Major types of graph algorithms

We consider two major types of graph algorithms: (1) accessing a part of a graph via graph traversal and
(2) accessing a whole graph by linear scanning vertices and edges [12]. The former algorithms usually tend less
computationally intensive, but lead to random memory accesses due to the irregular structure of graphs. There are
Breadth-First Search (BFS), Single-Source-Shortest-Path (SSSP), neighborhood, induced subgraph, egonet, K-
core, and cross-edges. BFS is the typical one [7, 8, 12] and hereafter, we denote them as BFS-like algorithms. The
latter algorithms usually tend computationally intensive, and require the linear scan of whole graph in many cases.
They include PageRank, degree distribution, RandomWialk with Restart (RWR), radius estimations, and connected
components. PageRank is the typical one [7, 8, 12] and hereafter, we denote them as PageRank-like algorithms.

Within a single iteration of PageRank-like algorithm, the entire topology is required and copied to device
memory. However, within a single level traversal of BFS-like algorithm, the part of topology is required and
copied to device memory. Figure 5 shows the number of copy operation for BFS and PageRank on synthetic graph.

The number of page in used graph is 1205. BFS-like algorithm requires variable size of copy operation in Figure

-11 -



5 (a). PageRank-like algorithm requires whole graph each iteration in Figure 5 (b).
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Figure 5. The number of copy operation for BFS and PageRank on synthetic graph.

For copy of required page on BFS-like algorithm, GStream 2.0 uses the data structure called nextPIDSet that

contains the 1Ds of pages to be copied at the next level. The nextPIDSet is updated by traversal kernel function

for BFS-like algorithm and is copied back to main memory after the execution of kernel function is done. At the

next level, the set of pages in the nextPIDSet is copied to device memory.

At the beginning of next level, copied topology data at previous level still remains in device memory. For the

remained topology data, it can be processed without copy from main memory. The performance of GStream 2.0

can increase, since the size of copied data is reduced by reusing remained topology data. GStream 2.0 manages

topology streaming buffer, SPBuf and LPBuf as cache for reusing. GStream 2.0 allocates both buffer as large as

possible to exploit cache. We suppose the size of cache is B, the naive cache hit rate is B/ (S + L) for BFS-like

algorithm. GStream 2.0 adopts the LRU algorithm as cache algorithm.

3.4 Algorithm of the framework

In this section, we present the algorithm of the GStream 2.0 framework. Algorithm 1 presents the pseudo code

of the framework. Ksp and Kyp are a user-defined kernel function for a specific graph algorithm on a graph G. Ksp

is a kernel for SPs and Kyp is a kernel for LPs. Both kernel function have to be given due to difference of structure

-12 -



between SP and LP. As an initialization step, GStream 2.0 creates the streams for small pages and large pages for

each GPU, and allocates the buffers WABuf, RABuf, SPBuf, and LPBuf in the device memory (DM) of each GPU.

Then, it sets nextP1DSet, depending on the type of the graph algorithm. If the graph algorithm is of BFS-like, the

page ID containing the start vertex is assigned to nextPIDSet. Otherwise, the constant ALL_PAGES is assigned

to it. The map data structure cachedPIDMapi is initialized, which is used for storing the 1Ds of cached pages within

GPUi; (Line 8). We note that cachedPIDMapi is updated within GPU; during streaming topology data (Lines 14-

27) and copied back to main memory (Line 29). MMBuf means main memory buffer used for fetching the slotted

pages from SSDs to main memory. If the size of graph G is smaller than the size of MMBUT, then the entire graph

topology is loaded to MMBUT.

Algorithml. The framework of GStream 2.0

Input: Graph G, /* input graph */

Kse, I* GPU kernel of Q for small pages */
Kip, /* GPU kernel of Q for large pages */

Variables: nextPIDSet, /* set of page IDs to process next */
cachedPIDMap1:N ; /* cached page IDs in GPUL:N */
bufferPIDMap; /* buffered page IDs in MMBuUf */

1:  /*Initialization */
2:  Create SPStream and LPStream for GPUq;
3:  Allocate WABUf, RABuf, SPBuf, LPBuf for GPU1.y;

4. if Q is BFS-like then

5: nextPIDSet « page ID containing start vertex;
6: else
7 nextPIDSet — ALL_PAGES;

8: cachedPIDMapyn < @
9: if |G| < MMBUf then
10: Load G into MMBUf;
11: Copy WA to WABuUT of GPUqx;

12:  /* Processing GPU kernel */
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13: repeat

14:  [* repeat Lines 15-31 for LPs */

15: for j € nextPIDSet.SP do

16: if j € cachedPIDMapng then

17: Call Ksp for SPj in GPUn);

18: else if j € bufferPIDMap then

19: Async-copy SP; in MMBUf to SPBuf in GPUx);
20: Async-copy RA; to RABUF in GPUn);

21: Call Kgp for SP; in GPUr);

22: else

23: Fetch SP; from SSDy;) to MMBUf;

24: Async-copy SPj in MMBuUf to SPBuf in GPUn);
25: Async-copy RA; to RABUf in GPUn);

26: Call Ksp for SPj in GPUn);

27: Thread synchronization in GPU,;

28: Copy WA of GPU1. to MMBUf;

29: Copy nextPIDSet;.n and cachedPIDMapi.n to MMBUT;
30: nextPIDSet <« Ui<i<n NextPIDSet; ;

31: until nextPIDSet = ALL_PAGES Vv nextPIDSet = @;

The repeat-until loop (Lines 13-31) takes charge of level-by-level traversal. For a PageRank-like algorithm, this

loop is performed only once. Lines 15-27 are performed for processing small pages and performed similarly for

processing large pages after small pages processing. We note that Lines 19-20 and 24-25 asynchronously transfer

a topology page SP; (or LPj) in nextPIDSet to a specific GPUn according to the return value of hash function,

h(j), which will be explained in Section 4. Before transferring the page, GStream 2.0 first checks if the page

already exists in the cache of GPUng by looking up cachedPIDMapng (Line 16). We note that RA; for LP is a

subvector of a single attribute value since LP; deals with only a single vertex. If the page is not in MMBUTf,

GStream 2.0 fetches pages from SSDy) to MMBuUf. While executing a kernel, a new set of page 1Ds to process at

the next level is assigned to local nextPIDSet; in device memory of each GPU;, which is copied back to MMBuUf
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(Line 29), and then merged into the global nextPIDSet (Line 30). The updated set of cachedPIDMap1.y are also
copied back to MMBuf and used in the next level traversal. In the case of PageRank-like algorithms, both nextPID-
Set and cachedPIDMap;.n are actually not used. In the case of PageRank, since the pseudo code in Algorithm 1 is
for a single iteration of PageRank, users might need to perform Lines 13-31 as many times as necessary in their

applications. Here, at the end of every iteration, nextPR should be initialized after being copied to prevPR.
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4, THE STRATEGY OF GSTREAM 2.0

In this section, we present two strategies for exploiting multiple GPUs. GStream 2.0 can be easily extended
to exploit multiple GPUs. We let the number of GPUs be N. Section 4.1 presents the strategy for high performance

with a limit on scalability. Section 4.2 presents the strategy for high scalability with a limit on performance.

4.1 Strategy for performance

The first strategy of GStream 2.0, strategy-P is using multiple GPUs for performance. The performance of
this strategy increase N times than the performance with a single GPU, since the topology data is divided each
GPU. First, GStream 2.0 is copying the same attribute data, especially WA, to all GPUs and then copying a dif-
ferent topology data to each GPU. Figure 6 shows the data flow scheme of that strategy, which consists in four
different steps. In Step 1, GStream 2.0 copies the same WA to all {GPUj4, - - -, GPUN}. In Step 2, it copies different
topology data and read-only data each GPU. GStream 2.0 executes a given GPU kernel Ksp for a different < SPy,
RA > to each GPUx for 1 <k < N. In general, it copies < SPinsj, RAin+j > to GPU; for 0 < i < [%1 ~land1<j<
N. For the processing of LP is similar to the processing of SP. Each GPU can execute the same GPU kernel
function independently for a different part of topology data. The synchronization between each device memory is
required, since the result of GPU kernel function in each GPU is different the result in each other. Step 3 presents
the data synchronization of WA between each device memory and Step 4 presents the data synchronization of WA
between device memory and main memory. In Step 3, the nave synchronization method is following: (1) repeat
to copy back WA in a single GPU device memory to main memory and merge copied WA to stored WA in main
memory until all of GPU done and (2) copy updated WA in main memory to each GPU device memory. However

the synchronization overhead becomes since the amount of copied data grow up N times. For avoiding it, GStream
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2.0 performs Step 3 using peer-to-peer memory copying among GPUs, which is faster than copy of between GPU
and main memory. In Step 3, the WA data of each GPU is copied and merged to the device memory of a master
GPU(e.g., GPUs). In Step 4, the updated WA data in a master GPU is copied to main memory. In Algorithm 1,
Line 11 describes Step 1, Lines 16-26 describe Step 2, and Line 28 describes both of synchronization step, Step 3

and Step 4.

Main me%@m NPUN

Vel 4 L A
1. Copy total 3. Synchronization
WA WA vector to WA among device WA,
"\ each device _,/b\ memory /
.___—-—-—--_. -—________-_____-

4. Synchronization

RA; | -+ |RAung| " . RA; RAG -1
2. Streaming
different data to

SP; | """ |SPuna| "7 | each device SP, SPiin-

et

Figure 6. Strategy for performance exploiting multiple GPUs.

Since the workload is divided by the number of GPUs, this strategy can achieve linear speedup. In Step 2,
the function h(x) returns a hash value for input x. The page ID j of a page is used for selecting a GPU device to
streaming and process, by return value of h(j). GStream 2.0 uses the mod function for the default hash function.

In GStream 2.0, topology data is stored in SSDs and topology data is moved from SSDs to GPU memory
via main memory. The bandwidth of data streaming is bounded on a slower one between the speed of PCI-E
interface and 1/0O performance of SSDs. The bandwidth of data streaming determine the amount of data streaming
per second, and the amount of data streaming per second has positive linear relationship with the performance of
this strategy. Under the current computer architecture, the 1/0 speed of SSDs (e.g., about up to 2GB/sec) is much
slower than that of PCI-E interface (e.g., 16GB/sec). Therefore the performance of this strategy is bounded on the

1/0 speed of SSDs. To relieve the limitation of this strategy, GStream 2.0 exploits multiple SSDs. Each slotted
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page SPjof graph G (1 <] <), is stored in SSDy). The function g(j) returns a hash value for a page ID j using
mod function. GStream 2.0 fetches required page from corresponding SSDs concurrently.

Although this strategy shows high and stable performance of linear speedup with multiple GPUs, there is
a major problem from GPU’s limited device memory. In this strategy, GStream 2.0 cannot handle in case that the
size of WA is larger than the size of single GPU’s device memory. For example, this strategy can process the

PageRank algorithm only up to RMAT30 using a GPU having 6GB device memory.

4.2 Strategy for scalability

The second strategy of GStream 2.0, strategy-S is using multiple GPUs for scalability. The scalability of
this strategy increase N times than the scalability with a single GPU, since attirbute data is divided each GPU.
First, GStream 2.0 is copying the different chunk of attribute data, especially WA, each GPU and then copying a
same topology data to all GPUs. Figure 7 shows the data flow scheme of that strategy, which consists in three
different steps. In Step 1, GStream 2.0 copies a different WA, to each GPU; for 1 <i < N. In Step 2, it copies a
same topology data and read-only data each GPU. GStream 2.0 executes a given GPU kernel Ksp for the same <
SPy, RA« > to all of GPUs. For the processing of LP is similar to the processing of SP. Each GPU can execute the
same GPU kernel function independently for a different part of attirbute data. The synchronization between each
device memory is not required, since each GPU updates only for own chunk of WA. Step 3 presents the data
synchronization of WA between device memory and main memory. For Step 3, GStream 2.0 uses the naive syn-
chronization method is following: (1) repeat to copy back WA in a single GPU device memory to main memory
and merge copied WA to stored WA in main memory until all of GPU done and (2) copy updated WA in main

memory to each GPU device memory.
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Figure 7. Strategy for scalability exploiting multiple GPUs.

In Algorithm 1 as in section 4.1, Line 11 describes Step 1, Lines 16-26 describe Step 2, and Line 28

describes synchronization step, Step 3. However, in Step 2, the function h(x) returns a set {1, - - -, N} instead of

a single hash value for a page ID j for streaming the page to all GPUs.

This strategy maximizes the size of a graph to process using multiple GPUs. Especially, it can achieve

linear scalability of the size of a graph to process. In this strategy, the workload of each GPU is same due to

streaming same data to all of GPUs, and the workload of each GPU is same as the workload of a single GPU.

Thus, although increasing the number of GPUs, the performance of graph processing itself does not change, and

the capability of data streaming to GPU also does not change. In this strategy, there is also performance boundary

due to 1/0 speed of SSDs and the speed of PCI-E interface. In strategy-P, the logical speed of PCI-E interface for

all of GPUs has linear speedup. In contrast, in strategy-S, the logical speed of PCI-E interface for all of GPUs is

fixed to the speed of PCI-E interface for a single GPU device. The gap between the 1/0 performance of SSDs and

the logical speed of PCI-E interface for strategy-S, is less than it for strategy-P. That means the overall perfor-

mance of this strategy would not increase much even though processing an entire graph in main memory.

Therefore, the strategy for scalability of GStream 2.0 is suitable to process a large-scale graph in case that

WA cannot fit in a single GPU’s device memory by storing the graph on SSDs (e.g., an RMAT32 graph in a

machine of 6GB GPUs and 500 GB SSDs). On the contrary, the strategy for performance of GStream 2.0(in
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Section 4.1) is suitable to process a small-scale graph in case that WA can fit in a single GPU’s device memory

by storing the graph in main memory (e.g., an RMAT30 graph in a machine of 6GB GPUs and 128GB main

memory).
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5. EXTENDED SLOTTED PAGE FORMAT

In this section, we present extended data format. Section 5.1 presents extended slotted page format for

trillion-scale graph. Section 5.2 presents extended slotted page format for edge attributes.

5.1 Extended slotted page format for trillion-scale graph

The slotted page format [12], is useful for representing a graph topology data for secondary storage. How-
ever there is problem of maximum size for representing graph. The physical ID of 4-byte (2 bytes for page 1D and
2bytes for slot number) can theoretically represent a graph of up to 2%2 = 4 billion vertices. However, if the number
of page ID overflows the maximum number of byte for page ID, then the graph cannot be represent by the slotted
page format. For example, an RMAT 30 graph which has page 1D over the maximum number of 2 bytes of 1 billion
vertices and 16 billion edges, it cannot be represented by slotted page format.

Thus for handle even a trillion-scale graph, we generalize the existing format such that p-byte page 1D
(ADJ_PID) and g-byte slot number (ADJ_OFF) are used for addressing. For an RMAT 30 graph, we use the
physical ID of 6-byte. The p-byte determine the maximum number of page ID, and the g-byte determine the
maximum size of a page. For the physical ID of 6-byte, there are three possible configurations as in Table 2, where
(p =2, q=4) means a small number of large-sized pages, (p = 3, q = 3) a medium number of medium-sized pages,
and (p = 4, q = 2) a large number of small-sized pages. In the table, the maximum page size is calculated under
the assumption that ADJLIST_SZ is of 4-byte, VID of 6-byte, and OFF of 4-byte. Among configurations, we
choose (p = 3, g = 3) and implement our method using 64MB page size, since both p and g are well-balanced, and
the page size of 64MB is compatible with the default block size widely used in many big data framework such as

Hadoop [31] and Spark.
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Table 2. Three possible configurations of physical 1D of 6-byte.

max. page ID max. slot number max. page size
64 K 4B 80 GB
16 M 16 M 320 MB
4B 64 K 1.25 MB

5.2 Extended slotted page format for edge attributes

In BFS algorithm, WA is the traversed level of each vertex. In PageRank algorithm, WA is the value of
rank each vertex. Those two algorithm require the value of each vertex and update WA of each vertex. However,
the graph algorithm which requires the value of each edge or stores the result of processing into edge attribute, is
existing such as Single-Source-Shortest-Path (SSSP), Minimum spanning tree (MST), Betwenness centrality (BC).
For example, for SSSP, the operation of kernel function is following: (1) read cost of an edge, (2) add cost of
current vertex and an edge and (3) update the cost to WA of destination node.

We extend the slotted page format for supporting edge attributes. The edge attribute is located after corre-
sponding edge. The edge attribute consists of the size of attribute list, denoted as ATTR_SZ, and the attribute list
of edge, denoted as ATTRLIST. For supporting various size of attribute list, ATTR_SZ is required.

Figure 8 shows an example of extended slotted page for supporting multi-attributes of edge with example
graph G. In Figure 8(a), Graph G has three vertices, the vo, v1 and v2. The e is an edge between vpand vy, contains
edge attribute. Figure 8(b) shows that storing graph topology with the edge attribute. The first edge of vo’s
ADJLIST is the e and after record of e, the edge attribute is stored. With the eo” ATTR _SZ, kernel function can

access next record.
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Figure 8. Example of extended slotted page for supporting multi-attribute

-23-



6. EXTENDED PROCESSING MODEL OF GSTREAM 2.0

In this section, we present two types of graph algorithm extraneous in terms of BFS-like algorithm and
PageRank-like algorithm. For handling those type, we explain extended processing model. In section 3.3, we
explain BFS-like algorithm and PageRank-like algorithm. Both of algorithm is categorized based on pattern of
transfer topology data due to characteristic of algorithm. In this time, we explain other types which is not catego-
rized based on pattern of transfer data.

Within kernel function for BFS, each thread which handles a vertex only accesses the adjacency list of
corresponding vertex. The other example, within kernel function for PageRank, each thread which handles a ver-
tex also only accesses the adjacency list of corresponding vertex. Both of algorithm process on graph with 1-hop
neighborhood. In contrast, within kernel function for triangle finding, each thread which handles a vertex, is re-
quired to access 2-hop neighborhood. 2-hop neighborhood algorithm include triangle finding, clustering coeffi-
cient, 2-hop neighborhood find. The existing graph methods handle 2-hop neighborhood algorithm with contigu-
ous edge list in main memory or message passing to neighborhood. The former approach is commonly used in-
memory methods. Nevertheless it is not suitable for GStream 2.0, since the topology structure of GStream 2.0 is
fixed size unit. The latter approach is commonly used distributed system. However it is also not suitable for
GStream 2.0, since the amount of intermediate data is larger than topology data. We suppose the size of message
is M, also suppose the number of total edge in graphs is E. The size of intermediate data can be calculated easily
as M x E. This approach is also not suitable for GStream 2.0 due to transfer overhead.

We propose extended processing model of GStream 2.0 for supporting 2-hop neighborhood algorithm.
In this model, kernel function can handling 2-hop neighborhood algorithm without generating intermediate data.
If GStream 2.0 generates intermediate data, buffer area for intermediate data is required and the size of other

buffers is decreased. In section 3.3 and section 4, we explained the importance of the size of buffers and the size
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of WA. Intermediate data is created by using 1-hop neighborhood processing for handling 2-hop neighborhood
algorithm. Thus extended processing model of GStream 2.0 processing on 2-hop neighborhood topology data.
The streaming and processing pair of page provides to access 2-hop neighborhood topology during kernel function.

Figure 9 shows simple example of page pair processing. In Figure 9 (a), in case 2-hop algorithm processing
on vertex v, which is stored in SP;, requires SP;. In Figure 9 (b), kernel function is launched with pair of page,

the processing on vertex v, can access v’s 2-hop neighborhood.

v¢’s 1-hop neighborhood v,'s 2-hop neighborhood

SP;

(a) Example graph of 2-hop neighborhood (b) Example of accessing 2-hop neighborhood

Figure 9. Simple Example of page pair processing

In this model, a part of Algorithm 1 is changed. First, nextPIDSet contains pair of pagelD. User-defined

kernel also is changed to handle pair of page. The unit of streaming data to device memory is pair of page instead

of a single page. Line 19, Line 23, Line 24 is changed to pair of page.
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7. EXPERIMENTAL EVALUATION

In this section, we present experimental results in six categories. First, we evaluate the performance of GStream
2.0 to show the superiority of our method, compared with the state-of-the-art distributed graph processing methods,
Apache Giraph [1,11], Apache Spark GraphX [10,33,35], PowerGraph (GraphLab v2.2) [9, 20, 21], and Naiad
[23, 25]. Second, we evaluate the performance of GStream 2.0 to show the superiority of our method, compared
with the state-of-the-art CPU-based graph processing methods, Ligra [29], Ligra+ [30], and Galois [26]. For ref-
erence, we also evaluate the performance of the multithreaded graph library (MTGL) [2] which is widely used for
comparison [36], the parallel graph processing method using CPUs. Third, we evaluate the performance of
GStream 2.0 to show the superiority of our method, compared with the state-of-the-art GPU based graph pro-
cessing method, TOTEM[7,8]. To the best of our knowledge, TOTEM is the only method to exploit multiple
GPUs and also to process large-scale graphs that do not fitin GPU device memory. For reference, we also evaluate
the performance of Cusha [16] and MapGraph [6], which can process only the graph data that is smaller than GPU
memory. Fourth, we evaluate the performance of GStream 2.0 while varying strategies (of Section 4), storage
types (i.e., SSD and HDD), the number of streams, and the densities of graphs to show the characteristics of
GStream 2.0. Fifth, we evaluate the performance of GStream 2.0 on additional graph algorithms. Finally, we

evaluate the performance of GStream 2.0 for edge attribute.

7.1 Experimental setup

We use both synthetic and real datasets for experiments. We generate scale-free graphs for synthetic datasets,

following a power law degree distribution by using RMAT [4]. We generate from RMAT27 to RMAT32, where

the ratio of the number of vertices to the number of edges is set to 1:16. We use three well-known graphs of Twitter

[18], UK2007 [32], and YahooWeb [34], for real datasets, which all have different sizes and characteristics.
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Table 3 shows the basic statistics of those data sets. For GStream 2.0, we use (p = 2, q = 2) in Section 5.1 for

storing RMAT27-29 graphs and real graphs since their sizes are relatively small. In the table, # SP and # LP mean

the number of small pages and that of large pages, respectively, under the corresponding configuration (p = 2, q

= 2). Most of topology pages are small pages in both synthetic and real graphs. We use (p = 3, q = 3) for storing

RMAT30-32, where there is no LP due to the large page size of 64MB.

Table 3. Statistics of graph datasets used in the experiments.

Statistics for GTS
data # vertices # edges

(p, 9) #SP #LP

RMAT27 128 M 2,048 M (2.2) 9,724 58

RMAT28 256 M 4,096 M (2,2) 19,533 62
RMAT29 512 M 8,192 M (2.2) 38,747 937

RMAT30 1B 16 B (3,3) 1,786 0

RMAT31 2B 32B (3.3) 3,584 0

RMAT32 4B 64 B (3,3) 7,175 0
Twitter 42 M 1,468 M (2,2) 5,418 1,029

UK2007 106 M 3,739 M 2,2) 15,484 0

YahooWeb 1,414 M 6,636 M (2,2) 32,807 0

We summarize the statistics of the size of WA data versus the size of topology data in the slotted page format in

Table 4. We can see the ratio of the WA data to the topology data is very small, which is between 1.7% and 10%.

The WA data for up to RMAT32 can fit in two NVIDIA TITAN X GPUs’ memory (i.e., 24GB), except RMAT32

for CC.

We conduct all the experiments of four distributed graph processing methods on the same cluster of one master

node and 30 slave nodes connected via Infiniband QDR, each node of which is equipped with two Intel Xeon 8-

core 2.60GHz CPUs, 64GB memory, and two 3 TB HDDs (RAID 0). The cluster has a total of 480 CPU cores

and 1,920 GB memory. We also conduct all the experiments of four CPU-based methods and four GPU based

methods on the same workstation equipped with two Intel Xeon E5-2687W 3.1GHz CPUs of eight cores, 128GB
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Table 4. Statistics of the sizes of WA data versus topology data in the slotted page format (GByte).

WA
data topology

BFS PageRank SSSP cC
RMAT28 20 0.5 1 1 2
RMAT29 40 1 2 2 4
RMAT30 114 2 4 4 8
RMAT31 229 4 8 8 16
RMAT32 459 8 16 16 32

main memory, two NVIDIA GTX TITAN X GPUs of 12GB device memory, and two Fusion-io’s PCI-E SSD.
The CPUs and GPUs are connected with PCI-E 3.0 x16 interface. For graph processing, GStream 2.0 uses only
GPUs, while TOTEM uses both two CPUs and GPUs. All CPU-based methods use 16 threads after turning off
the Hyper-Threading (HT) option for performance.

In terms of software versions and configurations, for all three distributed methods, we use Scala 2.11.7
and Spark 1.5.1 for GraphX, MPI ICC 14.0.0 for PowerGraph, and Hadoop 1.2.1. For Giraph, we set the size of
mapper memory to 60GB. For Spark, we set the size of executor memory to 60GB. Naiad requires the.NET
framework, and so, we use Mono (JIT compiler version 3.2.8) for running Naiad on Linux. For MTGL, Galois,
Ligra, Ligra+, TOTEM, CuSha, and MapGraph, we use their latest source codes. We compile all single-machine
methods with the same maximum optimized option of -O3 with gcc 4.9 and CUDA 7.5. If a method requires its
own data format, we convert graph data to its own format (e.g., Galois, Ligra, Ligra+, CuSha, and MapGraph).
Different from GStream 2.0, TOTEM requires a different set of options for each graph algorithm and each data
set in order to achieve the best performance [8]. We use the sets of options recommended by the authors of TO-
TEM for most of experiments. We also have found Naiad often failed to process graph queries due to lack of
memory, and so, adjusted its configuration to achieve its best scalability and performance (e.g., sizes of heaps and

arrays).
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7.2 Comparison with Distributed Methods

Figure 10 shows the comparison results among GraphX, Giraph, PowerGraph, Naiad, and GStream 2.0,
for BFS and PageRank. Y-axis represents the elapsed times in seconds (in log-scale), and O.0.M means out of
memory error. In the case of PageRank, we measure the total elapsed times of ten iterations. For four distributed
methods, we measure the elapsed time, excluding loading and finalization times. For GStream 2.0, we measure
the elapsed times between starting streaming the first page from main memory (for real graphs and RMAT28-30)
or SSDs (for RMAT31-32) and showing the query results. For real graphs and RMAT28-30, we exclude loading
time (Lines 1-10 in Algorithm 1) for a fair comparison, since they can fit in main memory. We set the main
memory buffer size of GStream 2.0 to 20% of a graph size for RMAT31 and RMAT32 (e.g., 45GB for RMAT31).
For all datasets used, GStream 2.0 significantly outperforms the distributed graph processing methods using 30
machines, for both BFS and PageRank. Furthermore, GStream 2.0 shows the best scalability among the methods.
Only GStream 2.0 can process all graphs of up to RMAT32 for both BFS and PageRank. Among four distributed
methods, Naiad shows the worst scalability, Giraph shows the worst performance, and PowerGraph the best scala-
bility and performance, in general. The processing time of GStream 2.0 rapidly increases between RMAT30 and
RMAT31 due to including I/O time of SSDs and changing the strategy from performance (of Section 4.1) to
scalability (of Section 4.2). Theoretically, the processing time of GStream 2.0 should increase linearly between
RMAT31 and RMAT32 since GStream 2.0 uses the secondary storage and the same strategy for both datasets, but

it actually does not. This is because there are higher-degree vertices in RMAT32.

7.3 Comparison with CPU-based Methods

Figure 11 shows the comparison results among MTGL, Galois, Ligra, and Ligra+, and GStream 2.0. In the

figure, since the CPU-based methods cannot load data into main memory or process graph algorithms due to lack
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Figure 10. Comparison with Graph X, Giraph, PowerGraph, and Naiad for BFS and PageRank

of main memory, there is no results for large-scale graphs such as RMAT29-30 and YahooWeb, except GTS.

Among the CPU-based methods, Galois, Ligra, and Ligra+ have significantly outperformed MTGL in terms of
both the performance and scalability, except the case of Twitter for PageRank. Among three CPU-based methods,
Ligra and Ligra+ show a better performance than Galois, except the case of UK2007 for BFS. Ligra shows a
similar performance with Ligra+. However, we could not execute Ligra+ for UK2007, RMAT27, and RMAT28,
due to segmentation fault errors, which were executed successfully in Ligra. We guess the Ligra+ source code is
not stable yet. Compared with GStream 2.0, either Galois or Ligra slightly outperforms GStream 2.0 for relatively
small graphs for BFS. This is because the CPU based methods perform edge-level random access for traversal
algorithms, while GStream 2.0 performs page-level random access with data transfer overhead between main
memory and GPUs. For relatively large graphs (e.g., YahooWeb, RMAT29-30), only GStream 2.0 could process
BFS. For PageRank, GStream 2.0 significantly outperforms all CPU based methods in terms of both the elapsed

time and the size of a graph to process.
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Figure 11. Comparison with MTGL, Galois, Ligra, and Ligra+ for BFS and PageRank

7.4 Comparison with GPU-based Methods

Figure 12 shows the comparison results among MapGraph, CuSha, TOTEM, and GStream 2.0, for BFS

and PageRank. Both CuSha and MapGraph can process only the graph data that can fit in GPU memory, and so,

the size of a graph to process is very small. CuSha can process BFS only up to Twitter data. It cannot process

other data (e.g., RMAT27) due to lack of GPU memory. We expected CuSha would be faster than GStream 2.0 as

long as a graph could fit in GPU memory. However, CuSha was slower than GStream 2.0, and even than TOTEM

for Twitter. It cannot process PageRank for all graphs tested, since PageRank requires more memory than BFS

due to prevPR and nextPR. MapGraph is worse than CuSha in terms of scalability. It cannot process even BFS for

Twitter. It can just process a tiny graph like LiveJournal. It is because the Market Matrix format of MapGraph is
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less space-efficient than the G-Shard format of CuSha. We compare the performance of GStream 2.0 with the best
performance of TOTEM using the set of options carefully selected. In the case of TOTEM, we can minimize the
amount of graph data processed by slower processors, i.e., CPUs, by fitting as much graph data as possible in
device memory, and thus, maximize its performance. For PageRank, TOTEM slightly outperforms GStream 2.0
for relatively small-scale graphs such as RMAT27, Twitter, and UK2007. GStream 2.0, however, significantly

outperforms TOTEM for large-scale graphs such as RMAT29.
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Figure 12. Comparison with TOTEM, MapGraph and CuSha for BFS and PageRank

For BFS, GStream 2.0 consistently outperforms TOTEM. Here, TOTEM cannot process YahooWeb due
to some bugs, and so, there is no corresponding result. In addition, TOTEM cannot process RMAT30-32 since it
relies on in-memory data format requiring a contiguous array in main memory. We note that GStream 2.0 pro-

cesses PageRank for RMAT29 only in about 59 seconds, which indicates the graph processing speed of GStream
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2.0 is about 7GB/s, since the size of RMAT29 is about 40GB in the slotted page format, and the number of Pag-
eRank iterations is ten in the experiments. We also note that GStream 2.0 shows the performance of up to 1,500

MTEPS (millions traversed edges per second) for Twitter.

7.5 Characteristics of GStream 2.0

Figure 13 shows the performance of GStream 2.0 while changing the strategy explained in Section 4 for
RMAT30. Strategy-P indicates the strategy for performance in Section 4.1, and Strategy-S the strategy for scala-
bility in Section 4.2. Both strategies show similar performance with each other when using 1 SSD or 2 HDDs
since the 1/0 performance is a bottleneck. However, Strategy-P shows a slightly better performance than Strategy-

S when using main memory or 2 SSDs due to no or less 1/O bottleneck.
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Figure 13. Comparison between two strategies for BFS and PageRank (RMAT 30).

In terms of the overall performance, we note that the speed of PCI-E bus becomes a bottleneck in memory
setting, and the 1/0 performance of PCI-E SSDs becomes a bottleneck in SSD setting. For example, for ten itera-
tions of PageRank using RMAT30, GStream 2.0 in memory setting takes about 153 seconds, which is approxi-
mately equal to 114 x 10 + 6 = 190 seconds, where 6 means the communication rate in a streaming copy mode c2
in Section 5.1. Here, actual elapsed time of 153 seconds is smaller than the calculated time of 190 seconds due to

caching mechanism described in Algorithm 1. For another example, GStream 2.0 using two SSDs takes about 196
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seconds, which is approximately equal to 114x10+5 = 228 seconds, where 5 (GB/s) means the sequential read
performance of two PCI-E SSDs. Here, actual elapsed time of 196 seconds is smaller than the calculated time of
228 seconds due to the page buffering mechanism in Algorithm 1. The performance of GStream 2.0 using two
HDDs is completely bound by the 1/0 performance of HDDs. When using two HDDs in the Strategy-P mode, its
sequential read 1/0 bandwidth is about 330GB. The elapsed time of PageRank for RMAT30 is about 2,843 seconds,
where the calculated time is 114 x 10 + 0.33 = 3, 454 seconds. Here, actual elapsed time of 2,843 seconds is
smaller than the calculated time of 3,454 seconds due to the page buffering mechanism.

Figure 14 shows the performance of GStream 2.0 while varying the number of streams for RMAT26-29.
The performance increases steadily as the number of streams increases for all data sets. Even if for BFS where

the ratios of transfer time to kernel execution time are much smaller than 32.
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Figure 14. Performance when varying the number of streams.

Figure 15(a) shows the performance of GStream 2.0 for BFS while varying the cache size from32MB to
5,120MB, and Figure 15(b) shows the corresponding cache hit rates. For RMAT29, there is no result at the cache
size 5,120MB due to a large size of WABUf. We can easily adjust the size of cache since it is allocated by a CPU
thread (i.e., the framework thread of GStream 2.0). For example, for the cache of 1,024MB, GStream 2.0 allocates

the array of 16 slotted pages of 64MB within GPU; and make cachedPIDMap; maintain up to 16 page IDs. In
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Figure 15(b), the cache hit rates increase linearly as the cache sizes increase, but decrease linearly as the sizes of

topology data increase, as discussed in Section 3.3.
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Figure 15. Effectiveness of caching for BFS

7.6 Additional graph algorithms

In addition to BFS and PageRank, for a wider range of benchmarks, we implement the following three

additional graph algorithms using GStream 2.0: Single-Source Shortest Path (SSSP), Connected Components

(CC), and Betweenness Centrality (BC). It demonstrates the adaptability of GStream 2.0. We select those three

graph algorithms since Giraph, GraphX, PowerGraph, and TOTEM commonly support them. Figure 16 shows the

comparison results among five methods (BC between two methods). GStream 2.0 significantly outperforms other

four methods for SSSP and CC, and also largely outperforms TOTEMfor CC. Here, we perform the experiments

of BC using the default mode, i.e., the single node mode for both methods.
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Figure 16. Comparison for additional graph algorithm: SSSP, CC, and BC

7.7 Experiment for edge attribute

Figure 16 shows the experimental result of structural clustering algorithm for networks (SCAN) like algo-

rithm for edge attribute. For experiment about edge attribute, we implement SCAN-like algorithm. The original

SCAN algorithm requires 2-hop algorithm and recursive execution. However, our GStream 2.0 does not support
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recursive execution in GPU kernel function, due to lack of register for a single core of GPU. For this reason, we
implement SCAN-like algorithm without recursive execution using edge attribute. The reason that there are weak

scalability between RMAT25 and RMAT26 is due to Peer-to-Peer communication each other GPU device.
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Figure 17. Experimental result for SCAN-like algorithm
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8. CONCLUSION

In this paper, we proposed a fast and scalable GPU-based graph processing method called GStream 2.0 that can
process even RMAT32 (64billion edges) graphs very efficiently. We proposed novel concept, a concept of storing
only updatable attribute data and moving topology data to overcome the limit of GPU memory capacity and
moreover the limit of main memory capacity. GStream 2.0 fully exploits the computational power of GPUs by
processing the entire graph only using GPUs. The proposed method stores graphs in PCI-E SSDs and executes a
graph algorithm using thousands of GPU cores while streaming topology data of graphs to GPUs via PCI-E inter-
face. For hiding time of transfer topology data, GStream 2.0 exploits the asynchronous GPU streams (e.g., CUDA
Streams), so it utilize GPU’s computing power more. For efficient streaming, GStream 2.0 adopted and general-
ized the slotted page format that divides a graph into fixed-size units. In terms of exploiting multiple GPUs and
SSDs, we also proposed two strategies, the strategy for performance and the strategy for scalability. GStream 2.0
is fairly scalable in terms of the number of GPUs and SSDs, and so, shows a stable speedup when adding a GPU
or an SSD to the machine. We expended slotted page format for trillion-scale graph and multiple edge attribute.
We also expended processing model of GStream 2.0 for handling 2-hop neighborhood algorithm efficiently.
Through extensive experiments, we demonstrated that GStream 2.0 consistently and significantly outperforms the
major distributed graph processing methods, GraphX, Giraph, and PowerGraph, and the state-of-the-art GPU-
based method TOTEM, across wide range of benchmarks. Especially, we demonstrated that GStream 2.0 can
process an RMAT32 graph within a reasonable time in a single machine that the existing distributed methods fail

to process by using 30 machines of a total of about 2 TB memory.
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