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Abstract: Among energy storage devices, supercapacitors have received considerable attention in
recent years owing to their high-power density and extended cycle life. Researchers are currently
making efforts to improve energy density using different asymmetric cell configurations, which may
provide a wider potential window. Many studies have been conducted on positive electrodes for
asymmetric supercapacitor devices; however, studies on negative electrodes have been limited. In this
study, iron oxides with different morphologies were synthesized at various deposition temperatures
using a simple chemical bath deposition method. A nanosphere-like morphology was obtained for
α-Fe2O3. The obtained specific capacitance (Cs) of α-Fe2O3 was 2021 F/g at a current density of 4 A/g.
The negative electrode showed an excellent capacitance retention of 96% over 5000 CV cycles. The
fabricated asymmetric solid-state supercapacitor device based on α-Fe2O3-NF//Co3O4-NF exhibited
a Cs of 155 F/g and an energy density of 21 Wh/kg at 4 A/g.

Keywords: chemical bath deposition; α-Fe2O3; Co3O4; supercapacitor device

1. Introduction

Currently, energy storage and conversion are the major issues in sustainable devel-
opment, and renewable energy sources are sufficient to fulfill the increasing demand for
global energy [1]. In the case of conventional energy storage devices, few limitations exist in
the development of energy storage devices with good performance and efficiency [2]. Com-
pared to conventional energy storage devices, supercapacitors are emerging energy storage
devices with good cyclic stability, a rapid charge–discharge rate with high-power den-
sity, enhanced temperature range, and long cycle life, which may meet the ever-growing
demand for energy storage devices [3]. Depending on the charge storage mechanism,
supercapacitors are mainly categorized into two types: (1) electric double-layer (EDLC)
supercapacitors and (2) pseudocapacitors [4]. EDLCs predominantly exhibit capacitance
developed from charge accumulation (non-Faradaic) that occurs at the electrode–electrolyte
interface [5]. In pseudocapacitors, pseudocapacitance is mainly caused by the redox reac-
tions that occur in electrolytes and the electrically active surface of the electrode material [6].
In particular, transition metal oxides and polymers have predominantly been studied
as pseudocapacitor materials [7]. The transition metal oxides, such as NiO, Co3O4, and
MnO2, and double metal oxides, such as MCo2O4 (M = Mn, Ni, Fe), are used as positive
electrodes [7–11]. However, in the case of an asymmetric solid-state supercapacitor (ASC)
device, the performance depends on both positive and negative electrodes. The capacitance
of the cell was measured using the following formula [12]:

1
C

=
1

C+
+

1
C−

(1)
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where C+ and C− are the specific capacitances (Cs) of the anode and cathode, respectively.
According to a study, the Cs values observed in the case of the anode are higher than those
of the cathode [13]. Therefore, identifying negative electrode materials with an enhanced
electrochemical performance is challenging. Among the transition metal oxides, iron oxide
has emerged as a potential negative electrode material. Fe2O3 is a naturally abundant
metal oxide; it shows a more negative working potential with higher stability in alkaline
electrolytes, in addition to a high theoretical capacity (3625 F/g) [9,14]. In the case of Fe2O3,
the charges are mainly stored using Faradaic redox reactions that occur between the Fe3+

and Fe2+ ions and the electrolyte at the interface of the electrode and electrolyte [15–18].
Compared to other metallic oxides, α-Fe2O3 is a good pseudocapacitive material. This may
be due to its special crystal structure, such as α-Fe2O3 (hematite), which has a steadier
hexagonal-like crystal structure [19]. However, there are a few limitations in the usage of
α-Fe2O3 as an electrode material, such as low electrical conductivity, and the particle size
of α-Fe2O3 increases with the number of charge–discharge cycles [20].

Therefore, efforts are prevailing to design different nanostructured morphologies of
iron oxide directly grown on conducting nickel foam (NF) substrates. The nanostructured
porous morphology of α-Fe2O3 is suitable for improving the electrochemical performance
because of the presence of a large number of active sites, which provide a large active
surface area for charging–discharging reactions [18,19]. These active sites help in reducing
the diffusion length and transfer resistance of electrons, which helps sustain a constant
rate capability at high resistance [21]. Herein, α-Fe2O3 films were grown directly on NF
substrates using a simple chemical bath deposition (CBD) method at different deposition
temperatures. At 363 K, porous nonspherical particles of α-Fe2O3 were formed directly on
the conducting NF substrate. For the fabrication of the ASC device, Co3O4-NF was used as
the positive electrode, and the synthesized α-Fe2O3-NF electrode was used as the negative
electrode. This ASC device showed a good energy density of 21.5 Wh k/g. The negative
electrode show a good stability of 96% with improved Cs of 1037 F/g for KOH-based
electrolytes.

2. Materials and Methods
2.1. Synthesis of Negative α-Fe2O3-NF Electrode

The α-Fe2O3 thin films were synthesized using a simple CBD method. Briefly, 0.1 M
[Fe(NO3)2·6H2O] (ferric nitrate) was dissolved in 25 mL of deionized water (DI) and kept
under continuous stirring, and then 0.2 M [CO(NH2)2] (urea) was dissolved in the mix-
ture and stirred for 25 min to form a uniform reaction mixture. A thoroughly cleaned
NF substrate was then inserted into the solvent mixture. The beaker containing the reac-
tion mixture was then kept in a constant-temperature water bath at different deposition
temperatures, such as 353 (S1), 363 (S2), and 373 K (S3), for 3 h [22].

After deposition, the brown thin film was removed from the bath, washed repeatedly
with DI water, and dried at room temperature for 5 h. A schematic of the synthesis of
α-Fe2O3 is shown in Scheme 1. In addition, the brown Fe2O3 thin film confirmed the
formation of α-Fe2O3 nanoparticles.

2.2. Synthesis of the Positive Co3O4-NF Electrode

In the facile synthesis of the positive electrode, Co3O4-NF was synthesized using a
previously reported CBD method [23]. A reaction mixture of 0.1 M [Co(NO3)2] (cobalt
nitrate) and 0.2 M [CO(NH2)2] (urea) was formed in 25 mL of DI water. This reaction
mixture and the cleaned NF substrate were maintained at 363 K for 5 h. The as-deposited
thin films were dried in air and annealed at 623 K.
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and that at 531.2 eV was due to surface hydroxyl (–OH) [29,30]. 

Scheme 1. Schematic of synthesis of α-Fe2O3.

3. Results and Discussion
3.1. Structural and Morphological Characterization of the Negative α-Fe2O3-NF Electrode

The XRD patterns of the S1, S2, and S3 thin films are shown in Figure 1a. The observed
high-intensity peaks correspond to (012), (104), (110), (113), (024), (116), (214), and (300)
planes and match well with the JCPDS card no. 79-0007. The α phase of the Fe2O3 thin film
formation is confirmed by the peak position [24]. The different deposition temperatures
affected the nucleation rate, surface structure, and growth direction of the α-Fe2O3 thin
films. For the S2 sample, the observed high-intensity peaks correspond to the (013), (104),
and (115) planes. Further, the intensities of the XRD peaks for the S1 sample decreased due
to the incomplete growth of particles, while in the case of the S3 sample, the film peeled up
from the NF substrate; therefore, it showed a low intensity [25]. The crystal structure of
α-Fe2O3 was reproduced using the VISTA software, as shown in Figure 1b. The brown and
red balls represent the Fe and O elements, respectively, and the CIF file was downloaded
from the crystallography open database [26]. XPS analysis was performed to study the
composition and bonding of α-Fe2O3. The survey scan spectra of α-Fe2O3 are shown in
Figure 1c. The high-resolution survey scan spectra confirmed the presence of Fe 2p, O
1s, and C 1s. The Fe 2p spectrum shows two pronounced peaks positioned at 711.4 (Fe
2p3/2) and 724.4 eV (Fe 2p1/2), respectively (Figure 1d). The binding energy difference
between the two peaks is 13.5 eV, which agrees well with the previously reported literature
for the Fe 2p spectrum [27]. The two satellite peaks are present near the main peak at the
binding energies of 719.2 and 732.4 eV, which shows that the oxidation phase is Fe3+. The
O 1s core-level peak was resolved into two peaks at binding energies of 529.4 and 531.2 eV
(Figure 1e) [28]. The peak at 529.4 eV was mainly due to lattice oxygen (FeO), and that at
531.2 eV was due to surface hydroxyl (–OH) [29,30].

Figure 2 shows the surface morphologies of the α-Fe2O3 thin films (S1, S2, and S3). At
low temperatures, the rhombohedra with connected edge-like morphologies were obtained
for the S1 sample (Figure 2a–c). In addition, owing to the low reaction temperature, the
rate of reaction was reduced, which affected the process of thin-film formation, such as
nucleation, aggregation, and growth [31,32]. A further increase in deposition tempera-
ture resulted in nanosphere-like morphology, as shown in Figure 2d–f. The particle size
was found in the range of 30–40 nm from the SEM observation. This nanosphere-like
morphology mainly enhances the electrochemical properties. At higher temperatures,
agglomeration of the particles occurred (Figure 2g–i). The morphology of α-Fe2O3 was
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further confirmed using TEM. Figure 3a,b show the TEM images of S2, which are in good
agreement with the SEM data.
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3.2. Electrochemical Performance of the α-Fe2O3-NF Electrode

Figure 4a shows the CV curves of the S1, S2, and S3 samples at 100 mV/s. The area
under the curve for the S2 sample was greater than that of the S1 and S3 samples. The
electrochemical study for the negative α-Fe2O3-NF electrode(S2) was tested in a 2 M KOH
electrolyte in the operating potential window range from 0.0 to −1.0 V Ag/AgCl. The CVs
of the α-Fe2O3-NF electrodes were studied at various scan rates (Figure 4b). The CV curves
for α-Fe2O3-NF at −1 and −1.2 V are shown in Figure A1. The shape of the CV curve was
semi-rectangular, owing to the reversible redox reactions occurring between the Fe3+ and
Fe2+ ions in the KOH electrolyte. This study substantiates the pseudocapacitive nature of
the α-Fe2O3 electrode [32]. At lower scan rates, such as 5 mV/s, the available duration for
the OH− ions in the electrolyte (KOH) to intercalate with the electrode material (α-Fe2O3-
NF) is the maximum, which may be responsible for the enhancement of Cs. The charging
mechanism in the α-Fe2O3-NF electrode is shown in the following reaction [33,34]:

FeI I I
2 O3 + 3H2O + 2e− ↔ FeI I(OH)2 + 2OH− (2)

The GCD curves for α-Fe2O3 at various current densities in the operating window,
ranged from 0.0 to −1.0 V Ag/AgCl, are shown in Figure 4c. The GCD curve shows
the nonlinear nature of the discharge curve owing to the redox reactions occurring at
the interface. The Cs value of the α-Fe2O3 electrode at a current density of 4 A/g was
2125 F/g, which was calculated using Equation (A1) in the Appendix. The cyclic stability
performance also decreased after 5000 GCD cycles, as shown in Figure A2. Figure 4d shows
the variations in Cs with various current densities. The inset of Figure 4e shows the stability
of the α-Fe2O3-NF electrode, tested using CV cycling at 100 mV/s (scan rate) for 5000 CV
cycles. Figure 4e shows the plot of capacity retention vs. cycle number, and the observed
electrochemical stability of the α-Fe2O3-NF electrode was 96%. The improved performance
of the α-Fe2O3-NF electrode was predominantly due to its porous morphology, which
decreases the diffusion length and increases the rate capability. In addition, the α-Fe2O3
nanospheres were strongly attached to the conductive NF substrate, which prevented the
loss of the active material during the cyclic stability performance study. The electrochemical
performance of the α-Fe2O3-NF electrode is given in Table A1 (Appendix A). Therefore,
the nanosphere-like α-Fe2O3-NF electrode is suitable for use as a negative electrode in
the fabrication of ASC devices. The calculated b-value is 0.7 at the cathodic potential,
which is close to 0.5, rather than 1, proving that the charge storage mechanism originates
from the dominant diffusion-controlled process, as shown in Figure A3a. In addition,
Figure A3b shows the capacitive and diffusive current-controlled distribution for the
α-Fe2O3 electrode [35].
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3.3. Structural and Morphological Characterization of the Positive Co3O4-NF Electrode

A nanowire-like Co3O4-NF thin film was synthesized using a facile CBD method.
The XRD pattern of the deposited Co3O4 is shown in Figure 5a. The peaks observed at
31.4◦, 36.9◦, 44.9◦, 59.4◦, and 65.3◦ are indexed to planes corresponding to (220), (311),
(400), (422), and (511), respectively, according to JCPDS card no:42-1467. Figure 5b shows
the FE-SEM image for Co3O4-NF. The observed nanowire-like morphology is uniformly
distributed on the surface of the NF substrate. The nanowire-like morphology of Co3O4-NF
provides less resistance value and porous structure, which improves the reaction rate [36].
Figure 5c,d show the TEM images of the Co3O4-NF electrode, which substantiates its
nanowire-like nature.

3.4. Electrochemical Performance of the Positive Co3O4-NF Electrode

The electrochemical study of the Co3O4-NF electrode was conducted in a 2 M KOH
electrolyte. The CV curves of the Co3O4-NF electrode are shown in Figure 6a. The CV
curves for the Co3O4-NF electrode show the presence of a pair of redox peaks, which
originate from the Faradaic reactions that occur at the electrode surface, and are presented
below [37–39]:

Co3O4 + OH− + H2O↔ 3CoOOH + e− (3)

CoOOH + OH− ↔ CoO2 + H2O + e− (4)
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The GCD curve of the Co3O4-NF electrode is shown in Figure 6b. The GCD curve
exhibits a nearly symmetric nature with the same charging and discharging times and a
low value of internal resistance [39]. Figure 6c displays Cs observed at various current
densities. The Cs value observed at 4 A/g is approximately 1032 F/g. The cyclic stability
of the Co3O4-NF electrode studied for the 5000th CV cycle is presented in Figure 6d, and
the inset shows the stability study at 5000 CV cycles for the Co3O4-NF thin film. The
observed b-value is 0.45 at the cathodic potential, which is close to 0.5, rather than 1,
as shown in Figure A3c. This indicates that the charge storage contributions originate
from the dominant diffusion-controlled processes. Figure A3d shows the capacitive and
diffusion-controlled contributions of the Co3O4-NF electrode. As the scan rate increased,
the capacitive contribution to the total charge increased. A major diffusion-controlled
process for the Co3O4-NF electrode was observed at all of the scan rates, which is consistent
with the battery-type nature of the electrode during the charge/discharge process.

3.5. Supercapacitive Performance of the Solid-State Co3O4-NF//α-Fe2O3-NFASC Device

In this study, an ASC device was fabricated using Co3O4-NF and α-Fe2O3-NF as the
positive and negative electrodes, respectively, with PVA-KOH as the solid-state electrolyte
(Figure 7a). The charges across the Co3O4-NF and α-Fe2O3-NF electrodes were balanced
using Equation (1). The mass loaded on both positive (Co3O4-NF) and negative electrodes
(α-Fe2O3-NF) are 1.85 and 2.15 mg/cm2, respectively. Figure 7b shows the CV profile of
the Co3O4-NF//α-Fe2O3-NF ASC device at various scan rates in the potential window of
0–1.0 V. The specific capacitance calculated for the Co3O4-NF//α-Fe2O3-NF device was
approximately 164 F/g, as shown in Figure 7c. In the case of electrochemical double-layer
capacitance, the ideal shape of the CV is rectangular, and the mirror image and current
density are independent of the operating potential of the energy storage device during
the discharge process [40]. The CV curves for the ASC device at different angles, such
as 0◦, 45◦, 90◦, 120◦, and 180◦, are shown in Figure A4a (Appendix A). The shape of the
CV curve is not an ideal rectangular redox peak, and the shapes of the CV curves do not
change [41–43]. The GCD curves for the Co3O4-NF//α-Fe2O3-NF ASC device at current
densities of 4–12 A/g are shown in Figure 8a. The GCD curves show nearly symmetric
charge–discharge curves. In addition, the voltage plateaus observed in all of the GCD
curves confirm the contribution of the capacitance originating from the pseudocapacitive
nature of the electrode [42]. The Cs values calculated from the GCD curves were plotted
as a function of the current density (Figure 8b). The device delivered a high Cs of 160 F/g
at 4 A/g. Figure A4b shows the Ragone plot of the energy density vs. power density for
the fabricated Co3O4-NF//α-Fe2O3-NF ASC device. The maximum energy density of the
device was observed up to 21.5 Wh/kg at a power density of 158.2 W/kg and a current
density of 4 g−1. Table A2 in Appendix A shows the electrochemical performance of the
ASC device, based on Co3O4-NF//α-Fe2O3-NF. The stability of the Co3O4-NF//α-Fe2O3-
NF ASC device was tested using the GCD technique for 10,000 cycles. The capacitance
retention of the Co3O4-NF//α-Fe2O3-NF ASC device is approximately 92%, as shown in
Figure 8c. In addition, no significant difference was observed in the GCD curves before
and after the stability study (Figure 8c). Furthermore, the electrochemical properties of
the Co3O4-NF//α-Fe2O3-NF ASC device were studied using EIS. Figure 8d shows the
Nyquist plot for the Co3O4-NF//α-Fe2O3-NF ASC device in the frequency range of 5 kHz
to 50 MHz (5 mV), and the inset shows the high-frequency region. The obtained values
of series resistance (Rs) and charge transfer resistance (Rct) for the Co3O4-NF//α-Fe2O3-
NF ASC device are 0.15 and 2.5 Ω/cm2, respectively. Thus, the ACS device based on
Co3O4-NF//α-Fe2O3-NF exhibited good electrochemical properties.
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4. Conclusions

Nanosphere-like α-Fe2O3 was uniformly deposited on an NF substrate using a simple
CBD technique. The porous nature of α-Fe2O3 contributed to its good specific capacitance
with enhanced cyclic stability. The Co3O4-NF//α-Fe2O3-NF device, fabricated using
Co3O4-NF and α-Fe2O3-NF as the positive and negative electrodes, respectively, shows
the maximum specific capacitance (Cs) of 164 F/g at a current density of 4 A/g. The
maximum energy density of the device was observed up to 21.5 Wh/kg at a power density
of 158.2 W/kg, with excellent rate capability. In addition, the Co3O4-NF//α-Fe2O3-NF ASC
device showed a capacitance retention of 92% after 10,000 cycles of GCD. The outstanding
performance of α-Fe2O3-NF makes it one of the favorable negative electrode materials for
high-performance energy storage devices.
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Appendix A

Appendix A.1. Materials Characterization

The formation of α-Fe2O3-NF and Co3O4-NF was confirmed by X-ray diffraction (XRD,
Bruker AXS D8 advance model) analysis. The surface morphology of α-Fe2O3-NF and
Co3O4-NF was examined by field emission scanning electron microscopy (FE-SEM) and
transmission emission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS)
analysis of the powdered sample (~1–5 mg) of α-Fe2O3-NF was performed to determine the
chemical composition and oxidation states (X-ray source: monochromatic AI Kα, ultimate
energy resolution and It = 0.50 eV FWHM, Ag3d intensity curve).

Appendix A.2. Electrochemical Characterization

The electrochemical performances of the α-Fe2O3-NF and Co3O4-NF electrodes were
tested using a three-electrode system on a ZIVE SP2 battery cycler. In the case of the
three-electrode system, α-Fe2O3-NF and Co3O4-NF electrodes (1 cm2) were used as the
working electrodes, platinum wire as the counter electrode, and Ag/AgCl as the reference
electrode. The electrochemical properties were tested in a 2 M KOH electrolyte. The specific
capacity (Qs) and specific capacitance (Cs) were calculated from the discharge curve using
the following formulas [43]:

Qs =

∫
i(A)× dt(s)
m× 3600

(A1)

Cs =
Qs × 3600

∆V
(A2)

where i, ∆t, m, and ∆V are the discharge current density (A), discharge time (s), mass of the
active material (g), and potential window (V), respectively.

Appendix A.3. Asymmetric Supercapacitor Device Based on α-Fe2O3-NF//Co3O4-NF

To fabricate a flexible asymmetric supercapacitor device, α-Fe2O3-NF and Co3O4-NF
electrodes were used as the negative and positive electrodes, respectively. PVA-KOH was
used as the gel polymer electrolyte and separator. The PVA-KOH electrolyte was prepared
using a previously reported method [44]. The α-Fe2O3-NF and Co3O4-NF electrodes were
painted with the PVA-KOH electrolyte and allowed to solidify at room temperature. This
process was repeated 2 to 3 times to ensure that a sufficient amount of electrolyte was
coated on the electrode surface. After the solidification process, the two electrodes were
sandwiched, and the device was packed and tested. The Cs, energy density, and power
density values were calculated using a previously reported formula [42]. The charges
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between the cathode and anode can be balanced for excellent electrochemical results for
the ASC device using the theory of mass balance as per the following equation:

m+

m−
=

C− × ∆V−
C+ × ∆V+

(A3)

where m(+ or −), ∆V(+ or −), and C(+ or −) are the mass of the active material (g), potential
window (∆V), and Cs (F/g) of the positive and negative electrodes, respectively. The mass
ratio calculated between the positive and the negative electrodes is 1:1.56. The specific
capacitance (Csc, F/g), specific energy (E, Wh/kg), and specific power (P, W/kg) of the
ASC cell were calculated using the following equations:

Csc =
I × ∆t

m× ∆V
(A4)

E =
0.5× Csc × ∆V2

3.6
(A5)

P =
E× 3600

∆t
(A6)
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Table A1. The electrochemical performance of the ferric-oxide-based negative electrode.

Material Electrolyte Capacitance Stability Ref.

Fe2O3/CF 5 M LiCl 180.4 mF/cm2 - [44]
Fe2O3-C 3 M KOH 247.5 mAh/g (2 mV/s) 64% (5000) [42]

Fe2O3 NF 5 M LiCl 145.9 mF/cm2 10 mA/cm2 87.2% (5000) [45]
Fe2O3@C 6 M KOH 304.9 at 1 A/g 90.7% (2000) [46]
CF-Fe2O3 2 M KOH 1.56 F/cm2 at 10 mA/cm2 102% (5000) [47]
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Table A1. Cont.

Material Electrolyte Capacitance Stability Ref.

Fe2O3/CF 0.5 M LiClO4 261 F/g at 1 A/g 82.7% (10,000) [48]
Fe2O3/CF 2 M KOH 908 F/g at 10 A/g 90% (5000) [36]
Fe2O3-NF 2 M KOH 2125 F/g at 4 A/g 95.2% (5000) Present work

Table A2. The electrochemical performance of the ferric-oxide-based ASC devices.

ASC Devices Electrolyte Specific Capacitance Energy Density Power Density Ref.

CuO//Fe2O3 CMC-Na2SO4 79 F/g 23 Wh/kg 19 kW/kg [49]
MnO2@CuO//Fe2O3@C PVA-LiCl 2.46 F/cm3 (0.13 A/cm2) 0.85 mWh/cm3 0.1 W/cm3 [50]
CF-Co3O4//CF-Fe2O3 PVA-KOH 17.5 F/cm3 (6 mA/cm2) 6.75 mWh/cm3 104 mW/cm3 [51]

MnO2///Fe2O3 PVA-LiClO4 74 F/g (5 mV/s) 33.1 Wh/kg 1.32 kW/kg [44]
MnO2//Fe2O3 PVA-LiCl 1.21 F/cm3 (0.5 mA/cm2) 0.41 mWh/cm3 - [51]

MnO2/CF//Fe2O3/CF PVA-LiCl 1.5 F/cm3 (0.5 mA/cm2) 0.55 mWh/cm3 - [44]
NiO//Fe2O3 PVA KOH 57.2 F/g 12.4 Wh/kg 951 W/kg [32]

Co3O4-NF//Fe2O3-NF PVA KOH 155 F/g 21.5 Wh/kg 158 kW/kg Present work
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