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ABSTRACT 

 

To perform advanced operations with unmanned aerial vehicles (UAVs), it is crucial that components 

other than the existing ones such as flight controller, network devices, and GCS are used. The feature of obstacle 

avoidance is added to the pre-existing simple waypoint missions to ensure the commercialization of UAVs. 

However, this feature requires additional hardware and software to recognize obstacles based on radar or lidar. 

The inevitable addition of components to accomplish this functionality may lead to security vulnerabilities 

through various vectors. Hence, we propose a security framework in this study to improve the security of UAS. 

The proposed framework operates in the ROS (robot operating system) and is designed to focus on several 

perspectives such as overhead arising from additional security elements and security issues essential for flight 

missions. The UAS is operated in a non-native and native ROS environment. The performance of the proposed 

framework in both environments is verified through experiments.  
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Ⅰ. INTRODUCTION 

 

Unmanned aerial vehicles (UAVs), commonly known as drones, have been recently 

deployed in various environments to perform numerous tasks [1-4]. One of the most 

representative drone services is Amazon’s Prime Air, which is currently under development 

[5]. Other companies are also preparing various drone projects such as storm damage 

evaluation, property damage assessment, and shale gas asset monitoring. The increase in the 

use of UAVs in various fields has resulted in growing concerns regarding the security of the 

unmanned aerial system (UAS). According to the "FAA Aviation Forecast 2019–2029" 

released by the Federal Aviation Administration along with the example described earlier, 

the commercial drone market is expected to triple by 2023. As the utilization of UAVs 

increases, there is a need to manage the security of the UAS. The need to manage the system 

security is not merely theoretical; it can be illustrated by real-life incidents. The 2011 drone 

hijacking incident, one of the most widely known cases of UAV cyberattacks, is an event in 

which Iranian cyber units cut off UAV communications links in the United States and 

diverted the UAVs into Iranian territory by manipulating the GPS (global positioning system) 

coordinates. Although there are many arguments about the authenticity of the case, it should 

be realized that cyberattacks on UAVs are possible.  In addition, the most common vector in 

attack cases is the communication layer provided by the UAV platform. 

UAS belongs to a category of cyber-physical systems (CPS). Unlike traditional embedded 

systems that operate individually, CPS requires the close interaction of computing and 

physical systems. Ultimately, CPS can be seen as the integration of computational, 

networking and physical processes. It is a system in which information and software 

technologies combine with mechanical components to deliver and exchange data as well as 

monitor or control  a device by infrastructure such as the Internet in real time. The UAV 
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network incorporates communications devices, computing functions and control modules to 

form a single closed loop from data recognition, information exchange, decision making to 

final execution and can be referred to as a CPS. In these CPSs, studies on system 

vulnerabilities, one of which is vulnerability in the network, are actively underway [6-10]. 

Robot operating system (ROS) is the middleware for robot software development. Unlike 

the operating systems used in computers, ROS is meta operating system and provides services 

such as hardware abstraction, low-level device control, and message delivery between 

processes for system operation. It is used in various robot industries and research fields due 

to its advantages such as development community actively involved in its constant 

development and efficient development. In UAS, ROS is installed and used on the UAV 

exterior board for advanced operations such as autonomous and clustered UAV. However, 

ROS lacks design for system stability. Basic safety tools are provided but these tools focus 

on system failure, such as time synchronization and program part accuracy; there are no 

measures for system attacks. 

In this paper, we explain the vulnerability in an ROS-based UAV and propose a security 

framework to solve it. In Section 2, we describe the background of UAVs. Section 3 describes 

the vulnerabilities in ROS-based UAVs and how attacks are planned using them. Section 4 

describes the studies and tools that have been undertaken to address the problem. Section 5 

describes the framework proposed for vulnerabilities in ROS. Performance and overhead of 

the proposed framework are shown in comparison with that of the tools described in Section 

4; a low overhead security solution is proposed that can address vulnerabilities in ROS. 

Section 6 describes the proposed security framework with actual implementation and 

verification. 
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Ⅱ.  BACKGROUND 

 

2.1 Unmanned Aerial System (UAS) 

UAS is a generic term used to denote the combination of a drone, ground-control system 

(GCS), and the communication system between the two. A drone refers to an aircraft that 

flies automatically or semi-automatic without a real pilot on board. It performs its missions 

by controlling its altitude and position through an internal flight controller. The flight mission 

is performed either by transmission from the GCS or by built-in algorithms. The conventional 

media used for communication are RC transmitters, Bluetooth, Wi-Fi, and radio. Drones can 

send and receive commands and status from the GCS through these media using MAVLink 

message protocol [11]. MAVLink is a light messaging protocol for on-board communication 

or components of drones. It can be implemented in 14 languages, including C and C++; 

various high-level APIs exist for interaction between other systems such as drones and ROS. 

The protocol can also be used by at least seven GCS software, including QGroundControl 

and Mission Planner, to communicate with the drone. Figure 2.1 shows the MAVLink 

protocol message. Figure 2.2 shows QGroundControl, an illustrative GCS in UAS 

configuration. Figure 2.3 shows the UAV used in this paper. 

 

 

 

 

 

 

Figure 2. 1. MAVLink protocol message [12]. 
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Figure 2.2. QGroundControl as ground control station (GCS). 
 

 

 

    
 

Figure 2. 3. Unmanned aerial vehicle (UAV). 
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2.2 Robot Operating System (ROS) 

As mentioned earlier, ROS is the middleware for robot software development [13]. Unlike 

the operating systems used in computers, it provides services such as hardware abstraction, 

low-level device control, and message delivery between processes for system operation. For 

asynchronous communication in ROS, the publisher–subscriber model is adopted; topic is 

used for communication between the publisher and the subscriber. Figure 2.4 shows the 

structured model of ROS. The ROS consists of the master, publisher, and subscriber node. 

The master node connects the subscriber node to the publisher node that wants access to a 

specific topic. With the help of the master node, connected publisher and subscriber nodes 

will be able to send and receive the desired data through topic. 

 

 

 

 

 

 

Figure 2. 4 Robot Operating System structure.
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Figure 2. 5 Rosbridge concept 

 

2.3 Rosbridge 

Rosbridge is a package of ROS that allows us to use topics and services in ROS even if the 

client does not have ROS installed. This is possible because JSON-based rosbridge protocol 

is used on the server with ROS installed. When a rosbridge server that communicates with 

WebSocket on the ROS server side is executed, it is possible to communicate with the node 

of the ROS server through various front-end devices such as web browser, and the service is 

also available. Figure 2.5 describes the concept of rosbridge [14]. 

 

2.4 Safety tool of ROS 

To ensure the safe operation of ROS, there are several services that are provided by ROS: 

1. Network Security [15] 

The ROS team is aware that because of the nature of the current system, the system can be 

attacked by vulnerabilities in the network. To address this, they proposed a method which is 

not a direct function of ROS, but a part of the configuration of the network used for ROS. 

They suggest not disclosing the ROS master and restricting access to the network. There are 

two strategies for achieving this. The first method involves restricting hosts that can access 

the system. For example, there are ways to create isolated networks or use firewalls. The 
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second method involves giving orders to authenticate users before allowing them access to 

the system. However, these methods are not implemented within ROS; rather the role of 

protecting ROS is given to network settings outside ROS. 

 

2. Message filter [16] 

A message filter passes only certain messages on a one-on-one basis and blocks other 

messages. Several functions exist to implement messaging filters. First, there is a subscriber 

that acts as a top-level filter; it forwards messages from ROS to connected filters. Second, the 

time synchronization filter serves to synchronize to the same number of channels by referring 

to the headers of the receiving channels by time stamp. The third function is the time 

sequencer. The time sequencer filter ensures that callbacks are made in temporal order 

according to the header timestamp of the message. 

By default, message filtering is performed through these three functions. When operating 

a robot system, the corresponding node may not be able to process the message on time owing 

to various factors at the time the message was generated. When operating a robot that requires 

time-sensitive command input, the message filter allows the message to be processed 

sequentially. 

 

3. Watchdog timer [17] 

Watchdog timer is implemented in ROS; it is a tool for high reliability systems. The 

watchdog timer monitors the CPU and restores the system to normal conditions when 

abnormal or infinite loops occur. While ROS provides a Watchdog Timer for these functions, 

it only provides detection function and entrusts developers with way to reconfigure the 

system. 
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4. Managed nodes in ROS2 [18] 

The subsequent version of ROS, ROS2, introduced the concept of a management node, 

also called lifecycle node. There are four node states: Unconfigured, inactive, active, and 

finalized. Seven switching actions can be performed: create, configure, cleanup, activate, 

deactivate, shutdown, and destroy. When switching operation is performed, it goes through 

six switching states: configuring, cleaning up, shutting down, activating, deactivating, and 

error processing. This node state transition is introduced to enhance the overall stability of 

ROS. 

5. ROS 2 DDS-Security integration [19] 

Recently, ROS2 was officially released, and the biggest difference and feature of the 

previous version is the adoption of Data Distribution Service (DDS) as middleware. DDS 

requires several security requirements, including authentication, access control, and 

cryptographic. This shows that security is important for mission-critical ROS environments. 

However, since ROS and ROS2 are incompatible with each other in a native environment, 

security issues still remain in systems using existing ROS. 
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Ⅲ. VULNERABILITY DEFINITION OF UAV 

USING ROS  

 

This section introduces the types of network attacks occurring in CPS and the 

vulnerabilities that exist in the communication mechanisms of UAVs currently using ROS. 

3.1 Vulnerability in CPS 

Unlike traditional embedded systems that operate individually, CPS operates on the close 

interaction of computing and physical systems. Ultimately, CPS can be seen as an integration 

of computational, networking and physical processes. Embedded computers and networks 

monitor and control physical processes through feedback loops; these physical processes 

affect calculations. A key element in CPS in which this interaction is considered is an 

information and communication technology (ICT) component as a communication medium, 

which connects the computing and physical elements by information exchange [20]. CPS is 

widely used in many areas closely related to industrial control systems, advanced 

communications, smart power grids, transportation networks, vehicles and social networks. 

The UAV network incorporates communication devices, computing functions and control 

modules to form a single closed loop from data recognition, information exchange, decision 

making to final execution and can be referred to as CPS.  

 

 

 

 

 

Figure 3. 1 Three-layer model of CPS 
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The CPS can be divided into three layers as shown in Figure 3.1 [21]. The recognition 

execution layer consists of physical elements such as sensors and actuators. The data obtained 

from the sensor is passed to the application through the data transmission layer, and the 

feedback is applied to the physical environment. Based on the data received from the data 

transmission layer, the application control layer calculates and assesses the information 

required by the system and then gives feedback to the data transmission layer. The data 

transmission layer connects the recognition execution layer and the application control layer, 

and performs information delivery. 

The data transmission layer transmits the data necessary for system operation over the 

communication network. However, when using a communication network, an attacker may 

destroy the system with malicious behavior using the network. The CPS is made vulnerable 

due to the accessibility of various communication networks, including network access 

methods, equipment and software, and depending on the time and location of the CPS 

application. Successful exploitation of the data transmission layer would allow an attacker to 

tamper with the system and eavesdrop on information in that system; the attacker may even 

paralyze the system’s function. For this reason, the data transmission layer is also used as a 

path for attacks from other layers. Network attacks on the data transmission layer use the 

following methods: man-in-the-middle attack, masquerade, and denial of service [22-24]. 

 

 

 

  

 

Figure 3. 2 Three-layer UAS framework in CPS perspective 
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3.2 UAS 3-layer model in CPS perspective 

The components and structure of the UAS can be designed from a CPS perspective. Figure 

3.2 is a three-layer framework of CPS for computing, communication and control of UAS. 

UAV sensors are hardware such as GPS and gyroscope that are used for measuring UAV 

flight status. An actuator in UAV is a motor that physically gives UAV movement in a three-

dimensional environment according to the controller signal. A communication network is a 

wireless network environment in which UAVs send and receive UAV status and commands 

during their flight. The component corresponding to the application control layer is the flight 

position and altitude controller, which calculates the flight control of the next loop based on 

the status of the UAV received from the sensor. 

UAS, where each component consists of these frameworks, is as vulnerable to system 

attacks through the data transmission layer as CPS. Successful exploitation could result in 

eavesdropping and tampering with the data of the system to neutralize it. 

 

 

3.3 Model of ROS-based UAS 

Advanced operations in UAVs, such as autonomous and clustered flights, require 

hardware and software capable of additional computing functions as well as flight controllers. 

The ability to provide additional assistance to the flight using information and computing 

power outside the flight controller is called offboard mode. The UAS assumed in this paper 

has a structure in which offboard computers are connected to the flight controller and 

communicate with each other. In addition, offboard computers support communication 

between flight controllers, external sensors and off-board computers via ROS. Figure 3.3 

schematizes the UAS with the aforementioned communication architecture from a CPS 

perspective. As with CPS, this figure incorporates plant, sensor, controller, and actuator to 

form a closed loop from data recognition, information exchange, decision making to final 

execution. The red box indicates the part to which ROS is applied. 

ROS is middleware for the development of robot software. This allows the configuration 

of UAS. The ROS adopted a pub-sub model for communication between each component 

that forms the robot. It is a structure in which two nodes, which exchanged node information 

with the help of Master node, send messages through the publishing and subscribing functions 

as needed. ROS provides MAVROS, a MAVLink expandable communication node. This 

allows the UAV to receive the data needed for the flight over the ROS. 
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Figure 3.4 shows the system model of UAV with ROS through the aforementioned 

procedure. The /sensor node present in the external sensor publishes the message to the 

/process node in the offboard computer using /topic. /Process nodes deliver command 

messages for UAV control to /MAVROS node based on sensor data. /MAVROS node 

forwards the data to the flight controller via MAVLink. 

 

 

 

 

 

 

 

 

Figure 3. 3 Feedback loop in UAS 
 

 

 

Figure 3. 4 System model of UAV with ROS 
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Table 1. The terms used in the ROS. 

 

3.4 Vulnerability of ROS-based UAS  

Table 3.1 defines the terms for each component in the ROS. 

As explained in Section 2.4, ROS does not have fundamental security elements; hence, 

malicious nodes other than normal nodes can easily be connected. It is easy to break into the 

network; moreover, there is a possibility of masquerade attacks and false data injection. Once 

PA is able to configure communication with S about T through the master node, the false data, 

msgPAST, can be sent to S. If the attack is made, the flight controller will not be able to control 

the exact position and altitude in a given environment, causing the system to be destroyed. 

There are three reasons why such attacks are possible. 

First, the master node does not check whether it is a normal node or a malicious node for 

the node that makes the request. This allows an attacker to gain unauthorized access to ROS. 

Hence, this enables attacks such as eavesdropping or masquerade. 

Second, the master node does not check whether data from connected nodes through 

monitoring is within the acceptable range of the system. In any command, dropping data that 

exceeds a user-defined threshold protects the system from malicious false data injection. 

However, when an attack is authorized within the scope, it cannot be defended. 

Third, it does not guarantee the integrity of messages transmitted in ROS.  

If the system ensures that the data is authorized and not changed, it can protect itself against 

Term Concept 

T Topic 

P Publisher to send information about a particular topic 

S Subscriber to receive information about a particular topic 

A Attacker Node 

msgPST Message between P and S for T 

msgPAST Message between PA and S for T 

msgPSAT Message between P and SA for T 
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active attacks such as masquerade and injection attacks. The second problem can be covered 

if the system is satisfied with the data integrity. Checking data integrity can also protect the 

system against masquerade attacks.  

The most effective attacks on the system in UAS operation are those of active attacks that 

change the system: masquerade, injection, replay, etc. Active attacks hurt integrity and 

availability and can directly affect the flight of an UAV in a short time. To protect the system 

against this, we need a solution that can solve the aforementioned problems. In addition, the 

method should not have large overheads and not obstruct the flight. We propose a security 

framework that addresses vulnerabilities in ROS-based UAS and has less overhead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 15 - 

 

Ⅳ. RELATED WORK  

 

This section discusses the studies that have been conducted to ensure the stability of ROS-

based systems. For each study, the method and direction of security application for 

authentication, authorization, and message verification areas are discussed. 

Jeff Huang et al. [25] proposed ROSRV, a runtime verification framework for ROS-based 

robot applications. A node called ROSRV is placed under the master node. The node that 

needs to be registered as a publisher or subscriber node is identified and is connected to the 

other node. The second function then places the monitoring node between all publishers and 

subscribers within the ROS to drop commands or messages outside the user-specified range. 

The two functions satisfy the authorization and message verification. Thus, this can address 

the first and second vulnerabilities described in Section 3.4 at present. However, there are 

some limitations to this solution. First, for monitoring purposes, the monitoring node between 

the publisher and the subscriber verifies the message. This will take twice the transmission 

time in the existing publisher–subscriber model. The second is that if a large number of nodes 

are connected to a centralized ROSRV, there will be a delay in the monitoring node. In 

addition, if the data are modulated within the monitoring range, it will not be detected. The 

absence of two overheads and data integrity makes it difficult to apply ROSRV to UAS. 

Russell Toris et al. [26] proposes rosauth, an authentication service to enhance the security 

of the connection of non-native clients in ROS. There is a package called rosbridge in ROS. 

This allows clients to communicate synchronously and asynchronously with ROS, even if not 

in an ROS environment. The author proposes a method of authenticating whether the client 

accessing the ROS server using the message authentication code (MAC) is an authorized 

node. This project can solve the first vulnerability mentioned in Section 3.4. However, the 

nodes are verified using MAC only at the point of client connection. It does not guarantee 
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security for message tampering that occurs after the connection. In other words, it does not 

guarantee data integrity, the most important vulnerability in ROS-based UAS. 

Bernhard Dieber et al. [27] treated ROS as a black box and used an authentication server 

(AS) to ensure communication between authorized nodes. Publisher receives a key from AS, 

encrypts and signs it with the message, and forwards it to the subscriber. The subscriber can 

decode and verify whether the message has been tampered with. However, every time we 

send a message, we have two encryption overheads and a decryption overhead. Furthermore, 

RSA signatures are slow.  

Roland Dóczi et al. [28] claims to protect the system through certification and 

authorization on medical surgical robots subject to ROS. The author uses authorization and 

authentication (AA) to eliminate security problems arising from ROS. They implemented 

AA node for AA function. The node receives its name and password from the connection 

request node, checks the DB, and passes the key if it is the correct information. The node 

then requests the master node to connect with the other node along with the key; the master 

node sends the key to AA to verify that it is a valid node. However, methods of 

authenticating using names and passwords can easily be overridden by attackers. 
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Ⅴ. PROPOSED METHOD 

 

The work is carried out in an environment with MAVROS, an extension package for UAV 

in ROS (see Section 3 for details). We have found that the vulnerability of ROS makes ROS-

based UAS vulnerable. To solve this, we implement security measures in the master, 

publisher, and subscriber. This does not address all security issues in the system, but it ensures 

that the following security issues that are key to UAS operation are dealt with(see Section 4 

for details): 

- Unauthorized users register nodes on the system without permission 

- Unauthorized registered node infuses incorrect data and affects drone flight 

Message transmission in the current ROS has the following procedure. There is node S that 

receives information about a particular topic T. P trying to transmit information about T 

attempts to connect with the node that receives the T through the master node. Master 

connects P to S. P broadcasts msgPST and delivers it to S. S receives the information and 

performs calculations to control the UAV. The procedure unconditionally trusts the node and 

operates the robot. Thus, if the PA, the node that publishes the wrong data, accesses the 

system, the following occurs. PA requests a connection to the master node with a node that 

receives information for a specific topic T. The PA connected to the system injects the wrong 

data, msgPAST, into the S at a faster rate than P. S does not recognize that the data is incorrect 

and uses that data to control UAVs. The current procedure cannot determine whether the node 

that requests registration to the master is an authorized node. It is also not known whether the 

data that is being transmitted is modulated or is from an accredited node. For this reason, we 

would like to propose a security framework for ROS-based UAS to implement a UAS that is 

safe from such intrusions. ROS with frameworks can be schematized as shown in Figure 5.1. 

Table 5.1 defines the terms for each component of the proposed framework.  
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Table 2. The terms used in the framework. 

 

5.1 Registration of a new node  

Access control is the function of allowing or denying someone use of a resource. We apply 

access control to ROS, preventing unauthorized system registration of nodes.  

ACT means a list of access rights for nodes accessing a particular topic T. This includes 

nodes with access to T and can be expressed as ACT = [x, y, z]. d(P) and d(S) mean digests 

for P and S respectively, and d(P) can be expressed in H(k, Pname||T). The ROS with access 

control registers the node using the following procedure:  

① All publishers and subscribers accessing specific Topic T before ROS operation 

are listed and recorded in ACT. The information recorded in ACT is d(P) and d(S), 

which are digests of P and S. The reason for recording Digest is to make it 

impossible for an attacker to masquerade itself as a node that sees digest and has 

authority over T. 

② P requests the master node to master node as a publisher of T. 

③ The master node obtains d(P), which is the digest for P. 

④ Master checks if the digest is in ACT. If there is digest in ACT, P is allowed to 

publish to T. 

Figure 5.1 is a diagram showing the registration procedures of the ROS with added 

access control. 

 

Term Concept 

ACT Access list for P and S accessing specific topic T 

d(x) Digest for x 

H(k, msg) Getting a hash of msg using a key k. 

Pname, Sname Node name of P and S 

Figure 5. 1 Proposed access control procedures 
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5.2 Signature with HMAC 

A digital signature is a security tool that uses encryption for data integrity, authentication 

and non-repudiation. Generally, when key sharing is not possible, we use a digital signature 

using RSA. This means that when a message is signed and sent by the private key, the receiver 

verifies the message with the public key. In addition to RSA, there is also a signature method 

using the hash-based message authentication code (HMAC). This signature is characterized 

by sharing and using the same key between trusted parties. Although there are limitations in 

operating it in a network that is commonly used by the public, in a network that operates 

UAS, the signature method can be used if the keys are shared between nodes in advance. The 

overhead of signing using HMAC is significantly less than that of signing using RSA. For 

this reason, we will ensure data integrity using HMAC to sign messages delivered from ROS. 

H(k, msg) obtains digests for msg using the key k. At this time, k should be exchanged 

between transceivers in advance. There are several types of hash functions, but SHA-256 was 

used in the solution. The hash function can be used as the agreed function between the sender 

and receiver. a||b means the connection between the letters x and y. For example, the result 

of x||y is "ab”. Sign(k,msg) means digitally signing for message m using the key k. verify(s) 

means the verification process for signed data s. 

The subscriber and publisher of the ROS, where the verification process has been added, 

sends and receives data through the following procedure: 

① S and P for a specific topic T make a registration request to the Master node. 

② P performs a signature on msgPST. Sign(k, msgPST), the signature procedure, means 

H(k, msgPST)||msgPST. 

③ P, which carried out the signature, sends s = Sign(k, msgPST) to S. 

④  S performs a verify(s) on the received s. 
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⑤ Separate s = H(k, msgPST)||msgPST from H(k, msgPST) and msgPST. 

⑥ For separated msgPST, perform H(k, msgPST) using a pre-shared key k. k is the same 

symmetric key used by P. 

⑦ Compare the two H(k, msgPST) and inspect them for the same value. 

⑧ If there is no problem with msgPST, use that data. 

Figure 5.2 is a diagram showing the data transmission procedures of the ROS with the 

added verification. 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. 2 Proposed signature procedures 
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5.3 Performance and Conceptual Comparison 

A. Overhead  

The proposed security framework has additional features to address vulnerabilities in 

existing ROS. The function results in additional overhead of data size and computation.  First, 

the computational overhead that occurs during the execution of access control does not affect 

UAV operation because it occurs once upon initial connection. However, for signatures using 

HMAC, data overhead and computational overhead exist for each transmission. We 

implemented HMAC signatures using SHA-256 for demonstration. For example, the existing 

69 bytes size geometry_msgs/PoseStamped message is 32 bytes due to HMAC signatures. 

Conversely, the overhead would be 256 bytes if RSA-2048 signatures were used, as shown 

in Section 4, related study [26]. Computation overhead refers to the time it takes to compute 

SHA-256. This was benchmarked using a crypto++ library and can handle 290 MiB per 

second when a 128bit key is used. This means processing 101 bytes of data, including data 

overhead, would take 0.0026 ms. For RSA-2048, it takes 0.061 ms for encryption and 1.225 

ms for decryption. From these results, it can be observed that the overhead of the proposed 

security framework will have little impact on the performance of existing ROSs. 

 

B. ROS with MAC 

We ensured integrity through verification of the data transmitted within the system using 

MAC. Similarly, rosauth [25] in Section 4 wanted to use MAC to improve the security of 

ROS. However, its use is different from this study. In the previous work, MAC is used in a 

non-native environment early in the connection to enable clients to authenticate themselves 

with the server as validated clients. However, as there is no solution for the integrity of the 

data transmitted, the system will be breached if an attacker attempts an MITM attack on an 



- 22 - 

 

already connected channel. Conversely, the framework proposed in this study uses MAC to 

ensure data integrity and authentication with each transmission since the beginning of the 

connection. In addition, only nodes authorized through access control can be registered. 

Furthermore, the proposed framework can be secured in a non-native environment, similar to 

their study. This is demonstrated in Section 6 with an experiment. 
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Ⅵ. TEST 

 

This section describes an experiment that studies the consequences that can be caused by 

the vulnerabilities in existing ROS-based UAS and the impact on UAS after applying the 

security framework. First, we describe the experimental environment of the drones that make 

up UAS for the experiment and the arrangement of components. The results are presented 

with an explanation about the operation of the proposed security framework in a native ROS 

environment and a non-native ROS environment. 

 

6.1 Experiment environment of UAS 

Figure 6.1 shows the UAS environment configured for experimentation. Pixhawk is an 

industry standard autopilot developed and jointly developed by 3DR Robotics and Ardupilot 

Group. Various robots such as RC cars, airplanes, and multi-copters can be made and 

firmware is provided for them using Pixhawk. We made quadcopters which belong to a class 

of multi-copters and used them for the experiment. Pixhawk typically uses two firmware, 

ardupilot and PX4. We used PX4 firmware that supports offboard mode in the experiment 

Figure 6. 1 Experiment environment 
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because we assumed UAS to operate advanced drones such as autonomous driving and cluster 

flight using offboard mode. Pixhawk uses the MAVLink protocol for communication. 

MAVLink is a light messaging protocol for on-board communication or components of 

drones. This can be implemented in 14 languages, including C and C++, and various high-

level APIs exist for interaction between other systems such as drones and ROS. In this 

experiment, communication is made using MAVLink to the component computer for 

offboard mode. The companion computer used Raspberry pi which is an embedded Linux-

based development small computer and Ubuntu MATE which is a Linux based OS was used 

in the computer. This has better compatibility than Raspberry pi on a variety of issues, such 

as packages and kernels, to use ROS. ROS stands for robot operating system, which is not 

similar to the conventional operating systems used in computers. It is a middleware concept 

for robot development that is installed on an OS such as Linux or Windows. We installed 

ROS Kinetic for the experiment. ROS supports node-to-node communication using XML-

RPC and TCP. XML-RPC is an XML-based distributed system communication method that 

is simple and portable RPC protocol over HTTP. This is used in ROS by the Publisher and 

the Subscriber to communicate with the master node to connect with each other. When the 

publisher sends data for a particular topic after the connection, it serializes the data and sends 

it to TCP payload. The Subscriber receives the packet and receives the data by deserializing 

it. We use the MAVROS package which is an ROS expansion package. This package enables 

MAVLink communication between Raspberry pi and Pixhawk where ROS runs. Hence, the 

/mavros node, which receives data related to the flight from the publisher, forwards it to 

Pixhawk through the MAVLink protocol. Upon receiving this, Pixhawk calculates flight 

control from the flight stack based on the corresponding data.  

The overall experimental environment is described above. We conducted the experiment 
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in this experimental environment by considering two situations. In Figure 6.1, two computers 

and one sensor that are authorized can be found attached to the ROS through the wireless 

network. These devices can access the ROS in a native environment or, depending on the 

intention of the user, the ROS can be accessed in a non-native environment. In these two 

environments, the approach to ROS is as follows First of all, if the client is in a native ROS 

environment, the client has ROS installed and by running the launch file the client accesses 

the ROS server and creates a node. If the client is in a non-native ROS environment, the client 

does not have an ROS installed and requests the master to connect to the communication for 

a particular topic on the front end implemented with the roslibjs library. After connection, the 

client encodes the data in JSON and sends it to the rosbridge server. On the server side, 

rosbridge is run, which transmits data received by clients to nodes that subscribe to the topic.  

 

6.2 Experiment on native ROS attack 

 This section describes the modes of attacks in native ROS and the ways that can be used 

to defend the native ROS through the proposed framework. The attacks in the environment 

are shown in Figure 6.2. First, the accredited device sends the data and commands necessary 

for the flight to /mavros via a specific topic. The drone performs normal flights based on their 

data. At this time, a malicious computer breaks into the network with the aim of sabotaging 

the system and then register the publisher with the ROS that transmits the 

/mavros/local_position/pose topic. An attacker could then influence the flight path of the 

drone by means of the corresponding topic. This experiment can be found in [29, 30]. 
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In the actual experiment, the experiment was conducted by flying a normal drone driving 

at a height of 2 m considering drone, property, and human casualties, and by returning the 

drone to its starting point. Figure 6.3 shows the state of UAV during an attack. The X and Y 

axis in Figure 6.3 denote time and the altitude of the drone, respectively. Up to the 30 second 

point in the figure, only the accredited node approaches the ROS and transmits the 

/mavros/local_position/pose topic, resulting in a 2 m high UAV flight. After that, the attacker 

node can then approach the ROS and inject itself into the UAV to fly the drone at an altitude 

of 0 m to confirm that the altitude of the UAV is slowly converging at 0 m.  

Figure 6. 2 Attack in native ROS 
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Figure 6. 3 UAV flight without security framework in native ROS 

 

 

 

 

Figure 6. 4 UAV flight with security framework in native ROS 
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The reason for this attack is the lack of verification and data integrity for newly registered 

nodes. We apply a security framework to existing ROS to defend against such attacks. Figure 

6.5 shows how HMAC is applied to ROS to send and receive data. The framework is applied 

to each computer running publisher and to the computer running MAVROS. We demonstrate 

through experiments that UAV with these security frameworks have no impact on existing 

methods of attack. Figure 6.4 shows the state of UAV during an attack in the same scenario 

as the above. An attack was made near 30 seconds, but it can be confirmed that the UAV flies 

at an altitude of 2 m until the experiment is over. 

 

6.3 Experiment on non-native ROS attack 

Rosbridge is a package that enables synchronous and asynchronous communication of ROS 

in an environment where ROS is not installed. We have implemented a web client that can 

use ROS using the rolibjs library for experiments. At this time, the server side should run a 

rosbridge to create a node that sends data to the mavros. Figure 6.6 briefly describes the 

composition of the rosbridge. For practical use of rosbridge, three applications must be run 

on the server-side. The first is the ROS, and the second is the rosbridge server. When the 

rosbridge server receives a message from the client from which topic to send, it attempts to 

connect with the subscriber receiving the topic. In Figure 6.6, the corresponding subscriber 

Figure 6. 5 Security framework for ROS 
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Figure 6. 6 Rosbridge composition diagram 

 

is /mavros. The third application is web server. The Web server provides roslibjs services to 

clients via web pages and helps them communicate indirectly with ROS through rosbridge. 

These three applications do not necessarily have to run on one computer, and they can also 

run on multiple server computers. This will allow the client without ROS to communicate 

with the ROS installed computers. This experiment can be found in [31, 32]. 

The attack and defense experiments in non-native environments, as in previous 

experiments, proceeded with an attack that lowered UAV flying at certain altitudes to 0 m 

and a scenario that defended them. Figure 6.7 shows the method of attack in a non-native 

ROS environment. An attacker can execute an unauthorized web server to execute a malicious 

node on the ROS through the rosbridge server. These nodes can break UAS by injecting 

incorrect data into the system, such as malicious nodes in a native ROS environment. Figure 

6.8 is a web page received through a Web server, and when an altitude is entered in a textbox, 

the UAV has constructed an experimental environment that flies at that altitude. Figure 6.9 

shows the status of the UAV affected by the corresponding attack method. Upon receiving 

/mavros/local_position/pose topic data from normal web clients, the UAV flies at an altitude 
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of 1-2 m during 10 seconds. After 10 seconds, an attacker uses rosbridge to connect a 

malicious node to the ROS and inject false data to lower the altitude of the UAV. We 

performed data integrity and node verification by applying the HMAC-based security 

framework to Web servers and MAVROS. Experiments show that existing attack methods 

have no impact on UAVs with that method. Figure 6.10 shows the state of UAV when an 

attack is made in the same scenario as earlier. An attack was made near 10 seconds, but UAV 

can confirm that it performs a highly normal flight of 1–2 m until the experiment is over. 

 

Figure 6. 7 Attack in native ROS 
 

  
Figure 6. 8 Web client 
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Figure 6. 9 UAV flight without security framework in non-native ROS 

 

 

 

 

Figure 6. 10 UAV flight with security framework in non-native ROS 
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Ⅵ. CONCLUSION 

 

With the noticeable growth in the use of UAV, the stability of the system has become a 

major concern in recent years. Due to the absence of system stability, UAVs that are applied 

in diverse places are exposed to potential risks. Therefore, it is necessary to be aware of this 

fact and study the stability of the system of UAVs. 

For advanced operation of UAVs that make up UAVs, such as autonomous and clustered 

flights, computers that can be operated and communicated are required in addition to the 

flight controller, which is referred to as offboard systems. UAS is a generic term for controls, 

communications equipment, etc. to operate UAVs, including UAVs, and falls under the 

category of CPS. We explain the vulnerability of UAS flying offboard in terms of CPS and 

present a security framework to address it. The framework ensures the integrity of the data 

transmitted in the system through digital signatures and prevents unauthorized nodes from 

accessing the system without authorization, hiding their identities. By measuring overhead 

for computations, data, and transmission speeds as the framework's functions are added, it is 

shown to be an appropriate framework for UAVs.  

In this study, the real time experiment shows that the UAS fails to function properly 

through cyber-attacks using the vulnerability of the ROS and installing ROS in the offboard 

computer. This can establish stability by addressing the problem of access control to ROS 

and integrity problems. To address this, the proposed security framework is applied to the 

system to demonstrate system stability through practical experimentation. 
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요 약 문 

보안된 UAV 통신을 위한 로봇 운영 체제 프레임워크 

본 논문은 ROS가 적용된 UAS에서의 취약점을 분석하고, 이를 방어할 수 있는 보안 프레임 워크를 

제시한다.  

최근 여러 상업매체 또는 군에서 동작하는 UAV는 개별적으로 동작하는 전통적인 임베디드와 달리 

컴퓨팅 시스템과 물리시스템이 밀접한 상호작용을 하며 동작한다. 이러한 특성을 갖는 UAV를 운용하는 

시스템인 UAS는 CPS의 한 범주에 속한다. CPS는 계산, 네트워킹, 물리적 프로세스가 하나의 피드백 

루프로 통합된 시스템을 의미한다. 이 중 네트워킹을 담당하는 데이터 전송 계층은 장소, 상황, 하드웨어, 

소프트웨어 등 다양한 통신 네트워크의 접근성을 갖는 CPS의 특성으로 인해 취약한 계층이다. 이러한 

사실은 CPS의 일부인 UAS도 같은 취약점을 갖고 있음을 의미한다. 최근 UAV의 사용은 단순한 비행 

미션 수행뿐만 아니라 군집비행, 자율비행 등의 특수한 미션을 수행한다. 해당 미션을 위해서는 컴퓨팅 

능력이 있는 하드웨어 및 소프트웨어가 UAS 에 추가 되어야한다. 그 소프트웨어 중 하나로 ROS 가 

사용되며, 이는 보안적 요소의 부재로 공격자가 로봇 시스템을 망가뜨리는 것을 허용한다. 우리는 

ROS의 보안을 위해 기존에 연구된 내용을 조사하였으며, 해당 방법이 UAS에 적용 가능한지 여부를 

분석하였다. 우리는 시간에 민감한 UAS에 적용할 수 있는 가벼운 오버헤드를 갖는 보안 프레임워크를 

제안한다. 또한 ROS를 활용할 수 있는 두 가지 접근법인 native ROS와 non-native ROS 환경에서 실제 

실험을 통해 보안 프레임워크의 성능을 검증한다.  

 

 

 

 

핵심어: Network attack, Unmanned Aerial Vehicle (UAV), Security, ROS, MAVROS,  
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