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Abstract

The goal of this paper is to provide worst-case timing guarantees for real-time I/O requests,
while fully utilizing the potential bandwidth for non real-time I/O requests in NAND flash
storage systems. We identify a trade-off between flash chip sharing and I/O workload isolation
in terms of timing guarantees and bandwidth. By taking such a trade-off into account, we
propose a new real-time I/O scheduling framework that enables dynamic isolation between
real-time I/O requests to meet all timing constraints and co-scheduling of real-time and non
real-time I/O requests to provide high bandwidth utilization. Our in-depth evaluation results
show that the proposed approach outperforms existing isolation approaches significantly in

terms of both schedulability and bandwidth.

Keywords: Real-time Systems, NAND Flash Storage
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I. Introduction

Thanks to a small form factor, high shock resistance, low power consumption, and fast
access time, NAND flash-based solid-state drives (SSDs) have been widely used as storage
devices in safety-critical real-time embedded systems. In typical real-time embedded systems,
real-time I/O workloads that require to meet their timing constraints are colocated with non
real-time I/O workloads on the shared NAND flash storage. The main design goal for real-
time NAND flash storage systems is to provide worst-case timing guarantees for real-time I/O
requests, while fully utilizing the potential bandwidth for non real-time I/O requests.

However, flash-based SSDs often exhibit highly unpredictable worst-case 1/O latency.
Data written in a flash page (which is a basic unit of reading and writing data) cannot be
updated unless the page is erased. The erase operation can only be performed in the unit of a
block composed of many pages. Before updating data of a specific page in a block, other pages
containing valid data should be moved elsewhere; otherwise, their data are permanently erased.
Since the erase operation involves many page reads and writes, flash-based SSDs redirect write
requests to free pages and run a garbage collection (GC) task which reclaims obsolete flash
pages. While it improves overall I/O throughput, the GC task often blocks user I/O requests,
causing unpredictable I/O latency, which are not acceptable to real-time applications.

To make the worst-case 1/0 latency predictable, a vast amount of work has been done by
the real-time community. The most recognized effort is to develop real-time GC mechanisms
to reduce and/or to bound the blocking time by the GC operation [1} 2, 3]]. They estimated the
worst-case GC cost and then schedule GC operations preemptively with real-time I/0s. Owing

to frequent GC interference by other tasks, however, the worst-case latency bound is set too
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conservatively, which result in underutilization of SSD throughput. To overcome this problem,
one suggested an idea of partitioning a set of NAND flash chips into separate read and write
sets [4]. By isolating read and write requests within separate chips, it guarantees that read
requests are never blocked by write requests or GC operations. But, this benefit comes at the
cost of degraded write throughput. Some proposed resource isolation techniques [3} 16, 7, 8, 9]
that assign a given task set to dedicated NAND chips depending their I/O requirements. Since
all the tasks are completely isolated, GC interference among tasks are minimized. However,
those techniques are designed for non real-time tasks and thus cannot be applied to real-time
tasks.

In this paper, we propose a new real-time I/O scheduling framework that enables dy-
namic resource isolation between real-time I/O requests to meet all timing constraints and co-
scheduling of real-time and non real-time I/O requests to provide high bandwidth utilization.
First, we compare, via a case study, two typical flash chip isolation approaches — shared and
fully-isolated — and demonstrate the effect of different levels of isolation on the worst-case
latency. Under the shared approach where all I/O requests are allowed to read/write data across
all flash chips, each write request can fully utilize all flash chips, triggering less frequent GC
invocations. This benefit, however, comes at the large amount of interference imposed by other
I/O requests. On the other hand, under the fully-isolated approach where each I/0O request is
statically assigned to a single chip and is allowed to read/write data on that chip only, it receives
less interference than the case of no isolation. However, it comes at the cost of frequent GC
invocations without utilizing free pages in other chips.

Motivated by this, we consider another resource isolation approach, called cluster-based
isolation, that is a generalization of shared and fully-isolated approaches. In this approach

each I/O request is statically assigned to a cluster that is a subset of flash chips and is allowed
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to read/write data within the cluster. To support such a cluster-based isolation approach, we
develop dynamic chip clustering and request-to-cluster allocation algorithms that determine a
cluster configuration and a mapping from I/O requests to clusters to satisfy all timing con-
straints in the worst case. Building upon the request-to-cluster allocation, we also propose a
co-scheduling algorithm to schedule non real-time 1/O requests to be executed with real-time
I/O requests in the clusters to achieve high bandwidth without violating any timing constraints.

Our in-depth evaluation results show that the proposed cluster-based isolation approach
outperforms the existing isolation approaches significantly in terms of the schedulability for
real-time I/O requests and the bandwidth for non real-time I/O requests. Our approach is shown
to make 43% and 278% more real-time task sets schedulable and also improve the average
bandwidth of non real-time 1/O requests by up to 96%, respectively, over the fully-isolated and
shared approaches.

This paper makes the following main contributions:

An insightful case study that reveals the effect of different levels of flash chip isolation

on the worst-case latency of real-time I/O requests (Section [[1I));

* Development of task-to-cluster allocation with dynamic chip clustering that significantly
improves the schedulability of real-time I/O requests by considering a trade-off between

sharing chips and isolating chips (Section 4.3);

* Development of a scheduling framework for a mixed-set of real-time and non real-time
I/O requests that enables high bandwidth of non real-time I/Os while guaranteeing the

timing constraints of real-time I/Os (Section 4.4); and

* Demonstration of the effectiveness of the proposed approach in terms of the schedulabil-

ity for real-time I/Os and the bandwidth for non real-time I/Os (Section [V)).

—3_



II. Background

A NAND flash chip consists of multiple blocks, each of which is composed of several
pages. A page is a unit of read/write operations, while a block is a unit of erase operations. To
provide high throughput, an SSD controller aggregates multiple NAND chips using a channel-
way architecture. Each channel has separate data and control buses. This enables the controller
to achieve high 1/0 throughput by accessing NAND chips on different channels simultaneously
through channel parallelism. NAND chips on the same channel share the data bus, but are
controlled independently by the controller via separate control buses. By utilizing way inter-
leaving, the controller can further improve aggregate 1/0 throughput.

A flash translation layer (FTL) is the firmware running in the controller; it not only pro-
vides the typical block I/O interface, but manages multiple NAND chips with unusual physical
properties. To hide an out-of-place update nature of flash, the FTL writes incoming data to free
pages in a manner that maximizes full throughput of multiple chips. When free space is ex-
hausted, the FTL triggers GC to reclaim free space, which involves a series of page reads, page
writes, and block erasures. The FTL usually performs GC operations over multiple channels
and ways in parallel to minimize GC time.

Existing FTL designs, however, fail to offer consistent I/O response times, causing unpre-
dictable I/O latency. When real-time I/O requests come while the controller is busy executing
GC, they are inevitably delayed until all the GC operations are completed. To address this,
some suggested real-time GC scheduling [1} 2, [3]. It models the GC task as part of real-time
tasks by estimating its worst-case cost and partially performs GC 1/Os so that they can be pre-

empted by high priority I/Os. It provides a guideline for real-time tasks to meet worst-case
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timing requirements under GC activities. However, these studies estimate GC cost conserva-
tively and do not consider the channel-way architecture. This results in low utilization of SSD
throughput.

Another proposed a partitioned scheduling algorithm that exploits the channel-way archi-
tecture for GC isolation [4]. It splits NAND chips into read and write sets and then enforces
all the writes to be sent to the write set. This leads GC I/Os to only happen in the write set,
preventing read requests from being blocked by GC. This approach makes it possible to pro-
vide excellent read throughput, but overall write performance degrades since only a few NAND
chips out of many are designated to serve write requests.

Some go one step further by proposing resource isolation techniques [5, 16, 7, 18, 9]. While
detailed designs differ from each other, they attempt to assign a given set of tasks into dedicated
flash resources (i.e., channels, ways, and chips). Since each task is completely isolated in
physically separated flash resources, it not only minimizes I/O interference among tasks but
provides better I/O performance to given tasks. However, all those techniques are designed
for non real-time tasks and thus are not able to satisfy the worst-case timing guarantees for
real-time I/O requests. They also do not consider the optimal task assignment that satisfies the

worst-case latency of 1/0 tasks while maximing the utilization of SSD throughput.



III. Motivation and Problem Statement

We first present a case study to demonstrate the effect of flash chip isolation on the
worst-case I/0 latency and describe our goal for the proposed task-to-cluster allocation scheme

thereof.

3.1 Motivation

We illustrate a measurement-based case study to motivate our approach. We use an em-
ulated SSD drive [10] with the configuration shown in Table There are three real-time
I/O tasks that perform periodic I/O requests on an SSD with three chipﬂ one task writes 24
pages every 30ms and reads 40 pages every 36ms; the other two write 12 pages every 130ms
and read 80 pages every 25ms. To consider the worst-case GC cost, all the tasks issue random
writes to the SSD. Three tasks are scheduled under non-preemptive earliest deadline first (EDF)
scheduling. We measure the worst-case I/O latency for each task under different resource iso-
lation approaches, as presented in Fig. The worst-case I/O latency is decided by three
major factors: (i) the time taken to read/write pages for a task, (ii) the time taken to perform
GC for a task, and (ii7) interference 1/Os (i.e., page reads/writes and GC I/Os) from other tasks.

Via this case study, we examine the effect of different levels of flash chip isolation on
the worst-case latency of an real-time I/O request. We first compare two simple approaches
for chip isolation over m chips: shared (i.e. no isolation) and fully-isolated resources. Under
the shared approach, all I/O requests are allowed to read/write data across m chips as existing

SSDs do. Under the full-isolation approach, each I/O request is statically assigned to a single

'As a motivational case study, we consider a simple task set with a small number of chips. Our in-depth

evaluation results with various task sets will be presented in Section m
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table III.1: SSD configuration

Parameter Value Parameter Value
Page size 8KB Read latency (%,) 50 us

# of pages/block | 256 Write latency (¢,,) 500 us
# of blocks/chip 64 Erase latency (%.) 5 ms
Date transfer time (¢4) | 40 us
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Figure III.1: Motivational case study: the worst-case write latency for each task and its

breakdown under different isolation approaches
chip and is allowed to read/write data on that chip only.

Figs. and [[II.Tk show the worst-case latency of an real-time I/O request under the
shared and fully-isolated approaches, respectively. Under the shared approach, GC is triggered
less frequently than the fully-isolated approach because free space available in all the chips
can be utilized by all the tasks. However, each task suffers from high GC interference by other
tasks, which results in the violation of its timing constraints. Under the fully-isolated approach,
there is no GC interference of other I/O requests. However, it suffers from high GC overheads
to reclaim free pages since free pages in other chips cannot be utilized. This results in violating
its timing constraints.

To overcome disadvantages of both approaches, we consider another approach, called



cluster-based isolation, using a notion of (chip) cluster. A cluster is a set of m’ chips, where
1 < m/ < m. Under the cluster-based approach, I/O requests are statically assigned to a cluster
and are allowed to share m’ chips within the cluster. Fig. shows the worst-case latency
of an real-time I/O request under the cluster-based approach. By trading-off between resource
contention by sharing chips and garbage collection overhead by isolating chips, we can achieve
a lower worst-case latency than both the shared and fully-isolated approaches, satisfying the
timing constraint.

Moreover, in addition to real-time 1/O requests, there might be non real-time 1/O requests
to be serviced together in a flash storage system. Then, the execution of non real-time I/O
requests must not violate timing guarantees of real-time I/0O requests, while non real-time I/O

requests are intended to obtain high bandwidth.

3.2 Problem statement

Motivated by our case study, we focus on cluster-based isolation and aim to solve the
following task-to-cluster allocation problem for real-time NAND flash storage systems. Let
7 = {m, 7o, ..., T } be the set of m flash chips, let 7 = {71, 75, ..., 7,, } be the set of n real-time
(RT) periodic 1/O tasks, and let J = {Ji, J5, ...} be the collection finite or infinite non-RT

aperiodic I/O jobs.

Definition 1 Given a RT task set T and a collection of non-RT jobs J running on a NAND flash
storage system T, determine (i) cluster configuration ®, (ii) task-to-cluster assignment A such

that
G1. the average bandwidth of non-RT I/0 jobs is maximized; and

G2. all the read and write I/O requests of a RT task 7; € T meet their deadlines for all

legitimate I/O request sequences.



For a cluster configuration, each cluster ¢y, is a disjoint partition of w. Hence, m = U¢y,
and if i # j, ¢; N ¢; = (). There can be multiple possible ways to form a set of clusters for m
flash chips, where each of such ways is defined as a cluster configuration P.

For a task-to-cluster allocation, we need to find i) a mapping from the RT tasks of 7 to the
clusters in ¢ and ii) a run-time schedule of non-RT jobs to be executed with RT tasks to achieve
Gl and G2.

Note that the cluster-based isolation approach can be viewed as a generalization of shared
and fully-isolated approaches; it is equivalent to the shared approach at one extreme end where
we assign I/O requests to a single cluster of size m, and the fully-isolated approach at the other

extreme end where we assign I/O requests to m clusters each of size one.



IV. Cluster-based Resource Isolation

In this section, we first describe our target task model and derive a schedulability analysis
to verify whether all RT I/O tasks satisfy their timing constraints under a given task-to-cluster
allocation. We then present our approach to determine a task-to-cluster allocation together with
a cluster configuration for RT I/O tasks and generate a schedule for non-RT jobs to achieve G1

and G2.

4.1 Task model
4.1.1 Real-time I/0 task

Real-time I/O requests are presented by the periodic task model which is widely used
in various real-time storage systems [1, 4]. Each RT I/O task 7, € 7 can be specified as
7, = [(ri, TT), (w;, T{)], where it performs r; page reads every T, time-units and w; page writes
every 1} time—units[] Such a task 7; is assumed to generate a potentially infinite sequence of
read and write requests every 77" and 7} time-units, respectively, with each read (write) request
needing to complete r; page reads (w; page writes) within a relative deadline of 7} (77}) time-
units.

Read/write request. For a read/write request, the worst-case scenario is when every page
read/write operation is sequentially serviced on a flash chip. The worst-case execution times

(WCETs) of read and write requests for 7; (denoted as C and C}*, respectively) are

I'The task model does not account for the CPU computation time. These tasks exist on the FTL and utilize the
NAND bus. A task is assumed to be scheduled on the CPU in a way that is able to guarantee the above read and

write request rates on the SSD as in [4].
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Cr=ri-t,, (IV.1)
C¥ = w; - ty, (IV.2)

7

where ¢, and ¢, are the time to read and write a page on a chip, respectively.

Garbage collection request. We consider cluster-level parallel garbage collection (GC),
in which when a flash chip in a cluster ¢, runs out of free pages, GC is triggered on all chips in
¢y, in parallel to reclaim free pages. Every RT I/O task with w; > 0 will have its corresponding
GC task to ensure that enough free pages are reclaimed for 7; to write w; pages every 1" time-
units. When the GC operation starts for each flash chip in a cluster ¢, a victim block with
the minimum number of valid pages is chosen, valid pages are copied from the victim block
to a free block, and the victim block is erased. Then, the worst-case scenario occurs when all
valid pages are evenly distributed to all flash memory blocks in a cluster ¢;. For each chip with
over-provisioning, the number of valid pages needed to be copied is upper-bounded by [ - P,
where A is a ratio of logical address space to physical address space and P is the number of
pages in a block. Then, the number of reclaimed pages in a chip after the GC operation is
lower-bounded by « = P — [\ - P], yielding « - || reclaimed pages in a cluster ¢ in total.
The period of a GC task depends on how fast its corresponding 7; consumes reclaimed pages.
For a task 7; allocated to ¢y, if w; = a - |¢g|, then GC needs to reclaim a block every write
period 77, so the period for the GC task is the same as the write period. If w; is more than
« - |¢x|, then the GC task needs to guarantee that at least two blocks are reclaimed every 77",
yielding a shorter GC period than 7. If w; is less than half of « - |¢|, then the GC task only
needs to reclaim a block every 2 - 7. Based on this, a GC task with the worst-case execution

time CY and period T corresponding to task 7; in ¢y, is presented as

Cf =X P+ (tr + tw) + te, (Iv.3)
T[] ifw > a-[gl,
T (¢1) = o (IV.4)
T |5, otherwise,

where ¢, is the time to erase a block.

As shown in the case study in Section [[Il] the period of a GC task depends on not only the
number of write pages of 7; but also the number of chips in a cluster ¢y; the less the number of
write pages with more chips in a cluster, the longer the period of a GC task.

Data transfer delay. Data transfer delay may occur because chips on the same channel
share the data bus. The worst-case data transfer delays via channel for read and write requests

for 7; allocated to ¢y, (denoted as D! (¢y) and D} (¢y), respectively) are presented as

%y 1), Iv.5)

64l

me

Di(¢r) =1+ (ta- (me— ([

D (¢r) = wi - (ta - (me — ([=1+1))), (IV.6)
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where ¢, is the time to transfer a page from a page register to a controller DRAM and m, is the
number of chips on a channel.
Let U;(¢y) be the utilization of 7; when allocated to ¢, and it is

Cl + D} (¢x) n C + Dy (¢x) cy
17 v 7 (on)

(2 (2

Ui(or) = (IV.7)

4.1.2 Non real-time I/O job

Each non-RT I/O job J; € J is modeled as the aperiodic job model [L1], and it can be
specified as J; = (7, w,), where it performs r; page reads and w; page writes with no deadline.
The arrival time of each non-RT job is unknown.

The WCETs (Cf and C¥’) and the worst-case data transfer delays (D} (¢x) and DY (¢y))
for read and write requests of J; are presented as the same as those of the RT I/O task. The GC
operation for non-RT I/O jobs will be discussed in Section [4.4]

4.2 Schedulability analysis

We now provide a schedulability test to verify whether all real-time tasks satisfy their tim-
ing constraints under a task-to-cluster allocation A. For now, we do not consider the schedule
of non-RT jobs, which will be discussed later in Section 4.4 We consider non-preemptive EDF
scheduling with stack resource policy (SRP) [12]. In EDF scheduling, each I/O request of a
RT task and its corresponding GC task are assigned their priorities according to their absolute
deadlines: the earlier the deadline of a request, the higher its priority. For accessing shared
resources, SRP guarantees that each request will not be blocked for the duration of more than
one critical section of a lower priority request. Since all flash operations are non-preemptive,
and erase operation is the most time-consuming one, the schedulability of RT I/O tasks with a

task-to-cluster assignment A can be verified by the following theorem.

Theorem 1 For a given RT task set T, cluster configuration @, and task-to-cluster assignment
A, the RT task set T is schedulable under EDF scheduling with SRP on a NAND flash storage
system T, if for each cluster ¢), € P, the following inequality holds:

te
min(T)

> Uiler) <1, (IV.8)

V’ﬁ' 6A¢k

where min(T') = minyea,, (17,1}, T7) and Ay, is the set of tasks allocated to cluster ¢y..

Proof: By [l13]], all real-time tasks scheduled by EDF are schedulable if their total utiliza-

le

tion is less than or equal to 1. i ()

is the ratio of utilization sacrificed due to the blocking
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of non-preemptive operations. In the worst-case scenario, a real-time task might be blocked by
erase operation. The maximum blocking factor is contributed by the task which has the shortest
period. Eq. (IV.8) is derived in a similar way as that for Theorem 2 in [12].

4.3 Task-to-cluster allocation for RT I/0 tasks

We now discuss how to determine a cluster configuration and task-to-cluster allocation for
RT I/O tasks focusing on G2. The task-to-cluster allocation problem is NP-hard, since find-
ing a feasible mapping from the RT /O tasks to the clusters is equivalent to the bin-packing
problem which is known to be NP-hard in the strong sense [14]]. Thus, we need to look for
heuristics. Focusing on feasibility, a typical task-to-cluster allocation is to apply variants of
well-known bin-packing algorithms, including Best-Fit Decreasing (BFD) and Worst-Fit De-
creasing (WFD) [15]]. These algorithms process tasks one-by-one in the order of non-increasing
utilization, assigning each task to a cluster according to the heuristic function that determines
how to break ties if there are multiple clusters that can accommodate the new task. Whether
a cluster can accommodate each task or not is determined by the schedulability test in Theo-
rem|[l] In addition, feasibility also depends on a cluster configuration (i.e., the total number of
clusters and the number of chips in each cluster).

Considering this, we propose a new task-to-cluster allocation algorithm together with a
cluster configuration, called Clustering-BFD, as presented in Algorithm |1} At first, we set an
initial cluster configuration as assigning one chip per each cluster (lines 2-3). RT tasks are
sorted in non-increasing order of their utilizations (Line5). Clustering-BFD then seeks to allocate
each RT task 7; to a cluster in every iteration step (Lines 6—19). In the ¢-th iteration step with
the current cluster configuration, the algorithm finds a subset of feasible clusters on which the
allocation of 7; can preserve feasibility by the schedulability test in Theorem [I] (Line 7). Let
Uy, (A.) be the total utilization of tasks allocated to ¢., and it is calculated as
te

U, (Ar,) = min(T)

£ Y Ui, 1v9)
V€A,

If there is any feasible cluster, then Clustering-BFD assigns 7; to the cluster with the highest total
utilization similar to BFD (Lines 17-18). If there is no feasible cluster, then Clustering-BFD
considers a new cluster configuration by merging two clusters into one (Lines 12—-14). Among
all possible combinations of merging two clusters, the algorithm selects the one with the lowest
total utilization to accommodate as many tasks as possible. Clustering-BFD then tries to allocate
7; with the new cluster configuration (Line 15).

Note that Clustering-BFD considers the feasibility of RT tasks and the schedule of non-RT

jobs together in task-to-cluster assignment. Focusing on the feasibility of RT tasks, Clustering-
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Algorithm 1: Clustering-BFD (7, 7)
I: &<«

2: for . € {my,..., Ty} do
30 e T, = PU e, Ay, 0

: end for

: 7/« Sort(7 by non-increasing U;(¢.))

4
5

6: for ; € 7' do
7. @ + {¢. €  : feasible-assignment(A,, U ;) by Eq. (IV.8)}
8

9

if ' = () then
if |®| = 1 then

10: return Failed to assign
11: end if
12: Q* < {¢py < merge(dc1,0c2) : e1, 2 € P}
13: ¢y <+ argming, cop+ Ug, (Ag,)
4 @ (@) {fer b)) U,
15: go back to line 6 and repeat for 7;
16:  endif

17: ¢y « argmaxy cor U, (Ap, U T;)
18: Ay, Ay, Uy

19: end for

20: return A, @

BFD tries to pack as many tasks as possible on one cluster while keeping the other clusters
empty to accommodate other unassigned tasks, similarly with BFD. In general, BFD have
shown better feasibility than other bin-packing algorithms, such as WFD [16]. Focusing on
the schedule of non-RT jobs, Clustering-BFD sets an initial cluster configuration to have the
maximum number of clusters and merge clusters only when necessary. In this way, Clustering-
BFD tries to reserve as many clusters as possible to schedule non-RT jobs runtime in parallel,
maximizing the bandwidth of non-RT jobs.

Runtime complexity. Algorithm(I]first sorts the RT I/O tasks with O(n-logn) complexity.
Then, the algorithm allocates each task to a feasible cluster by starting from the cluster with
the highest total utilization with O(n - m). For each number of clusters k in 1 < k < m,
the algorithm considers all combinations of two clusters to merge, and the total number of
combinations Vk in 1 < k < m is O(m?). Thus, the total complexity is O(max(n - logn,n -

m,m?)).
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4.4 Schedule generation for non-RT 1/0 jobs

Building upon the task-to-cluster allocation (derived by Clustering-BFD) for RT 1/O tasks,
we now discuss how to schedule non-RT 1/O jobs so as to achieve G1 and G2. Focusing on
G2, the execution of non-RT aperiodic jobs must not violate timing guarantees given to RT
tasks. One simple approach to address G2 is to schedule non-RT jobs at lowest priority in each
cluster, where non-RT jobs are executed only at times when there is no real-time I/O request
ready for execution. Such a background scheduling is fairly straightforward, however, non real-
time tasks may suffer from very long latency when the utilization of RT tasks in each cluster is
high, resulting in low bandwidth of non-RT jobs (hard to achieve G1).

To address this, we use the concept of server, that is, a periodic task whose purpose is to
service aperiodic requests as soon as possible. Like any periodic task, a server is characterized
by a fixed utilization and generates a sequence of jobs. The server is scheduled as any other RT
tasks, and once active, it serves non-RT aperiodic requests within the limit of its utilization. In
particular, we use the Total Bandwidth Server (TBS), a well-known server mechanism designed
for EDF scheduling [[17]. Each cluster has its own TBS to schedule non-RT jobs. Now, we
discuss how to utilize the TBS for each cluster and how to assign non-RT jobs to clusters.

How to utilize the TBS for each cluster. A TBS 7.(¢;) in a cluster ¢y is specified by
its utilization factor U, (¢y) (i.e., its bandwidth). The bandwidth U,(¢y) is determined as the

remaining utilization on ¢y, after allocating RT tasks, and it is calculated as
Us(9r) =1 = Up, (Ar, ). (IV.10)

Then, each time a non-RT job arrives, the total bandwidth of the server is assigned to the job.

Suppose a non-RT job .J; = (r;, w,) is arrived at time ¢ = a;. Then, it receives a deadline

dj = max(aj,d;—1) + U:’;k), (IV.11)
where d;_; is the deadline of previous non-RT job scheduled on ¢, (dy = 0 by definition)
and C; is the execution time of the job (presented in Eq. ). A TBS 74(¢y) has its
corresponding GC task to handle the GC operation for non-RT jobs assigned to ¢;. Thus, every
non-RT job need to take into account the time for the GC operation ng (presented in Eq. )

when calculating C';. The worst-case execution time C; of J; is presented as
Cj = C} + Dj(¢x) + C}’ + DY (¢r) + B - CY, (IV.12)

where

o {[wjilggﬁk)w’ if wj +w(gr) > o Pkl

0, otherwise,
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where B is the number of blocks to be reclaimed and w(¢y,) is the the number of pages written
by 7s(¢r) since its previous GC operation.
With the TBS in each cluster, non-RT jobs can be scheduled with the guaranteed band-

width without violating any timing constraints of RT tasks, as stated in the following theorem.

Theorem 2 Given a set of RT tasks T with cluster configuration ® and task-to-cluster assign-
ment A\, and a collection of non-RT jobs J with a TBS 7(¢y) for each cluster ¢y, the whole set
is schedulable under EDF scheduling with SRP on a NAND flash storage system T, if for each
cluster ¢y, € O, the following inequality holds:

Ug,(Ar,) + Us(or) < 1. (IV.13)

Proof: According to Lemma 2 in [[17]], the actual utilization of the non-RT jobs scheduled
by 7,(¢) does not exceed U, (¢y,) in any interval of time. Then, combined with Theorem|[1] the
theorem holds as for Theorem 3 in [17].

How to assign non real-time jobs to clusters. We now discuss how to assign non-RT
jobs to clusters. Upon arrival of a non-RT job J;, it is allocated to the cluster on which it
receives the earliest deadline d;. Then, it is scheduled with RT tasks in the cluster according to
EDF scheduling. In this way, we can provide the maximum bandwidth to non-RT jobs under a

cluster configuration without compromising the schedulability of RT tasks.
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V. Evaluation

We demonstrate the capability of the proposed task-to-cluster allocation and scheduling
algorithms. We use two metrics: schedulability ratio for RT tasks and average bandwidth for
non-RT jobs. The schedulability ratio is defined to be the percentage of schedulable RT task
sets of the total number of generated RT task sets. The average read/write bandwidth is defined
as the number of read/write requests performed in one second (i.e., IOPS).

We first show the extensive simulation results for synthetic task sets with randomly gen-
erated parameters. We then show the results for a case study. We compare the following four

different approaches:

* Global+BG: a single cluster of size m with background execution of non-RT jobs (i.e., the

shared approach),

* Full-Isolation+BG: m clusters each of size one with background execution of non-RT jobs

(i.e., the fully-isolated approach),

* PaRT-FTL+BG: partitioned read and write chip sets with background execution of non-RT

jobs, and

* Clustering-BFD+TBS: our cluster configuration and task-to-cluster allocation by Clustering-
BFD with a TBS per cluster.

To check the schedulability of RT tasks, all approaches except PaRT-FTL+BG use the
schedulability analsysis presented in Theorem (I, while PaRT-FTL+BG uses its own presented
in [4]. To handle non-RT jobs, Clustering-BFD+TBS uses a TBS per cluster, while the others use
background execution, where non-RT jobs are executed only when there is no real-time I/O

request ready for execution.

5.1 Extensive simulations

Task set generation. We generate RT tasks by using the UUniFast algorithm [[18]], which
has been widely used for the generation of RT task sets. We generate 4,000 RT task sets in
total while varying their total utilization of RT tasks from 0.1 to 4.0 with an incremental step
of 0.1. Given the total utilization (U,) for a RT task set and the number of RT tasks as 8, each

task is generated as follows. The utilization U; of each task 7; is randomly generated such that
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Y U; = U,. T} and T} are uniformly chosen in [100, 500]ms, and C and C}* are determined
as satisfying U; = % + C:

7
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Figure V.1: Schedulability ratio of RT task sets

Schedulability. Fig. compares the percentage of schedulable task sets by four ap-
proaches when the number of flash chips is 16 with the parameter shown in Table
Clustering-BFD+TBS exhibits high capability in finding schedulable task sets in that Clustering-
BFD+TBS finds 43%, 225%, and 278% more schedulable task sets than Full-Isolation+BG, PaRT-
FTL+BG, and Global+BG, respectively. The performance gap between Clustering-BFD+TBS and
the others becomes larger as U, increases. Under Global+BG, all RT tasks in a task set share
a single cluster, so Global+BG cannot find any schedulable task sets when U, > 1. Under
PaRT-FTL+BG, there are two clusters (one for read requests and another for write requests), so
PaRT-FTL+BG cannot find any schedulable task sets when U, > 2. Although Full-Isolation+BG
shows better performance than Global+BG and PaRT-FTL+BG by distributing/isolating RT tasks
among 4 clusters, GC tasks exhibit high utilization, making harder to find schedulable task
sets as U, increases. One the other hand, using Clustering-BFD+TBS, 94% of the task sets are
schedulable at U, = 3.0, while only 8% of the task sets are schedulable by Full-Isolation+BG. We

'Note that, to compare the schedulability ratio, we only consider RT tasks because execution of non-RT jobs

does not affect the schedulability of RT tasks with background scheduling and TBS.
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Figure V.2: Average bandwidth of non-RT jobs
interpret such a gap as the benefit of flexible chip clustering and task allocation by trading-off
the number of clusters (total resource capacity) and GC overhead.
We also varied the ratio of write-heavy RT tasks to identify their effects on schedulability.
g: > 0.5 as write-heavy tasks. We generate 900 additional RT task
sets in total while Varyingl the ratio of write-heavy RT tasks from 0 to 100% when the number

We consider tasks with

of tasks is 8 as shown in Fig. [V.Ib] Clustering-BFD+TBS is shown to outperform the other
approaches for all ratios. This is because Clustering-BFD+TBS effectively reduces GC overhead
by merging clusters when the ratio of write-heavy RT tasks increases.

Bandwidth. We now compare the average bandwidth of aperiodic non-RT jobs. With the
generated RT task sets, we only consider the schedulable task sets by both Clustering-BFD+TBS
and FuII-IsoIation+BGE| and simulate aperiodic arrivals of non-RT jobs. In simulation, read-only
and write-only non-RT jobs request 20 read and 5 write pages, respectively with their pe-
riod uniformly chosen in [100, 1000]us. Fig. compares the average bandwidth of non-RT
jobs by Clustering-BFD+TBS and Full-Isolation+BG while varying U, from 0.1 to 3.1. Clustering-
BFD+TBS is shown to outperform Full-Isolation+BG for all U, values. The performance gap
between Clustering-BFD+TBS and Full-Isolation+BG becomes larger as the utilization of RT tasks
increases. For example, when U, = 2.6, Clustering-BFD+TBS handles 16,950 (2,590) more
read (write) pages than Full-Isolation+BG in one second. As U, increases, less resources become
available for non-RT jobs. Then, under Full-Isolation+BG, non-RT jobs have less chance to be
executed since it is only available at times when there is no RT task ready for execution. How-
ever, Clustering-BFD+TBS uses the TBS and executes non-RT jobs together with RT tasks as

soon as possible within the limit of TBS’s utilization.

2This is because PaRT-FTL+BG and Global+BG find few schedulable task sets, which is insufficient for

comparison.
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5.2 Case study

Global+BG Clustering-BFD+TBS Full-Isolation+BG
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Figure V.3: Experimental results for a case study

In addition to our simulation study, we implement the proposed techniques in the Linux
operating system with a DRAM-emulated SSD [10] that models a real-world SSD. We then
carry out a case study using RT tasks. Our SSD has four NAND flash chips which are con-
figured with the parameters shown in Table [[Il.1} Fig.[V:3|shows the experimental results. We
consider four RT tasks and one non-RT job: 71 = [(r = 40,77 = 36), (wy = 24, T} = 30)],
T, =1 =14 = [(80,36),(12,130)], and J; = (r; = 0,w; = 128) every 12.5ms. Un-
der Clustering-BFD+TBS, no deadline is missed for RT tasks, while a considerable amount of
read and write requests for RT tasks miss deadlines under Global+BG and FuII-IsoIation+BGE|
For the average bandwidth of the non-RT job, Clustering-BFD+TBS achieves 950 (IOPS), while
Global+BG and Full-Isolation+BG show 345 and 202 (IOPS), respectively.

3We only show the results of 7, due to space limitation.
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VI. Conclusion and Discussion

In this paper, we investigated the effect of cluster-based resource isolation on schedula-
bility and bandwidth in real-time NAND flash storage systems. By taking a trade-off between
flash chip sharing and I/O workload isolation, we developed dynamic chip clustering, task-to-
cluster allocation, and co-scheduling algorithms to achieve high bandwidth for non real-time
I/Os while guaranteeing all timing constraints of real-time I/Os. Our evaluation results demon-
strated that the proposed dynamic cluster-based resource isolation and scheduling approach
made a substantial improvement of both schedulability and bandwidth over existing isolation

approaches. In future, we would like to extend our approach to handle wear-leveling issues.
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