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Abstract: We demonstrate a novel non-contact method: acoustic radiation 

force impulse microscopy via photoacoustic detection (PA-ARFI), capable 

of probing cell mechanics. A 30 MHz lithium niobate ultrasound transducer 

is utilized for both detection of phatoacoustic signals and generation of 

acoustic radiation force. To track cell membrane displacements by acoustic 

radiation force, functionalized single-walled carbon nanotubes are attached 

to cell membrane. Using the developed microscopy evaluated with agar 

phantoms, the mechanics of highly- and weakly-metastatic breast cancer 

cells are quantified. These results clearly show that the PA-ARFI 

microscopy may serve as a novel tool to probe mechanics of single breast 

cancer cells. 

©2014 Optical Society of America 

OCIS codes: (170.7170) Ultrasound; (170.5120) Photoacoustic imaging; (170.0180) 

Microscopy. 
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1. Introduction 

Cellular mechanics may play a crucial role in the differentiation, migration, gene expression 

of cells [1]. Mechanical properties of a cell can be changed by various external and internal 

cues including disease infection and variations in cell nature. Diseased cells undergo 

variations in cellular compositions, internal structures, and external interactions, which are 

closely related to the changes in mechanical properties of cells. For example, malaria infected 

red blood cells initiate erythrocytic stages of their life cycle, thereby resulting in the cells' 

progressive stiffening [2]. Erythrocytes from patients with sickle cell disease exhibit higher 

Young's modulus than normal erythrocytes [3]. In addition, the mechanical properties of cells 

have been shown to differ as their phenotypes. In particular, metastatic cancer cells, which 

remodel internal structures of actin cytoskeletons, are reported to be less stiff than weakly-

metastatic cancer cells [4]. As shown in these previous studies, the cell mechanics can be 

altered by disease infection, variations in cell phenotype, and etc. Therefore, the measurement 

of mechanical properties of single cells may provide important clues to the identification of 

cellular phenotypes, alternations, and functions. 

Various techniques including optical tweezers [5], micropipette aspiration [6], magnetic 

tweezers [7] and atomic force microscopy (AFM) [8] have been developed to measure the 

mechanical properties of various cells. Using optical tweezers, the shear modulus of a red 

blood cell was successfully measured by trapping two microspheres attached to the opposite 

sides of the red blood cell [9]. However, when the trapping forces were applied to the cells 

via optical tweezers, it was necessary to tightly focus laser beams on microbeads attached to 

the cells in order to avoid the cell damages induced by temperature rise [9]. AFM allows 

measurement of the stiffness of cells with a Young's modulus of greater than 50 Pa. However, 

the AFM indentation method requires a probe to be in contact of a cell. In addition, the AFM 

system must be isolated from surrounding vibrations to produce the reliable outcomes [8]. 

Micropipette aspiration, capable of measuring the amount of surface extension caused by the 

aspirating pressure, is a versatile approach for measuring cellular mechanical properties due 

to the broad range of its applicable pressure. Recently, this method has been employed to 

determine the viscosity and actin remodeling of isolated chondrocytes [10]. However, in spite 

of its broad range of applications, the reliability of outcomes obtained with this technique has 

been shown to be highly dependent on the operator's skills and also affected by the unstable 

base pressure due to potential vapor evaporation in the aspiration chamber [6]. Magnetic 

tweezers have been also utilized to measure mechanical properties of various biological 

samples including individual molecules, inter-molecular bonds, and whole cells. They are 

capable of measuring not only the complex modulus of elasticity but also the local 

viscoelasticity of the cells [11]. However, for successful quantification of viscoelastic 

properties of target cells, both generation of highly localized magnetic fields and field 

gradients and spherical magnetic beads with various sizes are required [12]. 

In addition to the aforementioned methods, ultrasonic techniques may be employed as an 

alternative to measure cell mechanics. Particularly, the ultrasonic method would be highly 

useful as a non-contact method for measurement of the mechanics of a single cell. In recent 

years, the acoustic radiation force impulse (ARFI) imaging techniques have been developed 

as a non-invasive method for quantitative measurement of elastic properties of tissues [13]. 

The ARFI imaging utilizes short duration acoustic radiation forces in order to induce 

localized displacements in tissue. Such displacements in the order of ten microns are then 

tracked using ultrasonic correlation based methods. The displacements are typically inversely 

proportional to local tissue stiffness, thus enabling the estimation of tissue visco-elastic 

properties. In this method, the short duration acoustic radiation forces are exerted in the 

direction of acoustic wave propagation by a transfer of momentum from the acoustic wave to 

a target medium. The momentum transfer here results in the application of a mechanical force 

to the target. The exerted force can be expressed with the following equation: 
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is the temporal average intensity at a given point in space [14]. Currently, a few ARFI 

imaging techniques have been utilized for various biological applications including in vivo 

discrimination of cysts from solid lesions by estimating the visco-elastic properties of the 

target [15], detection of lesions in the gastrointestinal tract [16], and assessment of the 

mechanical properties of coagulations with minimal disturbances [17]. More recently, we 

have shown that mechanical properties of the internal micro-structures of a zebrafish embryo 

of a size of ~800 µm could be successfully estimated with high frequency ARFI imaging at 

100 MHz, yielding a 2D map of mechanical properties of the zebrafish embryo [18]. 

However, for ARFI imaging of a single cell, which typically have a dimension in the order of 

tens of micrometers, the operating frequency of a transducer needs to be further increased to 

beyond 300 MHz, which offers an axial resolution of ~5µm, to resolve a single cell from the 

cell culture substrate, which typically produces much stronger echo signals than a cell. 

Meanwhile, the sensitivity of the transducer used for the ARFI imaging needs to be increased 

since the acoustic characteristics of cells are close to those of water, producing extremely 

weak echo signals from cells in a cell culture medium. However, the design and fabrication of 

such transducers currently remains to be a great challenge. 

In this paper, we therefore present a novel non-contact ARFI microscopic approach based 

on photoacoustic detection (PA-ARFI) to probe mechanical properties of a single cell at 30 

MHz, which is much lower than the frequency required for ultrasonic approaches. 

Functionalized single-walled carbon nanotubes (FCNT), which produce strong photoacoustic 

signals, were here utilized as contrast agents for cell membrane labeling to track 

displacements of cell membrane due to acoustic radiation force acting on the cells. Note that 

the cell culture substrate does not generate detectable photoacoustic signals, avoiding 

interference signals generated by the substrate frequently encountered in ultrasonic 

approaches. For evaluation of the PA-ARFI microscopy, elasticity of agar phantoms of 

different Young’s modulus is examined. We furthermore investigate whether PA-ARFI 

microscopy is capable of detecting acoustic radiation force-induced membrane displacement 

of breast cancer cells, including highly invasive (MDA-MB-231) and weakly invasive 

(SKBR3 and MCF-7) cells [19], thereby demonstrating the potential of PA-ARFI microscopy 

in probing mechanical properties of single cells. 

2. Materials and methods 

2.1 Cell preparation and materials 

MDA-MB-231, SKBR3, and MCF-7 human breast cancer cell lines were obtained from the 

ATCC (Manassas, VA), and maintained in Dulbecco’s modified eagle medium (DMEM) 

containing 10% fetal bovine serum. NH2 functionalized single-walled carbon nanotubes 

(FCNT) were purchased from Cheap Tubes Inc. (Brattleboro, Vermont). Agar powder 

(SIGMA-ALDRICH, USA) was prepared for construction of phantoms. Hank’s balanced salt 

solution (HBSS) was purchased from Invitrogen (Grand Island, NY) for maintaining cells 

during cell experiment. Rhodamine B was purchased from SIGMA-ALDRICH (USA). 

2.2 Construction of tissue-mimicking phantoms with different elasticity 

In order to evaluate the performance of PA-ARFI microscopy, tissue-mimicking phantoms of 

different Young’s modulus were made with agar gel in a 35 mm petri-dish as described 

previously [20]. The phantom consisted of three layers including a substrate, an agar gel, and 
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a FCNT layer. In the construction of the phantoms, agar powder was hydrated with deionized 

water containing n-propanol and then slowly stirred to avoid clumps, followed by degassing 

of the mixture in a vacuum (660–730 mmHg) for a few minutes. The mixture was initially 

heated at 70
◦
C in water for colloid dispersion and gas release, and its temperature was further 

increased up to 90
◦
C. The mixture was then quickly vacuumed to remove residual air bubbles 

and rotated for obtaining homogeneous agar and cooled down to 45 
◦
C for cross-linking, 

before being poured into the petri-dish to produce an agar phantom. Finally, FCNTs were 

spread on the surface of the agar layer before the agar gel was firmly solidified. The thickness 

of the agar gel layer was ~4 mm. After the construction of each phantom with different 

Young’s modulus, the mechanical properties of the constructed agar phantoms were measured 

with an Electro Force Load Frame System to confirm whether the mechanical properties of 

the phantoms were produced as designed (BOSE 3100, USA). The software incorporated with 

the system was utilized to obtain Young’s moduli of the phantoms. 

2.3 Evaluation of the PA-ARFI microscopic method 

For evaluation of the PA-ARFI microscopic system, we investigated the capability in the 

detection of axial displacement of a target sample. We further examined elastic properties of 

the constructed phantoms with different Young’s moduli, 0.7 and 1.7kPa using the PA-ARFI 

system. In the investigation of detection capability of the system, FCNTs diluted with HBSS 

(10µg/ml) were added into petri-dish, followed by washing with HBSS after 4 hours. The 

targeted FCNTs bound to the surface of the petri-dish were then searched after placing the 

sample on a micro-stage of the PA-ARFI system and positioned at the center of an image 

field of view. PA-signals from the targeted FCNTs were then detected by the transducer used 

in the PA-ARFI system at the indicated z-positions, respectively (0-1.5µm, step size: 0.5µm). 

In the phantom study, after the targeted FCNTs in each phantom were searched, the FCNTs 

were positioned at the center of the image field of view using x-, y-stage manipulators 

incorporated into the system. Displacements of the FCNTs due to acoustic radiation forces 

were measured at the given driving voltage inputs to the transducer, 2, 10, 20, 30, and 40 Vpp, 

respectively (number of cycles: 5000). The experiment was repeated 5 times. 

2.4 Measurement of mechanical properties of breast cancer cells using PA-ARFI microscopy 

10
5
 MDA-MB-231, SKBR3, MCF-7 human breast cancer cells were plated on 35mm petri-

dishes and incubated in the complete medium at 37°C for 36 hours prior to FCNT labeling of 

the cells. For the FCNT labeling of the cells, FCNTs diluted with HBSS (final concentration: 

0.1µg/ml) were added into the petri-dishes, rocked for 30 minutes, and then incubated at 37°C 

for 4 hours. The amine-terminated end of FCNTs allowed to be attached to biological systems 

such as DNA and carbohydrates [21]. After 4 hour incubation of the cells, the cells were 

washed with HBSS three times and then placed on the microscope to estimate elasticity of 

each type of cells [sample number (n): 30] using the PA-ARFI microscopy as the procedures 

described next:(a) the acoustic transducer surface was immerged into the HBSS medium; (b) 

the location along the z-direction is adjusted for locating a target cell at the focal point of the 

transducer; (c) the target cell labeled with FCNTs was positioned at the center of the image 

field of view; (d) acoustic radiation force impulses were applied to the target cell; (e) cell 

membrane displacements were tracked by measurement of PA signals from the FCNTs 

binding to cell membrane. 

2.5 Data analysis 

The acquired PA signals were sampled up to 2 GHz with polynomial interpolation filters with 

symmetric coefficients in order to quantify the displacement of a target due to acoustic 

radiation forces acting on the target. Cross-correlation calculation between the reference and 

track PA signals was then performed to obtain the maximum displacement. A threshold of 0.8 

was set for the correlation coefficient for data analysis [18]. 
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2.6 Statistical analysis 

The membrane displacements of MDA-MB-231 (n = 30), SKBR3 (n = 21), and MCF-7 (n = 

10) cells due to acoustic radiation forces acting on the cells were compared. All data were 

expressed as mean ± standard deviation of indicated sample sizes, and were analyzed by a 

two-tailed t-test, with the level of significance set at p-value <0.01. 

3. Results and discussion 

3.1 PA-ARFI system 

A PA-ARFI system was developed with an inverted microscope (Olympus IX71, USA) [Fig. 

1(a)]. A pulsed laser light at 532 nm (Explorer, Spectra-physics) with the pulse energy of 

18µJ corresponding to the pulse length of 15 ns was delivered to a target of interest by a beam 

expander (Thorlabs, USA), a set of mirrors, an electronic shutter, dichroic mirrors, a diffuser, 

and a 20x objective for PA signal generation within the target. Note that the beam expander 

and diffuser offered full-field and relatively uniform excitation of the target sample. A single 

element 30MHz lithium niobate (LiNbO3) ultrasound transducer was fabricated and attached 

to a goniometer coupled to a three-axis linear motorized stage integrated with the microscope 

to both detect PA signals and generate acoustic radiation force. The PA signals from the 

target sample were detected by the transducer and then amplified with an analog receiver 

(Panametrics, Olympus). The amplified signals were digitized by an analog-to-digital 

converter (Gage, USA) at 2 GHz sampling rate allowing detection at least 0.75 µm 

displacement of a target and recorded by a custom-built program developed in house. Here, 

the transducer and laser were synchronized by a trigger impulse, which was generated at 20 

kHz from a function generator (Tektronix, USA). 

Multi-cycle 30 MHz sinusoidal bursts generated from a function generator (Tektronix, 

USA) were amplified by a custom-built power amplifier (gain: 26dB) [22] and input to the 

transducer for the generation of an acoustic pushing beam at a pulse repetition frequency 

(PRF) of 20 kHz, which was used to trigger the laser controller for synchronization. Figure 

1(b) illustrates triggering sequences for the PA-ARFI system. After initiation of PA-ARFI 

measurement, laser pulses to generate the reference PA signal were applied to a target sample 

prior to the application of one pushing beam of five thousands cycles to the sample. After the 

application of the pushing beam to the sample is completed, five hundred photoacoustic 

signals generated by the consecutive laser pulses applied to the sample were utilized for 

tracking its displacement. Note that the photoacoustic signals while the pushing beam 

transmits were ignored. 

 

Fig. 1. PA-ARFI system. (a) Schematic of a PA-ARFI system and its photographs. (b) 

Triggering sequences for the PA-ARFI method. 
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Fig. 2. Characteristics and alignment of the press-focused 30 MHz single element LiNbO3 

transducer. (a) Photographic image of the transducer. (b) Pulse-echo characteristics of the 
transducer. (c) Lateral beam profile of a transducer. (d) Peak acoustic pressures at indicated 

voltage inputs to the transducer were measured by using a hydrophone. (e) Alignment of a 

laser beam (below) to the transducer’s focus was made by using a 6µm tungsten wire targets 
aligned along the horizontal (upper-left) and vertical (upper-right) direction at the center of the 

image and fluorescence imaging of 10 µM Rhodamine B solution. The scale bars indicate 50 
μm. 

In this system, the press-focused single element lithium niobate (LiNbO3) transducer [Fig. 

2(a)] was constructed via the conventional procedure [23] to both generate acoustic radiation 

force, which push a target sample, and detect photoacoustic signals from the sample. The 

center frequency of the transducer was 30 MHz [Fig. 2(b)]. The aperture diameter of the 

transducer was 4 mm with a focal length of 3 mm (f-number = 0.75). The lateral beam profile 

[Fig. 2(c)] was measured with a calibrated hydrophone which yielded the pressure level at a 

given input voltage to the transducer. The beam width was measured to be 37 µm. In addition, 

the peak acoustic pressures at focus were measured. The peak acoustic pressures were 0.76, 

1.00, 1.39, 2.16, 2.93, and 3.71 MPa when the input voltages were 2, 5, 10, 20, 30, and 40 

Vpp, respectively [Fig. 2(d)]. 

The alignment of the focus of a transducer at the center of a laser beam is of critical 

importance in achieving the maximum sensitivity in the detection of PA signals from a target. 

To do so, we first aligned the focus of the transducer at the center of the image field of view 

with a 6 µm tungsten wire with a procedure described previously [Fig. 2(e), upper] [19]. After 

that, the laser beam center was aligned at the center of the image field of view using 

fluorescence imaging of 10 µM Rhodamine B diluted with HBBS (Em: ~580 nm) [Fig. 2(e), 

lower]. Figure 2(e) (upper) illustrates the tungsten wire alignment in the horizontal and 

vertical direction at the center of the image field of view. 

3.2 Measurement of mechanical properties of phantoms with different Young’s modulus 

For the evaluation of the PA-ARFI microscopic system developed, we first investigated its 

capability in the detection of axial displacement of a target sample in the phantom. For a 0.5 

µm initial movement of the target sample, the target position was measured to be 0.3 µm with 

the PA-ARFI microscopy. In contrast, at 1 and 1.5 µm movements, the target positions were 
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measured to be 0.7 and 1.25 µm from the initial position, respectively [Fig. 3(a)]. The 

discrepancy between the measured and real target position was 0.25 µm at 1.5 µm target 

movement. This result suggested that the PA-ARFI microscopy had the capability to detect at 

least a 0.5 µm displacement of a target sample. Although the discrepancy might be the error 

of the positioner caused by the backlash of the step-motor [24], which was here utilized to 

position the target sample to a certain location, it is smaller than the expected measurement 

resolution of 0.75 µm calculated by the sampling rate. 

 

Fig. 3. Evaluation of PA-ARFI microscopy with agar phantoms. (a) Target position measured 
using PA-ARFI microscopy versus real target position. (b) Geometry of a tissue mimicking 

agar phantom. Photograph of the phantom (upper) and phantom layers (lower) consisting of a 

FCNT (a’), agar gel (b’), and substrate layer (c’). The scale bar indicates 5 mm. (c) 
Comparison of between measured Young’s Moduli and calculated Young’s moduli of 

phantoms. (d) Displacements of FCNTs in phantoms with the indicated Young’s moduli, 0.7 

and 1.7 kPa, due to acoustic radiation forces at the given voltage inputs to the transducer (2, 

10, 20, 30, and 40 Vpp). (e) Temporal displacement changes of target FCNTs in the indicated 

phantoms at the driving voltage = 40Vpp (representative ones). (f) Temporal displacement of 

PA signals before and after ARFI application on 1.7 kPa phantom (driving voltage: 40 Vpp). 
An arrow indicates the displacement direction. 

In addition, we further examined the elasticity of agar phantoms using the PA-ARFI 

microscopic system. Before carrying out this phantom study, we measured the elasticity of 

the constructed agar phantoms using an Electro Force Load Frame System [Fig. 3(b)]. The 

Young’s moduli were measured to be ~0.7 and ~1.7 kPa for the phantoms with the calculated 

Young’s moduli of 0.7 and 1.4 kPa, respectively [Fig. 3(c)]. These results here showed that 

the measured Young’s modulus of the phantom was slightly higher than the calculated 

Young’s modulus at 1.4 kPa. The discrepancy at 1.4 kPa may be caused by water evaporation 

during fabrication of the phantoms. 

After the elasticity of the phantoms was measured, we investigated whether the PA-ARFI 

microscopy allowed discrimination between the agar phantoms with the indicated elasticity. 

When the input voltages were 2 and 10 Vpp, which generated the acoustic pressures of 0.76 

and 1.39 MPa at focus, the displacements of FCNTs in all the phantoms were less than 2 µm 

[Fig. 3(d)]. In contrast, when the input voltage was increased to 20 Vpp, the displacements of 

FCNTs in the phantoms with the measured Young’s modulus of 0.7 and 1.7 kPa were 

increased by ~5.1 µm and ~2.43 µm, respectively. Moreover, the displacements of FNCTs in 

each phantom were increased by 14.78 µm (measured Young’ modulus: 0.7 kPa) and 7.78 µm 

(measured Young’ modulus: 1.7 kPa), respectively as the input voltage was further increased 
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by 40 Vpp (corresponding acoustic pressure: 3.7 MPa). The mean displacement of FCNTs in 

the phantom with measured Young’s modulus of 0.7 kPa was here almost two-fold higher 

than that in the phantom with the measured Young’s modulus of 1.7 kPa [Fig. 3(d)]. Figure 

3(e) describes the temporal displacement changes of FCNTs in each phantom due to acoustic 

radiation force at 40Vpp. The peak displacement in the soft phantom (0.7 kPa) was almost two 

times higher than that in the harder phantom (1.7 kPa). The target FCNTs in the harder 

phantom (1.7 kPa) returned to the original position in less than 2 ms, whereas it took longer 

than 5 ms in the soft phantom (0.7 kPa). Figure 3(f) illustrates the temporal displacement of 

PA-signals from FCNTS before and after ARFI application to the phantom with Young’s 

modulus at 1.7 kPa. The PA signals were detected at the later time after ARFI application 

than before ARFI application, indicating the FCNTs displacement due to the ARFI 

application [Fig. 3(f)]. In these results, it is important to note that the Young’s modulus of 

FCNTs (over 1 kPa) utilized is much higher than the Young’s moduli of the phantoms [25], 

suggesting that the displacements of FCNTs approximated well the displacements of agar 

phantoms surrounding target FCNTs. Taken together, these results demonstrated that PA-

ARFI microscopy was capable of probing the mechanical properties of specimens with 

different Young’s modulus, suggesting that it may be suited for use in the estimation of 

mechanical properties of cells with different Young’s modulus in vitro. 

3.3 Measurement of mechanical properties of different types of breast cancer cells 

The phantom study showed that the PA-ARFI microscopy was capable of probing mechanical 

properties of the phantoms with different Young’s modulus and thereby differentiating 

between them. As the next step, we employed the PA-ARFI microscopy to measure 

mechanical properties of cancer cells including MDA-MB-231 (highly-metastatic), SKBR3 

(weakly-metastatic), and MCF-7 (weakly-metastatic). In particular, we compared the 

displacements of FCNTs binding to cancer cell membrane at the given voltage of 40 Vpp, 

which was the highest voltage utilized in the phantom study enabling the measurement of 

mechanical properties of a sample with Young’s modulus of approximately 1.7 kPa. By 

employing the experimental procedures described in Fig. 4(a), the membrane displacements 

of each cell type due to acoustic radiation force acting on the cells were measured. The mean 

membrane displacement of MDA-MB-231 human breast cancer cells (2.64 ± 1.50 µm) due to 

the applied acoustic radiation force impulses was significantly greater than that of SKBR3 

(1.50 ± 0.94 µm) (p-value = 0.0089 < 0.01) and MCF-7 human breast cancer cells (1.10 ± 

0.47 µm) (p-value = 0.0059 < 0.01). In contrast, the mean membrane displacement of SKBR3 

human breast cancer cells was not significantly different from that of MCF-7 human breast 

cancer cells (p-value = 0.2989 > 0.01). The standard deviation may be generated by both the 

variation in the cell stiffness and the inherent measurement error of 0.75 µm caused by the 

sampling rate. In this experiment, we tested a total of 30 individual cells for each type of 

cancer cells. ARFI application induced membrane displacement in all MDA-MB-231 cells 

among the 30 cells. In contrast, in only twenty-one SKBR3 and ten MCF-7 cells among a 

total of thirty, cells membrane displacement was observed upon ARFI application. It may be 

attributed to the fact that SKBR3 and MCF-7 cells are stiffer than MDA-MB-231 cells, 

suggesting that the stronger ARFI may be needed to deform SKBR3 and MCF-7 cells. This 

may be achieved by increasing the input voltage to the transducer. However, in this study, the 

input voltage to the transducer was limited to 40 Vpp since the higher voltage of the bursts 

with such duty cycle may damage the transducer. Figure 4(c) demonstrates the distributions 

of membrane displacement. In the histogram of membrane displacements of each type of 

cells, MDA-MB-231 cells showed a peak at 2µm in the displacement, whereas SKBR3 and 

MCF-7 cells a peak at 1µm. Meanwhile, the MDA-MB-231 cells exhibited a wider 

distribution as well as more frequencies in the displacement greater than 2 µm than both 

SKBR3 and MCF-7 cells. In particular, several MDA-MB-231 cells exhibited cell membrane 

displacement of greater than 5 µm upon ARFI application [Fig. 4(c)], indicating that the 
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SKBR3 and MCF-7 cells might be stiffer than MDA-MB-231 cells corroborating previous 

AFM studies, which showed that the highly-invasive MDA-MB-231 breast cancer cells were 

mechanically softer than both non-transformed breast epithelium cells and weakly invasive 

breast cancer MCF-7 cells [26]. In addition, the relaxation time for MDA-MB-231 cells was 

much longer than those for MCF-7 and SKBR-3 cells [Fig. 4(d)], may indicate the additional 

evidence that MDA-MB-231 cells are softer than MCF-7 and SKBR-3 cells.Young’s modulus 

of the MDA-MB-231 cells in the previous literature was found to be ~500 Pa and ~750 Pa in 

nuclear and cytoplasmic regions, respectively. In contrast, Young’s modulus of MCF-7 cells 

was found to be ~800 Pa and ~1300 Pa in those regions, respectively. In our study, MDA-

MB-231 cells were found to exhibit a larger membrane displacement than MCF-7 cells upon 

the ARFI application at 3.7 MPa, indicating that MDA-MB-231 cells were softer than MCF-7 

cells. It is therefore reasonable to conclude that our PA-ARFI method is capable of 

discriminating between cells with different mechanics at the single cell level in vitro. 

 

Fig. 4. Membrane displacement of different types of cancer cells due to applied acoustic 

radiation force (input voltage: 40 Vpp). (a) Diagram of PA-ARFI microscopy of cells. After 

positioning of a target cell labeled with FCNTs at the center of the image field of view (left), 
acoustic radiation force impulses were applied onto the cells (middle) and followed by tracking 

of cell membrane displacements (right). (b) Mean cell membrane displacement of MDA-MB-

231 (n = 30), SKBR3 (n = 21), and MCF-7 (n = 10) cells (*: p-value < 0.01). (c) Histogram of 
membrane displacements of each cell type (red: MDA-MB-231, blue: SKBR3, green: MCF-7). 

The dotted graphs represent Gaussian distributions. (d) Temporal displacement changes of 

FNTs attached to the membrane of target cells (representative ones). 

A wide range of tools, including atomic force microscopy (AFM), cell stretching, and 

microrheology, have been used to assess cellular mechanics in both the cytoplasm and 

nucleus of metastatic or non-metastatic cancer cells [26–29]. The results reported in this paper 

indicated that this non-contact approach was a viable alternative. They also showed that the 

PA-ARFI microscopic system with a transducer at 30 MHz had limitations in assessing more 

localized regions of the cells (the data are not shown) since the pushing area limited by the 

lateral beam size of 37 µm is broad enough to cover the whole single cell surface. However, 

this shortcoming may be overcome by increasing both the center frequency of a transducer 

and improving the lateral beam width of the laser light for photoacoustic generation. 
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Instead of using the photoacoustic detection method, other ultra-high speed imaging 

techniques [30] may be applied to monitor membrane displacement of cells due to acoustic 

radiation force impulse applications in the estimation of mechanical properties of the cells. 

However, in order to track the displacement of the membrane of an object with a Young’s 

modulus greater than 1.7 kPa, which would return to its original position in less than 2 ms 

following initial disturbance, the image acquisition rate needs to be greater than 1 kHz 

according to Nyquist criteria. Furthermore, sophisticated imaging components are required, 

thereby increasing the cost. In contrast, the PA-ARFI method reported here allowed the 

tracking of membrane displacement with a relatively simple experimental arrangement 

consisting of a single transducer and thus enable to estimate the elasticity of cells with 

Young’s modulus of higher 1.7 kPa which can be achieved by increasing the pushing beam 

energy e.g. increasing the PRF or the number of cycles. 

To date, carbon nanotubes (CNTs) have been utilized for various cell applications. The 

biocompatibility of CNTs has been shown to differ in different types of cells [31]. Single-

walled (SW) CNTs have been shown to block potassium channel activities in heterologous 

mammalian cell systems, suggesting a degree of cytotoxicity [32]. In contrast, the SWCNTs 

under the culture medium do not significantly affect the macrophages and leukemia cells [33, 

34]. Moreover, the functionalized SWCNTs are non-toxic to primary immune cells. 

Therefore, they have been widely utilized as a contrast agent in medical imaging as well as a 

carrier molecule for the delivery of therapeutically active molecules to target cells [35]. In 

this study, the results had a good agreement with the results obtained in previous studies, of 

which MDA-MB-231 cells exhibited softer than MCF-7 and SKBR-3 cells, suggesting that 

FCNTs may not significantly alter the mechanical properties of breast cancer cells and 

therefore they can be utilized as a contrast agent in the measurement of mechanics of breast 

cancer cells using the PA-ARFI microscopic method. However, to apply this PA-ARFI 

microscopic method to other types of cells, it would be necessary to test the FCNT 

cytotoxicity since the FCNT cytotoxicity has shown to be heterogeneous in the different types 

of cells [31, 36]. 

High-intensity laser light with long exposure time may induce cell damages due to 

reactive oxygen species generation. Therefore, it is necessary to apply low intensity light to 

cells to avoid phototoxicity during live cell imaging [37]. In this study, we applied the pulsed 

laser light to breast cancer cells for very short duration (25 ms) in order to avoid phototoxicity 

during photoacoustic signal excitation. We did not hence observe any notable cell 

morphological changes such as cell blebbing and shrinkage after application of laser light to 

the cells for photoacoustic signal excitation. In the previous study, the 532nm pulsed laser 

light at less 36 mJ cm
2

 did not induce any significant changes in viability of cancer cells 

[38]. Note that the total fluence of the applied laser light for photoacoustic signal excitation (< 

~9mJ cm
2

) was here much less than the light dose used in the previous study. However, for 

more accurate examination of phototoxicity effects on the cell, it would be necessary to test 

cell viability after the light application using cell viability assay. 

4. Conclusion 

This paper reports a novel non-contact PA-ARFI microscopic method capable of probing 

mechanical properties of a single cell. PA-ARFI microscopy allowed measurement of the 

mechanical properties of targets of varying Young’s modulus. Here FCNTs enabled the 

tracking of targeted sample displacement induced by acoustic radiation forces acting on the 

sample with high sensitivity. In particular, this method makes it possible to measure the 

mechanical properties of breast cancer cells, thus enabling to discriminate them relatively. To 

test its feasibility, experiments were performed on cancer cells of different phenotype. The 

results show that invasive MDA-MB-231 cells were less stiff than less invasive SKBR3 and 

MCF-7 cells corroborating previous studies that MDA-MB-231 cells are less stiff than 

SKBR3 and MCF-7 cells [26]. To apply this method to other types of cells, the FCNT may be 
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replaced with other contrast agents, which do not significant affect their mechanical 

properties. As a result, it appears that this non-contact PA-ARFI method may offer a viable 

alternative in the measurement of mechanical properties of a single cell. Finally, it is 

important note that the developed PA-ARFI microscopic system is the first ultrasonic 

palpation system for measurement of mechanical properties of a single cell. 
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