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ABSTRACT

Motivation: Time-evolving differential protein–protein interaction (PPI)

networks are essential to understand serial activation of differentially

regulated (up- or downregulated) cellular processes (DRPs) and their

interplays over time. Despite developments in the network inference,

current methods are still limited in identifying temporal transition

of structures of PPI networks, DRPs associated with the structural

transition and the interplays among the DRPs over time.

Results: Here, we present a probabilistic model for estimating Time-

Evolving differential PPI networks with MultiPle Information (TEMPI).

This model describes probabilistic relationships among network

structures, time-course gene expression data and Gene Ontology bio-

logical processes (GOBPs). By maximizing the likelihood of the prob-

abilistic model, TEMPI estimates jointly the time-evolving differential

PPI networks (TDNs) describing temporal transition of PPI network

structures together with serial activation of DRPs associated with tran-

siting networks. This joint estimation enables us to interpret the TDNs

in terms of temporal transition of the DRPs. To demonstrate the utility

of TEMPI, we applied it to two time-course datasets. TEMPI identified

the TDNs that correctly delineated temporal transition of DRPs and

time-dependent associations between the DRPs. These TDNs provide

hypotheses for mechanisms underlying serial activation of key DRPs

and their temporal associations.

Availability and implementation: Source code and sample data files

are available at http://sbm.postech.ac.kr/tempi/sources.zip.

Contact: seungjin@postech.ac.kr or dhwang@dgist.ac.kr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Many cellular events involve serial activation of cellular pro-

cesses during which genes/proteins associated with the processes

are up- or downregulated. Differential protein–protein inter-

action (PPI) networks (DNs) have been used to delineate PPIs

(edges) among differentially regulated nodes (DRNs), such as

up- or downregulated genes or proteins. The DNs have been

considered more effective for understanding the differences be-

tween two conditions, compared with non-DNs (de la Fuente,

2010). However, the DNs delineate no temporal transition of the

DRNs and/or their edges to represent serial activation of cellular

processes over time. Thus, time-evolving differential PPI net-

works (TDNs) have been introduced to delineate (i) temporal

changes in abundances or activities of DRNs (node transition),

and/or (ii) formation of new edges for the DRNs and disappear-

ance of existing edges over time (edge transition). The TDNs are

essential to understand serial activation of differentially regu-

lated cellular processes (DRPs) during a cellular event and

their underlying mechanisms.
Time-course gene expression analysis can provide temporal

changes in abundances of the DRNs (Hwang et al., 2009).

Several interaction assays, such as yeast two-hybrid (Ito et al.,

2001; Uetz et al., 2000; Yu et al., 2008) and mass spectrometry-

based tandem affinity purification (Collins et al., 2007) can be

used to measure PPIs among the DRNs. However, it is still

challenging to experimentally identify temporal transition of

the edges among the DRNs because of the limited coverage of

the interactomes detected by these assays (von Mering et al.,

2002).
The limitation of the experimental methods prompted us to

develop a computational method to estimate TDNs. Many meth-

ods for estimation of dynamic gene regulatory networks have

been developed (Kim et al., 2014). However, estimation of tem-

poral transitions of differential PPI networks (i.e. TDNs) has

been rarely studied. A couple of methods have been developed

to identify differential PPI networks, which can be then used to

estimate TDNs. First, a simple method to infer DNs using time-

course gene expression data identifies DRNs over time and con-

structs a template PPI network with the known PPIs among all

the DRNs (Hwang et al., 2009; Przytycka and Kim, 2010).

TDNs can be then constructed by selecting the interacting

DRNs with significant expression changes at each t from the

template PPI network. Second, principal network analysis

(PNA) identifies differential expression patterns over time and

then selects DRNs and their edges (known PPIs between the

DRNs) showing the differential expression patterns (Kim et al.,

2011). A principal subnetwork (PS) is then constructed using

both DRNs and edges selected for each differential expression

pattern. Finally, TDNs can be constructed by selecting the edges

in PSs for which the linked DRNs show significant expression

changes at each t.
Functional interpretation of the inferred TDNs is important to

understand temporal transition of the DRPs. In most of the

network inference methods, it is commonly performed independ-

ently from network inference using post hoc analyses of Gene

Ontology biological processes (GOBPs) of the nodes in the

inferred networks (Kim et al., 2014). For example, the method

proposed by Park and Bader (2012) clusters the nodes in time-

evolving networks based on the similarity of temporal transitions

of their edges and then links these clusters to cellular functions*To whom correspondence should be addressed.
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using GOBPs. However, none of the methods estimating DNs or

TDNs integrates functional information, such as GOBPs, during

the network inference such that the inferred TDNs can represent

directly temporal transition of differentially regulated GOBPs

and time-dependent interplays between the GOBPs, thereby

facilitating functional interpretation of the TDNs.

Here, we introduce a probabilistic model for estimating Time-

Evolving differential PPI networks with MultiPle Information

(TEMPI). Although many methods have used probabilistic mod-

eling for estimating network structures (Friedman et al., 2000;

Ong et al., 2002; Song et al., 2009), a unique aspect of our model

is that it models additionally probabilistic dependencies of

GOBPs with network structures and time-course global data.

By maximizing the likelihood function of the probabilistic

model, TEMPI jointly estimates the TDNs showing temporal

transitions of network structures with temporal activation of

the GOBPs and their temporal interplays. During the network

inference, TEMPI infers edges not included in the known PPIs,

whereas most of the previous methods (e.g. PNA) select a subset

of PPIs for estimation of TDNs from the known PPIs.

2 FRAMEWORK OF TEMPI

TEMPI uses the observed data (time-course gene expression data, known

PPIs and GOBPs) as the input variables, estimates the output variables

based on the probabilistic graphical model describing probabilistic depen-

dencies among the input and output variables, and then infers TDNs

using the estimated output variables. First, TEMPI uses the following

three observed variables as the inputs. As the first input, TEMPI uses the

time-course gene expression log2-fold-changes (dynamic data) of n nodes

at T time points, with R biological replicates (an n� T� R array E in

Supplementary Fig. S1, bottom left). Estimation of the TDNs only using

E can be an underdetermined problem (De Smet and Marchal, 2010). To

reduce this issue, as the second input, TEMPI uses known PPI data

(an n� n adjacency matrix GI ; static data) of n nodes (Supplementary

Fig. S1, top left). In TEMPI, the GI are converted into positions of n

nodes in a p-dimensional latent space (a n� p positional matrixXI) using

multidimensional scaling (MDS; Supplementary Information S1.1;

Higham et al., 2008; You et al., 2010). In this study, we used the 2D

latent space (Supplementary Information S1.1). MDS locates the inter-

acting nodes closely in the latent space: for example, for nodes A–E in GI

(Supplementary Fig. S1, top center), MDS located A–D closely, but E

distantly from A–D in a 2D latent space. To identify TDNs, TEMPI then

selects m DRNs from time-course gene expression data (Supplementary

Information S1.2). TEMPI uses them� p XI for the selected DRNs as an

input. Finally, as the third input, TEMPI further uses the GOBP data (l

GOBP terms assigned to m DRNs; static data), a m� l binary node-

GOBP matrix T in which tik =1 when node i has GOBP k (e.g. a T

for nodes A–F in Supplementary Fig. S1, top right).

Second, TEMPI uses a probabilistic graphical model (Fig. 1) that de-

scribes probabilistic dependencies (see Section 2.1) among the input

observed variables (Xo= T;E;XI
� �

) and the following output hidden

variables for m DRNs at each t : (i) a m� p positional matrix Xt repre-

senting positions of n nodes in a p-dimensional space at t, (ii) an m�m

adjacency matrix Gt representing the presence of edges between m nodes

at t and (iii) a m� l node-GOBP matrix At representing differentially

regulated GOBPs at t, in which atik=1 when GOBP k is estimated to be

differentially regulated for node i; otherwise, atik=0. The output hidden

variables were then estimated through the optimization (see Section 2.2).

Third, using the estimated outputs (Xh= Xt;Gt;At
� �

), the TDNs can be

constructed as described in Section 2.3 (‘Inferred TDNs’ of

Supplementary Fig. S1, bottom right). The resulting TDNs have the

following characteristics: (i) a pair of interacting DRNs according to GI

are likely to be linked when they share expression changes and GOBPs

[e.g. the interacting A–B in GI (Supplementary Fig. S1, top left), both of

which were upregulated (Supplementary Fig. S1, bottom left) and share

GOBPs 3 and 6 (Supplementary Fig. S1, top right), were linked in Gt at

t=1 (Supplementary Fig. S1, bottom right)]; (ii) the links between non-

interacting DRNs according to GI can be inferred when they share ex-

pression changes and GOBPs (e.g. non-interacting B–D in GI, both of

which were upregulated and share GOBPs 3 and 4, were linked in G3 at

t=3); and (iii) the GOBPs assigned to the interacting DRNs in T are

likely to be differentially regulated (e.g. the interacting A–B at t=1 have

GOBPs 3 and 6 in T, which are co-differentially regulated in the esti-

mated A1).

2.1 Probabilistic graphical model

The probabilistic graphical model (Fig. 1) was constructed to include the

following dependencies between the input observed Xo= T;E;XI
� �

and

the output hidden variables Xh= Xt;Gt;At
� �

: (i) Xt depends on the initial

positions of nodes (XI) and their positions at t� 1 (Xt�1) to achieve

smooth transition of TDNs over time; (ii) Gt, a geometric graph, depends

on the distances between the nodes in the latent space and thus on Xt;

(iii) E depends on the interactions (Gt) between the nodes based on the

observation in real PPI networks that the nodes with similar expression

changes are likely to interact (Grigoriev, 2001; Supplementary Fig. S2A);

and (iv) At depends on Gt and the node-GOBP matrix T, based on the

observation in real PPI networks that the nodes with the same GOBPs

are likely to interact (Sharan et al., 2007; Supplementary Fig. S2B).

Based on these dependencies, the probabilistic model was defined by

the following four submodels (see Supplementary Information S1.3 for

further details of the four submodels):

� Transition model (Ptrans) for m nodes is defined as a product of m

Gaussian distributions: Ptrans=P XtjXt�1;XI
� �

=
Qm

i=1N xti jm
t
i ;SiÞ

�
where mt

i= xt�1i =�2t+xIi =�
2
I

� �
= 1=�2t+1=�2I
� �

and Si=½1= 1=�2t+
�

1=�2I Þ�I. x
t
i and I are the positional vector for node i at t and the iden-

tity matrix, respectively. �t and �I control the penalties of displace-

ment of nodes from positions (Xt�1) at t – 1 and initial positions

(XI), respectively.

� Link model (PLink) is modeled as a product of Bernoulli distribu-

tions for m m� 1ð Þ=2 pairs of m nodes: PLink=P Gt
jXt

� �
=
Q
8 i;jð Þ

ptij

� �gtij
1� ptij

� �1�gtij
where link probability (ptij) of nodes i and j is

defined by P gtij=1 jdij

� �
=N d2ij j0; �g

� �
=N 0 j0; �g

� �
with

dij=kx
t
i � xtjk2. ptij decreases as dij increases, and its decreasing

rate is controlled by �g:

Fig. 1. The probabilistic model describes dependencies among the

observed variables Xo= T;E;XI
� �

and the hidden variables

Xh= Xt;Gt;At
� �
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� Expression model (Pexpr) at t is defined as a weighted product of

P E� jGt
� �

for all time points �, where E� is the m�R log2-fold-

change matrix for m nodes, with R biological replicates at time �,

and e�r is column r of E� . P e�r jG
t

� �
is then modeled as the product of

the mixtures of Gamma distributions for all pairs of m nodes with

two sets of parameters, ke1 ; �e1
� �

and ke2 ; �e2
� �

:

P e�r jG
t

� �
=
Y
8ði;jÞ

� d�ijrjke1 ; �e1

� �gtij
� d�ijrjke2 ; �e2

� �ð1�gtijÞ
;

where d�ijr=je
�
ir � e�jrj+exp � e�ir

� �2
=c

� �
+exp � e�jr

� �2
=c

� 	
. k and �

are determined to produce a higher probability in the first Gamma

distribution than in the second one for a small d�ij. Finally, we used a

radial basis function kernel, k �; tjvð Þ=exp � � tð Þ
2=v

� �
, to weight P

E� jGt
� �

in its weighted product (Song et al., 2009):

P EjGt
� �

=
YT
�=1

YR
r=1

P e�r jG
t

� � !k �;tjwð Þ

:

This weighting scheme ensures (i) smooth transitions of TDNs, and

(ii) a more significant dependency of Gt on et at �= t than other �s

(6¼ t).

� Ontology model (PGO) is factorized into P AtjGt
� �

and

At
jT

� �
:PGO=P At

jGt;T
� �

=P At
jGt

� �
P At
jT

� �
. First, P At

jT
� �

is

defined by the product of Bernoulli distributions for l GOBPs of

m nodes:

P AtjT
� �

=
Ym
i=1

Yl
k=1

f tkið Þð Þ
at
ki 1� f tkið Þð Þ

ð1�at
ki
Þ;

where f tkið Þ= iff k;Tð Þ=2 � sð Þ
tki �1�tki (�=1�10–4), given an inverse

function frequency iff k;Tð Þ=log m=
P

i tik
� �

that penalizes general

GOBPs. The normalization constant s was defined as the maximum

value of iff k;Tð Þ. Second, P AtjGt
� �

was modeled as the mixture of

Gamma distributions for all pairs of m nodes using two sets of

parameters, ko1 ; �o1
� �

and ko2 ; �o2
� �

:

P At
jGt

� �
=
Y
8 i;jð Þ

� ati
Tatj=hjko1 ; �o1

� �gtij
� ati

Tatj=hjko2 ; �o2

� � 1�gtij

� �
;

where k and � are determined to produce a higher probability in the

first Gamma function than in the second one for a large ati
Tatj .

Many previous methods have used probabilistic models for estimating

the network structures using E (Friedman et al., 2000; Ong et al., 2002;

Song et al., 2009). However, a unique aspect of our model is that it

includes the ontology model to integrate GOBP data (At and T) during

the probabilistic estimation of TDNs.

2.2 Optimization of the likelihood function

The joint probability of the graphical model at each t is defined by

P Gt;E;T;At;XtjXt�1;XI
� �

=PtransPLinkPexprPGO. The output hidden

variables (Xh= Xt;Gt;At
� �

) are then estimated by maximizing the

log-likelihood function of the joint distribution, log P Gt;E;T;
�

At;XtjXt�1;XIÞ using variational inference (Beal, 2003). Briefly, for

each t, we first calculated the lower bound of the marginal log-

likelihood function, log P E;TjXt�1;XI
� �

, which can be obtained by

integrating the joint probability with respect to Xh (Supplementary

Information S1.4): for distributions of Xh, Q Xhð Þ,

logP T;EjXt�1;XI
� �

�
R
Q Xhð Þlog

P Xh;T;EjX
t�1;XIð Þ

Q Xhð Þ

� �
dXh. We then used a

variational approximation (Beal, 2003) to estimate the variational distri-

bution Q Xhð Þ, assuming the independency among the variables:

Q Xhð Þ=Q Xt
� �

Q Gt
� �

Q At
� �

where Q Xt
� �

=
Qn

i=1N xti jm
t
i ; �

2
qIÞ;

�
Q Gt
� �

=Qn
i=1Ber gtijj�

t
ij

� �
; and Q At

� �
=
Qn

i=1

Ql
k=1Ber atkij�

t
ki

� �
: In these distribu-

tions, mt
i , �q, �

t
ij and �

t
ik are the variational parameters (Supplementary

Information S1.5). Finally, we determined the variational parameters

(mt
i , �

t
ij and �

t
ik) such that they maximize the lower bound of the marginal

likelihood function as described in Supplementary Information S1.5.

2.3 Construction of TDNs

Using these variational parameters (mt
i , �

t
ij and �

t
ik), the output hidden

variables (Xh= Xt;Gt;At
� �

) were finally estimated. At each t, first, the

position ðxti , column i of XtÞ of node i was determined as the expected

value of the posterior probability of xti given the observed variables,

P(xti jXo). The variational distribution with the estimated variational par-

ameters approximates the posterior probability distribution of the hidden

variables given the values of the observed variables: PðXhjXoÞ ffi Q Xhð Þ.

With the independency among the hidden variables, P xti jXo

� �
ffi Qðxti Þ,

Pðgtij=1jXoÞ ffi Qðgtij=1Þ and P atki=1jXo

� �
ffi Q atki=1

� �
. Thus, xti was

determined as mt
i , the expected value of Qðxti Þ. Second, nodes i and j

were determined to be linked (i.e. gtij of Gt =1) when

P gij=1jXo

� �
ffi Q gij=1

� �
=�tij� 0.5. Using the estimated Xt and Gt,

TDNs can be constructed as geometric graphs at individual time points.

Finally, for functional interpretation of the inferred TDNs, GOBP k

was determined to be differentially regulated (positively or negatively

activated) at t for node i (atki of A
t =1) when the log-likelihood ratio

of posterior and prior probabilities of atki=1, log ½P atki=1jXo

� �
=Pðatki=

1Þ� ffi log½Q atki=1
� �

=Pðatki=1Þ�=log �tki=f tkið Þ, was significantly

(P50.01) larger than zero. The P-value was computed using one-tailed

t-test (degree of freedom=the number of nodes with GOBP k). Using

the estimated At, the activation degree of GOBP k at t was estimated as

the fraction of the nodes with activated GOBP k (atki=1) in the network

at t among all nodes with GOBP k (tki=1):
P

i atki � sign eti
� �� �

=
P

i tki,

where signðeti Þ is the sign of
P

r e
t
ir and r is the index of biological repli-

cates. The sign was multiplied to distinguish positive and negative acti-

vation of GOBP k for node i at t. Furthermore, the interaction degree for

two activated GOBPs k and l at t was estimated as the fraction of the

inferred edges between the two sets of the nodes with activated GOBP k

ðatki= 1) and activated GOBP l ðatli=1), respectively, in the network at t

among all possible edges among the two sets of nodes with activated

GOBPs k and l:

X
i;j

gtija
t
kia

t
ljsign sign eti

� �
+sign etj

� �� �" #. X
i

atki

 ! X
i

atli

 !" #
:

The sum of the signs of the linked nodes i and j was included such that the

edge with different signs of the linked nodes should have no contribution

to the interaction degree.

3 A SYNTHETIC TDN MODEL

To demonstrate the performance of TEMPI, we generated a

template PPI network and GOBPs to simulate characteristics

of real yeast PPI networks and then sampled the synthetic

TDN model from the template PPI network for which temporal

transitions of (i) network structures and (ii) differentially regu-

lated GOBPs associated with the TDN model are known. First,

to generate a template PPI network with the characteristics of

real yeast PPI networks, we used a geometric graph model with

gene duplication and mutation (GEO-GD expansion model;

Przulj et al., 2010; Supplementary Fig. S3A). See
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Supplementary Information S2.1 for the detailed procedure. The

resulting template PPI network included 26 454 edges for the

3258 nodes (Supplementary Fig. S4A). This network was also
used as the input PPI network (GI). Second, to generate GOBPs

with the characteristics of real yeast PPI networks, we assigned

306 GOBP labels (T) to the 3258 nodes in the template PPI

network using a modified version of network module (NeMo;

Rivera et al., 2010; Supplementary Fig. S3B). See Supplementary

Information S2.2 for the detailed procedure. Among the 306

GOBPs, we used 103 after removing 203 GOBPs assigned to
4100 or55 DRNs, which can be too general or non-meaningful,

respectively, for functional interpretation. Third, we then

sampled a TDN model from the template PPI network by select-

ing the nodes with (i) GOBPs 60, 67 and 218; (ii) GOBPs 178,

228 and 206; and (iii) GOBPs 94, 146 and 246 at individual time

points based on predefined fractions of the linked edges among
the selected nodes over time (Supplementary Figs S3C and S4B).

See Supplementary Information S2.3 for the detailed procedure.

Finally, we generated time-course gene expression log2-fold-

changes that reflect temporal transitions of the synthetic TDN

model using Metropolis–Hastings algorithm (Hastings, 1970;

Supplementary Figs S3D and S4C). See Supplementary

Information S2.4 for the detailed procedure.

4 RESULTS AND DISCUSSION

4.1 Application of TEMPI to the synthetic data

To evaluate performance of TEMPI, we applied it to the syn-
thetic input data (T;E;GI). As the input PPI data, we used the

PPIs in the template PPI network (GI; see Section 3). We first

applied MDS to GI for the 3258 nodes to compute XI in 2D

latent space. To identify TDNs, we then identified 616 DRNs

with false discovery rates (FDRs)50.1 using a modified version

of repeated measure-analysis of variance (RM-ANOVA) test

previously reported (ElBakry et al., 2012) and maximum log2-

fold-changes40.58 (1.5-fold) at least at one time point

(Supplementary Information S1.2) and used the XI for the 616

DRNs as an input data. For the synthetic GOBP data, we used

103 GOBPs (T) for the DRNs as described in Section 3. Finally,

we used the 616�6�3 synthetic log2-fold-changes for the DRNs

as the input expression data (E). After applying TEMPI to these

synthetic input data (XI;T;E) for the 616 DRNs, the output

variables (Xt;Gt;At) were estimated by the optimization of the

likelihood function of the probabilistic graphical model (see

Section 2.2). Using the Xt and Gt, TDNs (TEMPI- Gt) were

inferred at individual time points (see Section 2.3).

For functional interpretation of TEMPI-Gt, we first examined

temporal activation of the 103 GOBPs represented by TEMPI-Gt

(Fig. 2A) based on the activation degrees of the 103 GOBPs

computed using the estimated At (see Section 2.3). The activation

degrees revealed that three groups of GOBPs (Groups 1–3 in Fig.

2A, left panels), among the 103 GOBPs, were differentially regu-

lated early, mid and late over time, respectively. Notably,

Groups 1–3 included GOBPs 60, 178 and 94 (Group 1); 67,

228 and 146 (Group 2); and 218, 206 and 246 (Group 3), respect-

ively, consistent to the predefined differential regulation of the

three sets of the GOBPs (Supplementary Information S2.3). For

example, the high activation degree of Group 1 at t=1 indicates

that a large number of the nodes with Group 1 are linked at

t=1. The decrease of the activation degree from t=2 indicates

that decreasing numbers of the nodes with Group 1 are linked

from t=2. Moreover, the descendants of the predefined GOBPs

in Groups 1–3, respectively, were partially differentially regu-

lated. This is expected because the nodes assigned with the des-

cendant GOBPs also have their parent GOBPs (Supplementary

Fig. S3). We then examined temporal associations among the

Fig. 2. Identification of differentially regulated GOBPs and TDNs associated with the GOBPs. (A) Activation degree heat map representing temporal

activation of 103 GOBPs. Differentially regulated GOBPs were categorized into Group 1 [G1-GOBPs 60, 178, 94 (bold) and their descendants (non-

bold)], Group 2 (G2-GOBPs 67, 228, 146 and their descendants) and Group 3 (G3-GOBPs 218, 206, 246 and their descendants). (B) Interaction degree

heat maps showing temporal associations among the GOBPs in Groups 1–3. Color bars, gradients of the activation (A) and interaction degrees (B). (C)

Inferred TDNs for GOBPs 60, 67 and 218 in Group 1 (first, second and third rows, respectively). Colored nodes at each t represent the linked nodes with

atki=1 for k=60, 67 or 218. Black nodes at t represent the linked nodes with atki=0, but tki=0 for k=60, 67 or 218, and gray nodes at t represent

colored or black nodes in G or Gt�1. Blue and red lines at t show the edges among DRNs (gtij=1) and the displacement of DRNs from t – 1, respectively
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GOBPs in Groups 1–3 represented by TEMPI-Gt based on the

interaction degrees of the GOBPs computed using the estimated

At and Gt (Supplementary Fig. 2B; see Section 2.3). The inter-

action degrees revealed that (i) Group 1 and their descendants;

(ii) Group 2 and their descendants; and (iii) Group 3 and their

descendants showed early, mid and late associations among

them, respectively, consistent to the predefined differential regu-

lation of their parent GOBPs.
Finally, TEMPI-Gt (Fig. 2C) showed the transitions of nodes

and edges over time from the initial network (GI; Supplementary

Fig. S4A). Of note, because of the geometric representation of

the TDNs, the linked nodes at t in TEMPI-Gt were moved clo-

sely to each other. The TDNs (Fig. 2C) for GOBP60 (Group 1),

GOBP67 (Group 2) and GOBP218 (Group 3) correctly captured

early, middle and late transitions defined in their true TDNs

(Supplementary Fig. S4C).

4.2 Comparison of TEMPI with previous methods

To quantitatively assess the relative performance of TEMPI, we

applied the two methods, the simple method (Hwang et al., 2009)

and PNA (Kim et al., 2011) described in Section 1, to the syn-

thetic data and identified TDNs as follows. For the simple

method, as the input data, we used the synthetic E and GI in

the template PPI network. We first identified the DRNs as the

nodes with the maximum fold-changes4a cutoff of 2 or 1.5. For

the DRNs, we constructed a DN using the GI. We then estimated

the TDNs (Simple-Gt) by selecting the interacting DRNs with

fold-changes4the cutoff in the DN at each t or either of its

neighboring time points (t – 1 or t+1) to reflect significant

smooth transitions and then by linking the selected interacting

DRNs (Supplementary Information S3.1). For the PNA appli-

cation, as the input data, we used the same synthetic E and GI.

PNA identified three activation patterns (H1-3 in Supplementary

Fig. S5A) and then generated the three PSs (PS1-3 in

Supplementary Fig. S5B) that describe interactions among the

DRNs showing the three activation patterns based on the input

PPIs. By selecting both DRNs and edges showing PS1-3 at each t

and then combining them, we identified TDNs (PNA-Gt) at t=1

–6 (Supplementary Information S3.2).
We then evaluated the performance measures (precisions, re-

calls and F1 scores) by comparing the TDNs inferred by the

three methods with the true TDNs and compared the perform-

ance measures of TEMPI with those of these two methods.

Moreover, in many species, known PPIs (GI) are incomplete

(Beyer et al., 2007). Unlike TEMPI, both the simple method

and PNA predict no edges not included in GI. Their performance

can thus depend on completeness of GI. Thus, we further exam-

ined robustness in accuracy of the inferred TDNs against incom-

pleteness in GI by inferring the TDNs using the three methods as

randomly removing 10–90% of the PPIs in the template PPI

network (GI). Furthermore, to understand how the capability

of TEMPI to predict edges not in GI can contribute to the per-

formance, we also compared the performance of TEMPI after

removing the edge prediction capability by fixing gtij to 0 when

gIij=0 during the optimization of TEMPI. PNA resulted in the

highest precisions, but the lowest recalls, indicating that PNA-Gt

had less false positives (FPs), but more false negatives (FNs),

compared with TEMPI and the simple method (Fig. 3A and

Supplementary Table S1). By contrast, the simple method had
lower precisions (more FPs), but high recalls (less FNs), com-

pared with TEMPI and PNA. Interestingly, precisions of the
three methods are robust to the amount of the removed PPIs,
indicating the robust sensitivity of the methods for identifying

the true links against the removal of PPIs. On the other hand,
recalls of the simple method, PNA and TEMPI with no edge

prediction capability linearly decreased with the increase of the
amount of the removed PPIs. However, importantly, recall of
TEMPI was robust up to 60% removal of the input PPIs. Based

on the overall performance measure, F1 score defined as the
harmonic mean of precision and recall, PNA was the best or
comparable with TEMPI when the amount of the removed

PPIs is530%. However, TEMPI outperformed the other meth-
ods when the amount of the removed PPIs is430% and showed

the robust performance against the removal of the PPIs. Also,
TEMPI with no edge prediction capability achieved the similar
performance to PNA, and the robustness against the PPI re-

moval disappeared. These data indicate that the edge prediction
capability of TEMPI recovered the removed links in TEMPI-Gt.
In addition, it is important to assess whether the three methods

correctly estimate temporal transitions of topological properties

Fig. 3. Comparison of TEMPI with two previous methods. (A) Precision,

recall and F1 score for TEMPI-Gt, PNA-Gt and Simple-Gt with up to

90% removal of the input PPIs. The performance can vary depending on

which PPIs are removed. Thus, we performed 10 times of random sam-

plings. Data are represented as mean	SD from the samplings. (B–C)

Distributions of correlations of temporal profiles of degrees (B) and CC

(C) in the three Gt s with those in the true Gt. (D) Changes in the inter-

activities of GOBPs 60, 67 and 218 in the three Gt s and the true Gt (Left)

and correlations between the interactivities in the inferred Gt s and the

true Gt (Right). See the legend for the lines used for the three methods
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in the true TDNs. Thus, we next examined the performance of

the three methods in estimating transitions of the topological

properties. To this end, we first selected TDNs reconstructed

by the three methods when percentage of removal in input

PPIs is 30% because they achieved similar F1-scores. Then, for

the nodes in the Gt estimated by each method, we computed (i)

degree and (ii) clustering coefficient(CC) profiles over time.

Then, we calculated correlations of the degree and clustering

coefficient profiles with those of the true TDNs (Fig. 3B–C).

The comparisons revealed that temporal transitions of the topo-

logical properties in TEMPI-Gt, compared with PNA-Gt and

Simple-Gt, agreed best with those in the true TDNs. Structural

changes in the Gt s should be linked to transitions of cellular

functions represented by the Gt s over time. Thus, we examined

how well structural changes in the Gt s estimated by the three

methods were linked to differential regulation of GOBPs 60, 67

and 218 represented in the true TDNs (Supplementary Fig. S6

for the other predefined six GOBPs). For TEMPI, as described

in Section 4.1, the activation degrees of GOBPs showed that

structural changes in the Gt s well-represented early, mid and

late differential regulation of the three GOBPs in the true

TDNs (Fig. 2A). As another subjective measure previously re-

ported (Song et al., 2009), we further defined ‘interactivity’ for

each GOBP as the average number of the edges in Gt among the

nodes with the GOBP. For the GOBPs 60, 67 and 218, temporal

changes of the interactivities obtained from TEMPI-Gt achieved

the highest correlation with those of the true TDNs, compared

with PNA-Gt and Simple-Gt (Fig. 3D). All these data together

indicate that TEMPI-Gt represents effectively the temporal tran-

sitions in the true TDNs in the structural (Fig. 3A), topological

(Fig. 3B–C) and functional (Fig. 3D) aspects, compared with the

two previous methods.

4.3 Application of TEMPI to the cell cycle data

Cell cycle is a representative time-varying cellular process.

Although small-scale TDNs for several molecules involved in

cell cycle have been studied, large-scale TDNs for a comprehen-

sive set of molecules for cell cycle are still largely unknown. Thus,

we obtained time-course gene expression data (GSE8799) col-

lected during the cell cycle of wild-type yeasts (Orlando et al.,

2008). We first applied MDS to the high quality of known yeast

PPI data (GI; Supplementary Information S4.1) to calculate XI in

a 2D latent space for 3258 nodes. We selected the 755 DRNs

with FDRs50.1 using the modified RM ANOVA test and max-

imum log2-fold-changes40.58 (1.5-fold) at one time point at

least. To identify TDNs, we then obtained the following input

data for the 755 DRNs: (i) log2-fold-changes (E) at six time

points with two replicates, (ii) positions (XI) in a 2D space and

(iii) 664 GOBPs (T) assigned to the 755 nodes (Supplementary

Information S4.1).
TEMPI generated G1 to G6 over six time points (G0, G1, S,

G2, G2/M and M phases) during the cell cycle. To understand

functional transition represented by TEMPI-Gt, we first exam-

ined activation degrees of the 664 GOBPs. Among them, we

focused on the 14 cell cycle–related GOBPs with pulsed changes

of activation degrees, a characteristic of the cell cycle (Fig. 4A;

Supplementary Information S4.2). They can be categorized into

the following three groups: Group 1, early activated GOBPs with

the peaks at G0 to G1 phase (DNA-dependent DNA replication
initiation, DNA-dependent DNA replication, DNA strand
elongation involved in DNA replication, DNA integrity check-

point and telomere maintenance via telomerase); Group 2,
middle activated GOBPs with the peaks at S to G2 phase
(post-replication repair, sister chromatid cohesion, DNA packa-

ging, spindle organization, spindle checkpoint, regulation of
G2/M transition of mitotic cell cycle and nuclear division); and
Group 3, late activated GOBPs with the peaks at G2/M to M

phase [cytokinetic cell separation (CCS) and organelle inherit-
ance]. The activation kinetics of these 14 GOBPs was largely
consistent with their known kinetics during the cell cycle

(Orlando et al., 2008; Simon et al., 2001; Spellman et al.,
1998). For example, the expression of genes involved in DNA
replication and repair reached peaks in G1 or S phases (Spellman

et al., 1998), consistent to the kinetics of the GOBPs of DNA
replication and post-replication repair in Figure 4A.
We then examined the interaction degrees of the GOBPs to

understand time-dependent associations among GOBPs repre-

sented by TEMPI-Gt. In this analysis, we focused on the follow-
ing five GOBPs: GOBPs 1–2, DNA-dependent DNA replication
(DR) and DNA integrity checkpoint (DIC) in Group 1; GOBPs

3–4, spindle checkpoint (SC) and regulation of G2/M transition
of mitotic cell cycle (G2M) in Group 2; and GOBPs 5, CCS in
Group 3. The interaction degrees revealed the following tem-

poral interplays between the five GOBPs (Fig. 4B): (i) DIC
and DR in Groups 1 and 2, respectively, during G0, G1 and S
phases (t=1–3); (ii) DIC and SC, as well as DIC and G2M, in

Group 1 at S phase (t=3); (iii) SC and G2M in Group 1 at S and
G2 phases (t=3–4); and (iv) SC and CCS in Group 4 at G2
phase (t=4). Some of these interplays have been previously re-

ported. Noh et al. (2009) reported that downregulation of G2/M
transition-related genes (e.g. PLK1 and SURVIVIN) led to a
defect in mitotic spindle, and Gardner et al. (1999) reported

that two DIC-related genes, RAD53 and DUN1, are required
for establishment and maintenance of G2/M arrest. TEMPI-Gt

showed temporal transition of the nodes with the five GOBPs

and their edges (G2M and CCS in first row of Fig. 4C, SC and
G2M in second row of Fig. 4C and Supplementary Fig. S7 for
individual GOBPs), consistent to the transitions of the GOBPs in

Figure 4A and B.
These findings can provide novel insights into the interplays

among the GOBPs during the cell cycle. TEMPI-Gt at S phase

(t=3) showed the strongest associations among the GOBPs. To
investigate novel insights represented by the associations, we
built a subnetwork (Fig. 4D) including the nodes with the four

GOBPs (DIC, DR, SC and G2M) strongly interacting at S phase
(t=3). To reduce the complexity, we focused on the RAD53
subnetwork (Fig. 4D) including RAD53, a key molecule in

DIC and DR, and its 36 interactors involved in the four
GOBPs. Of the 36 interactors, only three are included in the
input PPIs (GI), while the others are predicted. To assess the

reliability of the predicted interactors of RAD53, we obtained
9850 interactions among the 755 DRNs from an independent
PPI database, BioGrid (Stark et al., 2006), and confirmed that

18 of the 33 predicted interactors were previously detected by
high-throughput interactome analyses, supporting the validity of
TEMPI in the edge prediction. For example, TEMPI estimated

the interactions of RAD53 with the 23 nodes (‘�’ nodes in
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Fig. 4D) involved in DR. Among them, RAD53-DBF4 and

DUN1 was included in GI, while the other interactions are

newly predicted. Of the 21 predicted interactors, 14 (e.g. CTF4,

CDC45 and CDC7) are reported to interact with RAD53 ac-

cording to BioGrid. Moreover, TEMPI newly predicted the

seven interactors of RAD53 involved in G2M (‘*’ nodes in

Fig. 4D), where three of them (CLB2, CLB5 and IPL1) are re-

ported to interact with RAD53 according to BioGrid. Similarly,

TEMPI identified seven interactors of RAD53 involved in DIC

(‘w’ nodes in Fig. 4D). Two of them (DUN1 and RAD9) were

included in GI, and the other five were reported to interact with

RAD53 according to BioGrid. The molecules with newly pre-

dicted interactions in the RAD53 subnetwork are known to be

involved in DIC, DR, SC or G2M, independently of RAD53-

dependent regulation of the cell cycle at S phase. Thus, all these

data indicate novel insights into potential roles of these molecules

in the RAD53-dependent regulation of the cell cycle at S phase.

Many subnetworks can be analyzed in the same way to generate

hypotheses for novel mechanisms underlying dynamic regulation

of cell cycle.
We further compared the performance of TEMPI on the cell

cycle data with that of PNA. PNA produced the 10 PSs. By

combining them, we generated TDNs as described above

(PNA-Gs in Supplementary Fig. S8). PNA-Gs were significantly

sparse, compared with TEMPI-Gs (Supplementary Fig. S8), be-

cause PNA used only the sparse real PPIs (1425 PPIs between

755 nodes) in GI, whereas TEMPI predicted a significant number

of novel edges among the DRNs (Supplementary Fig. S9A). As

described above, we assessed the reliability of the predicted PPIs

by examining how many of them are reported in the BioGrid

database (Supplementary Fig. S9B–C). The fraction of the pre-

dicted PPIs reported in BioGrid (0.254) was significantly larger

than the random expectation (0.0346). Moreover, TEMPI-Gt

captured the larger number of cell cycle–related GOBPs

(120 GOBPs) with pulsed activation patterns than PNA-Gt

(16 GOBPs), suggesting that TEMPI-Gt more effectively cap-

tured cell cycle–related functional transition than PNA-Gt

(Supplementary Fig. S9D–F). The comparison of the distribu-

tion of degrees and CC also showed that TEMPI-Gt is

more dense and modular than PNA-Gt (Supplementary

Fig. S9G–H). See Supplementary Information S4.3 for further

details. Also, we applied TEMPI to the gene expression data

collected from the mutant yeasts with defects in cell cycle, com-

pared activation/interaction degrees of cell cycle–related GOBPs

between wild-type and mutant yeasts, and examined deregulation

of wild-type TEMPI-Gt in mutant yeasts (Supplementary

Information S4.4).

4 CONCLUSIONS

In this study, we developed TEMPI that effectively estimates

TDNs associated with activated GOBPs over time by integrating

time-course gene expression, PPI and GOBP data. TEMPI pro-

vides activation and interaction degrees of GOBPs, facilitating

the interpretation of temporal activations and interplays of

GOBPs represented by the estimated TDNs. This interpretation

leads to generation of TDN-driven hypotheses for key pathways

regulating cellular events under investigation (see Section 4.3).

Fig. 4. Application of TEMPI to the cell cycle data. (A) Activation degree heat map of the 14 cell cycle–related GOBPs: Group 1, cell cycle checkpoint-

related GOBPs; Group 2, DNA replication-related GOBPs; Group 3, GOBPs related to the process followed by the DNA replication and Group 4, M

phase-related GOBPs. The five GOBPs (DIC, SC, G2M, DR and CCS) are denoted by the indicated symbols. (B) Interaction degree heat maps of the

five GOBPs. (C) TDNs showing temporal transition of the network structures for the DRNs with G2M and CCS (first row) and the DRNs with SC and

G2M (second row). See Supplementary Figure S7 for TDNs for the DICs with CR. See the legend of Figure 2C for descriptions of shapes and colors of

nodes and edges. (D) A detailed subnetwork including RAD53 interactors at S phase. Symbols in A were used to distinguish DRNs with the five GOBPs,

and the symbols are transparent if atki=0 and solid otherwise
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Thus, TEMPI can serve as a useful tool that provides hypotheses
for the mechanisms underlying functional transitions in various
problems in time-varying biological systems. See Supplementary
Information S5 and S6 for implementation and limitations of

TEMPI, respectively, which include potential limited applicabil-
ity of TEMPI to other types of interactions than PPIs, sensitivity
to completeness of the input PPIs and the scalability issue.
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