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ABSTRACT 

Recently, Graph neural networks(GNNs) have been improved under the influences by concepts of various 

deep learning techniques, such as attention, auto-encoder, and recurrent network. However, in the real world, 

since various graphs, such as social network, citation network, and the e-commerce data, have the multi-types 

of vertices and edges, most GNNs considering a homogeneous graph as input data is not suitable due to ignoring 

the heterogeneity. Meta-path based methods have been researched to capture both the heterogeneity and struc-

tural information of heterogeneous graphs. As meta-path is a kind of graph pattern, we extend utilizing meta-

paths to exploiting graph patterns. In this paper, we propose a heterogeneous graph attention network for ex-

ploiting triangle patterns called TP-HAN and extend TP-HAN to utilize various graph patterns. Through exper-

iments using real-world datasets, we show that both TP-HAN and VP-HAN has better performance than the 

state-of-art heterogeneous graph attention network. 

 
Keywords: Graph convolutional networks, Heterogeneous graph, Graph pattern 
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Ⅰ. INTRODUCTION  
 

Recently, Graph Neural Networks(GNNs) have received attention in deep learning over graphs. There 

have been many attempts and applications of various techniques, which were successful in deep learning, to GNNs. 

For example, Graph Convolutional Networks(GCNs) [1, 6] proposed neighbor aggregation method 

which is the basic of graph convolution operation. Veličković, P. et al. [2] proposed the attention mechanism that 

makes the neural network learn which neighbors are important. Chiang, W. L. et al. [8] proposed mini-batch 

algorithm based on graph clustering to reduce the memory and computational resource requirements for pro-

cessing large-scale graphs.  

Most studies have considered GCNs for homogeneous graphs. Actually, the real-world data, such as 

citation network and protein-protein interaction network, is a heterogeneous graph that has multi-types of vertices 

and edges. So, naïve approaches are to ignore multi-type of vertices and edges, and regard as homogeneous graph. 

Since they ignore the properties of heterogeneous graphs, a method exploiting the properties is needed. In recent 

studies, some methods utilizing meta-paths are proposed to consider the heterogeneity. Wang, X. et al. [4] trans-

formed a heterogeneous graph into homogeneous graphs by manually selected meta-paths and applied the atten-

tion mechanism [2]. Because this is operated with extracted homogeneous graphs for each meta-path, it can have 

worse performance depending on manually selected meta-paths. Yun, S. et al. [5] transformed a heterogeneous 
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graph into useful meta-path based graphs by automatically generating meta-paths. As the number of stacked layers 

determines the maximum length of generated meta-paths, it requires heavy computation to generate long meta-

paths. Also, since it learns to generate useful meta-paths as combinations of edge types, performance can be af-

fected with more edge types. 

We focus on that the meta-path is a kind of graph pattern. Our approach is to leverage graph patterns 

instead of meta-paths to solve the above limits of meta-path based methods. As the starting point of our approach, 

we propose a heterogeneous graph attention network exploiting triangle patterns called TP-HAN. TP-HAN im-

proves the performance by exploiting triangle patterns compared with the heterogeneous graph attention network 

[4] called HAN. After verifying the effect of exploiting triangle patterns, we extend TP-HAN to exploit various 

pattern called VP-HAN. VP-HAN improves the performance of both TP-HAN and HAN. We verify that exploit-

ing a specific combination of graph patterns shows high performance rather than simply using many patterns. We 

evaluate the performance of TP-HAN and VP-HAN by comparing with HAN. 

The rest of this paper is organized as follows. Section 2 presents the preliminary. Section 3 presents 

the related works. We propose TP-HAN and VP-HAN in section 4. We show the experimental result in section 5. 

Section 6 summarizes this paper and discusses the future work. 
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ⅠI. Preliminary 

  

In this section, we explain the heterogeneous graph in section 2.1, the meta-path in section 2.2, and 

graph pattern in section 2.3. We summarize the notations used in this paper in Table 1. 

Table 1: Summary of notations 

Notation Description 
𝛷  Meta-path 
𝑃  Graph pattern 
𝑋  Vertex feature 
𝑆𝐺!  Subgraph which is monomorphic to pattern 𝑃  
𝐴"  Adjacency matrix for edge type 𝑡 
𝑁#!
!   Pattern 𝑃 based neighbors of vertex 𝑣$ 

𝛼#!#"
%   The vertex-level attention of vertex pair +𝑣$ , 𝑣&- for meta-path 𝛷 
𝛽#!
%  The semantic-level attention of vertex 𝑣$ for meta-path 𝛷 
ℎ#!
%   The vertex-level embedding of vertex 𝑣$ for meta-path 𝛷 
𝑊  The parameters of the graph convolutional network 
𝑍  The final embedding 

2.1 Heterogeneous graph 

Heterogeneous graph is a graph type that has multiple types of vertices and edges. As shown in Figure 

1(a), an academic graph consists of Author(A), Paper(P), and Conference(C) types of vertices and multiple types 

of edges such as a relation between author and paper, a relation between paper and conference, and a relation 

between paper and paper.  

2.2 Meta-path 

Meta-path[3] is widely used structure to capture the semantic information of heterogeneous graph. It 
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is the composite relations of multiple relations, i.e., 𝑣!
"!← 𝑣#

""←…
"#$!$⎯&𝑣$, where 𝑟% ∈ 𝑅 denotes the 𝑖-th edge 

type of meta-path. The composite relations 𝑅 = 𝑟! ∙ 𝑟# ∙ …	∙ 𝑟$&! is a 𝑙-length meta-path from 𝑣! and 𝑣$, where 

𝑟! ∙ 𝑟# denotes the composition of relation 𝑟! and 𝑟#. 

As shown in Figure 1(b), there are two examples of meta-paths: Author-Paper-Author(A-P-A) and 

Author-Paper-Conference-Paper-Author(A-P-C-P-A). For example, two authors 𝑎! and 𝑎# are connected via a 

paper 𝑝' at meta-path A-P-A. Two authors 𝑎! and 𝑎' are connected via a paper 𝑝!, a conference 𝑐#, and a 

paper 𝑝' on meta-path A-P-C-P-A. 

2.3 Graph pattern 

Graph pattern is a subgraph which is frequently seen. When there are two graphs 𝐺 =

(𝑉, 𝐸)	and	𝐺( = (𝑉(, 𝐸(), graph 𝐺′ is a subgraph of graph 𝐺 if 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸, denoted as 𝐺( ⊆ 𝐺. For a 

graph 𝐺(( = (𝑉((, 𝐸((), if there is a one-one correspondence between the vertices of 𝐺( and those of 𝐺(( such 

that the number of edges (𝑢((, 𝑣(() ∈ 𝐸(( is equal to the number of edges ;𝑓(𝑢((), 𝑓(𝑣(()= ∈ 𝐸( with mapping 

function 𝑓: 𝑉(( → 𝑉′, two graphs 𝐺((  and 𝐺(  are isomorphic[12]. If subgraph 𝐺(  of graph 𝐺  is frequently 

seen, graph 𝐺((, which is isomorphic to graph 𝐺(, is a graph pattern. 

For example, triangle is a basic and important pattern in graph systems because the triangle is a cycle 

and also a most minimal clique. Triangle counting and listing are widely used in graph systems. As shown in 
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Figure 1(c), there are two examples of triangles. For example, author 𝑎!, paper 𝑝!, and paper 𝑝' form a triangle. 

Also, the other triangle, which is formed by author 𝑎!, paper 𝑝!, paper 𝑝', and author 𝑎#, appears only in het-

erogeneous graph. This type of triangle starts at a vertex and arrives at another vertex of the same type via two 

different vertices. The reason for these two types of triangles is the heterogeneity of heterogeneous graph.  

 

Figure 1: An example of an academic graph. (a) A heterogeneous graph consists of three types of vertices (i.e., 
author, paper, and conference) and three types of edges (i.e., author-paper relations, paper-conference relations, 
and paper-paper relations). (b) Examples of two types of meta-paths (i.e., Author-Paper-Author and Author-Paper-
Conference-Paper-Author). (c) Examples of triangles. 
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ⅠII. Related work 
 

In this section, we explain graph convolutional networks in section 3.1 and graph convolutional net-

works for heterogeneous graph in section 3.2. 

3.1 Graph Convolutional Network(GCN) 

Typical neural networks, which receive vector format as input data, are not suitable for processing 

graph that cannot be directly represented as vector. Graph Convolutional Networks(GCNs) are introduced to deal 

with graph structure. Recently, GCNs, which are proposed graph convolutional operation directly using graph 

structure, receive attention. Graph convolutional operation is based on neighbor aggregation, inspired by 2D con-

volutional operation that adjacent pixels are aggregated to a center pixel. Kipf, T. N. et al.[1] has proposed neigh-

bor aggregation method using adjacency matrix multiplication. It is the layer-wise propagation rule: 

𝐻($*!) = 𝜎 B𝐷D&
!
"𝐴F𝐷D&

!
"𝐻($)𝑊($)H ,   (1) 

where 𝐻($) denotes the embedding of 𝑙-th layer. The adjacency matrix of graph with added self-connections is 

denoted as 𝐴F = 𝐴 + 𝐼. The degree matrix is denoted as 𝐷D%% = Σ,𝐴F%,. Hamilton, W. L. et al. [6] proposed aggre-

gator functions using various operations like mean, LSTM, and GCN[1]. Veličković, P. et al. [2] proposed Graph 
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Attention Networks(GATs) which apply the attention mechanism to GCNs. GATs assign the importance to neigh-

bors for each vertex. 

3.2 Graph convolutional networks for heterogeneous graph 

Since many researches for GCNs assume that input graph is homogeneous graph, they are not suitable 

to process heterogeneous graphs. There have been proposed some meta-path based GCNs to process heterogene-

ous graph. 

3.2.2 Heterogeneous graph Attention Network(HAN) 

Wang, X. et al. [4] proposed the hierarchical attention mechanism, which consists of vertex-level 

attention and semantic-level attention. The vertex-level attention is to assign different importance to neighbors at 

the extracted homogeneous graph from the heterogeneous graph. The semantic-level attention is to assign different 

importance to each meta-path. 

Figure 2 shows the overall process of HAN for author a# utilizing meta-paths A-P-A and A-P-C-P-

A. First, homogeneous graphs are extracted from input graph for each meta-path. A path from author 𝑎# to author 

𝑎! via paper 𝑝' is corresponding to meta-path A-P-A. So, it is regarded that author 𝑎# is connected with author 

𝑎! at the graph based on meta-path A-P-A. Likewise, there are some paths matching to meta-path A-P-C-P-A. 

For example, author 𝑎# is connected with author 𝑎! because there is a path from author 𝑎# to author 𝑎! via 
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paper 𝑝#, conference 𝑐#, and paper 𝑝!. HAN calculates the vertex-level attention between author 𝑎! and each 

neighbor on the extracted graph for each meta-path. For meta-path A-P-A, author 𝑎! is aggregated to author 𝑎# 

with the importance 𝛼-"-!
.%&% . Also, authors 𝑎!  and 𝑎'  are aggregated to author 𝑎#  with the importance 

𝛼-"-!
.%&'&% and 𝛼-"-(

.%&'&% for the meta-path A-P-C-P-A. After aggregating neighbors with the vertex-level attention, 

HAN calculates the semantic-level attentions of meta-path A-P-A and A-P-C-P-A. Author 𝑎#'s final embedding 

is generated as aggregating the vertex-level embedding ℎ-"
.%&% and ℎ-"

.%&'&% with the semantic-level attention 

𝛽-"
.%&% and 𝛽-"

.%&'&%, respectively. Since HAN uses the homogeneous graphs extracted based on the meta-paths, 

it requires manually selected meta-paths. If manual meta-paths are selected wrong, HAN can have worse perfor-

mance. 

 

Figure 2: The overall process of HAN. 
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3.2.3 Graph Transformer Networks(GTNs) 

Yun, S. et al. [5] proposed Graph transformer networks(GTNs) which automatically generates possi-

ble meta-paths using edge type as learning to produce useful meta-paths. GTN generates meta-paths by multiply-

ing an adjacency matrix of an edge type with an adjacency matrix of another edge type. Figure 3 shows the process 

of automatically generating meta-paths. 

 

Figure 3: Automatically generating meta-paths in GTN. 

As shown in Figure 3, there are four types of edges: Paper-Author(P-A), Author-Paper(A-P), Paper-

Conference(P-C), and Conference-Paper(C-P). To select two edge types, GTN conducts a softmax operation for 

parameters 𝑊! and 𝑊#. In Figure 3, the edge types A-P and P-C are respectively selected in the green boxes of 

the results of softmax operation for the parameters 𝑊!	and 𝑊#. GTN gets an adjacency matrix 𝐴/01 of a meta-

path A-P-C by multiplying an adjacency matrix 𝐴/0 with an adjacency matrix 𝐴01. The number of generated 

meta-paths is determined by the channel of parameters. For example, in Figure 3, GTN generates three types of 
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meta-paths with parameters 𝑊! and 𝑊# (𝑊!,𝑊# ∈ ℝ2×') that have three channels. When increasing the num-

ber of stacked layers, the length of generated meta-path is increased by one. If there are a lot of edge types, the 

number of possible meta-paths increases exponentially. It can lead to performance degradation to learn by select-

ing a few meta-paths among a number of possible meta-paths. Also, since meta-paths are generated by matrix 

multiplication, it can produce heavy computation to generate various meta-paths or long meta-paths.  
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ⅠV. Exploiting graph patterns 

  

In this section, we propose the heterogeneous graph attention network exploiting triangle patterns 

(TP-HAN) and exploiting various graph patterns (VP-HAN). We present TP-HAN in section 4.1 and VP-HAN in 

section 4.2. 

4.1 TP-HAN: Exploiting triangle patterns 

We focus on that meta-path is a kind of graph pattern. Graph patterns that are the Eulerian path can 

be represented to meta-paths. For example, triangles in Figure 1(c) can be represented to meta-path Author-Paper-

Paper-Author(A-P-P-A). However, more complex graph patterns like a kite pattern and a clique cannot be repre-

sented to meta-path or can be represented to long meta-paths. So, we expect that utilizing graph patterns can 

capture graph structure which is hard to consider with meta-path. We propose a heterogeneous graph attention 

network exploiting triangle patterns called TP-HAN as the starting point of the hypothesis that using graph pat-

terns leads to performance improvement of GNNs. 

Figure 4 shows process of extracting homogeneous graph using a triangle A-P-P-A. Subgraphs, which 

are matched to a triangle A-P-P-A, are extracted. A homogeneous graph is extracted by considering that two 

vertices on a triangle are connected. For example, there is a triangle that consists of author 𝑎!, paper 𝑝!, 𝑝', and 



 - 12 - 

author 𝑎#. Author 𝑎! and 𝑎# are connected at extracted homogeneous graph for author vertices. 

As extracting homogeneous graph, the adjacency matrices for triangles are calculated by multiplying 

adjacency matrices of edge types that form a triangle. For example, for a triangle A-P-P-A, when there are three 

edge types A-P, P-P, and P-A. From a set E4554 = {𝑡/0, 𝑡00, 𝑡0/}, TP-HAN gets an adjacency matrix 𝐴/00/ by 

multiplying 𝐴/0, 𝐴00, and 𝐴0/. 

 

Figure 4: Extracting triangle-based graph. 

4.2 Exploiting various patterns 

We extend TP-HAN to exploit more complex graph patterns like kite and clique. We expect that 

exploiting various graph patterns improves the performance. We propose a heterogeneous graph attention network 

exploiting various graph patterns called VP-HAN. VP-HAN extracts pattern-based graph considering that two 

vertices on a pattern are connected and aggregates neighborhoods with attention.  
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Figure 5 shows an example of extracting pattern-based graph using a kite pattern. A kite, which con-

sists of two author 𝑎#, 𝑎', two paper 𝑝#, 𝑝2 and a conference c#, is extracted. Author 𝑎# and 𝑎' are con-

nected at extracted homogeneous graph for author vertices. 

 

Figure 5: An example of extracting pattern-based graph. 

Algorithm 1 shows the pseudo code of our VP-HAN. In line 1-4, VP-HAN extracts the pattern-based 

homogeneous graphs. In line 5-11, VP-HAN extracts the meta-path based homogeneous graphs. For each pattern 

𝑝", VP-HAN calculates the vertex-level attention between vertices 𝑣% and 𝑣,, and aggregate neighbors 𝑁6)
7*. VP-

HAN adopts multi-head attention mechanism [2], which consists of 𝐾 independent attentions. Line 22 represents 

concatenation of each vertex-level embedding for each attention head. In line 24, VP-HAN calculates the seman-

tic-level attention for each pattern 𝑝". VP-HAN generates the final embedding 𝑍 by aggregating the semantic 

embedding ℎ7* with the semantic-level attention 𝛽7*. 
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Algorithm 1. VP-HAN 

Input:  𝐺(𝑉, 𝐸); /* heterogeneous graph*/ 
X; /* feature */ 
Y; /* label */ 
𝛷 = {𝛷!, 𝛷#, 	 … , 	𝛷8}; /* meta-path set */ 
𝑃 = {𝑃!, 	𝑃#, 	 … , 	𝑃9}; /* pattern set */ 
K; /* the number of attention heads */ 

Output:  Z;      /* the final embedding */ 

1: For 𝑃% ∈ 𝑃 do 
2: 𝑆𝐺0) ← find all subgraphs which are monomorphic to 𝑃%; 
3: 𝐴0) ← adjacency matrix of homogeneous graph extracted from 𝑆𝐺0); 
4: end for 
5: For 𝛷% ∈ 𝛷 do 
6: 		𝐴.) ← 𝐼;  
7: 𝑅.) ← \𝑟,|𝛷% = 	𝑟! ∙ 	𝑟# ∙ … ∙ 	𝑟$ , 	1 ≤ 𝑗 ≤ 𝑙a	; 
8: For 𝑟, ∈ 𝑅.) do 
9: 𝐴.) ← 𝐴.% × 𝐴"+; 
10: end for 
11: end for 
12: 𝐴 ← 𝐴0 ∪ 𝐴.; 
13: For 𝐴% ∈ 𝐴 do 
14: For 𝑘 ← 1 to 𝐾 do 
15: For 𝑣, ∈ 𝑉 do 

16: Find the pattern-based neighbors 𝑁6+
/); 

17: For 𝑣: ∈ 𝑁6+
/) do 

18: Calculate the vertex-level attention 𝛼6+6,
/) ; 

19:       end for 

20:       Calculate the vertex-level embedding ℎ6)
/) ← 𝜎eΣ

6,∈<-+
%)𝛼6+6,

/) × 𝑋6+g ; 

21:     end for 

22:     Concatenate the vertex-level embedding 𝑧6+
/) ← ||=>!? ℎ6)

/); 

23:   end for 
24:   Calculate the semantic-level attention 𝛽/); 
25:   Fuse the semantic embedding 𝑍 ← Σ%>!8*9(𝛽/) × ℎ/)); 
26: end for 
27: Calculate Cross-Entropy 𝐿 = −Σ$∈@𝑌$ log(𝑍$); 
28: Calculate gradients 𝑔 ← Δ𝐿; 
29: Update parameters 𝑊; 
30: Return 𝑍; 
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V. Experiment 

 

5.1 Experimental setup  

5.1.1 Datasets 

To evaluate the effect of utilizing a triangle, we extract the subsets of DBLP [9,11], ACM [12], and 

IMDB [10]. The detailed statistics of the heterogeneous graphs is shown in Table 2. Figure 6 shows utilized 

triangles in DBLP and IMDB. 

Table 2: Statistics of datasets 

Dataset |𝑉| |𝐸| Feature Training Validation Test 

DBLP 
A 4,805 

20,049 
P-A 7,442 

33,382 6,823 800 400 3,605 P 15,226 P-P 10,714 
C 18 P-C 15,226 

ACM 
A 3,025 

9,102 
P-A 9,980 

18,202 1,902 600 300 2,125 P 6,021 P-P 5,197 
S 56 P-S 3,025 

IMDB 
M 11,237 

31,091 
M-M 2,458 

31,775 4,467 900 900 9,437 A 17,401 M-A 25,314 
D 2,453 M-D 4,003 

DBLP contains three types of vertices (papers(P), authors(A), and conferences(C)) and three types of 

edges (Paper-Author(P-A), Paper-Paper(P-P), and Paper-Conference(P-C)). Labels are the research area of au-

thors. Author features are represented of the bag-of-words of abstract about papers. Manual meta-paths are meta-

path A-P-A and A-P-C-P-A, which were also selected in [4]. In Figure 6(a), there is a triangle A-P-P-A in DBLP. 

ACM contains three types of vertices (papers(P), authors(A), and subjects(S)) and three types of 

edges (Paper-Author(P-A), Paper-Paper(P-P), Paper-Subject(P-S)). Labels are the research field of papers. Paper 
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features are represented of the bag-of-words of abstract. Manual meta-paths are meta-path P-A-P and P-S-P, se-

lected in [4]. In Figure 6(b), there are three types of triangles: P-P-P-P, P-A-P-P, and P-S-P-P. 

The Internet Movie Database(IMDB) contains three types of vertices (Movies (M), Actors(A), Di-

rectors(D)) and three types of edges (Movie-Movie(M-M), Movie-Actor(M-A), and Movie-Director(M-D)). La-

bels are the genre of movies. Movie features are represented of the bag-of-words of plots. Manual meta-paths are 

meta-paths M-A-M, M-D-M, and M-M-M. Meta-path M-A-M and M-D-M were selected in [4]. In Figure 6(c), 

there are three types of triangles: M-M-M-M, M-A-M-M, and M-D-M-M. 

 

Figure 6: The utilized triangles. (a) A triangle pattern in DBLP. (b) Three types of triangle patterns in ACM (i.e., 
Paper-Paper-Paper-Paper(P-P-P-P), Paper-Author-Paper-Paper(P-A-P-P), and Paper-Subject-Paper-Paper(P-S-P-
P)). (c) Three types of triangle patterns in IMDB (i.e., Movie-Actor-Movie-Movie(M-A-M-M), Movie-Director-
Movie-Movie(M-D-M-M), and Movie-Movie-Movie-Movie(M-M-M-M)). 

5.1.2 Experimental environment 

We conduct the experiment to compare TP-HAN and VP-HAN with HAN. For the experiment, we 

use a machine with a 40-core 2.2GHz Intel Xeon CPU, 512GB of main memory, and a Tesla V100 GPU. For both 
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HAN and VP-HAN, we set the learning rate to 0.005, the number of attention heads to 8, the dropout to 0.6, the 

regularization parameter to 0.001, and the dimension of the semantic-level attention vector to 128. The model is 

optimized by Adam [7] optimizer. 

5.2 Finding meta-paths and various patterns 

Figure 6 shows the utilized triangle types for each dataset. We extract the triangle-based homogene-

ous graphs using adjacency matrix multiplications. To exploit various patterns, we select some graph patterns and 

extract subgraphs matched to graph patterns using VF2 algorithm [12, 13] for graph isomorphism testing. Since 

the VF2 algorithm works on the homogeneous graph, VP-HAN finds all subgraphs mapped by graph pattern and 

additionally categorizes patterns for vertex types. Figure 7 shows an example of extracting kite patterns in IMDB. 

There are five kinds of kite patterns in IMDB. VP-HAN finds all subgraphs matched to the kite pattern and clas-

sifies which the subgraphs belong to kite_MMMM, kite_MAMM, kite_MDMM, kite_MMAM, or kite_MMDM. 

 

Figure 7: An example of extracting kite patterns. 

Figure 8 shows the utilized graph patterns in DBLP and IMDB. Figure 8(a) shows that there are a 

triangle A-P-P-A, two rectangles A-P-P-P-A and A-P-A-P-A, three kite patterns kite_APPA, kite_APPPA, and 
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kite_APCPA, and a clique in DBLP. Figure 8(b) shows three triangles M-M-M-M, M-A-M-M, and M-D-M-M, 

six rectangles M-M-M-M-M, M-A-M-M-M, M-D-M-M-M, M-A-M-A-M, M-D-M-D-M and M-A-M-D-M, five 

kite patterns kite_MMMM, kite_MAMM, kite_MDMM, kite MMAM, and kite_MMDM in IMDB. 

 

Figure 8: The utilized graph patterns in DBLP and IMDB. (a) Graph patterns in DBLP (i.e., a triangle A-P-P-A, 
two rectangles A-P-P-P-A and A-P-A-P-A, three kite patterns kite_APPA, kite_APPPA, and kite_APCPA). (b) 
Graph patterns in IMDB (i.e., three triangles M-M-M-M, M-A-M-M, and M-D-M-M, six rectangles M-M-M-M-
M, M-A-M-M-M, M-D-M-M-M, M-A-M-A-M, M-D-M-D-M and M-A-M-D-M, five kite patterns kite_MMMM, 
kite_MAMM, kite_MDMM, kite MMAM, and kite_MMDM). 

Table 3 presents the number of subgraphs matched to graph patterns. The most frequent subgraph is 

a meta-path A-P-C-P-A, a triangle P-S-P-P, and a rectangle M-A-M-A-M, respectively in DBLP, ACM and IMDB. 
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Table 3: The number of subgraphs matched to meta-paths and graph patterns 

Dataset Pattern type 
The number of sub-

graphs 

DBLP 

Meta-path 
A-P-A 11,176 

A-P-C-P-A 4,983,312 
Triangle A-P-P-A 3,351 

Rectangle 
A-P-P-P-A 3,919 
A-P-A-P-A 61,526 

Kite 
kite_APPA 161 

kite_APPPA 1,913 
kite_APCPA 1,250 

Clique clique 180 

ACM 

Meta-path 
P-A-P 40,792 
P-S-P 2,174,333 

Triangle 
P-A-P-P 93,540 
P-S-P-P 3,961,869 
P-P-P-P 22,028 

IMDB 

Meta-path 
M-A-M 95,628 
M-D-M 20,203 
M-M-M 18,552 

Triangle 
M-A-M-M 46,130 
M-D-M-M 9,105 
M-M-M-M 134,364 

Rectangle 

M-M-M-M-M 1,517,240 
M-A-M-M-M 289,569 
M-D-M-M-M 59,424 
M-A-M-A-M 5,420,686 
M-D-M-D-M 529,011 
M-A-M-D-M 377,380 

Kite 

kite_MMMM 307,093 
kite_MAMM 3,298 
kite_MDMM 3,590 
kite_MMAM 2,281 
kite_MMDM 938 

 

5.3 Vertex classification 

5.3.1 Performance of TP-HAN 

TP-HAN exploits both the meta-paths and triangle patterns. We measure the macro F1, the micro F1, 

precision, and recall for vertex classification to compare performance according to the presence of a triangle. 
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Table 4 presents the metrics for the vertex classification. In Table 4, TP-HAN using both meta-paths and triangles 

performs better than HAN using only manual meta-paths in ACM. TP-HAN shows similar or a little better per-

formance to HAN in DBLP and IMDB. 

Table 4: Results on the vertex classification task  

Dataset Method 
Metrics 

Micro F1 Macro F1 Precision Recall 

DBLP 
HAN 0.969 0.956 0.945 0.968 

TP-HAN 0.969 0.956 0.943 0.971 

ACM 
HAN 0.917 0.918 0.920 0.918 

TP-HAN 0.929 0.930 0.931 0.929 

IMDB 
HAN 0.560 0.502 0.504 0.608 

TP-HAN 0.560 0.503 0.504 0.607 

We compare the performance of TP-HAN by varying the number and type of utilized triangle patterns 

with the meta-paths as a default. Table 5 presents the micro F1, the macro F1, precision, and recall for the vertex 

classification depending on the number and type of utilized triangle patterns. TP-HAN performs better for all of 

the metrics than HAN in ACM. TP-HAN utilizing two triangles M-D-M-M and M-M-M-M achieves the best 

performance for the micro F1 compared to others in IMDB. TP-HAN exploiting a triangle M-D-M-M obtains 

better performance for both the macro F1 and precision than others. Regardless of the number and type of utilized 

triangle patterns, TP-HAN consistently shows better performance than HAN. These results represent that TP-

HAN improves the performance compared with HAN by exploiting triangle patterns. 
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Table 5: Results varying the number of triangle patterns for the classification task 

5.3.2 Performance of VP-HAN 

We evaluate the performance of VP-HAN while varying the combinations of various graph patterns. 

There are 127 combinations and 16,383 combinations respectively in DBLP and IMDB. Table 6 shows the per-

formance of exploiting some combinations of graph patterns. VP-HAN consistently performs better for all of the 

metrics than HAN in both DBLP and IMDB. VP-HAN obtains the best performance exploiting a triangle A-P-P-

A, a rectangle A-P-A-P-A, two kites kite_APPA and kite_APCPA, and a clique in DBLP. Also, VP-HAN per-

forms better for the micro F1, the macro F1, and precision than others by exploiting two rectangles M-A-M-A-M 

and M-A-M-D-M, and three kites kite_MMMM, kite_MDMM, and kite_MMAM. As a result, We confirm that 

VP-HAN improves the performance of what combination of graph patterns is used rather than exploiting many 

Dataset Method Utilized patterns 
Metrics 

Micro F1 Macro F1 Precision Recall 

ACM 

HAN meta-path P-A-P, P-S-P 0.917 0.918 0.920 0.918 

TP-HAN 

A triangle 
P-A-P-P 0.929  0.930  0.930  0.929 
P-S-P-P 0.921 0.921  0.922  0.921 
P-P-P-P 0.928  0.929  0.929  0.929 

Two triangle 
P-A-P-P, P-S-P-P 0.925  0.926  0.927  0.926 
P-A-P-P, P-P-P-P 0.930  0.931  0.931  0.930 
P-S-P-P, P-P-P-P 0.928  0.928  0.929  0.928 

All of triangle 
P-A-P-P, P-S-P-P,  

P-P-P-P 0.929 0.930 0.931 0.929 

IMDB 

HAN meta-path M-A-M, M-D-M, 
M-M-M 

0.560 0.502 0.504 0.608 

TP-HAN 

A triangle 
M-A-M-M 0.565 0.504 0.505 0.606 
M-D-M-M 0.567 0.505 0.507 0.607 
M-M-M-M 0.563 0.503 0.506 0.608 

Two triangle 
M-A-M-M, M-D-M-M 0.564 0.504 0.505 0.607 
M-A-M-M, M-M-M-M 0.559 0.500 0.504 0.605 
M-D-M-M, M-M-M-M 0.576 0.504 0.506 0.595 

All of triangle M-A-M-M, M-D-M-M,  
M-M-M-M 

0.560 0.503 0.504 0.607 



 - 22 - 

graph patterns. Also, we verify that VP-HAN shows that exploiting various graph patterns improves the perfor-

mance compared with using manually selected meta-paths. 
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Table 6: Exploiting some combinations of graph patterns for the classification task 

Dataset Method Utilized patterns 
Metrics 

Micro F1 Macro F1 Precision Recall 

DBLP 

HAN meta-path A-P-A, A-P-C-P-A 0.969 0.956 0.945 0.968 

VP-HAN 
(Base   

+  
Patterns) 

A triangle 
+ a kite 

A-P-P-A, kite_APPPA 0.972 0.962 0.953 0.972 

A triangle 
+ a kite A-P-P-A, kite_APPA 0.974 0.965 0.955 0.976 

A rectangle 
+ two kite 

A-P-P-P-A, kite_APPA, 
kite_APPPA 

0.974 0.964 0.953 0.975 

A triangle 
+ a rectangle 

+ a kite 
+ a clique 

A-P-P-A, A-P-P-P-A, 
kite_APCPA, clique 

0.970 0.958 0.947 0.971 

A triangle 
+ a rectangle 

+ two kite 
+ a clique 

A-P-P-A, A-P-A-P-A 
kite_APPA, kite_APCPA, 

clique 
0.975 0.966 0.957 0.976 

Two rectangle 
+ three kite 
+ a clique 

A-P-P-P-A, A-P-A-P-A 
kite_APPA, kite_APCPA,  

kite_APPPA, clique 
0.974 0.965 0.956 0.975 

IMDB 

HAN meta-path M-A-M, M-D-M, M-M-M 0.560 0.502 0.504 0.608 

VP-HAN 
(Base   

+  
Patterns) 

A triangle 
+ a rectangle 

+ a kite 

M-D-M-M,  
M-A-M-D-M, kite_MAMM 0.566 0.506 0.507 0.609 

Two triangle 
+ two rectangle 

+ a kite 

M-A-M-M, M-D-M-M,  
M-A-M-A-M, 

M-A-M-D-M, kite_MMDM 
0.570 0.509 0.508 0.610 

A triangle 
+ three rectangle 

+ a kite 

M-A-M-M, 
M-A-M-A-M, 
M-D-M-D-M, 

M-A-M-D-M, kite_MMAM 

0.572 0.510 0.508 0.609 

four rectangle 
+ two kite 

M-A-M-M-M, 
M-A-M-A-M, 
M-D-M-D-M, 

M-A-M-D-M, kite_MMMM, 
kite_MAMM 

0.570 0.507 0.507 0.606 

two rectangle 
+ three kite 

M-A-M-A-M,  
M-A-M-D-M, kite_MMMM, 
kite_MDMM, kite_MMAM 

0.578 0.514 0.509 0.608 

Two triangle 
+ three rectangle 

+ three kite 

M-A-M-M, M-D-M-M,  
M-A-M-M-M,  
M-A-M-A-M,  

M-A-M-D-M, kite_MMMM, 
kite_MMAM, kite_MMDM 

0.565 0.504 0.505 0.606 
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5.4 Clustering 

We conduct the clustering task to evaluate the embeddings. We utilize K-means clustering algorithm 

and the number of clusters K is set to the number of classes. We measure normalized mutual information(NMI) 

and adjusted rand index(ARI) for clustering task. 

5.4.1 Performance of TP-HAN 

We measure NMI and ARI for clustering task to compare TP-HAN with HAN. Table 7 shows the 

performance of TP-HAN by varying the number and type of utilized triangle patterns. TP-HAN consistently 

achieves better performance than HAN. Also, TP-HAN exploiting a triangle P-A-P-P shows the best performance 

for both NMI and ARI.  

Table 7: Results varying the number of triangle patterns for the clustering task 

Dataset Method Utilized triangle patterns 
Metrics 

NMI ARI 

ACM 

HAN Meta-path P-A-P, P-S-P 0.716 0.759 

TP-HAN 

A triangle 
P-A-P-P 0.745 0.791 
P-S-P-P 0.719 0.764 
P-P-P-P 0.735 0.781 

Two triangles 
P-A-P-P, P-S-P-P 0.732 0.781 
P-A-P-P, P-P-P-P 0.742 0.790 
P-S-P-P, P-P-P-P 0.732 0.784 

All of triangles P-A-P-P, P-S-P-P, 
P-P-P-P 

0.738 0.784 

5.4.2 Performance of VP-HAN 

We compare VP-HAN with HAN while varying the combinations of various graph patterns for the 

clustering task. Table 8 represents the performances of VP-HAN exploiting some combinations of graph patterns 
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for the clustering task. VP-HAN utilizing a triangles A-P-P-A, a rectangle A-P-A-P-A, two kites kite_APPA, 

kite_APCPA, and a clique obtains the best performance for clustering task. Like the experimental results on the 

classification task, these results show that exploiting the specific combination of graph patterns achieves better 

performance than utilizing many patterns. 

Table 8: Results varying the combinations of graph patterns for the clustering task 

Dataset Method Utilized triangle patterns 
Metrics 

NMI ARI 

DBLP 

HAN Meta-path A-P-A, A-P-C-P-A 0.868 0.927 

VP-HAN 
(Base   

+  
Patterns) 

a clique clique 0.875 0.930 

A triangle 
+ a kite 

A-P-P-A, kite_APPA 0.887 0.938 

A-P-P-A, kite_APCPA 0.879 0.933 

A triangle 
+ a kite 

+ a clique 

A-P-P-A, kite_APCPA, 
clique 0.883 0.934 

A rectangle 
+ a kite 

+ a clique 

A-P-P-P-A, kite_APCPA, 
clique 

0.877 0.932 

A rectangle 
+ two kites 

A-P-P-P-A, kite_APPA, 
kite_APPPA 0.884 0.936 

Two rectangles 
+ a kite 

A-P-P-P-A, A-P-A-P-A, 
kite_APPA 0.884 0.934 

Two rectangles 
+ two kites 

A-P-P-P-A, A-P-A-P-A, 
kite_APCPA, 
kite_APPPA 

0.871 0.927 

A triangle 
+ two rectangles 

+ two kites 

A-P-P-A, A-P-P-P-A, 
A-P-A-P-A, kite_APPA, 

kite_APCPA 
0.885 0.937 

A triangle 
+ a rectangle 
+ two kites 
+ a clique 

A-P-P-A, A-P-A-P-A, 
kite_APPA, kite_APCPA, 

clique 
0.890 0.939 

A rectangle 
+ three kites 
+ a clique 

A-P-P-P-A, kite_APPA, 
kite_APPPA, 

kite_APCPA, clique 
0.884 0.936 

A triangle 
+ two rectangles 

+ two kites 
+ a clique 

A-P-P-A, A-P-P-P-A, 
 A-P-A-P-A,  
kite_APPPA, 

kite_APCPA, clique 

0.876 0.931 



 - 26 - 

5.5 Visualization 

For more intuitive comparison, we utilize t-stochastic neighbor embedding [14] to visualize the au-

thor embeddings projected into 2-dimensional space. We visualize the embeddings generated by HAN and TP-

HAN exploiting a triangle PAPP which obtains the best performance for clustering task. Figure 9 shows the vis-

ualization on HAN and TP-HAN. The boundary is blurry in Figure 9(a). We can see that the visualization of TP-

HAN in Figure 9(b) is better than HAN’s. 

 

Figure 9: Visualization on ACM. (a) The visualization of HAN. (b) The visualization of TP-HAN. 

We visualize the embeddings generated by HAN and VP-HAN exploiting a triangles A-P-P-A, a 

rectangle A-P-A-P-A, two kites kite_APPA, kite_APCPA, and a clique which achieves the best performance for 

clustering task. Figure 10 presents the visualizations of embeddings in DBLP. From Figure 10, We can find that 

the authors belong to the same research area are close together in the visualization of VP-HAN. Also, in Figure 

10(b), each cluster is clearly distinct. 
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Figure 10: Visualization on DBLP. (a) The visualization of HAN. (b) The visualization of VP-HAN. 

  



 - 28 - 

 

VI. Discussion and Future work 

 

In this paper, we have proposed a heterogeneous graph attention network exploiting triangle patterns 

and various graph patterns called TP-HAN and VP-HAN, respectively. Both TP-HAN and VP-HAN achieve the 

improvement of performance compared with HAN. We confirm that exploiting various graph patterns is better 

than using only meta-paths. Through the experimental results for classification and clustering task, We demon-

strate that exploiting the combination of graph patterns performs better than exploiting a number of graph patterns. 

It means that finding useful combinations of graph patterns is more important than exploiting many of graph 

patterns. 

We expect that finding useful combinations of graph patterns leads to improve the performance of 

GCN. Therefore, the development of GCN exploiting graph patterns is expected to have the potential addressed 

as future work. Future work remains to automatically find useful combinations of graph patterns. This direction 

is expected to overcome the problems such as heavy computation, and the requirement of manual meta-paths.   
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요 약 문 

이종 그래프 분석을 위한 이종 그래프 어텐션 네트워크 기반의 

다양한 그래프 패턴 활용 기법 

 

ㄴㄴㄴㄴㄴㄴㄴㄴㄴㄴㄴ 

 

현실에 존재하는 소셜 네트워크, 인용 네트워크, 단백질 상호작용 네트워크 등과 

같은 그래프 타입의 데이터는 다양한 타입의 정점과 간선을 가진다. 그래프 데이터를 분석하기 

위한 딥 러닝 기반의 기술로 그래프 컨볼루션 네트워크가 제안되었고 어텐션 메커니즘, 오토 

인코더, 회귀 신경망 등의 적용을 통해 발전해왔다. 하지만, 기존에 연구된 그래프 컨볼루션 

네트워크는 단일 타입의 정점과 간선을 가진 동종 그래프를 대상으로 개발되었으므로 다양한 

타입의 정점과 간선을 가지는 이종 그래프를 분석하기에는 적합하지 않다. 이러한 이종 

그래프를 분석하기 위해 메타 경로를 이용하는 그래프 컨볼루션 네트워크가 연구되었다. 우리는 

메타 경로가 일종의 그래프 패턴이라 보았고, 메타 경로를 이용한 방법을 그래프 패턴을 

활용하도록 확장시키고자 하였다. 따라서, 우리는 그래프 패턴 중에서 가장 기본적이고 

중요하게 여겨지는 삼각형 패턴을 활용하는 TP-HAN 과 삼각형 패턴을 활용하는 것에서 한단계 

더 나아가 다양한 패턴을 활용하는 VP-HAN 을 제안한다. 실험 결과, 우리가 제안한 TP-HAN 은 

기존의 HAN 과 비슷하거나 조금 더 나은 성능을 보였고, VP-HAN 은 기존의 HAN 보다 더 나은 

성능을 보여 준다. 

 

 

핵심어: 그래프 컨볼루션 네트워크, 그래프 패턴, 이종 그래프 
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