creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis
44 SR

DQN Learning Approach to Scheduling in
Multi-job Production Systems

of.
>
i
%

Jinyoung Kim(7 %l

Department of Information and Communication Engineering

AREAGATAAT
DGIST

2020

Master’s Thesis
44 SR

DQN Learning Approach to Scheduling in
Multi-job Production Systems

of.
>
i
%

Jinyoung Kim(7 %l

Department of Information and Communication Engineering

AREAGATAAT
DGIST

2020

DQN Learning Approach to Scheduling in
Multi-job Production Systems

Advisor: Professor Kyung-Joon Park

Co-advisor: Professor Yongsoon Eun
by
Jinyoung Kim

Department of Information and Communication Engineering

DGIST

A thesis submitted to the faculty of DGIST in partial fulfillment of the requirements for the
degree of Master of Science in the Department of Information and Communication Engineer-

ing. The study was conducted in accordance with Code of Research Ethics [[]

11. 17, 2020

Approved by

Professor Kyung-Joon Park (Signature)
(Advisor)
Professor ~ Yongsoon Eun (Signature)

(Co-Advisor)

Declaration of Ethical Conduct in Research: I, as a graduate student of DGIST, hereby declare that I have
not committed any acts that may damage the credibility of my research. These include, but are not limited to:
falsification, thesis written by someone else, distortion of research findings or plagiarism. I affirm that my thesis

contains honest conclusions based on my own careful research under the guidance of my thesis advisor.

DQN Learning Approach to Scheduling in
Multi-job Production Systems

Jinyoung Kim

Accepted in partial fulfillment of the requirements

for the degree of Master of Science.

11. 17. 2020
Head of Committee Prof. Kyung-Joon Park (el)
Committee Member Prof. YongsoonEun (9J)

Jihwan Choi (o)

|

Committee Member Prof.

7 Z 9. Jinyoung Kim. DQN Learning Approach to Scheduling in
MS / 1C Multi-job Production Systems. Department of Information and Com-
201922011 munication Engineering. 2020 . 25p. Advisor Prof. Kyung-Joon Park.
Co-Advisor Prof. Yongsoon Eun

ABSTRACT

Multi-job production is a class of manufacturing systems that produce different prod-
ucts within the same production system. These systems are widely used in production
assembly, and becoming a trend with smart factories. In this paper, we propose a Deep-Q
reinforcement learning driven scheduling algorithm for multi-job production. In particu-
lar, we take into account machine breakdown and production plan change as the inputs of
the learning process, which are typically considered as unexpected situations in previous
studies. We validate the proposed scheme with real data collected for 6 months between
May and October 2019 from a tier-1 vendor of a world top-4 motor company. Our case
study shows that the proposed scheme improves the throughput of the production line by

37% compared to the conventional rigid method.

Key words: Multi-job line, production scheduling, reinforcement learning, data process-

ing, flexible production systems.

Contents

[Abstract]

[List of Figures|

[List of Tables|

[Notation, Symbols, and Acronyms|

(1 _Introduction|

2 Related Workl

[3 Target Manufacturing System|
[3.1 Data Processing|

[3.4 Scheduling Problem|. 0000000

4 Deep-Q Scheduling]
(4.1 Agent and Environment of RL|,
4.2 States, Actions, and Rewards| 0oL,
[4.3 lTramning Method|o

ii

iv

vi

10
11
12
12

> Experimental Results|

[>.1 Data Sets and Iraining Details|

6 Conclusions|

(Bibliography|

ERuea

iii

20
20
21

25

26

29

List of Figures

(3.1 Comparison of production schedules. (a) Rigid schedule. (b) Flexible schedule] 6
[3.2 "T'hroughput comparison between rigid and random scheduling for multi-job |

production. (a) Bottleneck simplex. (b) Throughput,| 7
[3.3 An example of raw-data]o L 7
[3.4 WIP of the assembly line|, 8
[3.5 An example of the machine parameters| 9
[3.6 An example of bufferdata] o000 10
[3.7 Structure of the assembly line.|. 0000 11
[3.8 Distinctive process pattern between Mz and Mgl 12
4.1 Overall framework of the learning process.| 15
[b.1 Tramming and validation results of episode accumulation.|. 20
[5.2 Change of performance according to the volume of production.|. 22
[>.3 Blockage comparison for each machine by method.|. 23
[>.4 Starvation comparison for each machine by method. 23

v

List of Tables

(4.1 Components of a statel L

[>.1 Hyperparameters tor RL|

[5.2 "T'hroughput of rigid, random, and proposed scheduling|

Notation, Symbols, and Acronyms

Symbols

M;

t-th machine in the production line

average up-time

average down-time

efficiency of the machine

the total number of machines in production line
the total capacity of buffers in production line
the number of product models

t-th product model in N

the set of all J;

output goal of J;

current output of J;

the set of product model J; which is G; > S;
behavior pattern that machine z and y work

time to accomplish the goal G; for every J;

vi

Notation

e The difference between the training phase and the validation phase is the presence

or absence of exploration.

e In the random scheduling method, model is selected according to ratio of remaining

items.
Acronyms
[oT internet of things
RL reinforcement learning
Al artificial intelligence
DQN deep-q network
AMHS automated material handiling system
RFID radio frequency identification
WIP work in process

NN neural network

vii

1 Introduction

Smart factories are being widely deployed with the development of the Internet of things,
5G, big data, and most of all, artificial intelligence (AI) and machine learning (ML) [1,2].
Governments are in the process of preparing for Industry 4.0, starting from Germany [3].
Companies are also making efforts to implement smart factories to obtain a variety of
benefits such as production flexibility, improved output capacity, reduced set-up cost and

fewer errors and machine downtimes, and so on.

Efficient production scheduling is crucial for improving the throughput of the pro-
duction line without structural change in the line. Since most manufacturing schedul-
ing problems are NP-hard, it is difficult to derive optimal solutions within a reasonable
time [4]. Furthermore, scheduling is getting more complex with multi-job production,
which produces different products within the same production system. Multi-job produc-
tion systems are widely used in production assembly, and becoming a trend with smart
factories. In order to tackle the complex production scheduling problems, ML techniques
are introduced [5]. Among the scheduling problems, those formulated as a Markov de-
cision process can be solved with reinforcement learning (RL) [6]. Recently, the Deep-Q

network reinforcement learning is applied to the scheduling problem |7-9).

One of the most critical issues in ML-driven production scheduling is how to deal with
change in production schedules and machine breakdown, which are typically considered as
unexpected situations. Recently, as the potential for rescheduling due to external factors
increases, the importance of coping with changes in production schedules has emerged as

a critical issue

In this paper, we investigate a multi-job scheduling problem. More specifically, the

contributions of the paper are as follows:

e We propose a Deep-Q reinforcement learning driven scheduling algorithm for multi-
job production systems. Unlike existing studies, we additionally take into account
both machine breakdown and production plan change as the inputs of the Deep-Q

network.

e Based on real factory data collected for 6 months from a tier-1 vendor of a world top-
4 motor company, we validate our proposed scheduling scheme. Our case study shows
that the proposed algorithm improves throughput performance by 37% compared to

the conventional rigid approach.

The rest of the paper is organized as follows. Section II reviews related work. We
introduce details of the production line and the data processing and formulate the overall
scheduling problem in Section ITII. We introduce the Deep-Q reinforcement learning model
in Section IV. We present performance evaluation in Section V. Finally, our conclusions

follow in Section VI.

2 Related Work

There are multiple approaches to improve the throughput of the production line. One
way is to change the structure of the production line such as the size of the buffers [10].
Due to space limitations and budget issues, it is difficult to change the line structure in
practice. Another approach for increasing the throughput without structural change is
efficient scheduling, which applies to various industries |2}/ 11-14].

It is possible to derive the optimal solution for scheduling of a simple process involving
only one machine [13]. However, the optimal solution for a production line in practice is
typically too complex to obtain the optimal scheduling within a reasonable time [5,[12].
Consequently, machine learning is introduced to tackle this problem. Genetic algorithm
is a typical example [5]. Recently, after the development of Deep-Q) reinforcement learn-
ing |15], Deep-Q-based methods are widely used [2}/7,8,/11,(13].

The main objectives of the existing Deep-Q based scheduling studies are as follows. In
job-shop scheduling, the order of the workplace reservation is determined by considering
waiting operations, setup status, action history, and utilization history |7]. The automated
material handling system (AMHS) scheduling problem considers the remaining processing
time, facility states, transportation time and traffic congestion, work-in-process distribu-
tion, and intermediate buffer states to determine the appropriate vehicle and route [8]. In
the chemical process, the order of work is decided by considering resource and inventory,
demand and transition losses [9]. However, all these studies do not explicitly consider
machine breakdown, which occurs frequently [10].

As mentioned above, many existing studies contribute to improving production through-
put by adopting machine learning techniques. However, the breakdown of the machines,
which significantly affects the throughput of the production line, is not properly consid-

ered. Therefore, the existing ML-driven scheduling methods have limitations for applica-

tions in practice. Unlike these studies, we collect real factory machine data through RFID
sensors and propose a Deep-(Q RL based multi-job scheduling algorithm that considers

machine breakdown information obtained by processing the collected data.

3 Target Manufacturing System

The plant covered in this study is that of an auto parts maker, which is a tier-1 vendor
for one of the world top-4 motor companies. We investigate a newly introduced assembly
line of the plant. We collect data of the line from May to October of 2019. We explain
in detail the way we process the collected data. According to the results obtained by
processing the data, the scheduling in the plant does not change until the production goal
is achieved. This is a simple rigid schedule system, which is actually inefficient in terms
of throughput performance. In fact, a multi-job line that produces multiple products in
random order may give higher throughput than rigid scheduling [16].

Fig. shows an illustrative example. A multi-job line that produces model A, B, and
C gives higher throughput when it schedules models in random order (Fig. [3.1(b)) than
when it produces models in a fixed order (Fig. [3.1j(a)). Fig. shows the throughput of
random scheduled multi-job line according to the job ratio r; and ry [16]. The r; and ry
are the ratios of models A and C and models B and C, respectively. The dotted triangle
is the throughput of the rigid scheduled multi-job line. As shown in Fig. (b), in a
random schedule, the job that has the greatest effect on the bottleneck determines the
multi-job line’s throughput, and has higher throughput than the rigid schedule.

3.1 Data Processing

The data from the assembly line is collected every second by RFID sensors [17]. Fig|3.3|is
a part of the raw-data. To comply Non-Disclosure Agreement, information about specifi-
cations and models is excluded. The collected data includes information on the machine
status, pallet number, inspection status, work required time, logging time, vehicle model,

part number, and specifications. Data is saved in a csv file format each hour. Information

Model A

Model B

(a)
el N
Model B

NN B

(b)

Figure 3.1: Comparison of production schedules. (a) Rigid schedule. (b) Flexible schedule

0.8

0.6 Model B .
. o4
Tz 33'
0.4 n‘?‘
[
0.2
0
0 02 04 06 03 1
L]

(a) (b)

Figure 3.2: Throughput comparison between rigid and random scheduling for multi-job produc-

tion. (a) Bottleneck simplex. (b) Throughput.

ITﬂr !ﬂi L L] Sy 4 2HE AlduHERHuE B o ShASrY 4B AdwsEskoyE BH o SHASERY 25T AdueekoyE L or SUEEERY
EIE=] | I | £ HEES =7 RHEN oo LT} 2001 - B GEE O 131 21m02 B a¥: 385 REwiE ok "z 22w
mreas el Hida 7 REEN o [T 28200 6 Tapd o [ET3 1m0 BE AN 35 Lowd o nz 2w
[R5 18 LEEE] Y REEN O (1] 2800 ME REEE O 136 1:02 B AST 1 REEE Ok nz 143
[mreasg I I e L] 7 REEN o LT 28201 6 awdE O 136 Tap0y BE AN 85 RE0N Ox LLF 8%
sz & Mmae T eNE mHH [2 8201 M6 SN OF 136 e B8 AT 38 REON 0K 1z 243
s 8 LEEN] Y ENE MO 1 28000 ME EAN oK 136 1507 BRAST MI@kE LRGN [T 143
s e Mma M eME LM z 2 8001 M6 &2l Or 136 102 GEaH: We@RE LEGH 15 283
e | [] 8 Hmee M ENE a0] 28000 MEREE BHO ol 1501 GRS MERRE UGN 11 14w
a5 e Hmee MeNE BN 4 2001 MTEME BaO 14 1m0l GmAST M@k LaGH 15 1am)
s e Mm M eNE o 5 28001 MTRNE SO 24 1802 Gmas: we@be HmO) as 2430
sl e M HENE O [28000 MTEMR SaO 34 1801 GmAST BEEEE HNGH 55 1ax)
ases: [[] e m M eNE o {F] 28001 MTENR SN 1807 Gmas: we@be HmOr 65 2430
Tmeas #18 P HENE o«] 28001 MY ENE SO 140] Gm AR WS ESA HmOT 15 14w
Tmresl e W HENE O [280 MTEMR BaO 180] G AH WSEEE BT [T} 143
Tampas e PrEe e NREA O [T MTENE SEGA 10 Gm A MRN8 O s 24w
Fareas I I £ L L oK L) 2801 HIEME BEON el B AEC BEEA 0K 1ok ey
Fameasa e LLEE) o (1] 28300 MIEHE SO 1a01 Gmas WeRNE 0K ns Tam
e | 1 =it nE e o (1] 28001 MTEME SHOA 14203 GBS s MEEE Ok s Tam
[e-as-d #ig L LT (=1 *3 2 80 MTENE O P B M wEEE 0K g ey
Jrgas-d Rl HE A= o) 2 8301 MTEME O 801 R A M6 wgmE 0K s 8%
[mneasd 1nn R) o 2 101 MTEHE 00 1001 BRAS M EEHE 0K 14 a0
el I g LT (= L1 EL NI EEER O el B A Mg REEE 0K g AR
el e HE s a2) 4 8301 NI EEER O 1801 RF A M6 wERE 0K na & A
pull S] #ig HEa= a2 an EL NI EEEE O dei-l B AHC Mg REEE 0K g & am
[ampasg 1in e MEaE w2 18 2000 N7 REERE OF 1800 0B AW 6 wEEE OX na ram
:NIHI‘H I I Rl HEsE L L E FL) 4 #4301 NI REER O a1 23 2¥ M REOA 0K na &
CHneas-d g HE s L TR 4l 2 #2-1 MY EEAA O el BB AW M REUA O i & ax
-l Rl HEss o s 4 #4301 N7 EEan O 1401 BE oW Mo E2bE wIEn o4 &
Jaonses2 [T e WRER E 5o 20201 T EEAA OF 1002 BBAH W SN BEW 4 2030
el I I Rl HEsE (=4 a 2 #21 NrENE ByOn a 1ot BB AN M ENEG BYGN 24 & X
JEreas-d o HRaE [0 1] 28000 nrENg EaO LF] 16303 BB AW nrTEEs HE T 1am
el 1 HEsE [a 2 #21 mENg =EON 2 1e-l 2R AN N EEG HYGH a4 &
fsesa 1] DD »¢ wmsa o a1 20201 HeENE BEC 7] 1e02 EBAM w1 eNg mEO 54 140

Figure 3.3: An example of raw-data

WIP

I A TN P

Time(hour)

Figure 3.4: WIP of the assembly line.

about each of the machines on the line, the produced item and buffer was obtained by

processing these csv files.

3.1.1 Work Time

Because data is collected 24 hours a day, it also includes information when the plant is
shut down. Fig. [3.4] shows work-in-process (WIP) of the assembly line for a day. from the
figure, we can find when the line is interrupted. Causes of interruption include worker
break times, machine breakdowns, and product changes. We need to distinguish whether
the plant interruptions are intentional or not. This is because intentional interruptions
are not taken into account when calculating the efficiency of machines. By comparing the
work hours of several work days, we distinguish actual work time. Interruptions within
the common work schedule are judged to be unintentional interruptions. The line at
the bottom of the graph in Fig. [3.4] is the work time of the factory. Therefore, it is an
unintentional stoppage of the production line that the work-in-process becomes zero above

this work time.

3.1.2 Machine Parameters

There are several parameters that can specify the nature of the machine [1§]. In this paper,
cycle time, average up-time, average down-time, and efficiency are extracted from factory
data and used for the regularization of production items and simulation environments.
The products are produced during the corresponding work performed on each machine
for a certain period of time. This time is called the cycle time. Different types of production
items have different cycle times on the machine. In real data, the amount of time that

an item stays on the same machine, even when the same operation is repeated, is not an

Index average_uptime average_downtime machine ct
8 days @ days 218 8 days
29:24:83.0000.. 90:00:00.000000.. 98:980:14.000..
@ days @ days #20-1 @ days
80:24:03.0800.. ©0:02:00,.208000.. 98:80:15.800..
@ days @ days 47932 @ days
2@:24:10.00020.. 20:00:00,000000.. 28:00:12.000..
2 days 8 days 230 9 days
28:24:20.5000.. 00:00:00.000000.. 89:00:17.000..
2 days @ days 240 @ days
B8:24:29,5080.. 90.00;00.000000.. 28:80;13.800..
2 days 8 days s50.1 @ days
88:24:40.0000.. 00:00:00.000000.. 06:00:19.006...
2 days @ dayvs 2582 © days
B8:24:48.0860.. ©0:008:00.008000.. 98:80:13.800..
8 days @ days 260 8 days
2@:24:57.5000.. 90:00:00,000000.. 29:00:14.000..
@ days @ days #70-1 @ days
808:11:59.7580.. ©0:08:45,.666565.. 98:80:15.800..
@ days @ days 792 @ days
20:12:84,2500.. 20:00:45,666666.. 28:00:17.000..
2 days @ days 250 @ days
88:25:29.5000.. ©0.00:00.000000.. 29:008:12.800..
2 days @ days s0p @ days
80:26:28.5000.. ©0:008:00.000000.. 98:080:16.800..
8 days 8 days 2108 8 days
88:26:36.5000.. ©6:00:00.000000.. 06:00:15.000..
2 days 8 days 118 @ days
B0:26:45.5800.. ©0:00:00.008000.. 98:80:17.800..
@ days @ days 2120 @ days
20:26:54.5000.. 20:00:00.000000.. 99:00:25.000..
8 days 8 days #130 8 days
208:27:10.5000.. ©0:00:00.000000.. 28:00:15.000..
@ days 8 days #1408 @ days
2@:27:16.5880.. 90.00;020.000000.. 28:80;34.800..
2 days @ days 2158 e days
B8:27:42.5000.. ©0.00:00.000000.. 20:00:38.800..
2 days @ days 2160 @ days
80:27:54.5000.. ©0:00:00.000000.. 88:80:16.8200..
8 days @ days 2178 8 days

28:46:35.5000.. 80.00.:00.000000.. B88:008:18.068..

Figure 3.5: An example of the machine parameters

bufferl3

bufferls

6 !LO(I)GO 2 OCI)GO 30600 40600 500‘00 60 t.':-OO 700‘ o0

Figure 3.6: An example of buffer data

exact constant value. The cause may be defective product, machine breakdown, blockage,
etc. In order to deduce an accurate cycle time, the minimum value was obtained from the
data when no issues such as machine breakdown or blockage.

Blockage, starvation, machine breakdown can stop the machines, but among these,
blockage and starvation are flow problems so do not affect the down-time of the machine.
Hence, only machine interruptions due to machine breakdown are counted as down-time.
Up-time is defined as the period between down-time and the next down-time. All down-
times and up-times are measured for each machine, and the average down-time and average
up-time are calculated. A machine’s efficiency e is calculated as e = u/(u + d) when w is
the average up-time and d is the average down-time.

Fig [3.5] shows an example of machine parameters form the processed data. There are
average up-time, average down-time and ct for each machine. The e is efficiency which is

calculated from average up-time and average down-time.

3.1.3 Buffers

The buffer is the space between machines where the product can wait. The fig[3.6)shows an
example of buffer data. It show how many units stay in the buffer according to time(s).
The maximum capacity that can store the product for each buffer is determined. The
capacity of the buffer can be inferred through the difference between the serial numbers

of the products in progress for each machine. The following is the structure of the factory

10

~T010101010ielo=e=@|2
@ !

SO O RO
Figure 3.7: Structure of the assembly line.

and the capacity of the buffer obtained by analyzing the data.

3.2 Factory Description

The assembly line consists of 20 machines and 19 buffers. Workers put products into
My and collect finished products from M. The product is transported by a pallet, and
the pallet is collected at Mg and moved to M;. There is no loss of productivity due to
insufficient or excessive number of pallets. Defective products are removed from M;; and
M.

Fig. 3.7 shows the structure of the assembly line. The circles and squares indicate
machines and buffers, respectively. The numbers in the circles and squares denote the
order of work and the capacity of the buffer. M; means the i-th machine. The machine
colored black eliminates defective products. The valve symbol between My and My

represents the branches of the pallet carrying goods.

This assembly line is capable of producing various models. When the model is changed,
the RFID tag containing information about the target production model is put on the
pallet and passed through the machines, and the machine reads the information and

automatically changes the settings.

11

O 5,08, 000,050

Pattern 1 | 19 9.6 29.4 9.2
| 15.7 12.8

Pattern 2 5.5 18.5 5.5 30.4

Figure 3.8: Distinctive process pattern between M5 and Mig.

3.3 Distinctive Feature of the Line

A distinctive behavior pattern on the assembly line exists between M5 and Mig. Because
the assembly line is not designed to operate in parallel due to budget and space issues,
instead it is designed by connecting machines doing the same work in series. M;5 and
Mg, M7 and Mg are pairs that each handle the same task. Fig. shows the cycle
times of machines My, - - - , Myg. Except My, and Mg, all the other machines M5, Mg,
M7, and Mg have two cycle times. In Pattern 1, the products are assembled at M5 and
M7, and just pass Myg and Mig. The opposite occurs in Pattern 2. Since the same task
is performed, the cycle time of Mi5 in Pattern 1 and the cycle time of Mg in Pattern 2

are the same.

3.4 Scheduling Problem

The problem dealt with in this paper is to select the model to be the next input and the
working machine between M5 and Miy. The total number of machines in the assembly
line is expressed as Ny, the total capacity of the buffer Ng, and the number of product
models is expressed as V;. The i-th product model in N is expressed as J;, and the cycle
time of J; in My, is expressed as ct(J;, My). When the output goal of J; is G; and the
current output of J; is .S;, the set consisting of all J; is defined as .J, and the set consisting
of J;, which is G; > S;, is defined as A.

Behavior patterns are organized into four categories. When we define the pattern work-

il’lg in Mx and My in M15, ce ,Mlg as P(%y), the possible pattern is P(15’17),P(15718),P(16717)

12

or P6,18). This pattern is applied after M5, but since the machine’s setting in the factory
is determined by the RFID tag inserted in M, the production model selection and pattern
selection must be made at the same time. In summary, the problem to be solved in this
paper is to select the model and pattern to be invested to minimize T', which is the time

to accomplish the goal G; for every J;.

13

4 Deep-QQ Scheduling

In this section, we introduce a scheduling method based on deep Q-network. By processing
the data obtained from the factory, we build a virtual production line. Then, we train the
deep Q-network in the virtual production line. Fig. shows the structure of the overall
process. The virtual production line is a discrete-time event simulator, which provides
the state of the production line to the Q-network and receives an appropriate model and
pattern.

The reinforcement learning method used here, the deep Q-network, is introduced
in [15]. The states and rewards of the production line caused by the production mod-
els and behavior patterns determined through the Q-network are stored as a set in the
replay buffer. When the amount stored in the replay buffer exceeds a certain level, a ran-
domly selected set is used for learning. For the stationary target network, the weight of
the Q-network is periodically copied to the target Q-network. The model with the best
performance in the learning process is saved and used in the simulation phase to evaluate

performance.

4.1 Agent and Environment of RL

In reinforcement learning, the agent takes action on the environment and learns by feed-
back on it. Here, the environment is production line which consists of 20 machines and
19 buffers as introduced in Section III, and has the same constraints as the actual pro-
duction line. Based on the machine efficiency obtained by processing the data obtained
from the factory, the breakdown event of the machine is implemented according to the
exponential model.

In this section, we explain the process of deep-Q learning. The agent selects the ac-

14

. State N < Updated weights
Production line | 2., Data Machine parameters, | Virtual Q-network
processing Buffer capacities Production line
Action
Learnin
State, Action, Seward, Next state Weights. Losslvalue N ' g
algorithm
Target
Replay buffer g
-networl
Q-net k

Minibatch ftransitions

Figure 4.1: Overall framework of the learning process.

tion with the highest Q-value by entering the state of the environment into the neural
networks (NN) of the Q-network. The NN is suitable for expressing the possible states of
environment. After taking the action a; in the state s;, the state s; 1 which is returned by
the environment and the reward r;, d; indicating whether production is over are all saved

in the replay buffer as a batch (s;, a;, Siy1,7:, d;)-

4.2 States, Actions, and Rewards

The agent determines the model and pattern to put on M;. Actions can be taken when
M is empty and in up-time. So, the environment returns the next actionable state when
the agent takes an action. For example, if the action is a; = (Ji, Pasa7)), the k model is
put in M, and the put items are operated in M5, My7. And it just go through Mg, Mis.
If an action is possible when the environment is s;, the set of actions that can be selected
is expressed as A(s;). Completed models are excluded from A.

Here, s; contains information about the plant components. Table represents the
state components. The state consists of information on the production items in progress
for each machine, whether the machine is operating, and information on the production
items staying in the buffer. The item’s model and pattern information is expressed as ct
for each machine. With this notation, additional learning or regularization is not required
even if there are unlearned items in the line. Also, this can be applicable to buffers.

If there is no item remaining in the buffer or machine, it is expressed as a zero vector
of the same dimension. Residual time means the additional amount of time the machine
has to work. When residual time is zero, the machine discharges the item to the next

buffer. If the machine is in down-time, residual time does not decrease. Residual time is

15

Table 4.1: Components of a state

Features Descriptions Dimension

Information on item

being worked on the 9
Item (N]W)

) machine containing
Machines
ct with patter applied

The time left

Residual time for the machine Num

to finish its job
Whether the

Breakdown Ny
machine is broken

Information on item
being stay in the buffer
Buffers Item N X Ny
containing ct with

pattern applied

Models Stock Remaining work by model Ny

also expressed as zero when the machine can not discharge items because of a blockage.
Breakdown is expressed by 0 or 1, indicating whether the machine is broken or not,
respectively.

The reward is determined according to the item released by My, between s; and s;4;.
Rewards are determined for items discharged by My between s; and s;,1. The sum of the
rewards must fit well with the objective function. Therefore, the sum of rewards should

be designed to minimize 7. Hence, we have the following relations:

Ny
CT, =Y ct(Ja, My), (4.2.1)
=1
07 Nout =0
712, — Nout (422)
Z _(Tout(Jk) - Tin(Jk> — CTk) Nout > 0.

k=1
Equation (4.2.1)) corresponds to the sum of J,’s every cycle time for each machine. N,
is the number of items discharged between s; and s;,1. In (4.2.2)), we can notice that r; is

a negative value of the sum of the total delay times of the items emitted between s; and

16

Si+1- The sum of rewards R is represented as follows:

Gi

Ny
R = ZZ Tout zk) Tzn(Jz k) CTZ k) (423)
i=1 k=1
The total production time is the sum of the total C'T" and the delay time. So, minimizing

the delay time minimizes the total production time 7.

4.3 Training Method

We use a fully connected NN to Q-network in the learning phase. Furthermore, to solve
the problem of correlations between samples and non-stationary targets, a replay buffer
is used and the target network is separated from the Q-network [15]. The state containing
the machine and line information is put into the Q-network as an input, and the Q-value
for each action to be put next time is returned as an output. The Q-value of a; in s; is
represented as Q(s;, a;; 0) in the Q-network with weight 6. As mentioned in Section IV it is
designed by a single agent, since the model and pattern should be decided simultaneously.
Thus the dimensions of the Q-network’s output is the multiplication of N; and Np.
Algorithm [I] describes the learning method used to solve the selection problem. The
process of Lines 6-16 of Algorithm [I which determines the production models and pat-
terns to be put in, is performed in a state when M; accepts the next item. We implement
a virtual production line based on the openAl qym’s structure [19]. The e-greedy policy
is introduced in Line 4. As the episode progresses, € decreases, but the minimum of € is
set to keep exploring. In Lines 6-16, the action which has the highest Q-value is selected
and progressed. In Lines 9-12, previous state s;, next state s;.1, reward r; and mask d;
are stored in replay buffer B as a transition (s;, a;, i, Si+1, d;) after taking an action.
Lines 17-25 correspond to a learning process in which the weight 6 of the Q-network
is updated. For acceleration, learning takes place N, times for an episode. For effective
learning according to Line 18, the size of the replay buffer needs to be large enough.
Randomly selected transitions in the replay buffer are used for learning, due to the problem
of correlations between samples (Line 20). The largest Q-value in the sampled transition
is g, (Line 21). The next state s;’s maximum Q-value is calculated using the target

network for a stationary target (Line 22). Loss [is obtained by using a smooth L1 function

17

Algorithm 1 Selection With @Q-network
Input: Selection problem

Output: Q-network

Initialization: Set Q-network with random weight 6, target network Q with 6 and size Np
buffer B
fore=1,2,..., Ng do
Reset line consisting of Na;,Np and Np
e = max(0.01,0.08 — 0.01(e/200))
i=0
while Np#Ng do
Observe s;
x < random value between 0 and 1
if x < e then
Select a; in randomly in A
else
a < argmaxQ(s;, a;; 6;)
end if
Put a; in line
Observe 1y, Si+1,d;
Store transition (s;, a;, 7, Si+1,d;) in B
end while
if Size of B > Ny, then
fort=1,2,..., Ny do
Sample transitions (Sy, Gy, Ty, Sut1, dy) EB
Qu < Mazq, Q(Su, au; 0u)
Yu =Ty + 7 * maxg,,, Q(sit1,aii1;0y) * d;
Calculate loss L from (4)
Perform gradient descent step on L with respect to 6
end for
end if
replace Q = (@ every N, episodes
end for

return @Q-Network =0

18

(Line 23) [20] as follows:

05<yu - Qu)27 1f|yu - Qu| < 1
f W u) = ‘ (4.3.1)
|y — qu| — 0.5, otherwise.
The weight 6 is updated with [(Line 24). For target stationary, target network is
copied Q-network at intervals of N, episodes not every episodes (Line 27). Learned Q-
network model is returned after learning is completed. Here, we evaluate the method with

the model which gives the best performance in the learning process.

19

5 Experimental Results

5.1 Data Sets and Training Detalils

The data used for training is based on the actual factory production schedule. The pro-
duction line produces 41 kinds of models. The @-network is trained by ADAM by a
gradient decent algorithm. In addition, the hyperparameters used in the experiment can
be found in Table 5.1l

The training process is divided into training and validation segments. In the validation
process, since € is 0, no exploration is performed and only the performance of the Q-
network is verified. Thus, the results of validation are not used for training. Fig. .1 shows
the learning and validation results with the accumulated episodes. As learning progresses,
it can be seen that the completion time tends to decrease, and also it can be seen that
the performance of the training result including exploration is better at the beginning
of training. However, after ¢ decreases, no difference is observed between training and

validation. In the process of training 4,000 episodes, the 3884-th model, the network

' . —— fraining
250000 . validation

240000

230000 1

210000 1

Completion time {s)
r
L]
[=]
=1
=]
[=]

200000 1

120000

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500
episode

Figure 5.1: Training and validation results of episode accumulation.

20

Table 5.1: Hyperparameters for RL

Hyperparameters Value
Numbers of hidden layers 5
Numbers of nodes in each hidden layers | 1240,930,610,320,160
Learning rate of Adam 5x 107%
Discount rate 0.98
Target Q-network update frequency 20 episodes
Replay buffer size 50,000
Minibatch size, Ngr 32
Epsilon convergence 0.01

Table 5.2: Throughput of rigid, random, and proposed scheduling
Method Rigid | Random | Proposed

Throughput (units/min) | 1.43 1.68 1.96
Improvement over rigid | 0% | 17.48 % | 37.06%

model that performed the best, is used for performance evaluation.

5.2 Performance Evaluation

Table shows the throughput of each method to complete the same goal of production.
The rigid method does not change the model until the production goal for each model is
achieved. Random method means that a random model is put into the production line. The
probability that a model is selected depends on the remaining amount for each model.
The results are averaged values over 100 simulations. The proposed)-learning-based
scheduling method increases throughput by about 37% compared to the rigid method
and 17% compared to the random method.

This result indicates that our algorithm makes appropriate choices for each given
state of the line. The result of the random method can be explained as multi-job line
analysis |16]. This assembly line consists of more than 4 machines. In the random method
case, it works as a multi-job line as defined in |16]. A line with more than 4 machines

performs better than the average of simple continuous operations, like the rigid method.

21

z ~@- Proposed method

° > Rigid method
A Random method
14
P o P _ | ®
813
=
1+
=
<]
g A A A A
e AbA
Ny

o 10600 20600 30(500 QDCIICID 50(500
Production volume (units)

Figure 5.2: Change of performance according to the volume of production.

Fig. shows the performance according to the production volume. The performance
was calculated by dividing the throughput of each scheduling method volume by the
throughput of the rigid method at the same production volume. When production ex-
ceeds a certain amount, performance converges. The proposed scheduling method shows
maximum performance when the production volume is less than about 1800 units. When
producing less than 1800 units, the improvement effect is close to 50. The actual assem-
bly line produces less than 300 units while it is start and stop. Thus, if the proposed
scheduling method is applied to an actual factory, a higher throughput can be expected.

We compare the blockage and starvation time of each machine to analyze the per-
formance of the proposed model in detail. A blockage occurs when an item cannot be
released because the next buffer is full, even though the machine has completed its oper-
ation. A starvation is a state in which the machine cannot perform any work even though
the machine is up-time and empty, because the buffer is empty. Fig. [5.3| and Fig. are
comparisons of the blockage and starvation for each machine, respectively.

Overall, the machines with larger numbers tend to have smaller blockage time and
larger starvation time. In most of the machines, our methods result in less blockage and

starvation. In the proposed method, the blockage in M5 and M,; are larger than those

22

175000

150000 1

125000 1

Time(s)

200000

100000 1

T T T
BN Proposed method
S Conventional method

M1 M1 M1Z2 M13 MI14 MIZ Mle ML7
Number of machine

Figure 5.3: Blockage comparison for each machine by method.

Mlg M1% M20

175000

150000

B Proposed method
1l mm o

b

| method

125000

100000

Time(s)

75000

50000

25000

0

M1

M2 M3 M4 M5 M& M7 Ma Ma M0 M1l M2 MI3 M14 MIS Mle MIT
Number of machine

Figure 5.4: Starvation comparison for each machine by method.

23

M1E M1 MZD

in the existing rigid method. The same is true for starvation. The starvation time in our
method is longer than the rigid method in M5 and M;y;. Also, Mg and M;g show the
largest reduction rates among all the machines in both blockage and starvation.

Mis, Myg, M7 and Mg are machines involved in the behavior pattern of this line. The
method we propose reduces the overall blockage and starvation by selecting the appropri-
ate model to be used. On the other hand, by using behavioral patterns, the blockage and

starvation of M5 and M, are sacrificed to decrease Mig and Mg dramatically.

24

6 Conclusions

In this paper, we have studied the problem of multi-job production. In particular, we
have presented a selection problem that combines input model selection and production
line behavior patterns. We have applied the deep-Q reinforcement learning (RL) method
to attack the problem. Based on the real factory data collected for 6 months, we have

established an experimental environment for training and evaluating the Q-network model.

25

Bibliography

[1]

2]

13

4]

15]

[6]

17l

8]

J. Wan, S. Tang, D. Li, M. Imran, C. Zhang, C. Liu, and Z. Pang, “Reconfigurable
smart factory for drug packing in healthcare industry 4.0,” IEEE transactions on
industrial informatics, vol. 15, no. 1, pp. 507-516, 2018.

C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu, “Smart manufacturing schedul-
ing with edge computing using multiclass deep Q network,” IEFE Transactions on
Industrial Informatics, vol. 15, no. 7, pp. 4276-4284, 2019.

G. Biichi, M. Cugno, and R. Castagnoli, “Smart factory performance and industry
4.0, Technological Forecasting and Social Change, vol. 150, no. 119790, 2020.

C. Dimopoulos and A. M. Zalzala, “Recent developments in evolutionary computa-
tion for manufacturing optimization: Problems, solutions, and comparisons,” IFEFE

Transactions on FEvolutionary Computation, vol. 4, no. 2, pp. 93-113, 2000.

F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for the flexible
job-shop scheduling problem,” Computers € Operations Research, vol. 35, no. 10, pp.
3202-3212, 2008.

R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning. MIT press
Cambridge, 1998, vol. 135.

I. Park, J. Huh, J. Kim, and J. Park, “A reinforcement learning approach to ro-
bust scheduling of semiconductor manufacturing facilities,” IEFE Transactions on

Automation Science and Engineering, vol. 17, no. 3, pp. 1420-1431, 2020.

H. Kim, D.-E. Lim, and S. Lee, “Deep learning-based dynamic scheduling for semicon-

ductor manufacturing with high uncertainty of automated material handling system

26

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

capability,” IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 1, pp.
13-22, 2020.

C. D. Hubbs, C. Li, N. V. Sahinidis, I. E. Grossmann, and J. M. Wassick, “A deep
reinforcement learning approach for chemical production scheduling,” Computers &
Chemical Engineering, no. 106982, 2020.

X. Xie and J. Li, “Modeling, analysis and continuous improvement of food produc-
tion systems: A case study at a meat shaving and packaging line,” Journal of Food
Engineering, vol. 113, no. 2, pp. 344-350, 2012.

X. Ou, Q. Chang, J. Arinez, and J. Zou, “Gantry work cell scheduling through rein-
forcement learning with knowledge-guided reward setting,” IEFEE Access, vol. 6, pp.
14699-14 709, 2018.

M. Saidi-Mehrabad and P. Fattahi, “Flexible job shop scheduling with tabu search al-
gorithms,” The International Journal of Advanced Manufacturing Technology, vol. 32,
no. 5-6, pp. 563-570, 2007.

J.-H. Lee and H.-J. Kim, “Analysis of backward sequence for single-armed cluster
tools with processing time variations,” IFEE Transactions on Automation Science
and Engineering, vol. 17, no. 4, pp. 2167-2174, 2020.

Y. Fang, C. Peng, P. Lou, Z. Zhou, J. Hu, and J. Yan, “Digital-twin-based job shop
scheduling toward smart manufacturing,” IEEE Transactions on Industrial Informat-
ics, vol. 15, no. 12, pp. 64256435, 2019.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, 2015.

P. Alavian, P. Denno, and S. M. Meerkov, “Multi-job production systems: Defini-
tion, problems, and product-mix performance portrait of serial lines,” International
Journal of Production Research, vol. 55, no. 24, pp. 7276-7301, 2017.

27

[17] J. Feng, F. Li, C. Xu, and R. Y. Zhong, “Data-driven analysis for rfid-enabled smart
factory: A case study,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, vol. 50, no. 1, pp. 8188, 2020.

[18] J. Li and S. M. Meerkov, Production Systems Engineering, 2008.

[19] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

[20] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math. Statist., vol. 35,
no. 1, pp. 73-101, 1964.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

28

Qo B

=

HElR ARl ALE A9 Deep-Q 738}ehs 7]
2AET A AT

1FA%, 0T, 5G, AR 5 71459 WH0 = 18] 2n}
F s 94 faolch. olo] met 2t ARE

4 r d — '19_' =
BRE AP} o] F ES A YL QA AvtE el ENERA 43 s
A4 B8 F shitolth o2 9IF cheat AES A 5 9l B 2] A A

A}
(tmulti-job line) o]U} 24¢JA-0] T} clok ¥l7jo] G 2e fAT A Al2E (fexible
production systems) ©| Z3gHby7 Qlc}.
1A% BAL olel@ A ALl] Fag BAlolt), Eelt 24 Al 2do]
AR A 2 SRS AP} R 28 0 A2 2
w2t 24} Ao AA A FAL 4 A =3 A 2AEE A 2=
S A 5&%—% 7]EH??;} T A = Adt. 7]E At /\V\Eﬂﬂr A AAEE BA=
F& NP-hard ZA| 24 X2 o] &84 wWE A|ZF Qto]] =E617] oF7] wizel] WAl
2{do] @ol 857 AT 59| nf2dx A4 e~ 39 7Hset 54wl
ZFetets dejd2 29t DQN(Deep-Q Network) 7} o] o] gF .
AR A A7l A M e g2 A7HE & A AEI7EA 9] ARt &4

o
o

.
il

.

O

e

E|E o]gsto] mAlo] 1S Fdste] o) 13%6& DQN 719t 2A1Ed 24 si2
EE AAR.
A 57 AattRlol A RFIDE 3t Hlol8 & 7hydto] 7] iehd& s

7] 91gh stetul e FEauch Asterele] MAle] W WA AN A A7 Ao
W2 A A7k HRO &3 Fol AN o|S Bl Aarekelel A A Mol
So YT FAS 2 AL WAL ol AT WEFNL T A4 2AEY 2A
2 Aolstleh. WA 2AEY ZAE Ao mgo] 2AH 7] Asteelel A DN
FElEe Ao sae st Ao of 357%2] A4 FAS o FWT
AN HAEY] A FALS AA AT Fmel dEs Wk 2 sl AEt
5 5 el #Eok ARl wek 9% A SeskEon, ¥ AT AN

29

HAEE RSSO S PAEE FHS BT A4 B0 4 Dof w2
AAE HAaEs 2 37% ol e At A& A olE & e Ao Bt

At A wAYSS otetstr] fsh 4 starvation¥} blockageZ} 4%}
ot B4 A1} Eo] Psafe E] FAS ZHE= H Ao A 9] starvation®} blockageZ| Z A ™ Alof
AN

wHlE ge e A Agitetele] A4t e FIARHL 52 5 A

2
E r
1o ™ m[o
i

o
ok

F0019: WElF ohel, AT AAEH, Betety, Hole A, §AT BT A2H.

30

	1 Introduction
	2 Related Work
	3 Target Manufacturing System
	3.1 Data Processing
	3.1.1 Work Time
	3.1.2 Machine Parameters
	3.1.3 Buffers

	3.2 Factory Description
	3.3 Distinctive Feature of the Line
	3.4 Scheduling Problem

	4 Deep-Q Scheduling
	4.1 Agent and Environment of RL
	4.2 States, Actions, and Rewards
	4.3 Training Method

	5 Experimental Results
	5.1 Data Sets and Training Details
	5.2 Performance Evaluation

	6 Conclusions
	Bibliography
	국문초록

<startpage>13
1 Introduction 1
2 Related Work 3
3 Target Manufacturing System 5
 3.1 Data Processing 5
 3.1.1 Work Time 8
 3.1.2 Machine Parameters 8
 3.1.3 Buffers 10
 3.2 Factory Description 11
 3.3 Distinctive Feature of the Line 12
 3.4 Scheduling Problem 12
4 Deep-Q Scheduling 14
 4.1 Agent and Environment of RL 14
 4.2 States, Actions, and Rewards 15
 4.3 Training Method 17
5 Experimental Results 20
 5.1 Data Sets and Training Details 20
 5.2 Performance Evaluation 21
6 Conclusions 25
Bibliography 26
국문초록 29
</body>

