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This paper addresses the problem of state estimation for linear dynamic systems that is resilient againstmalicious attacks on sensors.
By “resiliency” we mean the capability of correctly estimating the state despite external attacks. We propose a state estimation
with a bank of observers combined through median operations and show that the proposed method is resilient in the sense that
estimated states asymptotically converge to the true state despite attacks on sensors. In addition, the effect of sensor noise and
process disturbance is also considered. For bounded sensor noise and process disturbance, the proposed method eliminates the
effect of attack and achieves state estimation error within a bound proportional to those of sensor noise and disturbance. While
existing methods are computationally heavy because online solution of nonconvex optimization is needed, the proposed approach
is computationally efficient by using median operation in the place of the optimization. It should be pointed out that the proposed
method requires the system states being observable with every sensor, which is not a necessary condition for the existing methods.
From resilient system design point of view, however, this fact may not be critical because sensors can be chosen for resiliency in the
design stage. The gained computational efficiency helps real-time implementation in practice.

1. Introduction

Feedback control systems resilient against malicious attacks
have received increasing attention in recent years [1–4].
This is because, combined with advances in computing and
communications, feedback control systems now operate in
a more connected manner with remotely located sensors,
actuators, and other subsystems, which increase vulnerability
of the systems compared to isolated ones in the past.The same
trend is clearly seen in networked control systems [5, 6] and
Cyber-Physical Systems [7, 8]. In particular, for applications
to critical infrastructures of our society [9], such as power
grid [10], public transportation, and nuclear facility, the
consequence ofmalfunction due to attacksmay be disastrous.
Malicious attacks on control systems of trams, power grids,
water distribution systems, and sewage plant have occurred
in reality as reported in [11–13]. More potential attacks have
been illustrated (see [1–4] and references therein for details).

In this paper, we develop a state estimation method for
feedback control systems that is resilient against malicious

attacks on sensors. Resilient state estimation is a method that
can correctly estimate the true state of the system despite
attacks on sensors. Such a method is sometimes referred to
as secure state estimation.

The scenario considered here is the situation in which
malicious attacks corrupt sensor outputs with the aim to
degrade the control performance or fail the control systems.
Such attacks, referred to as integrity attack [1], include the
case where the sensors are physically destroyed and yielding
false values or the case where the communication channels
between sensors and controllers are compromised so that
measurement values are intentionally altered. Altered sensor
values can be arbitrary and no assumptions aremade on their
values or statistical properties.

Feedback systems under consideration are those with
multiple sensors. First we consider the case where multiple
sensors measure the same physical quantity redundantly and
then we consider the case of multiple sensors measuring
different physical quantities. The rationale is that the systems
with multiple sensors can retain its functionality with a
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properly designed state estimation mechanism, despite the
fact that some sensors, not all, are compromised. We assume
that compromising more sensors at once requires more effort
and resource for the adversaries.

Our approach is based on Luenberger state observers.
Specifically, for redundant sensors that measure the same
physical quantity, sensor outputs are combined through a
median operation, which then feed to a state observer to
estimate the state. For multiple sensors that measure different
physical quantities, multiple observers are constructed first,
and states estimates are combined through element-wise
median operations. Analyses are provided for conditions
under which resilient state estimation is guaranteed. Addi-
tionally, experimental results on a magnetic levitation system
are also given to illustrate the efficacy of the proposed
approach.

State observers have been used previously to detect faults
in the systems [14]. Most existing work designs an observer
based scheme to generate residual signals that are used to
detect faults. However, combining multiple state estimates
using median operation in order to ensure resiliency has not
been exploited to date.

Median operation has been used previously to ensure
system tolerance to faults. For example, [15] designs a
Guidance Navigation and Control (GNC) system where
outputs from encoders, decoders, and data process units are
combined through median operation to detect faults in the
Data Processing Unit (DPU). Tripple Modular Redundancy
(TMR) used in airline industry [16] executes voting based on
AND-OR operation at logic level, which could be interpreted
at selecting the median of the values from three computing
units. However, it has not been used in the context of resilient
state estimation where integrity attacks on the sensors are of
the main concerns.

It should be acknowledged that seminal work of resilient
state estimation is [17]. Formulated in discrete time linear sys-
tems setting, the method in [17] accumulates sensor outputs
for multiple sampling periods, and process state estimation
using techniques developed in compressed sensing literature
[18, 19]. This work has been extended to systems with
uncertainty, noise, and disturbance [20]. In [17], conditions
for the correct estimation are given and an 𝑙

0
optimization

problem is formulated. Since solving 𝑙
0
optimization online

is computationally heavy (NP-hard), a relaxation condition
on system parameters is given under which the solution
of 𝑙
0
optimization is identical to a relaxed 𝑙

1
optimization.

However, the relaxation condition narrows the class of the
systems to which the method is applicable.

In an attempt to reduce computational effort, [21]
approaches the problem of resilient state estimation using
multiple observers. Contrast to the setting of [17, 20], [21]
formulates the problem in continuous time linear dynamic
systems setting and combines the estimates from multiple
observers using the technique from compressed sensing.This
method reduces 𝑙

0
optimization search space to a finite set

leading to substantial reduction of computational effort from
NP-hard to polynomial time. In addition, it is applicable to a
large class of systems, compared to 𝑙

1
optimizationmethod in

[17], whose states are observable from the sensors.

Adaptive parameter estimation methods with various
nonlinear elements [22, 23]may be used to solve resilient state
estimation problem. When combining multiple observer
outputs, especially, when each observes different number of
states, adaptive fuzzy technique [24–29] can be utilized.These
venues, however, have not yet been actively pursued.

The approach of current paper follows the setting of [21]
and achieves computational complexity in the order ofO(𝑛𝑝)
with 𝑛 being the number of states and 𝑝 being the number
of sensors, under the assumption that the system states are
observable from each sensor.

It should be pointed out that the proposed method
requires the system states being observable with every sensor,
which is not a necessary condition for the existing methods.
From resilient system design point of view, however, this
fact may not be critical because sensors can be chosen for
resiliency in the design stage. On the other hand, the gained
computational efficiency helps real-time implementation in
practice.

The contributions of this paper are to propose multiple
observers combined by median operation as a means to
solve resilient state estimation problem and achive higher
computational efficiency compared to existing methods for
a class of systems.

The outline of this paper is as follows. The problem
formulation is given in Section 2. Section 3 presents the main
designs and analyses, and Section 4 provides experimental
results. Comparison to existing methods is given in Section 4
as well in terms of applicability and computational effort.The
conclusions are formulated in Section 5.

2. Problem Formulation

Consider a linear time invariant system given by

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑤 (𝑡) = 𝑦 (𝑡) + 𝑎 (𝑡) + 𝜉 (𝑡) ,

(1)

where 𝑥 ∈ 𝑅
𝑛 is the plant state, 𝑢 ∈ 𝑅

𝑚 is control, 𝑦 ∈ 𝑅
𝑝

is the plant output, 𝑤 ∈ 𝑅
𝑝 is the measurement for feedback

control, 𝑑 ∈ 𝑅
𝑛 is process disturbance, 𝜉 ∈ 𝑅

𝑝 is sensor noise,
and 𝑎 ∈ 𝑅

𝑝 is a vector that represents the altered output value
by external malicious attack. The matrices 𝐴, 𝐵, and 𝐶 are in
appropriate dimensions. Let the matrix 𝐶 be written by

𝐶 =

[
[
[
[
[
[
[

[

𝐶
1

𝐶
2

.

.

.

𝐶
𝑝

]
]
]
]
]
]
]

]

, (2)

where each 𝐶
𝑖
for 𝑖 = 1, 2, . . . , 𝑝 is a row vector that

corresponds to the 𝑖th output 𝑦
𝑖
of the output vector 𝑦. The

𝑖th sensor being under attack is described by 𝑖th element of
the vector 𝑎(𝑡), denoted by 𝑎

𝑖
(𝑡), being nonzero, and the value
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of 𝑎
𝑖
(𝑡) represents the amount of measurement altered by the

external attack.
In order to denote the set of sensors under attack, we

introduce the following notation. The support of the vector
𝑎(𝑡) is defined as

supp (𝑎 (𝑡)) = {𝑖 | 𝑎
𝑖
(𝑡) ̸= 0} , (3)

and the cardinality of the set supp(𝑎(𝑡)) is denoted by
|supp(𝑎(𝑡))|.The elements in the set supp(𝑎(𝑡)) are the indices
of the attacked sensors.

We now introduce assumptions for the system of (1).

Assumption 1. The set supp(𝑎(𝑡)) satisfies 2|supp(𝑎(𝑡))| < 𝑝

for all 𝑡.

Assumption 1 states that strictly less than half of all the
sensors in the system may be under integrity attack. This is
a standard assumption for resilient state estimation [17, 21]
and in fact a necessary and sufficient condition for resilient
state estimation problem to be solvable. The rationale is that
the adversaries who attack the sensors have limited resource
only enough to compromise a subset of the sensors.

Assumption 2. The pair (𝐶
𝑖
, 𝐴) is observable for 𝑖 =

1, 2, . . . , 𝑝.

This assumption ensures that a bank of 𝑝 observers can
be constructed. This assumption can be viewed as restrictive.
However, from system design point of view, one can select
sensors that satisfy Assumption 2.

Assumption 3. The vectors 𝑑(𝑡) and 𝜉(𝑡) satisfy |𝑑
𝑖
(𝑡)| ≤ 𝑑max

for 𝑖 = 1, 2, . . . , 𝑛 and |𝜉
𝑖
(𝑡)| ≤ 𝜉max for 𝑖 = 1, 2, . . . , 𝑝.

Assumption 3 states that the process disturbance and
measurement noise are bounded.

We now formulate the following design problems.

Problem 4. Let Assumptions 1 and 2 hold. Assume further
that no process disturbance and measurement noise exist in
the system; that is, 𝑑(𝑡) = 0 and 𝜉(𝑡) = 0. Furthermore, let
𝐶
𝑖
= 𝐶
0
for 𝑖 = 1, 2, . . . , 𝑝. Construct a state estimator for

the system of (1) such that the estimated state denoted by �̂�(𝑡)
asymptotically converges to 𝑥(𝑡) despite 𝑎(𝑡) ̸= 0.

Problem 5. Let Assumptions 1 and 2 hold. Assume further
that 𝑑(𝑡) = 0 and 𝜉(𝑡) = 0. Construct a state estimator for
the system of (1) such that the estimated state denoted by �̂�(𝑡)
asymptotically converges to 𝑥(𝑡) despite 𝑎(𝑡) ̸= 0.

It should be pointed out that unknown input observers
(see, e.g., [30]), which address the problem of estimating
states correctly despite unknown disturbances, may appear
similar to Problems 4 and 5. However, the framework deals
with unknown input entering the state dynamics instead of
output equation, which differentiates Problems 4 and 5 from
the problem of unknown input observers.

Another aspect that differentiates Problems 4 and 5
from existing work is that we seek a method of asymptotic
estimation formulated in continuous dynamics, while [17,

20] seek instantaneous estimation formulated in discrete
dynamics.

The above formulated problems aim to achieve asymp-
totic state estimation and do not consider the effect of process
disturbance and measurement noise. In practice, modeling
errors, external process disturbance, and measurement noise
exist. Hence, we formulate the following analysis problems.

Problem 6. Let Assumptions 1, 2, and 3 hold. Analyze the
effect of disturbance and measurement noise on the system
of (1) and the state estimator of Problem 4.

Problem 7. Let Assumptions 1, 2, and 3 hold. Analyze the
effect of disturbance and measurement noise on the system
of (1) and the state estimator of Problem 5.

Solutions to Problems 4–7 are given in Section 3.

3. Resilient State Estimation

3.1. Median Operation. First we define sample median oper-
ation. The sample median of 𝑝 many values 𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑝
,

denoted by med(𝑤
1
, . . . , 𝑤

𝑝
), is defined by the ((𝑝 + 1)/2)th

largest value of 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑝
if 𝑝 is odd and defined by the

average of the (𝑝/2)th and the (𝑝/2 + 1)th largest values of
𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑝
if 𝑝 is even.

We now examine the property of median operation
in the context of the system of (1). Suppose there are 𝑝

measurements denoted by 𝑤
𝑖
with 𝑖 = 1, 2, . . . , 𝑝, each

measuring the same value denoted by 𝑦
0
. Let 𝑤

𝑖
= 𝑦
0
+ 𝑎
𝑖

and 𝑎
𝑖

̸= 0 for 𝑖 ∈ 𝐽. We denote the cardinality of 𝐽 by 𝑞;
that is, 𝑞 = |𝐽|. Then, it is straightforward to notice that, as
long as the number of measurements 𝑝 is greater than twice
the number of elements in 𝐽, or equivalent to say 2𝑞 < 𝑝, the
median value is equal to 𝑦

0
; that is,

med (𝑤
1
, . . . , 𝑤

𝑝
) = 𝑦
0
. (4)

Notice that the fact above holds regardless of the values
of 𝑎
𝑖
(𝑡) as long as 2𝑞 < 𝑝 at any given time. Note also that

(4) holds even if the elements of 𝐽 change in time. As an
illustration, an example is given.

Example 8. Consider the case of 𝑝 = 5. Assume that 𝑦
0
= 2,

and 𝐽 = {1, 3}. Accordingly, let 𝑎(𝑡) be [3 0 5 0 0]
𝑇. Notice

that 𝑞 = 2 in this case and 2𝑞 < 𝑝 is satisfied. Then, 𝑤 =

[5 2 7 2 2]
𝑇 andmed(𝑤

1
, . . . , 𝑤

5
) is given by 2,which is equal

to 𝑦
0
. If 𝑎(𝑡) = [3 0 5 0 3]

𝑇, then, 𝑞 = 3, and 2𝑞 > 𝑝. This
yields 𝑤 = [5 2 7 2 5]

𝑇 and med(𝑤
1
, . . . , 𝑤

5
) is given by 5,

which is not equal to 𝑦
0
.

For the case when measurement noise exists, we have
the following property for the median. Let 𝑤, 𝑦, 𝜉, and 𝑎

be 𝑝-dimensional vectors. The vector 𝑦 is of the form 𝑦 =

𝑦
0
[1 1 ⋅ ⋅ ⋅ 1]

𝑇 with 𝑦
0
∈ 𝑅, the vector 𝜉 represents noise, and

as in Assumption 3, each element of the vector 𝜉 is bounded
by a constant 𝜉max; that is, |𝜉𝑖| ≤ 𝜉max, the vector 𝑎(𝑡) satisfies
|supp(𝑎(𝑡))| = 𝑞 with 2𝑞 < 𝑝, and let the vector 𝑤 be given
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by 𝑤 = 𝑦 + 𝜉 + 𝑎. Then, we have the following for the sample
median operation:


med (𝑤

1
, . . . , 𝑤

𝑝
) − 𝑦
0


≤ 𝜉max. (5)

In words, this means when all the measurement is subject
to bounded noise, sample median is also subject to noise,
with the same bound as that for each element of the vector
representing measurement noise. The derivation of (5) is in
the appendix.

3.2. Design of Resilient State Observer. Now we propose a
solution to Problem 4. Since all 𝑝 sensors are measuring the
same physical quantity, that is, 𝐶

𝑖
= 𝐶
0
, for 1 ≤ 𝑖 ≤ 𝑝,

we construct a Luenberger state observer in the following
manner:

̇̂𝑥 = 𝐴�̂� + 𝐵𝑢 + 𝐿 (med (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑝
) − 𝐶
0
�̂�) , (6)

where the gain matrix 𝐿 is chosen such that 𝐴 − 𝐿𝐶
0
is

Hurwitz. Then it can be shown that, for the system of (1)
with 𝑑(𝑡) = 0 and 𝜉(𝑡) = 0, the state observer (6)
satisfies �̂�(𝑡) → 𝑥(𝑡) as 𝑡 → ∞. In words, asymptotic
state estimation is obtained by using (6). Specifically, since
all the sensors measure the same output, we can denote
this output by 𝑦

0
where 𝑦

0
= 𝐶
0
𝑥. As explained earlier,

under Assumption 1, med(𝑤
1
, . . . , 𝑤

𝑝
) = 𝑦
0
is obtained. Also,

due to Assumption 2, the matrix 𝐿 can always be chosen to
render 𝐴 − 𝐿𝐶

0
Hurwitz. This ensures the state estimate �̂�

asymptotically converges to 𝑥.
Therefore, the state observer of (6) is a solution to Prob-

lem 4. It ensures asymptotic state estimation despite external
attack 𝑎(𝑡) as long as the number of attacked sensors is less
than half of all the sensors (Assumption 1). We emphasize
that this solution is computationally very efficient as the
computational complexity of median operation of 𝑝 variables
is given by O(𝑝).

Next we consider the casewhere not all𝑝 sensorsmeasure
the same physical quantities. As given in Assumption 2, the
system states are observable from each sensor. For each
sensor output 𝑦

𝑖
, one can design a Luenberger type observer

that estimates the state 𝑥 asymptotically. The state estimate
from 𝑖th sensor is denoted by 𝑧

𝑖
∈ 𝑅
𝑛 with a superscript 𝑖.

Then, Assumption 2 allows design of the observer,

�̇�
𝑖
= 𝐴𝑧
𝑖
+ 𝐵𝑢 + 𝐿

𝑖
(𝑤
𝑖
− 𝐶
𝑖
𝑧
𝑖
) , 𝑖 = 1, 2, . . . , 𝑝, (7)

where 𝐿
𝑖
can be selected such that (𝐴 − 𝐿

𝑖
𝐶
𝑖
) is Hurwitz.

By combining 𝑝 state estimates 𝑧1, 𝑧2, . . . , 𝑧𝑝 throughmedian
operation, we can obtain a state estimate

�̂� = [�̂�
1
, . . . , �̂�

𝑛
]
𝑇
, (8)

where

�̂�
𝑗
= med (𝑧1

𝑗
, 𝑧
2

𝑗
, . . . , 𝑧

𝑝

𝑗
) , 𝑗 = 1, 2, . . . , 𝑛. (9)

For the method in (7)–(9) to work, an additional assumption
is needed.

Assumption 9. The set supp(𝑎(𝑡)) does not change over time.

The additional assumption is needed to avoid the case
that attacks excite the transients response of each observer in
(7) in a manner that prevents �̂�(𝑡) from converging to 𝑥(𝑡).
With Assumption 9, it can be shown that, for the system of
(1) with 𝑑(𝑡) = 0 and 𝜉(𝑡) = 0, the state estimation method
given by (7)–(9) achieves �̂�(𝑡) → 𝑥(𝑡) as 𝑡 → ∞. This
is possible because, under Assumption 1, more than half of
𝑝 observers yield correct state estimates. Combining them
through median would remove the effect of nonzero attack
vector 𝑎(𝑡) and ensure asymptotic state estimate. Detailed
derivation is given in the appendix. Therefore, the state
estimation method of (7)–(9) for the system (1) provides a
solution to Problem 5.Note that the additional computational
effort for resiliency in this case is O(𝑛𝑝), which is more
scalable than NP-hard [17, 20], or polynomial time of [21].

3.3. Effect of Measurement Noise and Process Disturbance.
Now we analyse the proposed state estimation method when
measurement noise and process disturbances exist. In the
presence of measurement noise and disturbance, asymp-
totic state estimation is generally not possible even without
external attack. Hence, we focus on finding a bound on
the estimation error. From a practical point of view, we
deal with measurement noise and process disturbance that
are bounded. Hence, Assumption 3 applies throughout this
subsection.

First we consider the system of (1) with multiple sensors
that measure the same physical quantity; that is, 𝐶

𝑖
= 𝐶
0
for

𝑖 = 1, 2, . . . , 𝑝. Then, it can be shown that there exist some
positive constants 𝜇 and 𝜆 such that the state estimation given
by (6) yields

‖�̂� (𝑡) − 𝑥 (𝑡)‖2 ≤ 𝜇 ‖�̂� (0) − 𝑥 (0)‖2 𝑒
−𝜆𝑡

+
𝜇 (‖𝐿‖2 𝜉max + 𝑑max)

𝜆
.

(10)

Note that inequality (10) implies that the estimation error is
bounded when bounded noise as well as process disturbance
is present. Note moreover that the first term in (10) dimin-
ishes as time goes and the bound on the remaining term in
the error is proportional to the bounds of the measurement
noise 𝜉max and 𝑑max.This solves Problem 6 given in Section 2.
The derivation of (10) is given in the appendix.

For the case with the sensorsmeasuring different physical
quantities, resilient state estimation is achieved by themethod
given in (7)–(9). When measurement noise and process
disturbance exist, the method of (7)–(9) does not achieve
asymptotic estimation. It turns out, however, that (10) holds
for this case as well although the derivation now is more
involved using 𝑝 observers and element-wise median oper-
ation. Hence (10) solves Problem 7. The detailed derivation
for this case is given in the appendix.

Wewould like to emphasize that the bound on estimation
error does not depend on attack vector 𝑎(𝑡). Attack can be
arbitrarily large, but the effect is eliminated by resilient state
estimator construction, and the bound on error only depends



Mathematical Problems in Engineering 5

Figure 1: Magnetic levitation system.

on the initial error, the bound 𝑑max of process disturbance,
and the bound 𝜉max for the measurement noise.

4. Experiment

4.1. Modeling. The proposed methods of resilient state esti-
mation are experimentally validated using a magnetic levi-
ation control system. Figure 1 shows the magnetic levitation
system developed by Quanser for control education purpose.
It consists of electromagnet, infrared ray position sensor,
a steel ball, voltage amplifier, ADC converter, and data
acquisition system connected to a PC using USB cable. A
control algorithm is implemented using real-time workshop
in Matlab/Simulink.

The system model is given by [31]

�̇�
1
= 𝑥
2
,

�̇�
2
= 𝑔 −

𝐾
𝑚
𝐼
2

𝑀
𝑏
(𝑥
1
)
2
,

𝑦 = 𝑥
1
,

(11)

where 𝑥
1
is the position of the ball, 𝑥

2
is the velocity of the

ball, 𝑔 is the gravitational constant, 𝐼 is the current applied
to the electromagnet,𝐾

𝑚
is the electromagnet force constant,

and𝑀
𝑏
is the metal ball mass. Values for parameters𝐾

𝑚
and

𝑀
𝑏
are specified in [31]. By linearizing the dynamics of (11)

at the equilibrium point of 𝑥eq = [0.006 0]
𝑇 and 𝐼eq = 1, the

following linear model is obtained:

Δ�̇� = 𝐴Δ𝑥 + 𝐵Δ𝐼

= [
0 1

3270 0
] [

Δ𝑥
1

Δ𝑥
2

] + [
0

−26.67
]Δ𝐼,

(12)

where Δ is used to indicate deviations from the equilibrium
state 𝑥eq and input 𝐼eq.

Quanser magnetic levitation system has only one sensor
that measures the position of the steel ball. In order to apply
the proposed state estimation method, we virtually create in
Matlab an additional position sensor and a velocity sensor.

a3

−0.4

−0.2

0
0.2
0.4
0.6
0.8

35 40 45 5030
Time (sec)

Figure 2: Attack signal on the third sensor.

Then, the system output equation including attack can be
written as

[
[

[

𝑤
1

𝑤
2

𝑤
3

]
]

]

=
[
[

[

𝐶
1

𝐶
2

𝐶
3

]
]

]

[
Δ𝑥
1

Δ𝑥
2

] +
[
[

[

𝑎
1

𝑎
2

𝑎
3

]
]

]

, (13)

where 𝐶
1
= [1 0], 𝐶

2
= [1 0], and 𝐶

3
= [0 1]. It can be easily

verified that the systemof (12) and (13) satisfiesAssumption 2.

4.2. Attack Scenario and State Estimation Results. We con-
struct resilient state estimator given in (7)–(9). In the case
of the magnetic levitation plant, the method yields three
Luenberger observers as we have three sensors. Each observer
dynamics is given by

�̇�
𝑖
= 𝐴𝑧
𝑖
+ 𝐵Δ𝐼 + 𝐿

𝑖
(𝑤
𝑖
− 𝐶
𝑖
𝑧
𝑖
) , (14)

where 𝑖 = 1, 2, 3 is the index for the 𝑖th sensor, 𝑧𝑖 is the 𝑖th
observer state, and 𝑤

𝑖
is the output of the 𝑖th sensor. The

observer gain matrix 𝐿
𝑖
is selected such that (𝐴 − 𝐿

𝑖
𝐶
𝑖
) is

Hurwitz for all 𝑖 = 1, 2, 3. Specifically, the gains are 𝐿
1
=

[200 13271]
𝑇, 𝐿
2
= [210 14299]

𝑇, and 𝐿
3
= [4.0584 200]

𝑇,
respectively. Then, Δ�̂� is computed by

Δ�̂�
1
= med (𝑧1

1
, 𝑧
2

1
, 𝑧
3

1
) ,

Δ�̂�
2
= med (𝑧1

2
, 𝑧
2

2
, 𝑧
3

2
) .

(15)

Finally, the state estimate around the equilibrium is obtained
by �̂� = Δ�̂� + 𝑥eq.

We consider the scenario where the velocity sensor,
which provides the third measurement, is compromised
by adversaries. The attack on the sensor, 𝑎

3
(𝑡), consists of

constant, ramp, sinusoid, and square waves as shown in
Figure 2.

The estimated state �̂� and true state 𝑥 are shown in
Figure 3. As expected, �̂� is practically identical with 𝑥 despite
the attack on the velocity sensor. Slight mismatches between
the two are due to modeling uncertainty which act as if they
were disturbance.

For further investigation, Figure 4 shows state estimates
𝑧
1
, 𝑧
2, and 𝑧

3 from the three observers. The effect of attack is
clearly present in 𝑧

3. As shown by the analysis in Section 3,
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Figure 4: The states estimates from each Luenberger observer.

the element-wise median operation removes the effect of 𝑧3
on �̂�.

As illustrated by the above experiments, the proposed
state estimation method is resilient against external attacks
on the measurement.

4.3. Comparison with Existing Methods. Here we consider
the method of [17] with the magnetic levitation system. It is
difficult to apply themethod of [17] on themagnetic levitation
system for two reasons. First, the exact optimization using
𝑙
0
norm is computationally expensive (NP-hard) and no

efficient method is known for 𝑙
0
optimization. Second, the

relaxation condition in [17] for enabling 𝑙
1
convex optimiza-

tion is not satisfied for the magnetic levitation system. Hence
we do not implement and compare the method of [17] in the
context of experiment with magnetic levitation.

The proposed method and that of [21] are compared
in the following manner. From the above experiment, data
from the sensors are stored. Then, two state estimation
algorithms coded inMatlab m-file are executed on the stored
sensor data, respectively. In this way, the execution times for
the two algorithms alone (separated from the computation
needed for control and communications) can be measured
and compared.

We compared the two for the cases of 3, 5, 7, and 9
sensors. The cases of 5, 7, and 9 sensors use duplicated data
from the first sensor for the sake of simplicity. The sensor
data is collected over 58001 samples, and the time for 58001
executions of each algorithm is measured to obtain average
value. Each Matlab code is executed on a computer with

Table 1: Computation time comparison between the proposed
method and the method in [21].

Number of sensors Proposed method Method in [21]
3 0.06259 (msec) 0.1547 (msec)
5 0.08098 (msec) 0.5258 (msec)
7 0.01017 (msec) 2.115 (msec)
9 0.1196 (msec) 9.293 (msec)

Intel i7-4790 CPU, 3.60GHz clock speed, 32GB RAM, and
64-bit Windows operating system. Both algorithms correctly
estimate the true states despite attacks, although no plots
are shown as our main interest here is the computational
efficiency. Average execution time for the two algorithms is
listed in Table 1.

Clearly, the proposed method is superior to the method
in [21] in terms of computational effort, showing smaller
computation time by orders of magnitude. We point out that
method of [21] is superior to the proposedmethod in terms of
applicability: the condition of systems states being observable
from every sensor is not necessary for [21].

5. Conclusion

This paper addresses the problem of resilient state estimation
against malicious attacks on the sensors. We propose a
state estimation with a bank of observers combined through
median operations. Then, we show that this method is
resilient in the sense that state estimation converges to
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the true state despite existence of attacks on sensors. For
practical considerations, the effect of sensor noise and process
disturbance on the proposed state estimation is analyzed.

We point out that the proposed method requires the
system states being observable with every sensor, which is not
required for the existing methods. This may not be a critical
limitation because sensors can be chosen in the system design
stage in applications where resiliency is of importance.

We emphasize that the proposedmethod is computation-
ally efficient compared to existing methods in the literature,
yielding the complexity of O(𝑛𝑝) with 𝑛 being the number of
system states and 𝑝 being the number of sensors. The gained
computational efficiency helps real-time implementation for
feedback systems in practice. Due to the simplicity of the
state estimator structure and computational advantage over
the existing method, the proposed method will benefit the
design of resilient control systems.

Developing resilient state estimation methods using
adaptive parameter estimation techniques is a future work.

Appendix

Derivation of Asymptotic State Estimate by (7)–(9). Denote the
estimation error for each state observer corresponding to 𝑖th
sensor by �̃�𝑖 = 𝑧

𝑖
−𝑥. Then the estimation error dynamics for

each observer can be written as

̇̃𝑧
𝑖

= (𝐴 − 𝐿
𝑖
𝐶
𝑖
) �̃�
𝑖
− 𝐿
𝑖
𝑎
𝑖
, (A.1)

the solution of which is given by

�̃�
𝑖
(𝑡) = 𝑒

(𝐴−𝐿 𝑖𝐶𝑖)𝑡�̃�
𝑖
(0) − ∫

𝑡

0

𝑒
(𝐴−𝐿 𝑖𝐶𝑖)(𝑡−𝜏)𝐿

𝑖
𝑎
𝑖
(𝜏) 𝑑𝜏. (A.2)

Denote the two quantities in the right-hand side of (A.2) by
𝑒
𝑖
∈ 𝑅
𝑛 and 𝑎

𝑖
∈ 𝑅
𝑛, respectively:

𝑒
𝑖
(𝑡) = 𝑒

(𝐴−𝐿 𝑖𝐶𝑖)𝑡�̃�
𝑖
(0) , (A.3)

𝑎
𝑖
(𝑡) = −∫

𝑡

0

𝑒
(𝐴−𝐿 𝑖𝐶𝑖)(𝑡−𝜏)𝐿𝑎

𝑖
(𝜏) 𝑑𝜏. (A.4)

The vector 𝑎𝑖 is nonzero only for 𝑖 ∈ supp(𝑎). Then, (9) is
written as

�̂�
𝑗
= med (𝑥

𝑗
+ 𝑒
1

𝑗
+ 𝑎
1

𝑗
, 𝑥
𝑗
+ 𝑒
2

𝑗
+ 𝑎
2

𝑗
, . . . , 𝑥

𝑗
+ 𝑒
𝑝

𝑗

+ 𝑎
𝑝

𝑗
) , 𝑗 = 1, 2, . . . , 𝑛.

(A.5)

Now, Assumption 1 ensures less than half of 𝑎1
𝑗
, 𝑎
2

𝑗
, 𝑎
3

𝑗
, . . . , 𝑎

𝑝

𝑗

are nonzero in (A.5) for each 𝑗 = 1, 2, . . . , 𝑛. In addition, due
to Assumption 2, 𝑒𝑖 vanishes over time for all 𝑗 = 1, 2, . . . , 𝑛.
This gives �̂�

𝑗
→ 𝑥
𝑗
asymptotically for each 𝑗 = 1, 2, . . . , 𝑛, and

as a whole �̂� → 𝑥 is achieved.

Derivation of Inequality (5). We can write

med (𝑤
1
, . . . , 𝑤

𝑝
)

= 𝑦
0
+med (𝜉

1
+ 𝑎
1
, 𝜉
2
+ 𝑎
2
, . . . , 𝜉

𝑝
+ 𝑎
𝑝
) .

(A.6)

Notice that there are at least ⌈𝑝/2⌉ many measurements 𝑤
𝑖
’s

that are greater than or equal to the med(𝑤
1
, . . . , 𝑤

𝑝
), and

there are also at least ⌈𝑝/2⌉many measurements that are less
than or equal to the med(𝑤

1
, . . . , 𝑤

𝑝
).

Suppose 𝑝 is even and med(𝑤
1
, . . . , 𝑤

𝑝
) > 𝑦

0
+ 𝜉max.

Assuming |𝜉
𝑖
| ≤ 𝜉max, there are at most 𝑞 measurements

greater than or equal to med(𝑤
1
, . . . , 𝑤

𝑝
). Since ⌈𝑝/2⌉ > 𝑞,

this is a contradiction. Now suppose med(𝑤
1
, . . . , 𝑤

𝑝
) < 𝑦
0
−

𝜉max, there are also at most 𝑞 elements less than or equal to
med(𝑤

1
, . . . , 𝑤

𝑝
), and this is also a contradiction for the same

reason.
When 𝑝 is odd, contradictions can be shown in a similar

manner using (𝑝 + 1)/2 ≥ ⌈𝑝/2⌉.

Derivation of Inequality (10). The state estimate is written as

̇̂𝑥 = 𝐴�̂� + 𝐵𝑢 + 𝐿 (med (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑝
) − 𝐶
0
�̂�) , (A.7)

which is equivalent to

̇̂𝑥 = 𝐴�̂� + 𝐵𝑢 + 𝐿 (𝑦
0
+ 𝜂 − 𝐶

0
�̂�) , (A.8)

where 𝜂 = med(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑝
) − 𝑦

0
and |𝜂| ≤ 𝜉max by

Assumption 1 and (5). Denote 𝑥(𝑡) − �̂�(𝑡) by �̃�(𝑡); then the
state estimation error dynamics could be written as

̇̃𝑥 (𝑡) = (𝐴 − 𝐿𝐶
0
) �̃� (𝑡) + 𝑑 (𝑡) − 𝐿𝜂 (𝑡) , (A.9)

and the solution of which is

�̃� (𝑡) = 𝑒
(𝐴−𝐿𝐶0)𝑡�̃�

0

+ ∫

𝑡

0

𝑒
(𝐴−𝐿𝐶0)(𝑡−𝜏) (𝑑 (𝜏) − 𝐿𝜂 (𝜏)) 𝑑𝜏.

(A.10)

Taking the norms on both sides of (A.10),

‖�̃� (𝑡)‖2 =


𝑒
(𝐴−𝐿𝐶0)𝑡�̃�

0

+ ∫

𝑡

0

𝑒
(𝐴−𝐿𝐶0)(𝑡−𝜏) (𝑑 (𝜏) − 𝐿𝜂 (𝜏)) 𝑑𝜏

2

≤

𝑒
(𝐴−𝐿𝐶0)𝑡�̃�

0

2

+


∫

𝑡

0

𝑒
(𝐴−𝐿𝐶0)(𝑡−𝜏) (𝑑 (𝜏) − 𝐿𝜂 (𝜏)) 𝑑𝜏

2

≤

𝑒
(𝐴−𝐿𝐶0)𝑡�̃�

0

2

+ ∫

𝑡

0


𝑒
(𝐴−𝐿𝐶0)(𝑡−𝜏)

2

(𝑑 (𝜏) − 𝐿𝜂 (𝜏))
2 𝑑𝜏.

(A.11)

By Assumption 3,

‖�̃� (𝑡)‖2

≤

𝑒
(𝐴−𝐿𝐶0)𝑡

2

�̃�0
2

+ (‖𝐿‖2 𝜉max + 𝜉
1/2

𝑑max)∫
𝑡

0


𝑒
(𝐴−𝐿𝐶0)(𝜏)

2
𝑑𝜏.

(A.12)
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Since (𝐴 − 𝐿𝐶
0
) is Hurwitz, there exist positive constants ]

and 𝜆 such that ‖𝑒(𝐴−𝐿𝐶)𝑡‖
2
≤ ]𝑒−𝜆𝑡 for all 𝑡 ≥ 0. Therefore,

‖�̃� (𝑡)‖2 ≤ ]𝑒−𝜆𝑡 �̃�0
2

+ (‖𝐿‖2 𝜉max + 𝜉
1/2

𝑑max)∫
𝑡

0

]𝑒−𝜆(𝜏)𝑑𝜏.
(A.13)

Let 𝜇 > 𝜉
1/2]. Then (A.13) also satisfies

‖�̃� (𝑡)‖2 ≤ 𝜇𝑒
−𝜆𝑡 �̃�0

2

+ (‖𝐿‖2 𝜉max + 𝑑max) 𝜇 (
1

𝜆
) (1 − 𝑒

−𝜆𝑡
)

≤ 𝜇𝑒
−𝜆𝑡 �̃�0

2 + (‖𝐿‖2 𝜉max + 𝑑max) 𝜇 (
1

𝜆
) .

(A.14)

This completes the proof.

Derivation of Inequality (10) for the Case of 𝐶
𝑖

̸= 𝐶
𝑗
for Some 𝑖

and 𝑗. Let 𝑧𝑖 be the state estimates from the 𝑖th sensor. Denote
the estimation error dynamics for 𝑖th observer as �̃�𝑖 = 𝑥 − 𝑧

𝑖;
then

̇̃𝑧
𝑖

= (𝐴 − 𝐿
𝑖
𝐶
𝑖
) �̃�
𝑖
− 𝐿
𝑖
𝑎
𝑖
− 𝐿
𝑖
𝜉
𝑖
+ 𝑑, (A.15)

and the solution of which is given by

�̃�
𝑖
(𝑡)

= 𝑒
(𝐴−𝐿 𝑖𝐶𝑖)𝑡�̃�

𝑖
(0)

+ ∫

𝑡

0

𝑒
(𝐴−𝐿 𝑖𝐶𝑖)(𝑡−𝜏) (−𝐿𝑎

𝑖
(𝜏) − 𝐿𝜉

𝑖
(𝜏) + 𝑑 (𝜏)) 𝑑𝜏

= 𝑒
(𝐴−𝐿 𝑖𝐶𝑖)𝑡�̃�

𝑖
(0) − ∫

𝑡

0

𝑒
(𝐴−𝐿 𝑖𝐶𝑖)(𝑡−𝜏) (𝐿𝑎

𝑖 (𝜏)) 𝑑𝜏

− ∫

𝑡

0

𝑒
(𝐴−𝐿 𝑖𝐶𝑖)(𝑡−𝜏) (𝐿𝜉

𝑖
(𝜏)) 𝑑𝜏

+ ∫

𝑡

0

𝑒
(𝐴−𝐿 𝑖𝐶𝑖)(𝑡−𝜏)𝑑 (𝜏) 𝑑𝜏.

(A.16)

Denote each quantity in the right-hand side of (A.16) by 𝑒𝑖 ∈
𝑅
𝑛, 𝑎𝑖 ∈ 𝑅

𝑛, 𝜉
𝑖

∈ 𝑅
𝑛, and 𝑑

𝑖

∈ 𝑅
𝑛, respectively:

𝑒
𝑖
(𝑡) = 𝑒

(𝐴−𝐿 𝑖𝐶𝑖)𝑡�̃�
𝑖
(0) , (A.17)

𝑎
𝑖
(𝑡) = −∫

𝑡

0

𝑒
(𝐴−𝐿 𝑖𝐶𝑖)(𝑡−𝜏)𝐿𝑎

𝑖
(𝜏) 𝑑𝜏, (A.18)

𝜉
𝑖

(𝑡) = −∫

𝑡

0

𝑒
(𝐴−𝐿 𝑖𝐶𝑖)(𝑡−𝜏)𝐿𝜉

𝑖
(𝜏) 𝑑𝜏, (A.19)

𝑑
𝑖

(𝑡) = ∫

𝑡

0

𝑒
(𝐴−𝐿 𝑖𝐶𝑖)(𝑡−𝜏)𝑑 (𝜏) 𝑑𝜏. (A.20)

Then (9) can be written as

�̂�
𝑗
= med (𝑥

𝑗
+ 𝑒
1

𝑗
+ 𝑎
1

𝑗
+ 𝜉
1

𝑗
+ 𝑑
1

𝑗
, . . . , 𝑥

𝑗
+ 𝑒
𝑝

𝑗
+ 𝑎
𝑝

𝑗

+ 𝜉
𝑝

𝑗
+ 𝑑
𝑝

𝑗
) , 𝑗 = 1, . . . , 𝑛,

(A.21)

where 𝑥
𝑗
, 𝑒𝑖
𝑗
, 𝑎𝑖
𝑗
, 𝜉
𝑖

𝑗
, and 𝑑

𝑖

𝑗
are the 𝑗th components of 𝑥, 𝑒𝑖, 𝑎𝑖,

𝜉
𝑖

, and 𝑑
𝑖

.
Without the loss of generality, we may assume 𝑧

𝑖
(0) =

�̂�(0), 𝑖 = 1, . . . , 𝑝. Since (𝐴 − 𝐿
𝑖
𝐶
𝑖
) is Hurwitz ∀𝑖 = 1, . . . , 𝑝,

under Assumptions 1, 2, 3, and 9, it can be seen from the
derivation of (10) that ‖𝑒𝑖(𝑡)‖

2
, ‖𝜉
𝑖

(𝑡)‖
2
, and ‖𝑑

𝑖

(𝑡)‖
2
, 𝑖 =

1, . . . , 𝑝, are bounded as

𝑒
𝑖
(𝑡)

2
≤ ]
𝑒 ‖�̂� (0) − 𝑥 (0)‖2 𝑒

−𝜆𝑒𝑡,


𝜉
𝑖

(𝑡)

2
≤
]
𝑛 ‖𝐿‖2 𝜉max

𝜆
𝑛

,


𝑑
𝑖

(𝑡)
2

≤
]
𝑑
𝜉𝑑max
𝜆
𝑑

,

(A.22)

for some constants ]
𝑒
, ]
𝑛
, ]
𝑑
> 0 and 𝜆

𝑒
, 𝜆
𝑛
, 𝜆
𝑑
> 0.

Since 𝑒𝑖
𝑗
, 𝜉
𝑖

𝑗
, and 𝑑

𝑖

𝑗
are components of 𝑒𝑖, 𝜉

𝑖

, and 𝑑
𝑖

, |𝑒𝑖
𝑗
| ≤

‖𝑒
𝑖
(𝑡)‖
2
, |𝜉
𝑖

𝑗
| ≤ ‖𝜉

𝑖

(𝑡)‖
2
, and |𝑑

𝑖

𝑗
| ≤ ‖𝑑

𝑖

(𝑡)‖
2
. Let 𝜂𝑖

𝑗
= 𝑒
𝑖

𝑗
+ 𝜉
𝑖

𝑗
+

𝑑
𝑖

𝑗
𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑛. Then, (A.21) can be written as

�̂�
𝑗
= med (𝑥

𝑗
+ 𝜂
1

𝑗
+ 𝑎
1

𝑗
, . . . , 𝑥

𝑗
+ 𝜂
𝑝

𝑗
+ 𝑎
𝑝

𝑗
) , (A.23)

and by (5), |�̂�
𝑗
−𝑥
𝑗
| ≤ max(|𝜂𝑖

𝑗
|), 𝑖 = 1, . . . , 𝑝. Since max(|𝜂𝑖

𝑗
|)

is bounded above as

med (𝑢
𝑖

𝑗


) = max


𝑒
𝑖

𝑗
+ 𝜉
𝑖

𝑗
+ 𝑑
𝑗



𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑛

≤ max (𝑒
𝑖

𝑗


) +max (


𝜉
𝑖

𝑗


)

+max (𝑑𝑗

) ,

(A.24)

we see that

‖�̂� (𝑡) − 𝑥 (𝑡)‖2 ≤ 𝜉
1/2max (�̂�𝑗 − 𝑥

𝑗


, 𝑗 = 1, . . . , 𝑛)

≤ 𝜉
1/2

(max (𝑒
𝑖

𝑗


) +med(


𝜉
𝑖

𝑗


) +max (𝑑𝑗


))

≤ 𝜉
1/2

(]
𝑒 ‖�̂� (0) − 𝑥 (0)‖2 𝑒

−𝜆𝑒𝑡 +
]
𝑛 ‖𝐿‖2 𝜉max

𝜆
𝑛

+
]
𝑑
𝜉𝑑max
𝜆
𝑑

) .

(A.25)

Choose 𝜇 > 𝜉
1/2max(]

𝑒
, ]
𝑛
, ]
𝑑
) and 0 < 𝜆 < min(𝜆

𝑒
, 𝜆
𝑛
, 𝜆
𝑑
);

we have

‖�̂� (𝑡) − 𝑥 (𝑡)‖2 ≤ 𝜇 ‖�̂� (0) − 𝑥 (0)‖2 𝑒
−𝜆𝑡

+
𝜇 (‖𝐿‖2 𝜉max + 𝑑max)

𝜆
.

(A.26)
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