

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis
석사학위논문

Dynamic Task-to-chip Allocation for Real-time I/O
Guarantees in Flash Storage Systems

Gyeongtaek Kim (김경택金炅澤)

Department of Information and Communication Engineering

DGIST

2021

Master’s Thesis
석사학위논문

Dynamic Task-to-chip Allocation for Real-time I/O
Guarantees in Flash Storage Systems

Gyeongtaek Kim (김경택金炅澤)

Department of Information and Communication Engineering

DGIST

2021

MS/IC

201922006

김경택. Gyeongtaek Kim. Dynamic Task-to-chip Allocation for Real-time I/O Guar-
antees in Flash Storage Systems. Department of Information and Communication
Engineering . 2021. 24p. Advisor Prof. Hoon Sung Chwa, Co-Advisor Prof. Sungjin
Lee.

Abstract

The goal of this paper is to provide worst-case timing guarantees for real-time I/O requests,

while fully utilizing the potential bandwidth for non real-time I/O requests in NAND flash

storage systems. We identify a trade-off between flash chip sharing and I/O workload isolation

in terms of timing guarantees and bandwidth. By taking such a trade-off into account, we

propose a new real-time I/O scheduling framework that enables dynamic isolation between

real-time I/O requests to meet all timing constraints and co-scheduling of real-time and non

real-time I/O requests to provide high bandwidth utilization. Our in-depth evaluation results

show that the proposed approach outperforms existing isolation approaches significantly in

terms of both schedulability and bandwidth.

Keywords: Real-time Systems, NAND Flash Storage

– i –

List of Contents

Abstract . i

List of Contents . ii

List of Tables . iv

List of Figures . v

I. Introduction . 1

II. Background . 4

III. Motivation and Problem Statement 6

3.1 Motivation . 6

3.2 Problem statement . 8

IV. Cluster-based Resource Isolation 10

4.1 Task model . 10

4.1.1 Real-time I/O task . 10

4.1.2 Non real-time I/O job . 12

4.2 Schedulability analysis . 12

4.3 Task-to-cluster allocation for RT I/O tasks . 13

4.4 Schedule generation for non-RT I/O jobs . 15

V. Evaluation . 17

5.1 Extensive simulations . 17

– ii –

5.2 Case study . 20

VI. Conclusion and Discussion . 21

References . 22

– iii –

List of Tables

III.1 SSD configuration . 7

– iv –

List of Figures

III.1 Motivational case study: the worst-case write latency for each task and its

breakdown under different isolation approaches 7

V.1 Schedulability ratio of RT task sets . 18

V.2 Average bandwidth of non-RT jobs . 19

V.3 Experimental results for a case study . 20

– v –

I. Introduction

Thanks to a small form factor, high shock resistance, low power consumption, and fast

access time, NAND flash-based solid-state drives (SSDs) have been widely used as storage

devices in safety-critical real-time embedded systems. In typical real-time embedded systems,

real-time I/O workloads that require to meet their timing constraints are colocated with non

real-time I/O workloads on the shared NAND flash storage. The main design goal for real-

time NAND flash storage systems is to provide worst-case timing guarantees for real-time I/O

requests, while fully utilizing the potential bandwidth for non real-time I/O requests.

However, flash-based SSDs often exhibit highly unpredictable worst-case I/O latency.

Data written in a flash page (which is a basic unit of reading and writing data) cannot be

updated unless the page is erased. The erase operation can only be performed in the unit of a

block composed of many pages. Before updating data of a specific page in a block, other pages

containing valid data should be moved elsewhere; otherwise, their data are permanently erased.

Since the erase operation involves many page reads and writes, flash-based SSDs redirect write

requests to free pages and run a garbage collection (GC) task which reclaims obsolete flash

pages. While it improves overall I/O throughput, the GC task often blocks user I/O requests,

causing unpredictable I/O latency, which are not acceptable to real-time applications.

To make the worst-case I/O latency predictable, a vast amount of work has been done by

the real-time community. The most recognized effort is to develop real-time GC mechanisms

to reduce and/or to bound the blocking time by the GC operation [1, 2, 3]. They estimated the

worst-case GC cost and then schedule GC operations preemptively with real-time I/Os. Owing

to frequent GC interference by other tasks, however, the worst-case latency bound is set too

– 1 –

conservatively, which result in underutilization of SSD throughput. To overcome this problem,

one suggested an idea of partitioning a set of NAND flash chips into separate read and write

sets [4]. By isolating read and write requests within separate chips, it guarantees that read

requests are never blocked by write requests or GC operations. But, this benefit comes at the

cost of degraded write throughput. Some proposed resource isolation techniques [5, 6, 7, 8, 9]

that assign a given task set to dedicated NAND chips depending their I/O requirements. Since

all the tasks are completely isolated, GC interference among tasks are minimized. However,

those techniques are designed for non real-time tasks and thus cannot be applied to real-time

tasks.

In this paper, we propose a new real-time I/O scheduling framework that enables dy-

namic resource isolation between real-time I/O requests to meet all timing constraints and co-

scheduling of real-time and non real-time I/O requests to provide high bandwidth utilization.

First, we compare, via a case study, two typical flash chip isolation approaches — shared and

fully-isolated — and demonstrate the effect of different levels of isolation on the worst-case

latency. Under the shared approach where all I/O requests are allowed to read/write data across

all flash chips, each write request can fully utilize all flash chips, triggering less frequent GC

invocations. This benefit, however, comes at the large amount of interference imposed by other

I/O requests. On the other hand, under the fully-isolated approach where each I/O request is

statically assigned to a single chip and is allowed to read/write data on that chip only, it receives

less interference than the case of no isolation. However, it comes at the cost of frequent GC

invocations without utilizing free pages in other chips.

Motivated by this, we consider another resource isolation approach, called cluster-based

isolation, that is a generalization of shared and fully-isolated approaches. In this approach

each I/O request is statically assigned to a cluster that is a subset of flash chips and is allowed

– 2 –

to read/write data within the cluster. To support such a cluster-based isolation approach, we

develop dynamic chip clustering and request-to-cluster allocation algorithms that determine a

cluster configuration and a mapping from I/O requests to clusters to satisfy all timing con-

straints in the worst case. Building upon the request-to-cluster allocation, we also propose a

co-scheduling algorithm to schedule non real-time I/O requests to be executed with real-time

I/O requests in the clusters to achieve high bandwidth without violating any timing constraints.

Our in-depth evaluation results show that the proposed cluster-based isolation approach

outperforms the existing isolation approaches significantly in terms of the schedulability for

real-time I/O requests and the bandwidth for non real-time I/O requests. Our approach is shown

to make 43% and 278% more real-time task sets schedulable and also improve the average

bandwidth of non real-time I/O requests by up to 96%, respectively, over the fully-isolated and

shared approaches.

This paper makes the following main contributions:

• An insightful case study that reveals the effect of different levels of flash chip isolation

on the worst-case latency of real-time I/O requests (Section III);

• Development of task-to-cluster allocation with dynamic chip clustering that significantly

improves the schedulability of real-time I/O requests by considering a trade-off between

sharing chips and isolating chips (Section 4.3);

• Development of a scheduling framework for a mixed-set of real-time and non real-time

I/O requests that enables high bandwidth of non real-time I/Os while guaranteeing the

timing constraints of real-time I/Os (Section 4.4); and

• Demonstration of the effectiveness of the proposed approach in terms of the schedulabil-

ity for real-time I/Os and the bandwidth for non real-time I/Os (Section V).

– 3 –

II. Background

A NAND flash chip consists of multiple blocks, each of which is composed of several

pages. A page is a unit of read/write operations, while a block is a unit of erase operations. To

provide high throughput, an SSD controller aggregates multiple NAND chips using a channel-

way architecture. Each channel has separate data and control buses. This enables the controller

to achieve high I/O throughput by accessing NAND chips on different channels simultaneously

through channel parallelism. NAND chips on the same channel share the data bus, but are

controlled independently by the controller via separate control buses. By utilizing way inter-

leaving, the controller can further improve aggregate I/O throughput.

A flash translation layer (FTL) is the firmware running in the controller; it not only pro-

vides the typical block I/O interface, but manages multiple NAND chips with unusual physical

properties. To hide an out-of-place update nature of flash, the FTL writes incoming data to free

pages in a manner that maximizes full throughput of multiple chips. When free space is ex-

hausted, the FTL triggers GC to reclaim free space, which involves a series of page reads, page

writes, and block erasures. The FTL usually performs GC operations over multiple channels

and ways in parallel to minimize GC time.

Existing FTL designs, however, fail to offer consistent I/O response times, causing unpre-

dictable I/O latency. When real-time I/O requests come while the controller is busy executing

GC, they are inevitably delayed until all the GC operations are completed. To address this,

some suggested real-time GC scheduling [1, 2, 3]. It models the GC task as part of real-time

tasks by estimating its worst-case cost and partially performs GC I/Os so that they can be pre-

empted by high priority I/Os. It provides a guideline for real-time tasks to meet worst-case

– 4 –

timing requirements under GC activities. However, these studies estimate GC cost conserva-

tively and do not consider the channel-way architecture. This results in low utilization of SSD

throughput.

Another proposed a partitioned scheduling algorithm that exploits the channel-way archi-

tecture for GC isolation [4]. It splits NAND chips into read and write sets and then enforces

all the writes to be sent to the write set. This leads GC I/Os to only happen in the write set,

preventing read requests from being blocked by GC. This approach makes it possible to pro-

vide excellent read throughput, but overall write performance degrades since only a few NAND

chips out of many are designated to serve write requests.

Some go one step further by proposing resource isolation techniques [5, 6, 7, 8, 9]. While

detailed designs differ from each other, they attempt to assign a given set of tasks into dedicated

flash resources (i.e., channels, ways, and chips). Since each task is completely isolated in

physically separated flash resources, it not only minimizes I/O interference among tasks but

provides better I/O performance to given tasks. However, all those techniques are designed

for non real-time tasks and thus are not able to satisfy the worst-case timing guarantees for

real-time I/O requests. They also do not consider the optimal task assignment that satisfies the

worst-case latency of I/O tasks while maximing the utilization of SSD throughput.

– 5 –

III. Motivation and Problem Statement

We first present a case study to demonstrate the effect of flash chip isolation on the

worst-case I/O latency and describe our goal for the proposed task-to-cluster allocation scheme

thereof.

3.1 Motivation

We illustrate a measurement-based case study to motivate our approach. We use an em-

ulated SSD drive [10] with the configuration shown in Table III.1. There are three real-time

I/O tasks that perform periodic I/O requests on an SSD with three chips1: one task writes 24

pages every 30ms and reads 40 pages every 36ms; the other two write 12 pages every 130ms

and read 80 pages every 25ms. To consider the worst-case GC cost, all the tasks issue random

writes to the SSD. Three tasks are scheduled under non-preemptive earliest deadline first (EDF)

scheduling. We measure the worst-case I/O latency for each task under different resource iso-

lation approaches, as presented in Fig. III.1. The worst-case I/O latency is decided by three

major factors: (i) the time taken to read/write pages for a task, (ii) the time taken to perform

GC for a task, and (iii) interference I/Os (i.e., page reads/writes and GC I/Os) from other tasks.

Via this case study, we examine the effect of different levels of flash chip isolation on

the worst-case latency of an real-time I/O request. We first compare two simple approaches

for chip isolation over m chips: shared (i.e. no isolation) and fully-isolated resources. Under

the shared approach, all I/O requests are allowed to read/write data across m chips as existing

SSDs do. Under the full-isolation approach, each I/O request is statically assigned to a single

1As a motivational case study, we consider a simple task set with a small number of chips. Our in-depth

evaluation results with various task sets will be presented in Section V.

– 6 –

table III.1: SSD configuration

Parameter Value Parameter Value

Page size 8KB Read latency (tr) 50 µs

of pages/block 256 Write latency (tw) 500 µs

of blocks/chip 64 Erase latency (te) 5 ms

Date transfer time (td) 40 µs

Figure III.1: Motivational case study: the worst-case write latency for each task and its

breakdown under different isolation approaches

chip and is allowed to read/write data on that chip only.

Figs. III.1a and III.1c show the worst-case latency of an real-time I/O request under the

shared and fully-isolated approaches, respectively. Under the shared approach, GC is triggered

less frequently than the fully-isolated approach because free space available in all the chips

can be utilized by all the tasks. However, each task suffers from high GC interference by other

tasks, which results in the violation of its timing constraints. Under the fully-isolated approach,

there is no GC interference of other I/O requests. However, it suffers from high GC overheads

to reclaim free pages since free pages in other chips cannot be utilized. This results in violating

its timing constraints.

To overcome disadvantages of both approaches, we consider another approach, called

– 7 –

cluster-based isolation, using a notion of (chip) cluster. A cluster is a set of m′ chips, where

1 ≤ m′ ≤ m. Under the cluster-based approach, I/O requests are statically assigned to a cluster

and are allowed to share m′ chips within the cluster. Fig. III.1b shows the worst-case latency

of an real-time I/O request under the cluster-based approach. By trading-off between resource

contention by sharing chips and garbage collection overhead by isolating chips, we can achieve

a lower worst-case latency than both the shared and fully-isolated approaches, satisfying the

timing constraint.

Moreover, in addition to real-time I/O requests, there might be non real-time I/O requests

to be serviced together in a flash storage system. Then, the execution of non real-time I/O

requests must not violate timing guarantees of real-time I/O requests, while non real-time I/O

requests are intended to obtain high bandwidth.

3.2 Problem statement

Motivated by our case study, we focus on cluster-based isolation and aim to solve the

following task-to-cluster allocation problem for real-time NAND flash storage systems. Let

π = {π1, π2, ..., πm} be the set of m flash chips, let τ = {τ1, τ2, ..., τn} be the set of n real-time

(RT) periodic I/O tasks, and let J = {J1, J2, ...} be the collection finite or infinite non-RT

aperiodic I/O jobs.

Definition 1 Given a RT task set τ and a collection of non-RT jobs J running on a NAND flash

storage system π, determine (i) cluster configuration Φ, (ii) task-to-cluster assignment Λ such

that

G1. the average bandwidth of non-RT I/O jobs is maximized; and

G2. all the read and write I/O requests of a RT task τi ∈ τ meet their deadlines for all

legitimate I/O request sequences.

– 8 –

For a cluster configuration, each cluster φk is a disjoint partition of π. Hence, π = ∪φk,

and if i 6= j, φi ∩ φj = ∅. There can be multiple possible ways to form a set of clusters for m

flash chips, where each of such ways is defined as a cluster configuration Φ.

For a task-to-cluster allocation, we need to find i) a mapping from the RT tasks of τ to the

clusters in Φ and ii) a run-time schedule of non-RT jobs to be executed with RT tasks to achieve

G1 and G2.

Note that the cluster-based isolation approach can be viewed as a generalization of shared

and fully-isolated approaches; it is equivalent to the shared approach at one extreme end where

we assign I/O requests to a single cluster of size m, and the fully-isolated approach at the other

extreme end where we assign I/O requests to m clusters each of size one.

– 9 –

IV. Cluster-based Resource Isolation

In this section, we first describe our target task model and derive a schedulability analysis

to verify whether all RT I/O tasks satisfy their timing constraints under a given task-to-cluster

allocation. We then present our approach to determine a task-to-cluster allocation together with

a cluster configuration for RT I/O tasks and generate a schedule for non-RT jobs to achieve G1

and G2.

4.1 Task model

4.1.1 Real-time I/O task

Real-time I/O requests are presented by the periodic task model which is widely used

in various real-time storage systems [1, 4]. Each RT I/O task τi ∈ τ can be specified as

τi = [(ri, T
r
i), (wi, T

w
i)], where it performs ri page reads every T ri time-units andwi page writes

every Twi time-units.1 Such a task τi is assumed to generate a potentially infinite sequence of

read and write requests every T ri and Twi time-units, respectively, with each read (write) request

needing to complete ri page reads (wi page writes) within a relative deadline of T ri (Twi) time-

units.

Read/write request. For a read/write request, the worst-case scenario is when every page

read/write operation is sequentially serviced on a flash chip. The worst-case execution times

(WCETs) of read and write requests for τi (denoted as Cr
i and Cw

i , respectively) are

1The task model does not account for the CPU computation time. These tasks exist on the FTL and utilize the

NAND bus. A task is assumed to be scheduled on the CPU in a way that is able to guarantee the above read and

write request rates on the SSD as in [4].

– 10 –

Cri = ri · tr, (IV.1)

Cwi = wi · tw, (IV.2)

where tr and tw are the time to read and write a page on a chip, respectively.

Garbage collection request. We consider cluster-level parallel garbage collection (GC),

in which when a flash chip in a cluster φk runs out of free pages, GC is triggered on all chips in

φk in parallel to reclaim free pages. Every RT I/O task with wi > 0 will have its corresponding

GC task to ensure that enough free pages are reclaimed for τi to write wi pages every Twi time-

units. When the GC operation starts for each flash chip in a cluster φk, a victim block with

the minimum number of valid pages is chosen, valid pages are copied from the victim block

to a free block, and the victim block is erased. Then, the worst-case scenario occurs when all

valid pages are evenly distributed to all flash memory blocks in a cluster φk. For each chip with

over-provisioning, the number of valid pages needed to be copied is upper-bounded by dλ ·P e,
where λ is a ratio of logical address space to physical address space and P is the number of

pages in a block. Then, the number of reclaimed pages in a chip after the GC operation is

lower-bounded by α = P − dλ · P e, yielding α · |φk| reclaimed pages in a cluster φk in total.

The period of a GC task depends on how fast its corresponding τi consumes reclaimed pages.

For a task τi allocated to φk, if wi = α · |φk|, then GC needs to reclaim a block every write

period Twi , so the period for the GC task is the same as the write period. If wi is more than

α · |φk|, then the GC task needs to guarantee that at least two blocks are reclaimed every Twi ,

yielding a shorter GC period than Twi . If wi is less than half of α · |φk|, then the GC task only

needs to reclaim a block every 2 · Twi . Based on this, a GC task with the worst-case execution

time Cg
i and period T gi corresponding to task τi in φk is presented as

Cgi = dλ · P e · (tr + tw) + te, (IV.3)

T gi (φk) =

Twi /d
wi

α·|φk|e, if wi > α · |φk|,

Twi · b
α·|φk|
wi
c, otherwise,

(IV.4)

where te is the time to erase a block.

As shown in the case study in Section III, the period of a GC task depends on not only the

number of write pages of τi but also the number of chips in a cluster φk; the less the number of

write pages with more chips in a cluster, the longer the period of a GC task.

Data transfer delay. Data transfer delay may occur because chips on the same channel

share the data bus. The worst-case data transfer delays via channel for read and write requests

for τi allocated to φk (denoted as Dr
i (φk) and Dw

i (φk), respectively) are presented as

Dr
i (φk) = ri · (td · (mc − (d |φk|

mc
e+ 1))), (IV.5)

Dw
i (φk) = wi · (td · (mc − (d |φk|

mc
e+ 1))), (IV.6)

– 11 –

where td is the time to transfer a page from a page register to a controller DRAM and mc is the

number of chips on a channel.

Let Ui(φk) be the utilization of τi when allocated to φk, and it is

Ui(φk) =
Cri +Dr

i (φk)

T ri
+
Cwi +Dw

i (φk)

Twi
+

Cgi
T gi (φk)

. (IV.7)

4.1.2 Non real-time I/O job

Each non-RT I/O job Jj ∈ J is modeled as the aperiodic job model [11], and it can be

specified as Jj = (rj, wj), where it performs rj page reads andwj page writes with no deadline.

The arrival time of each non-RT job is unknown.

The WCETs (Cr
j and Cw

j) and the worst-case data transfer delays (Dr
j (φk) and Dw

j (φk))

for read and write requests of Jj are presented as the same as those of the RT I/O task. The GC

operation for non-RT I/O jobs will be discussed in Section 4.4.

4.2 Schedulability analysis

We now provide a schedulability test to verify whether all real-time tasks satisfy their tim-

ing constraints under a task-to-cluster allocation Λ. For now, we do not consider the schedule

of non-RT jobs, which will be discussed later in Section 4.4. We consider non-preemptive EDF

scheduling with stack resource policy (SRP) [12]. In EDF scheduling, each I/O request of a

RT task and its corresponding GC task are assigned their priorities according to their absolute

deadlines: the earlier the deadline of a request, the higher its priority. For accessing shared

resources, SRP guarantees that each request will not be blocked for the duration of more than

one critical section of a lower priority request. Since all flash operations are non-preemptive,

and erase operation is the most time-consuming one, the schedulability of RT I/O tasks with a

task-to-cluster assignment Λ can be verified by the following theorem.

Theorem 1 For a given RT task set τ , cluster configuration Φ, and task-to-cluster assignment

Λ, the RT task set τ is schedulable under EDF scheduling with SRP on a NAND flash storage

system π, if for each cluster φk ∈ Φ, the following inequality holds:

te
min(T)

+
∑
∀τi∈Λφk

Ui(φk) ≤ 1, (IV.8)

where min(T) = minτi∈Λφk
(T ri , T

w
i , T

g
i) and Λφk is the set of tasks allocated to cluster φk.

Proof : By [13], all real-time tasks scheduled by EDF are schedulable if their total utiliza-

tion is less than or equal to 1. te
min(T)

is the ratio of utilization sacrificed due to the blocking

– 12 –

of non-preemptive operations. In the worst-case scenario, a real-time task might be blocked by

erase operation. The maximum blocking factor is contributed by the task which has the shortest

period. Eq. (IV.8) is derived in a similar way as that for Theorem 2 in [12].

4.3 Task-to-cluster allocation for RT I/O tasks

We now discuss how to determine a cluster configuration and task-to-cluster allocation for

RT I/O tasks focusing on G2. The task-to-cluster allocation problem is NP-hard, since find-

ing a feasible mapping from the RT I/O tasks to the clusters is equivalent to the bin-packing

problem which is known to be NP-hard in the strong sense [14]. Thus, we need to look for

heuristics. Focusing on feasibility, a typical task-to-cluster allocation is to apply variants of

well-known bin-packing algorithms, including Best-Fit Decreasing (BFD) and Worst-Fit De-

creasing (WFD) [15]. These algorithms process tasks one-by-one in the order of non-increasing

utilization, assigning each task to a cluster according to the heuristic function that determines

how to break ties if there are multiple clusters that can accommodate the new task. Whether

a cluster can accommodate each task or not is determined by the schedulability test in Theo-

rem 1. In addition, feasibility also depends on a cluster configuration (i.e., the total number of

clusters and the number of chips in each cluster).

Considering this, we propose a new task-to-cluster allocation algorithm together with a

cluster configuration, called Clustering-BFD, as presented in Algorithm 1. At first, we set an

initial cluster configuration as assigning one chip per each cluster (lines 2–3). RT tasks are

sorted in non-increasing order of their utilizations (Line5). Clustering-BFD then seeks to allocate

each RT task τi to a cluster in every iteration step (Lines 6–19). In the i-th iteration step with

the current cluster configuration, the algorithm finds a subset of feasible clusters on which the

allocation of τi can preserve feasibility by the schedulability test in Theorem 1 (Line 7). Let

Uφc(Λπc) be the total utilization of tasks allocated to φc, and it is calculated as

Uφc(Λπc) =
te

min(T)
+

∑
∀τi∈Λφc

Ui(φc). (IV.9)

If there is any feasible cluster, then Clustering-BFD assigns τi to the cluster with the highest total

utilization similar to BFD (Lines 17–18). If there is no feasible cluster, then Clustering-BFD

considers a new cluster configuration by merging two clusters into one (Lines 12–14). Among

all possible combinations of merging two clusters, the algorithm selects the one with the lowest

total utilization to accommodate as many tasks as possible. Clustering-BFD then tries to allocate

τi with the new cluster configuration (Line 15).

Note that Clustering-BFD considers the feasibility of RT tasks and the schedule of non-RT

jobs together in task-to-cluster assignment. Focusing on the feasibility of RT tasks, Clustering-

– 13 –

Algorithm 1: Clustering-BFD (τ , π)
1: Φ← ∅
2: for πc ∈ {π1, . . . , πm} do
3: φc ← πc, Φ← Φ ∪ φc, Λφc ← ∅
4: end for
5: τ ′ ← Sort(τ by non-increasing Ui(φc))

6: for τi ∈ τ ′ do
7: Φ′ ← {φc ∈ Φ : feasible-assignment(Λπc ∪ τi) by Eq. (IV.8)}
8: if Φ′ = ∅ then
9: if |Φ| = 1 then

10: return Failed to assign

11: end if
12: Φ∗ ← {φx ← merge(φc1,φc2) : φc1, φc2 ∈ Φ}
13: φy ← arg minφx∈Φ∗ Uφx(Λφx)

14: Φ← (Φ \ {φc1, φc2}) ∪ φy
15: go back to line 6 and repeat for τi
16: end if
17: φk ← arg maxφc∈Φ′ Uφc(Λφc ∪ τi)
18: Λφk ← Λφk ∪ τi
19: end for
20: return Λ, Φ

BFD tries to pack as many tasks as possible on one cluster while keeping the other clusters

empty to accommodate other unassigned tasks, similarly with BFD. In general, BFD have

shown better feasibility than other bin-packing algorithms, such as WFD [16]. Focusing on

the schedule of non-RT jobs, Clustering-BFD sets an initial cluster configuration to have the

maximum number of clusters and merge clusters only when necessary. In this way, Clustering-

BFD tries to reserve as many clusters as possible to schedule non-RT jobs runtime in parallel,

maximizing the bandwidth of non-RT jobs.

Runtime complexity. Algorithm 1 first sorts the RT I/O tasks withO(n·logn) complexity.

Then, the algorithm allocates each task to a feasible cluster by starting from the cluster with

the highest total utilization with O(n · m). For each number of clusters k in 1 ≤ k ≤ m,

the algorithm considers all combinations of two clusters to merge, and the total number of

combinations ∀k in 1 ≤ k ≤ m is O(m3). Thus, the total complexity is O(max(n · logn, n ·
m,m3)).

– 14 –

4.4 Schedule generation for non-RT I/O jobs

Building upon the task-to-cluster allocation (derived by Clustering-BFD) for RT I/O tasks,

we now discuss how to schedule non-RT I/O jobs so as to achieve G1 and G2. Focusing on

G2, the execution of non-RT aperiodic jobs must not violate timing guarantees given to RT

tasks. One simple approach to address G2 is to schedule non-RT jobs at lowest priority in each

cluster, where non-RT jobs are executed only at times when there is no real-time I/O request

ready for execution. Such a background scheduling is fairly straightforward, however, non real-

time tasks may suffer from very long latency when the utilization of RT tasks in each cluster is

high, resulting in low bandwidth of non-RT jobs (hard to achieve G1).

To address this, we use the concept of server, that is, a periodic task whose purpose is to

service aperiodic requests as soon as possible. Like any periodic task, a server is characterized

by a fixed utilization and generates a sequence of jobs. The server is scheduled as any other RT

tasks, and once active, it serves non-RT aperiodic requests within the limit of its utilization. In

particular, we use the Total Bandwidth Server (TBS), a well-known server mechanism designed

for EDF scheduling [17]. Each cluster has its own TBS to schedule non-RT jobs. Now, we

discuss how to utilize the TBS for each cluster and how to assign non-RT jobs to clusters.

How to utilize the TBS for each cluster. A TBS τs(φk) in a cluster φk is specified by

its utilization factor Us(φk) (i.e., its bandwidth). The bandwidth Us(φk) is determined as the

remaining utilization on φk after allocating RT tasks, and it is calculated as

Us(φk) = 1− Uφk(Λπk). (IV.10)

Then, each time a non-RT job arrives, the total bandwidth of the server is assigned to the job.

Suppose a non-RT job Jj = (rj, wj) is arrived at time t = aj . Then, it receives a deadline

dj = max(aj , dj−1) +
Cj

Us(φk)
, (IV.11)

where dj−1 is the deadline of previous non-RT job scheduled on φk (d0 = 0 by definition)

and Cj is the execution time of the job (presented in Eq. (IV.12)). A TBS τs(φk) has its

corresponding GC task to handle the GC operation for non-RT jobs assigned to φk. Thus, every

non-RT job need to take into account the time for the GC operation Cg
j (presented in Eq. (IV.3))

when calculating Cj . The worst-case execution time Cj of Jj is presented as

Cj = Crj +Dr
j (φk) + Cwj +Dw

j (φk) +B · Cgj , (IV.12)

where

B =

d
wj+w(φk)
α·|φk| e, if wj + w(φk) > α · |φk|,

0, otherwise,

– 15 –

where B is the number of blocks to be reclaimed and w(φk) is the the number of pages written

by τs(φk) since its previous GC operation.

With the TBS in each cluster, non-RT jobs can be scheduled with the guaranteed band-

width without violating any timing constraints of RT tasks, as stated in the following theorem.

Theorem 2 Given a set of RT tasks τ with cluster configuration Φ and task-to-cluster assign-

ment Λ, and a collection of non-RT jobs J with a TBS τs(φk) for each cluster φk, the whole set

is schedulable under EDF scheduling with SRP on a NAND flash storage system π, if for each

cluster φk ∈ Φ, the following inequality holds:

Uφk(Λπk) + Us(φk) ≤ 1. (IV.13)

Proof : According to Lemma 2 in [17], the actual utilization of the non-RT jobs scheduled

by τs(φk) does not exceed Us(φk) in any interval of time. Then, combined with Theorem 1, the

theorem holds as for Theorem 3 in [17].

How to assign non real-time jobs to clusters. We now discuss how to assign non-RT

jobs to clusters. Upon arrival of a non-RT job Jj , it is allocated to the cluster on which it

receives the earliest deadline dj . Then, it is scheduled with RT tasks in the cluster according to

EDF scheduling. In this way, we can provide the maximum bandwidth to non-RT jobs under a

cluster configuration without compromising the schedulability of RT tasks.

– 16 –

V. Evaluation

We demonstrate the capability of the proposed task-to-cluster allocation and scheduling

algorithms. We use two metrics: schedulability ratio for RT tasks and average bandwidth for

non-RT jobs. The schedulability ratio is defined to be the percentage of schedulable RT task

sets of the total number of generated RT task sets. The average read/write bandwidth is defined

as the number of read/write requests performed in one second (i.e., IOPS).

We first show the extensive simulation results for synthetic task sets with randomly gen-

erated parameters. We then show the results for a case study. We compare the following four

different approaches:

• Global+BG: a single cluster of size m with background execution of non-RT jobs (i.e., the

shared approach),

• Full-Isolation+BG: m clusters each of size one with background execution of non-RT jobs

(i.e., the fully-isolated approach),

• PaRT-FTL+BG: partitioned read and write chip sets with background execution of non-RT

jobs, and

• Clustering-BFD+TBS: our cluster configuration and task-to-cluster allocation by Clustering-

BFD with a TBS per cluster.

To check the schedulability of RT tasks, all approaches except PaRT-FTL+BG use the

schedulability analsysis presented in Theorem 1, while PaRT-FTL+BG uses its own presented

in [4]. To handle non-RT jobs, Clustering-BFD+TBS uses a TBS per cluster, while the others use

background execution, where non-RT jobs are executed only when there is no real-time I/O

request ready for execution.

5.1 Extensive simulations

Task set generation. We generate RT tasks by using the UUniFast algorithm [18], which

has been widely used for the generation of RT task sets. We generate 4,000 RT task sets in

total while varying their total utilization of RT tasks from 0.1 to 4.0 with an incremental step

of 0.1. Given the total utilization (Ur) for a RT task set and the number of RT tasks as 8, each

task is generated as follows. The utilization Ui of each task τi is randomly generated such that

– 17 –

∑
Ui = Ur. T ri and Twi are uniformly chosen in [100, 500]ms, and Cr

i and Cw
i are determined

as satisfying Ui =
Cri
T ri

+
Cwi
Twi

.

(a) Schedulability ratio with different utilizations of RT tasks

(b) Schedulability ratio with different ratios of write-heavy tasks

Figure V.1: Schedulability ratio of RT task sets

Schedulability. Fig. V.1a compares the percentage of schedulable task sets by four ap-

proaches when the number of flash chips is 16 with the parameter shown in Table III.1.1

Clustering-BFD+TBS exhibits high capability in finding schedulable task sets in that Clustering-

BFD+TBS finds 43%, 225%, and 278% more schedulable task sets than Full-Isolation+BG, PaRT-

FTL+BG, and Global+BG, respectively. The performance gap between Clustering-BFD+TBS and

the others becomes larger as Ur increases. Under Global+BG, all RT tasks in a task set share

a single cluster, so Global+BG cannot find any schedulable task sets when Ur > 1. Under

PaRT-FTL+BG, there are two clusters (one for read requests and another for write requests), so

PaRT-FTL+BG cannot find any schedulable task sets when Ur > 2. Although Full-Isolation+BG

shows better performance than Global+BG and PaRT-FTL+BG by distributing/isolating RT tasks

among 4 clusters, GC tasks exhibit high utilization, making harder to find schedulable task

sets as Ur increases. One the other hand, using Clustering-BFD+TBS, 94% of the task sets are

schedulable at Ur = 3.0, while only 8% of the task sets are schedulable by Full-Isolation+BG. We
1Note that, to compare the schedulability ratio, we only consider RT tasks because execution of non-RT jobs

does not affect the schedulability of RT tasks with background scheduling and TBS.

– 18 –

Figure V.2: Average bandwidth of non-RT jobs
interpret such a gap as the benefit of flexible chip clustering and task allocation by trading-off

the number of clusters (total resource capacity) and GC overhead.

We also varied the ratio of write-heavy RT tasks to identify their effects on schedulability.

We consider tasks with Cwi
Twi
≥ 0.5 as write-heavy tasks. We generate 900 additional RT task

sets in total while varying the ratio of write-heavy RT tasks from 0 to 100% when the number

of tasks is 8 as shown in Fig. V.1b. Clustering-BFD+TBS is shown to outperform the other

approaches for all ratios. This is because Clustering-BFD+TBS effectively reduces GC overhead

by merging clusters when the ratio of write-heavy RT tasks increases.

Bandwidth. We now compare the average bandwidth of aperiodic non-RT jobs. With the

generated RT task sets, we only consider the schedulable task sets by both Clustering-BFD+TBS

and Full-Isolation+BG2 and simulate aperiodic arrivals of non-RT jobs. In simulation, read-only

and write-only non-RT jobs request 20 read and 5 write pages, respectively with their pe-

riod uniformly chosen in [100, 1000]µs. Fig. V.2 compares the average bandwidth of non-RT

jobs by Clustering-BFD+TBS and Full-Isolation+BG while varying Ur from 0.1 to 3.1. Clustering-

BFD+TBS is shown to outperform Full-Isolation+BG for all Ur values. The performance gap

between Clustering-BFD+TBS and Full-Isolation+BG becomes larger as the utilization of RT tasks

increases. For example, when Ur = 2.6, Clustering-BFD+TBS handles 16,950 (2,590) more

read (write) pages than Full-Isolation+BG in one second. As Ur increases, less resources become

available for non-RT jobs. Then, under Full-Isolation+BG, non-RT jobs have less chance to be

executed since it is only available at times when there is no RT task ready for execution. How-

ever, Clustering-BFD+TBS uses the TBS and executes non-RT jobs together with RT tasks as

soon as possible within the limit of TBS’s utilization.

2This is because PaRT-FTL+BG and Global+BG find few schedulable task sets, which is insufficient for

comparison.

– 19 –

5.2 Case study

Figure V.3: Experimental results for a case study

In addition to our simulation study, we implement the proposed techniques in the Linux

operating system with a DRAM-emulated SSD [10] that models a real-world SSD. We then

carry out a case study using RT tasks. Our SSD has four NAND flash chips which are con-

figured with the parameters shown in Table III.1. Fig. V.3 shows the experimental results. We

consider four RT tasks and one non-RT job: τ1 = [(r1 = 40, T r1 = 36), (w1 = 24, Tw1 = 30)],

τ2 = τ3 = τ4 = [(80, 36), (12, 130)], and J1 = (r1 = 0, w1 = 128) every 12.5ms. Un-

der Clustering-BFD+TBS, no deadline is missed for RT tasks, while a considerable amount of

read and write requests for RT tasks miss deadlines under Global+BG and Full-Isolation+BG.3

For the average bandwidth of the non-RT job, Clustering-BFD+TBS achieves 950 (IOPS), while

Global+BG and Full-Isolation+BG show 345 and 202 (IOPS), respectively.

3We only show the results of τ1 due to space limitation.

– 20 –

VI. Conclusion and Discussion
In this paper, we investigated the effect of cluster-based resource isolation on schedula-

bility and bandwidth in real-time NAND flash storage systems. By taking a trade-off between

flash chip sharing and I/O workload isolation, we developed dynamic chip clustering, task-to-

cluster allocation, and co-scheduling algorithms to achieve high bandwidth for non real-time

I/Os while guaranteeing all timing constraints of real-time I/Os. Our evaluation results demon-

strated that the proposed dynamic cluster-based resource isolation and scheduling approach

made a substantial improvement of both schedulability and bandwidth over existing isolation

approaches. In future, we would like to extend our approach to handle wear-leveling issues.

– 21 –

References

[1] S. Choudhuri and T. Givargis, “Deterministic service guarantees for NAND flash using

partial block cleaning,” in CODES+ISSS, 2008.

[2] Z. Qin, Y. Wang, D. Liu, and Z. Shao, “Real-time flash translation layer for NAND flash

memory storage systems,” in RTAS, 2012.

[3] Q. Zhang, X. Li, L. Wang, T. Zhang, Y. Wang, and Z. Shao, “Optimizing deterministic

garbage collection in NAND flash storage systems,” in RTAS, 2015.

[4] K. Missimer and R. West, “Partitioned real-time NAND flash storage,” in RTSS, 2018.

[5] D.-W. Chang, H.-H. Chen, and W.-J. Su, “VSSD: Performance isolation in a solid-state

drive,” ACM Transactions on Design Automation of Electronic Systems, vol. 20, no. 4, pp.

51:1–51:33, 2015.

[6] J. Huang, A. Badam, L. Caulfield, S. Nath, S. Sengupta, B. Sharma, and M. K. Qureshi,

“FlashBlox: Achieving both performance isolation and uniform lifetime for virtualized

ssds,” in FAST, 2017.

[7] J. Liu, F. Wang, and D. Feng, “CostPI: Cost-effective performance isolation for shared

NVMe SSDs,” in ICPP, 2019.

[8] M. Kwon, D. Gouk, C. Lee, B. Kim, J. Hwang, and M. Jung, “DC-Store: Eliminating

noisy neighbor containers using deterministic I/O performance and resource isolation,” in

FAST, 2020.

[9] R. Liu, X. Chen, Y. Tan, R. Zhang, L. Liang, and D. Liu, “SSDKeeper: Self-adapting

channel allocation to improve the performance of SSD devices,” in IPDPS, 2020.

[10] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, and Arvind, “Application-Managed Flash,” in FAST,

2016, pp. 339–353.

[11] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for hard real-time sys-

tems,” Real-Time Systems, vol. 1, no. 1, pp. 27–60, 1989.

[12] T. Baker, “A stack-based resource allocation policy for realtime processes,” in RTSS, 1990.

[13] C. Liu and J. Layland, “Scheduling algorithms for multi-programming in a hard-real-time

environment,” Journal of the ACM, vol. 20, no. 1, pp. 46–61, 1973.

– 22 –

[14] T. A. AlEnawy and H. Aydin, “Energy-aware task allocation for rate monotonic schedul-

ing,” in RTAS, 2005.

[15] E. G. Coffman, G. Galambos, S. Martello, and D. Vigo, “Bin packing approximation

algorithms: Combinatorial analysis,” in Handbook of combinatorial optimization, 1999,

pp. 151–207.

[16] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor real-time systems,”

in IPDPS, 2003.

[17] M. Spuri and G. C. Buttazzo, “Scheduling aperiodic tasks in dynamic priority systems,”

Real-Time Systems, vol. 10, no. 2, pp. 179–210, 1996.

[18] E. Bini and G. Buttazzo, “Measuring the performance of schedulability tests,” Real-Time

Systems, vol. 30, no. 1-2, pp. 129–154, May 2005.

– 23 –

요약문

플래시기반저장장치에서의실시간 I/O보장을위한동적인 Task-to-chip
할당기법

본논문은낸드플래시기반저장장치 (NAND Flash-based Storage)인 SSD (Solid-

state Drive)에서실시간 I/O작업 (Real-time I/O Request)의최악응답시간을보장

함과동시에비실시간 I/O작업 (Non Real-time I/O Request)의가용대역폭을최대

한 사용할 수 있도록 하는 데에 목적이 있다. 우리는 응답 시간 보장과 대역폭

두가지측면에서보았을때 I/O workload들이플래시칩을공유하는경우와 I/O

workload가고립되는경우사이에 Trade-off가존재함을확인하였다. 우리는해당

Trade-off를고려하여실시간 I/O작업간의동적인분리를통한시간제한충족과

비실시간 I/O작업의동시스케줄링을통한높은대역폭활용을실현하는새로운

실시간 I/O스케줄링프레임워크 (Real-time I/O Scheduling Framework)를제시한다.

우리는심층적인실험을통해서우리가제시하는프레임워크가 Schedulability와

대역폭두가지모두의측면에서기존의고립기법들보다많은성능향상이있음

을확인하였다.

핵심어: 실시간시스템,플래시기반저장장치

– 24 –

	I. Introduction
	II. Background
	III. Motivation and Problem Statement
	3.1 Motivation
	3.2 Problem statement

	IV. Cluster-based Resource Isolation
	4.1 Task model
	4.1.1 Real-time I/O task
	4.1.2 Non real-time I/O job

	4.2 Schedulability analysis
	4.3 Task-to-cluster allocation for RT I/O tasks
	4.4 Schedule generation for non-RT I/O jobs

	V. Evaluation
	5.1 Extensive simulations
	5.2 Case study

	VI. Conclusion and Discussion
	References

<startpage>12
I. Introduction 1
II. Background 4
III. Motivation and Problem Statement 6
 3.1 Motivation 6
 3.2 Problem statement 8
IV. Cluster-based Resource Isolation 10
 4.1 Task model 10
 4.1.1 Real-time I/O task 10
 4.1.2 Non real-time I/O job 12
 4.2 Schedulability analysis 12
 4.3 Task-to-cluster allocation for RT I/O tasks 13
 4.4 Schedule generation for non-RT I/O jobs 15
V. Evaluation 17
 5.1 Extensive simulations 17
 5.2 Case study 20
VI. Conclusion and Discussion 21
References 22
</body>

