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ABSTRACT

Multi-job production is a class of manufacturing systems that produce different prod-
ucts within the same production system. These systems are widely used in production
assembly, and becoming a trend with smart factories. In this paper, we propose a Deep-Q
reinforcement learning driven scheduling algorithm for multi-job production. In particu-
lar, we take into account machine breakdown and production plan change as the inputs of
the learning process, which are typically considered as unexpected situations in previous
studies. We validate the proposed scheme with real data collected for 6 months between
May and October 2019 from a tier-1 vendor of a world top-4 motor company. Our case
study shows that the proposed scheme improves the throughput of the production line by
37% compared to the conventional rigid method.

Key words: Multi-job line, production scheduling, reinforcement learning, data process-
ing, flexible production systems.
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1 | Introduction

Smart factories are being widely deployed with the development of the Internet of things,
5G, big data, and most of all, artificial intelligence (AI) and machine learning (ML) [1,2].
Governments are in the process of preparing for Industry 4.0, starting from Germany [3].
Companies are also making efforts to implement smart factories to obtain a variety of
benefits such as production flexibility, improved output capacity, reduced set-up cost and
fewer errors and machine downtimes, and so on.

Efficient production scheduling is crucial for improving the throughput of the pro-
duction line without structural change in the line. Since most manufacturing schedul-
ing problems are NP-hard, it is difficult to derive optimal solutions within a reasonable
time [4]. Furthermore, scheduling is getting more complex with multi-job production,
which produces different products within the same production system. Multi-job produc-
tion systems are widely used in production assembly, and becoming a trend with smart
factories. In order to tackle the complex production scheduling problems, ML techniques
are introduced [5]. Among the scheduling problems, those formulated as a Markov de-
cision process can be solved with reinforcement learning (RL) [6]. Recently, the Deep-Q
network reinforcement learning is applied to the scheduling problem [7–9].

One of the most critical issues in ML-driven production scheduling is how to deal with
change in production schedules and machine breakdown, which are typically considered as
unexpected situations. Recently, as the potential for rescheduling due to external factors
increases, the importance of coping with changes in production schedules has emerged as
a critical issue

In this paper, we investigate a multi-job scheduling problem. More specifically, the
contributions of the paper are as follows:
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• We propose a Deep-Q reinforcement learning driven scheduling algorithm for multi-
job production systems. Unlike existing studies, we additionally take into account
both machine breakdown and production plan change as the inputs of the Deep-Q
network.

• Based on real factory data collected for 6 months from a tier-1 vendor of a world top-
4 motor company, we validate our proposed scheduling scheme. Our case study shows
that the proposed algorithm improves throughput performance by 37% compared to
the conventional rigid approach.

The rest of the paper is organized as follows. Section II reviews related work. We
introduce details of the production line and the data processing and formulate the overall
scheduling problem in Section III. We introduce the Deep-Q reinforcement learning model
in Section IV. We present performance evaluation in Section V. Finally, our conclusions
follow in Section VI.
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2 | Related Work

There are multiple approaches to improve the throughput of the production line. One
way is to change the structure of the production line such as the size of the buffers [10].
Due to space limitations and budget issues, it is difficult to change the line structure in
practice. Another approach for increasing the throughput without structural change is
efficient scheduling, which applies to various industries [2, 11–14].

It is possible to derive the optimal solution for scheduling of a simple process involving
only one machine [13]. However, the optimal solution for a production line in practice is
typically too complex to obtain the optimal scheduling within a reasonable time [5, 12].
Consequently, machine learning is introduced to tackle this problem. Genetic algorithm
is a typical example [5]. Recently, after the development of Deep-Q reinforcement learn-
ing [15], Deep-Q-based methods are widely used [2, 7, 8, 11, 13].

The main objectives of the existing Deep-Q based scheduling studies are as follows. In
job-shop scheduling, the order of the workplace reservation is determined by considering
waiting operations, setup status, action history, and utilization history [7]. The automated
material handling system (AMHS) scheduling problem considers the remaining processing
time, facility states, transportation time and traffic congestion, work-in-process distribu-
tion, and intermediate buffer states to determine the appropriate vehicle and route [8]. In
the chemical process, the order of work is decided by considering resource and inventory,
demand and transition losses [9]. However, all these studies do not explicitly consider
machine breakdown, which occurs frequently [10].

As mentioned above, many existing studies contribute to improving production through-
put by adopting machine learning techniques. However, the breakdown of the machines,
which significantly affects the throughput of the production line, is not properly consid-
ered. Therefore, the existing ML-driven scheduling methods have limitations for applica-
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tions in practice. Unlike these studies, we collect real factory machine data through RFID
sensors and propose a Deep-Q RL based multi-job scheduling algorithm that considers
machine breakdown information obtained by processing the collected data.
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3 | Target Manufacturing System

The plant covered in this study is that of an auto parts maker, which is a tier-1 vendor
for one of the world top-4 motor companies. We investigate a newly introduced assembly
line of the plant. We collect data of the line from May to October of 2019. We explain
in detail the way we process the collected data. According to the results obtained by
processing the data, the scheduling in the plant does not change until the production goal
is achieved. This is a simple rigid schedule system, which is actually inefficient in terms
of throughput performance. In fact, a multi-job line that produces multiple products in
random order may give higher throughput than rigid scheduling [16].

Fig. 3.1 shows an illustrative example. A multi-job line that produces model A, B, and
C gives higher throughput when it schedules models in random order (Fig. 3.1(b)) than
when it produces models in a fixed order (Fig. 3.1(a)). Fig. 3.2 shows the throughput of
random scheduled multi-job line according to the job ratio r1 and r2 [16]. The r1 and r2
are the ratios of models A and C and models B and C, respectively. The dotted triangle
is the throughput of the rigid scheduled multi-job line. As shown in Fig. 3.2 (b), in a
random schedule, the job that has the greatest effect on the bottleneck determines the
multi-job line’s throughput, and has higher throughput than the rigid schedule.

3.1 Data Processing

The data from the assembly line is collected every second by RFID sensors [17]. Fig 3.3 is
a part of the raw-data. To comply Non-Disclosure Agreement, information about specifi-
cations and models is excluded. The collected data includes information on the machine
status, pallet number, inspection status, work required time, logging time, vehicle model,
part number, and specifications. Data is saved in a csv file format each hour. Information

5



Figure 3.1: Comparison of production schedules. (a) Rigid schedule. (b) Flexible schedule
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Figure 3.2: Throughput comparison between rigid and random scheduling for multi-job produc-

tion. (a) Bottleneck simplex. (b) Throughput.

Figure 3.3: An example of raw-data
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Figure 3.4: WIP of the assembly line.

about each of the machines on the line, the produced item and buffer was obtained by
processing these csv files.

3.1.1 Work Time

Because data is collected 24 hours a day, it also includes information when the plant is
shut down. Fig. 3.4 shows work-in-process (WIP) of the assembly line for a day. from the
figure, we can find when the line is interrupted. Causes of interruption include worker
break times, machine breakdowns, and product changes. We need to distinguish whether
the plant interruptions are intentional or not. This is because intentional interruptions
are not taken into account when calculating the efficiency of machines. By comparing the
work hours of several work days, we distinguish actual work time. Interruptions within
the common work schedule are judged to be unintentional interruptions. The line at
the bottom of the graph in Fig. 3.4 is the work time of the factory. Therefore, it is an
unintentional stoppage of the production line that the work-in-process becomes zero above
this work time.

3.1.2 Machine Parameters

There are several parameters that can specify the nature of the machine [18]. In this paper,
cycle time, average up-time, average down-time, and efficiency are extracted from factory
data and used for the regularization of production items and simulation environments.

The products are produced during the corresponding work performed on each machine
for a certain period of time. This time is called the cycle time. Different types of production
items have different cycle times on the machine. In real data, the amount of time that
an item stays on the same machine, even when the same operation is repeated, is not an
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Figure 3.5: An example of the machine parameters
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Figure 3.6: An example of buffer data

exact constant value. The cause may be defective product, machine breakdown, blockage,
etc. In order to deduce an accurate cycle time, the minimum value was obtained from the
data when no issues such as machine breakdown or blockage.

Blockage, starvation, machine breakdown can stop the machines, but among these,
blockage and starvation are flow problems so do not affect the down-time of the machine.
Hence, only machine interruptions due to machine breakdown are counted as down-time.
Up-time is defined as the period between down-time and the next down-time. All down-
times and up-times are measured for each machine, and the average down-time and average
up-time are calculated. A machine’s efficiency e is calculated as e = u/(u+ d) when u is
the average up-time and d is the average down-time.

Fig 3.5 shows an example of machine parameters form the processed data. There are
average up-time, average down-time and ct for each machine. The e is efficiency which is
calculated from average up-time and average down-time.

3.1.3 Buffers

The buffer is the space between machines where the product can wait. The fig 3.6 shows an
example of buffer data. It show how many units stay in the buffer according to time(s).
The maximum capacity that can store the product for each buffer is determined. The
capacity of the buffer can be inferred through the difference between the serial numbers
of the products in progress for each machine. The following is the structure of the factory

10



Figure 3.7: Structure of the assembly line.

and the capacity of the buffer obtained by analyzing the data.

3.2 Factory Description

The assembly line consists of 20 machines and 19 buffers. Workers put products into
M1 and collect finished products from M20. The product is transported by a pallet, and
the pallet is collected at M19 and moved to M1. There is no loss of productivity due to
insufficient or excessive number of pallets. Defective products are removed from M11 and
M19.

Fig. 3.7 shows the structure of the assembly line. The circles and squares indicate
machines and buffers, respectively. The numbers in the circles and squares denote the
order of work and the capacity of the buffer. Mi means the i-th machine. The machine
colored black eliminates defective products. The valve symbol between M19 and M20

represents the branches of the pallet carrying goods.

This assembly line is capable of producing various models. When the model is changed,
the RFID tag containing information about the target production model is put on the
pallet and passed through the machines, and the machine reads the information and
automatically changes the settings.

11



Figure 3.8: Distinctive process pattern between M15 and M18.

3.3 Distinctive Feature of the Line

A distinctive behavior pattern on the assembly line exists between M15 and M18. Because
the assembly line is not designed to operate in parallel due to budget and space issues,
instead it is designed by connecting machines doing the same work in series. M15 and
M16, M17 and M18 are pairs that each handle the same task. Fig. 3.8 shows the cycle
times of machines M14, · · · ,M19. Except M14 and M19, all the other machines M15, M16,
M17, and M18 have two cycle times. In Pattern 1, the products are assembled at M15 and
M17, and just pass M16 and M18. The opposite occurs in Pattern 2. Since the same task
is performed, the cycle time of M15 in Pattern 1 and the cycle time of M16 in Pattern 2
are the same.

3.4 Scheduling Problem

The problem dealt with in this paper is to select the model to be the next input and the
working machine between M15 and M19. The total number of machines in the assembly
line is expressed as NM , the total capacity of the buffer NB, and the number of product
models is expressed as NJ . The i-th product model in NJ is expressed as Ji, and the cycle
time of Ji in Mk is expressed as ct(Ji,Mk). When the output goal of Ji is Gi and the
current output of Ji is Si, the set consisting of all Ji is defined as J , and the set consisting
of Ji, which is Gi > Si, is defined as A.

Behavior patterns are organized into four categories. When we define the pattern work-
ing in Mx and My in M15, · · · ,M18 as P(x,y), the possible pattern is P(15,17),P(15,18),P(16,17)

12



or P(16,18). This pattern is applied afterM15, but since the machine’s setting in the factory
is determined by the RFID tag inserted inM1, the production model selection and pattern
selection must be made at the same time. In summary, the problem to be solved in this
paper is to select the model and pattern to be invested to minimize T , which is the time
to accomplish the goal Gi for every Ji.
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4 | Deep-Q Scheduling

In this section, we introduce a scheduling method based on deep Q-network. By processing
the data obtained from the factory, we build a virtual production line. Then, we train the
deep Q-network in the virtual production line. Fig. 4.1 shows the structure of the overall
process. The virtual production line is a discrete-time event simulator, which provides
the state of the production line to the Q-network and receives an appropriate model and
pattern.

The reinforcement learning method used here, the deep Q-network, is introduced
in [15]. The states and rewards of the production line caused by the production mod-
els and behavior patterns determined through the Q-network are stored as a set in the
replay buffer. When the amount stored in the replay buffer exceeds a certain level, a ran-
domly selected set is used for learning. For the stationary target network, the weight of
the Q-network is periodically copied to the target Q-network. The model with the best
performance in the learning process is saved and used in the simulation phase to evaluate
performance.

4.1 Agent and Environment of RL

In reinforcement learning, the agent takes action on the environment and learns by feed-
back on it. Here, the environment is production line which consists of 20 machines and
19 buffers as introduced in Section III, and has the same constraints as the actual pro-
duction line. Based on the machine efficiency obtained by processing the data obtained
from the factory, the breakdown event of the machine is implemented according to the
exponential model.

In this section, we explain the process of deep-Q learning. The agent selects the ac-
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Figure 4.1: Overall framework of the learning process.

tion with the highest Q-value by entering the state of the environment into the neural
networks (NN) of the Q-network. The NN is suitable for expressing the possible states of
environment. After taking the action ai in the state si, the state si+1 which is returned by
the environment and the reward ri, di indicating whether production is over are all saved
in the replay buffer as a batch (si, ai, si+1, ri, di).

4.2 States, Actions, and Rewards

The agent determines the model and pattern to put on M1. Actions can be taken when
M1 is empty and in up-time. So, the environment returns the next actionable state when
the agent takes an action. For example, if the action is ai = (Jk, P(15,17)), the k model is
put in M1, and the put items are operated in M15, M17. And it just go through M16, M18.
If an action is possible when the environment is si, the set of actions that can be selected
is expressed as A(si). Completed models are excluded from A.

Here, si contains information about the plant components. Table 4.1 represents the
state components. The state consists of information on the production items in progress
for each machine, whether the machine is operating, and information on the production
items staying in the buffer. The item’s model and pattern information is expressed as ct
for each machine. With this notation, additional learning or regularization is not required
even if there are unlearned items in the line. Also, this can be applicable to buffers.

If there is no item remaining in the buffer or machine, it is expressed as a zero vector
of the same dimension. Residual time means the additional amount of time the machine
has to work. When residual time is zero, the machine discharges the item to the next
buffer. If the machine is in down-time, residual time does not decrease. Residual time is

15



Table 4.1: Components of a state
Features Descriptions Dimension

Machines

Item

Information on item

being worked on the

machine containing

ct with patter applied

(NM )2

Residual time
The time left

for the machine

to finish its job

NM

Breakdown
Whether the

machine is broken
NM

Buffers Item

Information on item

being stay in the buffer

containing ct with

pattern applied

NM ×NM

Models Stock Remaining work by model NM

also expressed as zero when the machine can not discharge items because of a blockage.
Breakdown is expressed by 0 or 1, indicating whether the machine is broken or not,
respectively.

The reward is determined according to the item released by M20 between si and si+1.
Rewards are determined for items discharged by M20 between si and si+1. The sum of the
rewards must fit well with the objective function. Therefore, the sum of rewards should
be designed to minimize T . Hence, we have the following relations:

CTa =

NM∑
l=1

ct(Ja,Ml), (4.2.1)

ri =


0, Nout = 0
Nout∑
k=1

−(τout(Jk)− τin(Jk)− CTk) Nout > 0.
(4.2.2)

Equation (4.2.1) corresponds to the sum of Ja’s every cycle time for each machine. Nout

is the number of items discharged between si and si+1. In (4.2.2), we can notice that ri is
a negative value of the sum of the total delay times of the items emitted between si and

16



si+1. The sum of rewards R is represented as follows:

R =

NJ∑
i=1

Gi∑
k=1

−(τout(Ji,k)− τin(Ji,k)− CT i,k). (4.2.3)

The total production time is the sum of the total CT and the delay time. So, minimizing
the delay time minimizes the total production time T .

4.3 Training Method

We use a fully connected NN to Q-network in the learning phase. Furthermore, to solve
the problem of correlations between samples and non-stationary targets, a replay buffer
is used and the target network is separated from the Q-network [15]. The state containing
the machine and line information is put into the Q-network as an input, and the Q-value
for each action to be put next time is returned as an output. The Q-value of ai in si is
represented as Q(si, ai; θ) in the Q-network with weight θ. As mentioned in Section IV, it is
designed by a single agent, since the model and pattern should be decided simultaneously.
Thus the dimensions of the Q-network’s output is the multiplication of NJ and NB.

Algorithm 1 describes the learning method used to solve the selection problem. The
process of Lines 6–16 of Algorithm 1, which determines the production models and pat-
terns to be put in, is performed in a state when M1 accepts the next item. We implement
a virtual production line based on the openAI qym’s structure [19]. The ε-greedy policy
is introduced in Line 4. As the episode progresses, ε decreases, but the minimum of ε is
set to keep exploring. In Lines 6-16, the action which has the highest Q-value is selected
and progressed. In Lines 9–12, previous state si, next state si+1, reward ri and mask di
are stored in replay buffer B as a transition (si, ai, ri, si+1, di) after taking an action.

Lines 17–25 correspond to a learning process in which the weight θ of the Q-network
is updated. For acceleration, learning takes place Ntr times for an episode. For effective
learning according to Line 18, the size of the replay buffer needs to be large enough.
Randomly selected transitions in the replay buffer are used for learning, due to the problem
of correlations between samples (Line 20). The largest Q-value in the sampled transition
is qu (Line 21). The next state si’s maximum Q-value is calculated using the target
network for a stationary target (Line 22). Loss l is obtained by using a smooth L1 function
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Algorithm 1 Selection With Q-network
Input: Selection problem

Output: Q-network

Initialization: Set Q-network with random weight θ, target network Q̂ with θ̂ and size NB

buffer B

for e = 1, 2,..., NE do

Reset line consisting of NM ,NB and NP

ε = max(0.01, 0.08− 0.01(e/200))

i = 0

while NP 6=NG do

Observe si
x← random value between 0 and 1

if x < ε then

Select ai in randomly in A

else

a← argmaxQ(si, ai; θi)

end if

Put ai in line

Observe ri, si+1, di

Store transition (si, ai, ri, si+1, di) in B

end while

if Size of B > Ntr then

for t = 1, 2, ..., Ntr do

Sample transitions (su, au, ru, su+1, du)∈B
qu ← maxauQ(su, au; θu)

yu = ru + γ ∗maxai+1 Q̂(si+1, ai+1; θu) ∗ di
Calculate loss L from (4)

Perform gradient descent step on L with respect to θ

end for

end if

replace Q̂ = Q every Nu episodes

end for

return Q-Network =0
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(Line 23) [20] as follows:

f(yu, qu) =

0.5(yu − qu)2, if |yu − qu| < 1

|yu − qu| − 0.5, otherwise.
(4.3.1)

The weight θ is updated with l (Line 24). For target stationary, target network is
copied Q-network at intervals of Nu episodes not every episodes (Line 27). Learned Q-
network model is returned after learning is completed. Here, we evaluate the method with
the model which gives the best performance in the learning process.
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5 | Experimental Results

5.1 Data Sets and Training Details

The data used for training is based on the actual factory production schedule. The pro-
duction line produces 41 kinds of models. The Q-network is trained by ADAM [21] by a
gradient decent algorithm. In addition, the hyperparameters used in the experiment can
be found in Table 5.1.

The training process is divided into training and validation segments. In the validation
process, since ε is 0, no exploration is performed and only the performance of the Q-
network is verified. Thus, the results of validation are not used for training. Fig. 5.1 shows
the learning and validation results with the accumulated episodes. As learning progresses,
it can be seen that the completion time tends to decrease, and also it can be seen that
the performance of the training result including exploration is better at the beginning
of training. However, after ε decreases, no difference is observed between training and
validation. In the process of training 4,000 episodes, the 3884-th model, the network

Figure 5.1: Training and validation results of episode accumulation.
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Table 5.1: Hyperparameters for RL
Hyperparameters Value

Numbers of hidden layers 5

Numbers of nodes in each hidden layers 1240,930,610,320,160

Learning rate of Adam 5× 10−4

Discount rate 0.98

Target Q-network update frequency 20 episodes

Replay buffer size 50,000

Minibatch size, Ntr 32

Epsilon convergence 0.01

Table 5.2: Throughput of rigid, random, and proposed scheduling
Method Rigid Random Proposed

Throughput (units/min) 1.43 1.68 1.96

Improvement over rigid 0 % 17.48 % 37.06%

model that performed the best, is used for performance evaluation.

5.2 Performance Evaluation

Table 5.2 shows the throughput of each method to complete the same goal of production.
The rigid method does not change the model until the production goal for each model is
achieved. Random method means that a random model is put into the production line. The
probability that a model is selected depends on the remaining amount for each model.
The results are averaged values over 100 simulations. The proposed Q-learning-based
scheduling method increases throughput by about 37% compared to the rigid method
and 17% compared to the random method.

This result indicates that our algorithm makes appropriate choices for each given
state of the line. The result of the random method can be explained as multi-job line
analysis [16]. This assembly line consists of more than 4 machines. In the random method
case, it works as a multi-job line as defined in [16]. A line with more than 4 machines
performs better than the average of simple continuous operations, like the rigid method.
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Figure 5.2: Change of performance according to the volume of production.

Fig. 5.2 shows the performance according to the production volume. The performance
was calculated by dividing the throughput of each scheduling method volume by the
throughput of the rigid method at the same production volume. When production ex-
ceeds a certain amount, performance converges. The proposed scheduling method shows
maximum performance when the production volume is less than about 1800 units. When
producing less than 1800 units, the improvement effect is close to 50. The actual assem-
bly line produces less than 300 units while it is start and stop. Thus, if the proposed
scheduling method is applied to an actual factory, a higher throughput can be expected.

We compare the blockage and starvation time of each machine to analyze the per-
formance of the proposed model in detail. A blockage occurs when an item cannot be
released because the next buffer is full, even though the machine has completed its oper-
ation. A starvation is a state in which the machine cannot perform any work even though
the machine is up-time and empty, because the buffer is empty. Fig. 5.3 and Fig. 5.4 are
comparisons of the blockage and starvation for each machine, respectively.

Overall, the machines with larger numbers tend to have smaller blockage time and
larger starvation time. In most of the machines, our methods result in less blockage and
starvation. In the proposed method, the blockage in M15 and M17 are larger than those
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Figure 5.3: Blockage comparison for each machine by method.

Figure 5.4: Starvation comparison for each machine by method.
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in the existing rigid method. The same is true for starvation. The starvation time in our
method is longer than the rigid method in M15 and M17. Also, M16 and M18 show the
largest reduction rates among all the machines in both blockage and starvation.

M15,M16,M17 andM18 are machines involved in the behavior pattern of this line. The
method we propose reduces the overall blockage and starvation by selecting the appropri-
ate model to be used. On the other hand, by using behavioral patterns, the blockage and
starvation of M15 and M17 are sacrificed to decrease M16 and M18 dramatically.
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6 | Conclusions

In this paper, we have studied the problem of multi-job production. In particular, we
have presented a selection problem that combines input model selection and production
line behavior patterns. We have applied the deep-Q reinforcement learning (RL) method
to attack the problem. Based on the real factory data collected for 6 months, we have
established an experimental environment for training and evaluating the Q-network model.
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요 약 문

멀티잡 생산라인 시스템에서의 Deep-Q 강화학습 기반
스케줄링 : 사례 연구

인공지능, IoT, 5G, AR등 기술들의 발전으로 인해 스마트 팩토리는 전세계적인 추세이며,
4차 산업혁명의 핵심 요소이다. 이에 따라 각 정부들은 다양한 정책을 앞다투어 발표하고
목표를설정한다.이중다품종소량생산은산업계의전반적인트렌드로써 4차산업혁명의
핵심 목표 중 하나이다. 이를 위한 다양한 생산품을 생산할 수 있는 복수 작업 생산시스템
(multi-job line) 이나 작업장의 구조나 예약 변경이 자유로운 유연한 생산 시스템 (flexible
production systems) 이 각광받고 있다.
스케줄링 문제는 이러한 생산 시스템에서의 중요한 문제이다. 기존에는 운송 시스템이

나 작업장 예약과 같은 스케줄링 문제가 주로 다뤄졌다. 그러나 생산 시스템의 자동화 됨에
따라 작업 교체에 따른 지체 시간을 무시할 수 있게 되었고, 작업 스케줄링 문제 해결을
통한 생산량의 향상을 기대할 수 있게 되었다. 기존 생산 시스템과 관련한 스케줄링 문제는
대부분 NP-hard 문제로써 최적의 솔루션을 빠른 시간 안에 도출하기 어렵기 때문에 머신
러닝이 많이 활용되기 시작했다. 특히 마르코프 결정 프로세스로 표현 가능한 특성 때문에
강화학습과 딥러닝을 결함한 DQN(Deep-Q Network) 가 많이 이용된다.
실제 생산 현장에서 머신의 고장은 재가동 후 정상 상태까지의 상당한 손실을 초래하는

등 반드시 고려되야 할 요소이며, 실재하는 요소이다. 그러나 지금까지의 생산 환경에서의
강화학습에서 고장을 고려하여 학습시킨 사례는 거의 없다. 공장 머신의 고장을 구현하
기 위해서 실제 공장 데이터가 요구되기 때문이다. 이에 따라 본 연구에서는 실제 공장의
데이터를 이용하여 머신의 고장을 구현하여 이를 고려한 DQN 기반 스케줄링 문제 해결
메소드를 제시한다.
실제 공장 생산라인에서 RFID로 수집한 데이터를 가공하여 가상의 생산환경을 구현하

기 위한 파라미터를 추출해냈다. 생산라인의 머신의 평균 고장 시간과 작동 시간, 작업에
따른 작업 시간, 버퍼의 용량 등이 계산되었다. 이를 통해 생산라인에서 특정 머신에서
특이 행동 양식을 갖는 것을 발견하였다. 이러한 행동양식을 포함한 생산 스케줄링 문제
를 정의하였다. 생산 스케줄링 문제는 머신의 고장이 구현된 가상의 생산라인에서 DQN
알고리즘을 기반으로 학습을 진행하여 최종적으로 약 37%의 생산량 향상을 이뤄냈다.
제시한 메소드의 생산량 향상은 전체 생산량의 규모에 의존해 변한다. 각 에피소드는

총 목표 생산량의 규모가 커짐에 따라 일정 생산량에 수렴하였으며, 본 연구에서 제시된
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메소드는 규모가 작을수록 더 큰 생산효율 향상을 보였다. 실제 공장의 생산 일정에 따르면
제시된 메소드는 최대 37% 이상의 생산 효율 개선을 이룰 수 있을 것으로 보인다.
생산량 개선 메커니즘을 파악하기 위해 각 머신별 starvation과 blockage가 분석되었

다. 분석결과 특이 행동패턴 양식을 갖는 머신에서의 starvation과 blockage가 전체 머신에
재분배를 함으로써 전체 생산라인의 생산 효율을 향상시켰다고 유추할 수 있었다.

주요어휘: 멀티잡 라인, 생산 스케줄링, 강화학습, 데이터 프로세싱, 유연한 생산 시스템.
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