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Abstract 

 
Data modeling is important to understand and obtain the information from the data. 

Diverse designs can be developed for finding hidden information. Existing research in 

proteomics is limited in data modeling since only analysis of Protein–protein interaction 

(PPI) network is usually conducted.  

Here, we present a new approach for finding rules and bases to understand mechanisms 

of protein function. We build the multilayer network for integrating bottom-up 

proteomics data which is named TLP network. TLP network contains diverse biological 

information including the peptide expression data, and PTMs as well as Protein–protein 

interactions (PPIs). TLP network is expected to answer a wide range of questions in 

proteomics research area. 
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1. Motivation 

1.1 Difficulty to identify the Differentially Expressed Proteins  

Protein quantification is determining the amount of proteins in a sample. If it is 

possible to obtain the quantity of proteins accurately, there is definite answer to which 

proteins are differentially expressed proteins (DEPs) between the different groups (for 

example, disease vs. control). DEPs play a central role in determining the course of 

infection. DEPs are also closely related to Primary goal of proteomics, that is the 

functional annotations for the entire proteome. Therefore, quantitative proteomics is 

highly relevant for systems biology, biomarker discovery, and many other biomedical 

applications. 

However, protein quantification is difficult since the inherent property of tandem 

mass spectrometry (MS/MS) data generate subtasks of protein quantification. MS/MS 

data is given as not the protein level, but the peptide level. Many of these peptides can 

be found in not only one protein (unique peptide), but also multiple proteins (shared 

peptide). Furthermore, peptide identification problem makes the protein quantification 

problem more complex. An experimental MS/MS spectrum is unclean data therefore 

determining an amino acid sequence of a protein does not have a definitive answer. The 

implication is that unique peptide is not “unique” peptide in MS/MS proteomics data in 

fact. 
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Consequently, protein assembly plays a critical role in identification as it 

transforms a list of identified peptides into a list of identified proteins [1]. Moreover, 

grouping of peptides to proteins result in an amplification of error rates going from PSM 

to protein level [2]. As a results, it is complex problem to determine quantitative 

information from unique peptides and shared peptides. 

Although a number of protein quantification methods have been proposed, 

identification of DEPs still remains unsolved since protein assembly is conducted in 

similar way. Ignoring shared peptides and only utilizing the results of unique peptide 

quantification is widely used way to protein quantification. Utilization the results of 

unique and razor peptides quantification as a compromise between unequivocal peptide 

assignment and most-accurate quantification is also used [3]. In this way, significant 

portion of proteins are discarded, thus it is not available to discover DEPs [4]. 

 

1.2 Data integration to find rules from big data 

We would like to suggest the solution for this inherent problem by the power of big data. 

When we focus on informative peptides, which offers the information about DEPs 

through the big data, we can effectively summarize peptide-level results into protein-

level. Furthermore, we can get the solution for other problems in proteomics research 

area.  

 



- 3 - 

 

In order to find rules from big data, we integrate the proteomics data through noble 

data model. Data modeling is important to understand and obtain the information from 

the data. Especially in network analysis, what can be found in the network depends on 

network design. Diverse designs can be developed for exploiting the relationships, in 

terms of (node or edge) attribute, data integration, etc.  

Existing research is limited in modeling of proteomics data since only analysis of 

Protein–protein interaction (PPI) network is usually conducted. The novelty of our 

study lies in the network architecture. There has been few or no research on the PTM 

itself as well as relationship of similarity in abundances of PTMs. co-occurrence which 

is defined as edge attribute in modified peptide layer is the first proposed concept to 

reveal relationship between occurrences of modified peptides. 

Furthermore, multilayer network to represent different entities and relationship 

between them in proteomics research area is a new effort. The interaction between 

proteins are intimately related with PTMs which provides the information of signaling 

pathway and the expression of peptides provides the information of biological process. 

That is, all of those things defined as node in TLP network are closely connected to each 

other with respect to function of protein. Therefor we have to look into the relationship 

between those things by data integration. Since graph is appropriate for modeling the 

relationship between entities, designing a graph data model like as TLP network can 

answer a wide range of questions in proteomics research area. 
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2. Introduction 

2.1 Bioinformatics 

Bioinformatics is an interdisciplinary field that develops computational and 

statistical methods for understanding biological data. The field of bioinformatics has 

been rapidly evolving and has drawn attention. Due to the advances in biomedical 

techniques and applications such as genome sequencing, protein identification, the 

amount of data exploded. Currently, the rate of data accumulation is much faster than 

the rate of data interpretation [5]. These data need to be effectively analyzed to discover 

useful information.  

Since uncertainty should be taken into account when analyzing the biomedical data, 

numerous statistical methods and mining approaches are needed which usually lead to 

complex computation. As a result, computational approaches for data analysis have 

become the critical final step of the bioinformatics workflow because of a great deal of 

uncertainty. 

 

2.2 Proteomics 

Proteomics is the large-scale study of proteins which is important because proteins 

represent the actual functional molecules in the cell. According to the central dogma of 

molecular biology which represent the flow of genetic information within a biological 

system, the DNA makes RNA which in turn makes protein. As a result, protein is the 
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end product which is the primary effectors in cellular function. Primary goal of 

proteomics is functional annotations for the entire proteome. There are two phase of 

proteomics data analysis, identification and quantification. 

 

Figure 1. Central dogma. 

 

2.3 Post-translational modification (PTM) 

PTM is the chemical modification of a protein after its translation. PTM is 

important since many of these can regulate protein function and play a key role in many 

cellular processes such as signaling pathway, regulation of gene expression, and protein-

protein interactions. Therefore, the identification of PTMs is critical to gaining insight 

into biological functions. In MS/MS, PTMs can be detected by PTM-related diagnostic 

mass shifts of fragment ions in MS/MS spectra [6]. 
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2.4 Bottom-up proteomics 

Bottom-up proteomics is a common method which allow the identification and 

characterization of proteins and their amino acid sequences, including PTMs, by 

proteolytic digestion prior to mass spectrometry (MS) analysis.  

Workflow in bottom-up proteomics is illustrated in Figure 2. Firstly, protein 

extracted from sample of interest such as cancer patient. Next, complex protein mixture 

is digested by protease such as trypsin. This peptide mixture goes through the liquid 

chromatography and is separated prior to MS. Peptides are then ionized and selected 

ions subjected to fragmentation in the collision cell to produce tandem mass spectra 

through Multiple steps of mass spectrometry i.e., tandem mass spectrometry (MS/MS). 

At this stage, database search programs for peptide identification such as SEQUEST [7], 

and Mascot [8] are used. The list of identified peptides is used to infer which proteins 

are present in the original sample. [9] 
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Figure 2. Workflow of Bottom-up proteomics. [9] 

 

2.5 Peptide identification  

Peptide identification is deriving correct Peptide-Spectrum Matches (PSMs) from 

given MS/MS spectrum. There are three major approaches to identifying peptides from 

MS/MS spectrums: traditional database search approach (Figure. 3 (a)), de novo 

sequencing approach (Figure. 3 (b)), and hybrid approach (Figure. 3 (c)).  

Database search approach tries to find a peptide by comparing an experimental 

MS/MS spectrum with a theoretical spectrum predicted from a protein database. De 
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novo sequencing approach directly infers peptide sequences from experimental 

spectrums without any resort to a database. Also, there are efforts to combine the 

database search approach and de novo sequencing approach for better interpretation. 

Hybrid approach first performs simplified de novo sequencing for generating candidate 

peptides. Then, it performs database search against the results of the simplified de novo 

sequencing.  

Figure 3. Three major approaches for peptide identification. 
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2.6 Quantitative proteomics 

Quantitative proteomics is important extension to protein identification, 

determining the amount of proteins in a sample. Quantitative proteomics is highly 

relevant for systems biology, biomarker discovery, and many other biomedical 

applications. [10] 

There are two kinds of quantification approaches by MS. First, in label-free 

quantification, all samples are analyzed in separate LC/MS experiments, and the 

individual peptide properties of the individual measurements are then compared. Label-

free quantification is in expensive and can provide the highest flexibility. However, the 

results of label-free quantification shows relatively poor accuracy compared to the 

results of labeling quantification. 

Figure 4. Label-free quantification. 
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Second, in labeling quantification, proteins from different samples are labeled 

which allows to distinguish between identical proteins in separate samples. It is 

relatively easy to map the signals of the same peptide from two samples in labeling 

quantification and more reliable results of quantification from the peak intensity ratio. 

However, it is more costly and time-consuming. Sample loss and error introduced by 

labeling and limitation of number of samples also can be disadvantage of the labeling 

quantification. 

 

Figure 5. Isotope labeling method. 
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2.7 Proteomics data repositories 

The advent of high-throughput proteomics has enabled the dramatically increased 

number of publications centered on these protein identifications. The proteomics 

identifications (PRIDE) database (http://www.ebi.ac.uk/pride) is proposed as a means 

to finally turn publicly available data into publicly accessible data [11]. PRIDE 

databases is the repository that European Bioinformatics Institute hosted which is a 

centre in bioinformatics, and is part of European Molecular Biology Laboratory. By 

September 1 2015, PRIDE Archive contained 3336 data sets, 52% (1731) of the data 

sets were publicly available. [12] 

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) data portal 

(https://cptac-data-portal.georgetown.edu/cptacPublic) is also the centralized repository 

for proteomics data. CPTAC data portal is the repository that National Cancer Institute 

in NIH launched, which is part of the U.S. Department of Health and Human Services. 

Especially, CPTAC is a comprehensive and coordinated effort to accelerate the 

understanding of the molecular basis of cancer through the application of proteomic 

technologies and workflows to clinical tumor samples with characterized genomic and 

transcript profiles. In 2015, the portal hosts 6.3 TB of data and includes proteomic 

investigations of breast, colorectal, and ovarian tumor tissues from The Cancer Genome 

Atlas (TCGA) [13]. 

PRIDE database and CPTAC data portal both databases are world-leading data 

repositories of MS-based proteomics data and all data are freely available to the public. 
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2.8 Network analysis 

Graph is widely used in network analysis since it offers a convenient way to 

represent relationships among objects. Graphs and networks are all around us, including 

protein-protein interaction network, friendship network, and internet map. Graph 

consists of a set of nodes and a set of edges. Node represents an object, and the edge 

represents the relationship between the objects. 

Power-law distributions occur in many situations of scientific interest and have 

significant consequences for our understanding of natural and man-made phenomena. 

The most representative example is a scale-free network. A scale-free network is a 

network whose degree distribution follows a power law. In real network, hub node 

means a node which has the number of edges that greatly exceeds the average. 

There are lots of algorithms for the network analysis. For example, graph clustering 

can be used for community detection in networks. General graph clustering algorithms 

is organized the graph topology into modules commonly called communities or clusters. 

The essence here is that nodes of the same community are highly similar while on the 

contrary, nodes across communities present low similarity [14]. For example, SCAN, 

which is a density-based clustering algorithm, assign densely connected node set as 

cluster [15]. 
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3. Three Layer proteomics (TLP) network 

3.1 Data collection  

We collected the data from PRIDE database and CPTAC data portal according to 

following five criteria. 

First criterion is the type of disease. We collected data from human ten major 

tumors (Lung, Liver, Pancreas, Prostate, Breast, Glioma, GI, Ovarian, Leukemia, 

Melanoma).  

Second criterion is sample class (tissue, plasma/serum/ascites, cell lines, and 

primary cells). 

Third criterion is size of measured proteomes which is related to the quality of data. 

When the data is not enrichment data for Protein post-translational modification (PTM), 

we only include the data which has more than 500 global proteins identification result. 

When the data is enrichment data for PTM, we only include the data which has more 

than 100 proteins identification results with 500 global proteins identification result.  

Fourth criterion is quantification method. We collected the data which conducted 

isobaric labeling method (i.e., iTRAQ [16] and TMT [17]) or the method which used 

areas of elusion curves (i.e., SILAC [18] and label-free).  

Finally, we check whether the data has samples from more than two conditions. 

This enables to compare the identification results between different conditions (for 

example, control and treatment).  
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According to five criteria, we selected total 86 studies with 16200 vendor raw files. 

The 72 studies with 7600 raw files are from the PRIDE database, and the 14 studies 

with 8600 raw files are from the CPTAC data portal. Collected raw data is amount to 

ten terabytes. 

 

3.2 Process of peptide identification  

Before peptide identification, we converted vendor raw files with .RAW extension 

to open spectrum files with .mgf extension. Mascot Generic Format (MGF) file is the 

most common text format among open spectrum files. This simple text formats were 

created with the emergence of search engine, and widely supported by many proteomics 

search engines. 

After the conversion, we conducted MS-GF+ for peptide identification of collected 

data. MS-GF+ is state-of-the-art database search tool. In MS-GF+, MS/MS spectra are 

scored against peptides derived from a protein sequence database. [19] 

The data files searched against the Uniprot database (September 2015 with 91,797 

sequences) allowing a maximum of one missed cleavage sites. UniProt is a freely 

accessible database of protein sequence and many entries being derived from genome 

sequencing projects. 

 

Default settings used were the following: The precursor mass tolerance was set to 
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20 ppm. Carbamidomethylation on cysteine setting as fixed modifications and variable 

modifications as Deamidation, Oxidation (M), Pyroglutamic acid formation from Gln, 

and Pyroglutamic acid formation from Glu. In addition to default setting, such as 

phosphorylation, and acetylation as variable modification were used for PTM enriched 

experiments. In case of labeling data, reporter ion is also used as variable modification. 

The peptide is considered as confidently identified when false discovery rate (FDR) is 

lower than 0.01. Number of peptide matches per spectrum to report was set to one so 

that we obtain one peptide from each spectrum. 

 

Figure 6. Traditional database search approach for peptide identification. 

The number of total Peptide-Spectrum-Matches (PSM) is 160 million and the 

number of reliable PSMs which has FDR lower than 0.01 is 80 million. Finally, we 

constructed multi-layer proteomics network based on these 80 million reliable PSMs. 
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Total search time was amount to 180,000 hours. MS-GF+ search is conducted during 

four months with multiple machines. 

 

3.3 Process of peptide quantification 

Peptide quantification is determining the amount of peptides in a sample. There are 

a number of quantification method including isobaric labeling method and the method 

which used areas of elusion curves.  

We only quantified the data which has isobaric labeling which can offer highly 

reliable quantification results through MS/MS data. Peptides or proteins are labeled 

with various chemical groups that are isobaric (identical masses). Tags are cleaved from 

the peptides during MS/MS, and MS/MS data is used for both identification and 

quantification. We can get peptide-spectrum match (PSM) by peptide identification and 

quantity of the peptide by reporter ion which tag generate from the spectrum. 

 

Figure 7. Isobaric tags. 
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According to MS-GF+ search result, we determine the PSMs list to quantify which 

confidently identified with FDR lower than 0.01. Max value among the intensities of 

reporter ions in each PSMs, and quantile normalization is conducted within and between 

datasets in each study. Quantile normalization is technique for making two distributions 

identical in statistical properties. 

Figure 8. Quantification in iTRAQ and TMT. 

 

After normalization, intensity ratio to reference pool is computed according to 

labeling data. Labeling is used to distinguish the different groups such as control, 

subtypes or treatment of tumors. Reference pool usually means control or untreated 

group for verifying the effect of treatment. Intensity ratio to reference pool is measure 

of the relative abundance of the same peptide in different samples. In general, relative 
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abundance is used rather than absolute abundance for comparing peptide quantity 

between different datasets since intensity distribution of datasets are different from each 

other. There are 20 studies with 1900 raw files which used isobaric labeling method in 

our data. The number of datasets is 39 and total 178 intensity ratio is computed. 

 

3.4 Network architecture  

Our network consists of three layer which is named Three Layer Proteomics (TLP) 

network. First layer of TLP network is protein layer, second layer is peptide layer, and 

third layer is modified peptide layer. This structure followed the workflow of bottom-

up proteomics. Node is defined in each layer for representing the entities of results in 

bottom-up proteomics. Edge is defined in each layer and between layer for representing 

important information (relationship) between the entities which did not exploited in 

itself or together in this way. An entity–relationship model (ER model) of TLP network 

shown in figure 9. 

In protein layer, the node is defined as a protein included in Uniprot database which 

we used in database search. Therefor node attribute of node becomes Uniprot ID.  

The edge in protein layer represents the PPIs. We combine the information of PPIs 

from four reliable protein interaction databases, BioGRID, MINT, IntAct, and HPRD. 

All interactions these databases provide are derived from literature curation or direct 

user submissions and are freely available. 
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Figure 9. ER model of TLP network. 

 

In peptide layer, the node is defined as an unmodified peptide which is strip 

sequence of peptide that identified by MS-GF+ search. Strip sequence is a series of 

amino acids which do not contain mass shift from PTM. Therefor strip sequence itself 

makes the node unique. The edge in peptide layer represents the similarity in relative 

abundances. For each peptide node, relative abundance is defined by 178 column vector 

as described above. Thus similarity in relative abundances is computed as a correlation 

between two intensity ratio vectors of each peptide node. 

In addition to correlation, we use median absolute deviation (MAD) as a measure 

of the variability of the peptide. The MAD is robust measure of how spread out a set of 
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data is. The variance and standard deviation are also measures of spread, but they are 

more affected by extremely high or extremely low values and non-normality. Our data 

isn’t normal, therefor the MAD is suitable statistic we can use instead.  

Firstly, MAD cut-off is used to remove the peptide which is not informative. 

Informative peptide is defined whether its quantity variability is significant between the 

control group and treatment group. Second, among the informative peptides, correlation 

is calculated to find the similarity in relative abundances. Then correlation cut-off is 

used to identify the pairs which has similar pattern in relative abundances across 178 

datasets. 

Empirical statistics is used to decide the cut-off value of MAD and correlation. In 

order to obtain null distribution, the virtual intensity ratio is filled up with gaussian 

random variable from mean and standard deviation (SD) of each dataset. Then 

distribution of MAD and correlation from the gaussian random variable is used to 

decide the cut-off value.  

Intuitively, a protein is a long string of elements (amino acids), and a peptide is a 

smaller substring. Therefor the edge between first layer (protein layer) and second layer 

(peptide layer) represents the intrinsic relationship between protein and peptide, that is 

to say “including” relationship. 

In modified peptide layer, the node is defined as the peptide which has more than 

one PTM on its sequence. Biologically, peptides which have identical sequence and 

identical modification type with different modification site are different peptide. 
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Peptides which have identical sequence and different modification type are different 

peptide, obviously. Therefor strip sequence with the location and the type of 

modification makes the node unique. 

We have to store two information about modification, the location of modification 

and the type of modification. These two information is stored as modification array. 

Modification array contains the information about location of modification as position 

of element. Value of element indicates the type of modification by a different single 

letter.  

Since MS-GF+ limits the maximum length of the peptide to be considered in the 

peptide identification as a parameter MaxPepLength and we use 50 for the value of 

parameter, the maximum length of the modification array also becomes 50 except for 

last null element.  

There is a number of modification which occurs protein N-term such as protein N-

term acetylation, additional element before the 50 elements for representing 

modification on each amino acid. Final length of modification array is 53 with 

beginning element “M” for representing the start of the modification array, the 51 

element for representing modification, and the last null element. 

There are total 16 modification types which identified by MS-GF+ search in our 

data. Among 16 modification types, several types belong to functional PTM which is 

important to protein function. The other types are not related to protein function, so 
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excluded from further analysis. The unique ID assigned to modification type and 

whether the type is functional modification or not is shown in Table 1. 

 

Table 1. Modification list. 

 

The edge in modified peptide layer represents the similarity in occurrence of 

modified peptide node. It is named as co-occurrence. Contrary to proteomics, there are 

lots of research on the simultaneous expression of two or more genes which is named 

as co-expression.  

A gene co-expression network is constructed by looking for pairs of genes which 

show a similar expression pattern across samples, which means the transcript levels of 

two co-expressed genes rise and fall together across samples. Gene co-expression 

networks are of biological interest since co-expressed genes are controlled by the same 

transcriptional regulatory program, functionally related, or members of the same 
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pathway. Similar to gene co-expression network, the idea of co-occurrence network can 

be proposed in proteomics research area and intuitively we can expect biologically 

significant information from the co-occurrence network.  

The co-occurrence network is constructed by looking for pairs of modified peptides 

which show a similar occurrence pattern across datasets. We defined the individual 

occurrence of modified peptide as a binary value, whether modified peptide is found or 

not in the dataset. Since the number of datasets in our data is 900, each modified peptide 

node has the 900-length binary vector to represent individual occurrence across the 

datasets. Co-occurrence is defined as the number of datasets which the pair of modified 

peptides occurs together. Maximum value of the sum of individual occurrence becomes 

900 and maximum value of the co-occurrence also does since the number of datasets in 

our data is 900.  

In practice, co-occurrence is calculated on the modified peptide nodes which have 

at least one of functional PTMs, not entire modified peptide nodes. In terms of dataset, 

co-occurrence is calculated on the PTM enriched datasets, not entire datasets. The 

number of PTM enriched datasets is 400, so maximum value of the co-occurrence 

becomes 400. 

Similar to edge attribute in unmodified peptide layer, cut-off value is used to 

remove the co-occurrence of pairs which may be meaningless. Empirical statistics is 

used to decide the cut-off value. In order to obtain null distribution, we permutated the 

individual occurrence of modified peptide nodes. Column permutation is applied on 
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individual occurrence vector while the sum of individual occurrence on each modified 

peptide node is maintained. As a results, the sum of occurrence of entire modified 

peptide nodes in each dataset appear to be uniform distribution, unlike the actual 

distribution. 

Empirical statistics (green color) shows the much lower co-occurrence value 

compared to actual distribution (red color) in Figure 10. This means that modified 

peptide nodes in our data shows the statistically significant co-occurrence. Then cut-off 

value of co-occurrence is decided as nine by comparing empirical statistics and real 

distribution. 

Figure 10. Co-occurrence log-log distribution. 
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The edge between the unmodified peptide layer and modified peptide layer 

represents the modification relationship. As it can be inferred from the definition of the 

unmodified peptide node and the modified peptide node, when the modified peptide is 

identified from the MS-GF+ search results, edge from the unmodified peptide spread 

branches to the modified peptide node. 

 

3.5 Example of graph construction process 

As an example of illustrating the entities and relationship between them, Figure 11 

shows an example of graph construction process with three protein nodes, three 

unmodified peptide nodes, and four modified peptide nodes. 

Since the node in protein layer is defined as the proteins included in Uniprot 

database, protein nodes is 91,797 finite set. Edges between these protein nodes are 

generated according to PPIs constructed by four protein interaction databases as 

described above. Relationship between the protein nodes is many-to-many. 

When the unmodified peptide node with sequence LLL is identified by MS-GF+ 

search, unmodified peptide node LLL is generated. Then edge between the node and 

the protein node C, which has the Uniprot id F8VRK9 and sequence 

MLLLHRAVVLRLQQACRLKSIPSRICI-QACSTNDSFQPQRPSL, is generated. 

Since substring LLL can be found other protein node B, edge between them is also 

generated. Therefore, relationship between the protein and peptide is many-to-many. 
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The edge between unmodified peptide node with sequence STN and protein node C and 

the edge between unmodified peptide node with sequence AALT and protein A are 

generated in this way. In case of unmodified peptide, node is generated not only when 

the unmodified peptide itself is found in MS-GF+ search results, but also when the 

modified peptide is found in MS-GF+ search results. 

 

Figure 11. Example of graph construction. 
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Edge between the unmodified peptide nodes is generated by looking for the value 

of MAD and correlation of quantities as described above. Figure 12 shows the process 

of correlation computation from the quantification results. For example, edge between 

unmodified peptide node AALT and STN is generated since the value of MAD and 

correlation passed the cut-off value. According to definition, relationship between 

unmodified peptide nodes is many-to-many. 

 

When the four modified peptides showed in Figure 11 is identified by MS-GF+ 

search, each node is generated since these are different with respect to strip sequence or 

the location and the type of the modification. Different color on an amino acid indicates 

different type of modification in this Figure 11. 

Edge between the unmodified peptide node and modified peptide node is one-to-

many relationship since multiple modification can occurs on the peptide, but each 

modified peptide is subordinated to one unmodified peptide. 

Edge between the modified peptide nodes is generated by looking for the value of 

co-occurrence as described above. Figure 13 shows the process of co-occurrence 

Figure 12. Computation of correlation. 
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computation from individual occurrence. For example, edge between modified peptide 

node AALT and STN is generated since the value of co-occurrence passed the cut-off 

value. According to definition, relationship between modified peptide nodes is many-

to-many. 

 

3.6 Network size 

Figure 14 shows the size of TLP network. Since protein nodes is 91,797 finite set, 

the number of nodes in protein layer is also 91,797. The number of edges (PPIs) in 

protein layer is 115,209. The number of edges between protein layer and unmodified 

peptide layer is approximately four million. That is, one protein has four peptide nodes 

on average. 

The number of nodes in unmodified peptide layer is approximately one million. 

This value is proportional to the number of spectrum data to some degree, but the rate 

of increase become smaller gradually. The number of edges in unmodified peptide layer 

would be 250 billion before applying the cut-off value of MAD and correlation. After 

applying the cut-off value, the number of edges would be approximately one billion.  

Figure 13. Computation of co-occurrence. 
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The number of edges between unmodified peptide layer and modified peptide layer 

equals the number of nodes in modified peptide layer since the modified peptide node 

is connected with only one unmodified peptide.  

The number of the nodes in modified peptide layer is one million. This value is 

also proportional to the number of spectrum data to some degree, but the rate of increase 

become smaller gradually. Since edge in modified peptide layer, co-occurrence, is 

calculated on only functional PTM nodes as described above, the number of edges in 

modified peptide layer is related to the number of functional PTM nodes. The number 

of functional PTM nodes is 370 thousand in our data. So the number of edges in 

modified peptide layer would be 70 billion before applying the cut-off value of co-

occurrence. After applying the cut-off value, the number of edges would be one billion. 
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Figure 14. Size of TLP network after applying cut-off. 
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4. Analysis of TLP network  

We find the close relationships across the three layer. As expected, PPIs network is 

similar to PTM co-occurrence network. Figure 15 shows the four subgraph where PPI 

network looks like cluster and PTM nodes has high co-occurrence value more than 100. 

These subgraphs related with DNA repair, protein homeostasis, RNA processing, 

mitogen-activated protein kinase (MAPK) pathway respectively.  

 

Figure 15. PTM bases found in TLP network. 
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This kind of subgraph is named as PPI-PTM base. In PPI-PTM bases, PPI network 

looks like cluster and PTM nodes has high co-occurrence. These bases can be used to 

interpret related with DEPs.  

 

Figure 16. Illustration of PPI-PTM base. 
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Like as the PPI-PTM base, the subgraph can be found between protein layer and 

peptide layer where PPI network becomes cluster and peptide nodes has high correlation 

in abundance pattern. This kind of subgraph is named as peptide abundance base. These 

kinds of bases also can be used to interpret related with DEPs. 

 

 

Figure 17. Illustration of peptide abundance base. 
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First of all, we will confirm the existing knowledge as network verification. For 

example, looking for PPI network and PTM nodes connected with these proteins of 

identical pathway can offers the information about how TLP network appears with the 

existing knowledge about pathway. Then knowledge discovery in TLP network can be 

conducted in various aspects. There are numerous questions in proteomics including 

PTM base and peptide abundance base. For example, finding informative peptides for 

protein quantification also becomes important discovery. Efficient algorithm that can 

find biologically significant results would be used. 
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5. Conclusion  

We build the multilayer network for integrating bottom-up proteomics data which 

is named TLP network. TLP network contains diverse biological information including 

the peptide expression data, and PTMs as well as Protein–protein interactions (PPIs). 

All those things are closely connected to each other with respect to function of protein. 

Especially we utilize the edge attributes to exploit the relationship between this 

information. Weight on edge can represents the strength of relationship, or potential 

biological significance.  

We find close relationships across the three layer. PPI clusters are consistent with 

PTM high co-occur clusters. PPI-PTM bases and peptide abundance bases would be 

used to interpret related with DEPs. 

As a result, TLP network is expected to answer a wide range of questions in 

proteomics research area including informative peptides from big data for protein 

quantification, Co-occurring PTMs in the same pathway, and Frequently co-changing 

network modules that can be used as bases for interpretation of a new dataset. 
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요약문 

 

빅 데이터에 기반하여  

단백질체학 데이터에서의 수량화 규칙을 찾기 위한  

다층 네트워크 구축과 분석 

 

데이터를 어떻게 모델링 하느냐는 데이터를 이해하고 그 안의 정보를 찾아내고자 

할 때 중요한 역할을 한다. 그리고 내재된 정보를 찾아내기 위해서는 다양한 디

자인이 가능하다. 현재 단백질체학의 연구들은 주로 단백질-단백질 상호작용에 

관한 네트워크만에 관심을 가지며 데이터 모델링 측면에서 한계를 보이고 있다. 

이 논문에서 우리는 단백질의 기능 메커니즘을 이해하기 위한 새로운 접근법을 

제안하고자 한다. 우리는 TLP 네트워크라고 명명된 단백질체학 데이터를 통합하

기 위한 다층 네트워크를 만들었다. TLP 네트워크는 단백질-단백질 상호작용 뿐 

아니라 펩타이드 발현, 단백질 변형을 포함하는 다양한 생물학 정보를 담고 있다. 

새로운 데이터 모델인 TLP 네트워크를 통하여 단백질체학에서의 여러가지 중요한 

질문들에 대한 답을 찾을 수 있을 것으로 예상된다. 
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