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Abstract

Background: Platelet-derived growth factor-BB (PDGF-BB) has been implicated in the proliferation, migration and
synthetic activities of smooth muscle cells that characterize physiologic and pathologic tissue remodeling in hollow
organs. However, neither the molecular basis of PDGFR-regulated signaling webs, nor the extent to which specific
components within these networks could be exploited for therapeutic benefit has been fully elucidated.

Results: Expression profiling and quantitative proteomics analysis of PDGF-treated primary human bladder smooth
muscle cells identified 1,695 genes and 241 proteins as differentially expressed versus non-treated cells. Analysis
of gene expression data revealed MYC, JUN, EGR1, MYB, RUNX1, as the transcription factors most significantly
networked with up-regulated genes. Forty targets were significantly altered at both the mRNA and protein levels.
Proliferation, migration and angiogenesis were the biological processes most significantly associated with this
signature, and MYC was the most highly networked master regulator. Alterations in master regulators and gene
targets were validated in PDGF-stimulated smooth muscle cells in vitro and in a model of bladder injury in vivo.
Pharmacologic inhibition of MYC and JUN confirmed their role in SMC proliferation and migration. Network analysis
identified the diaphanous-related formin 3 as a novel PDGF target regulated by MYC and JUN, which was necessary
for PDGF-stimulated lamellipodium formation.

Conclusions: These findings provide the first systems-level analysis of the PDGF-regulated transcriptome and
proteome in normal smooth muscle cells. The analyses revealed an extensive cohort of PDGF-dependent biological
processes and connected key transcriptional effectors to their regulation, significantly expanding current knowledge
of PDGF-stimulated signaling cascades. These observations also implicate MYC as a novel target for pharmacological
intervention in fibroproliferative expansion of smooth muscle, and potentially in cancers in which PDGFR-dependent
signaling or MYC activation promote tumor progression.
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Introduction
Smooth muscle-rich hollow organs such as the vascula-
ture, airways, gut and urinary tract undergo tissue remod-
eling following injury. These alterations in tissue structure
include cellular hypertrophy and hyperplasia, increased
synthesis and secretion of extracellular matrix, dediffe-
rentiation of smooth muscle cells (SMC) and progressive
loss of normal contractile function. Importantly, even after
removal or attenuation of the inciting stimulus, tissue
damage resulting from pathologic remodeling persists,
sometimes indefinitely, and there are typically limited
options for treatment.
Among the soluble factors implicated in the pathologic

responses of SMC to injury, the potent mitogen and
motogen platelet-derived growth factor-BB (PDGF-BB)
has emerged as an important soluble driver [1]. PDGF-
BB elicits biological effects, such as proliferation and
migration, through dimerization and activation of
PDGF receptor (PDGFR) tyrosine kinases and initi-
ation of downstream kinase cascades that impinge on
transcriptional complexes (reviewed in [2]). Signaling
through the PDGFR axis has been implicated in a range
of pathological conditions, including atherosclerosis, air-
way remodeling in asthma [3,4] and fibroproliferative
changes in the bladder wall [5]. However, neither the mo-
lecular basis of the PDGFR signaling repertoire, nor the
extent to which specific elements within these cascades
could be exploited for therapeutic benefit has been fully
elucidated.
The downstream targets of PDGFR activation in smooth

muscle have, for the most part, been defined at the level
of small numbers of proteins or genes [5-8]. Expression
profiling of smooth muscle exposed to PDGF has thus far
been restricted to SMC of vascular origin, and has identi-
fied NFAT family members and target genes as important
effectors of vascular SMC behavior in the setting of
vascular injury [9,10]. Genome-wide evaluation of PDGF-
stimulated visceral smooth muscle gene expression
has yet to be reported. Several groups, including our
own, have employed mass spectrometry-based proteo-
mics to interrogate PDGF-induced changes in cells of
mesenchymal origin [11-15]. In a previous study, we
used isotope-coded affinity tagging (ICAT) analysis
coupled with mass spectrometry to quantify PDGF-
induced protein alterations in a human visceral SMC
sub-proteome [14]. In that study we observed marked
enrichment in proteins associated with endocytosis
and the cytoskeleton in lipid raft microdomains of cells
treated with PDGF, consistent with other studies linking
PDGF to alterations in cell morphology and the actin
cytoskeleton.
In this study, we present the first integrated analysis of

gene expression and proteome-level alterations in human
visceral SMC challenged with PDGF.
Results
Gene expression regulated by PDGF
In order to interrogate global responses to PDGF-BB at
both gene and protein levels, we used primary human
bladder smooth muscle cells (pBSMC) to perform RNA
expression profiling in concert with quantitative analysis
of the entire proteome using the SILAC method. Expres-
sion of PDGFRα and PDGFRβ isoforms was verified in
pBSMC by real-time RT-PCR and immunoblot analysis
(Figure S2A & S2B (see Additional file 1)). Cells subjected
to triplex SILAC labeling were treated with 1 nM PDGF-
BB for 0, 4 or 24 h. Total protein lysates were analyzed
using mass spectrometry, and total RNA was analyzed
by expression profiling (workflow shown in Figure S2,
(see Additional file 2)).
Microarray data were assessed and determined to be

of high quality (Figure S3 (see Additional file 3)); a high
degree of reproducibility was observed based on inter-
and intra-group variation of the arrays, with all pairwise
correlation coefficients between samples >0.98. A total
of 1695 differentially expressed genes (DEGs) with overall
p <0.05 (Table S1 (see Additional file 4)) were identified at
either 4 or 24 h using an integrative statistical method
previously reported ([16], Materials and Methods). Of
these, 528 DEGs were significantly changed at both 4 h
and 24 h following PDGF treatment, while 630 and 537
DEGs were significantly changed only at the 4 or 24 h
time point, respectively (Figure 1A). DEGs were grouped
into clusters (Clusters 1 to 7), based on time-dependent
differential expression patterns, by hierarchical cluster
analysis. The seven clusters could be sub-categorized into
those representing up-regulated genes (Clusters 1 to 4)
and those reflecting down-regulated genes (Clusters 5
to 7). These data showed that 487 (88%) of the 528
DEGs identified at both times were consistently up- or
down-regulated (Clusters 1 or 7 in Figure 1B), while 63
(12%) of the 528 genes perturbed at both times were
down-regulated at 4 h but up-regulated at 24 h (Cluster 4
in Figure 1B). Functional enrichment analysis of Gene
Ontology Biological Processes using Database for Annota-
tion, Visualization and Integrated Discovery (DAVID)
software suggested that cell cycle transit, cell prolifer-
ation, cell migration and motility, ribosome biogenesis
and angiogenesis were the most prominent biological
processes in the group of genes up-regulated by PDGF,
whereas cell cycle arrest, chromatin organization and
apoptotic pathways were the most prominent processes in
the down-regulated group (Figure 1C).
To identify key transcription factors (TFs) involved in

these gene expression alterations, we collected TF-target
interaction data from six databases (TRED [17], EEDB
[18], mSigDB [19], Amadeus [20], bZIPDB [21], and Ore-
gAnno [22]) and then identified TFs having significant
numbers of DEGs as their targets (Materials and methods).
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Figure 1 Transcriptome analysis of pBSMC perturbed by PDGF-BB. (A) Venn diagram depicts the proportion of DEGs in 4 h and 24 h
microarray data sets. (B) Heatmap displaying differential expression patterns of 1,695 DEGs at 4 h and 24 h compared to 0 h. The DEGs were
categorized into two groups: ‘Up-regulated’ (Cluster 1-4) and ‘Down-regulated’ (Cluster 5-7). The color shows increased (red) and decreased
(green) expression. (C) Gene Ontology Biological Processes (GOBPs) enriched by DEGs. The bar graphs represent -log10(p), where p is the
enrichment p-value from DAVID software.
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Significantly up-regulated DEGs were mainly downstream
targets of EGR1, JUN, MYB, RUNX1, and MYC (Figure 2A)
while the significantly down-regulated DEGs were largely
regulated by DDIT3, NFAT5, and SOX5 (data not shown).
The up-regulated DEGs were enriched in eight biological
processes: angiogenesis, growth factor signaling, ribosomal
biogenesis, cell migration, inflammatory response, cell
death and survival, mitotic cell cycle, and DNA repair
(Figure 2B). In addition, the enrichment analysis showed
that MYC targets were significantly enriched in all 8
processes and JUN targets were enriched in 6 out of
the 8 processes, indicating that MYC and JUN are
the two most prominent TFs downstream of PDGF in
pBSMCs. Consistent with these results, a time-dependent
assessment of these TFs confirmed that expression and/or
phosphorylation of EGR1, JUN, MYB, RUNX1, and MYC
was increased (Figure 2C) while that of DDIT3, NFAT5,
and SOX5 was decreased by PDGF treatment at some
but not all time points within 24 h (Figure S1D (see
Additional file 1)).

Protein expression regulated by PDGF
To identify proteins regulated by PDGF, triplex SILAC
analysis was performed in three replicates. A total of 2489
proteins were identified with FDR < 0.01. Representative
mass spectra of SILAC peptide triplets are shown in
Figure S4 (see Additional file 5). After quality assessment,
241 differentially expressed proteins (DEPs) with overall
p < 0.05 (Table S2 (see Additional file 6)) were identified
using integrated statistics ([16], Materials and methods).
Hierarchical clustering showed that the DEPs were
broadly grouped into up- and down-regulated clusters,
with the majority of DEPs only significantly differentially
expressed at 24 h (Figure 3A). Enrichment analysis of
Gene Ontology processes indicated that cell proliferation,
response to wounding, angiogenesis, translation and ster-
oid metabolic pathways were significantly up-regulated.
Conversely, DNA compaction and chromatin organization
pathways were down-regulated (Figure 3B). Biological
processes common to the transcriptome and proteomic
profiles are indicated by asterisks.

Integration of microarray and SILAC datasets
Next we performed an integrated analysis to explore the
concordance between mRNA and protein levels in PDGF-
treated pBSMCs. The correlation coefficient between
mRNA and protein levels in pBSMCs treated without
or with PDGF ranged from 0.41 to 0.45 (Figure S5



Figure 2 A network model describing major cellular pathways regulated by five key TFs in response to PDGF-BB stimulation. (A) The
network was reconstructed using 255 target genes that belong to the overrepresented pathways. The node and node border colors represent
log2 scale fold changes of mRNA expression at 4h and 24 h, respectively: genes decreasing at 4 h or 24 h compared to 0 hour are represented
in green while those which increased at 4 h or 24 h are represented in red. The blue and cyan lines in the network indicate protein-protein
interaction and TF-target interaction, respectively. The network nodes were arranged into several modules according to KEGG pathway information
and Gene Ontology biological processes of the corresponding genes. (B) Two-dimensional map showing fold enrichment scores (FES) representing
the contribution of TFs to the individual modules. The color gradient of each rectangle indicates the magnitude of the FES in the corresponding
module. (C) Immunoblot analysis of time-dependent changes in PDGFR phosphorylation and putative master regulators in response to PDGF-BB
treatment for the indicated times. The blot is representative of at least 3 independent trials.
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(see Additional file 7)). This is consistent with a previ-
ous global-scale correlation study showing that the
coefficient of determination between mRNA and pro-
tein copy numbers in mouse NIH3T3 fibroblasts is
0.41 [23]. Among the 1695 DEGs and 241 DEPs, 40 tar-
gets were significantly changed at both mRNA and protein
levels (Figure 4A, Table S3 (see Additional file 8))
and the changes at both levels were significantly corre-
lated (p ≤ 0.01) (Figure 4B). 22 mRNA and protein species
were consistently up- or down-regulated at 4 and 24 h
(Figure 4C). Despite only 40 shared species, there was
remarkable similarity in biological processes represented
by the DEGs and DEPs (Figure 4D). This indicates that
the shared alterations induced by PDGF are clearer at the
cellular process or pathway levels than at the molecular
level. Computational integration of all known transcrip-
tion factors and their predicted potential to regulate the
40 shared RNA and protein species, identified MYC
as the central transcriptional regulator of this signature
(Figure 4E). The dominant biological processes represented
by this signature were angiogenesis, chemotaxis, regulation
of cell migration and cell proliferation (Figure 4F).
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Figure 3 Proteome analysis of pBSMC in response to PDGF-BB treatment. (A) Heatmap displaying differential expression patterns of 241
DEPs at 4 h and 24 h compared to 0 h. The color shows increased (red) and decreased (green) expression. (B) Major cellular processes enriched
by DEPs. Terms with an asterisk represent cellular processes common to both DEPs and DEGs. Functional enrichment analysis of up- and
down-regulated proteins was performed using DAVID software. The bar graphs represent -log10(p), where p is the enrichment p-value from
DAVID software.
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Target validation in vitro and in vivo
The up- or down-regulation of a cohort of the molecules
most significantly associated with the shared processes
was validated by real-time RT-PCR analysis. As shown
in Figure 5A, expression of HMOX1, PDGFRB, CYR61,
CXCL12, GDF15 and DIAPH3 displayed time-dependent
changes in expression following PDGF treatment. Find-
ings presented in Figure 4 implicate MYC as a central
regulator of the pBSMC response to PDGF. Notably, JUN/
AP-1 also emerged from this global analysis (Figure 2), a
finding that appears to confirm a series of published stud-
ies that identified JUN/AP-1 as a key regulator of mechan-
ical signals in pBSMC [5,24-28]. To probe the functional
significance of these observations, we determined the
impact of pharmacologic inhibition of MYC and JUN
activation on expression of a subset of the validated
gene targets. After confirming that MYC and JUN were
effectively inhibited with the MYC inhibitor 10058-F4
(hereafter MYCi, [29]) and the JNK inhibitor SP600125
(hereafter JNKi) respectively, in pBSMCs (Figure S6 (see
Additional file 9)), expression of 3 PDGF targets (HMOX1,
CXCL12, and CYR61) was assessed by real-time RT-PCR.
MYCi suppressed PDGF-regulated expression of all 3
targets, (Figure 5B) whereas JNKi only suppressed PDGF-
regulated expression of HMOX1 but not of CXCL12 or
CYR61 (Figure 5C). As independent validation of the net-
work, additional targets were verified at the protein level
(Figure 5D) and shown to be differentially sensitive to
pharmacologic inhibition of JUN or MYC. PDGF-induced
down-regulation of PDGFRβ was attenuated following
inhibition of JNK, but insensitive to MYC inhibition. In
contrast, inhibition of either JNK or MYC attenuated
PDGF-stimulated up-regulation of CYR61 (Figure 5E).
To extend these findings, we determined whether signal-
ing pathways and targets were altered in a mouse model of
bladder injury. A previous study from our group demon-
strated acute activation of the PDGFR axis and down-
stream effectors in response to bladder wall distension in
rodents [5,28]. As shown in Figure 5F, acute obstruction
injury increased the level and/or phosphorylation of 3 tran-
scription factors – JUN, MYC, and EGR1 – identified as
key regulatory nodes in PDGF-stimulated transcription
(Figure 2). In addition, expression of Pdgfrb, Cyr61 and
Gdf15 transcripts was altered in the bladder injury model
in a manner consistent with that observed following PDGF
treatment of pBSMC (Figure 5G), further validating the
network predictions.

Functional interrogation of key regulatory nodes
To determine the biological significance of MYC- and
JUN-mediated transcriptional events, we measured the
impact of pharmacologic inhibition of MYC and JUN
activation on pBSMC proliferation and migration. Inhib-
ition of MYC or JUN attenuated PDGF-induced pBSMC
cell proliferation (Figures 6A and 6B) and migration
(Figures 6C and 6D), respectively.
A common process underlying the dominant biological

processes we identified (cell proliferation, chemotaxis,
migration and angiogenesis) is actin cytoskeletal dynam-
ics. Among the PDGF-responsive species identified at
both the RNA and protein levels, the diaphanous-related
formin protein DIAPH3 has been identified as a mediator
of actin remodeling [30-32]. Our hypothetical model pre-
dicted a potential involvement of a MYC-JUN-DIAPH3
pathway in regulation of cytoskeletal remodeling in re-
sponse to PDGF (Figure 7A). We investigated the effect of
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Figure 4 Integration and comparison of DEGs and DEPs. (A) Venn diagram depicts overlap between DEGs (n = 1695) and DEPs (n = 241),
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and protein species were classified functionally into angiogenesis chemotaxis, cell migration, or proliferation.
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PDGF on DIAPH3 levels in pBSMC and demonstrated
DIAPH3 down-regulation in PDGF-stimulated cells
treated with MYC or JUN inhibitors (Figure 7B). RNAi-
mediated silencing of DIAPH3 did not alter pBSMC
proliferation or migration (data not shown), however
it attenuated the PDGF-induced increase in lamellipodium
formation in pBSMC (Figures 7C-E). Together, these
findings suggest DIAPH3 may be a novel MYC and JUN
target in pBSMC that regulates PDGF-induced alterations
in cell morphology.

Discussion
In this study we present a global analysis of gene and
protein responses to PDGF in normal human visceral
smooth muscle cells. To our knowledge this is the first
integrated, quantitative proteomics and transcriptomics
analysis in smooth muscle of any type. The proteomics
dataset we have reported here represents the largest pro-
tein database of human SMCs ever assembled. Network
analysis validated the importance of MYC and JUN/AP-1
in promoting SMC proliferation and migration, and also
suggested the formin DIAPH3 may be a novel PDGF-
sensitive regulator of SMC behavior. Our integrated ana-
lysis extends current understanding of PDGF-stimulated
networks by uncovering a comprehensive list of PDGF-
dependent biological processes and pathways and linking
key transcription factors to their regulation. Moreover,
integration of transcriptomics and proteomics revealed
shared pathways, processes and master regulators. It also
enhanced the reliability of both target identification and



Figure 5 Target validation in vitro and in vivo. (A) Validation of mRNA levels of a subset of PDGF-regulated genes (HMOX1, PDGFRB, CYR61,
CXCL12, GDF15 and DIAPH3) in pBSMC. (B, C) PDGF-induced changes in expression of the CXCL12, CYR61 and HMOX1 genes were evaluated in
the context of MYC (B) and JNK/JUN (C) inhibition, using real time RT-PCR analysis. (D) Protein level changes in PDGFRβ, CYR61 and GDF15 in
response to PDGF treatment for different times were verified by immunoblot analysis. Data are representative of three independent trials. (E)
Sensitivity of PDGF-induced changes in PDGFRβ and CYR61 and to inhibition of JNK and MYC was assessed by immunoblot analysis. The long
exposure is included to appreciate differences in sensitivity of PDGFRβ to JNK and MYC inhibition. (F) Immunoblot analysis of whole bladder
tissue (WB, n = 2, pooled) or bladder smooth muscle (BSM, n = 5, pooled) from mice subjected to sham surgery (Sh) or outlet obstruction (Obs)
were blotted with the indicated antibodies; serum-depleted pBSMC treated without (-) or with 1 nM PDGF-BB for 2 h (+) were included as negative
and positive controls respectively. (G) Bladder smooth muscle tissues from sham-operated (Sham, n = 3) or obstructed mice (Obs, n = 3) were
subjected to real-time RT-PCR analysis for the indicated transcripts.
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the associated network in comparison to microarray or
proteomics analyses alone.
Pathologic remodeling of hollow organs such as the

bladder, airways and vasculature involves alterations in
SMC proliferation, extracellular matrix synthesis, cell
morphology and cell motility. In agreement with these
changes, integration analysis of differentially expressed
genes and proteins in visceral SMC exposed to PDGF
identified (i) regulation of cell proliferation; (ii) negative
regulation of cell death; and (iii) regulation of cell motion
as 3 of the most over-represented biological processes. A
major finding of the current study was the emergence of
MYC and JUN as dominant regulators of the PDGF-
induced transcriptional program in visceral smooth
muscle, and their identification as novel regulators of
DIAPH3. Previous reports from us and others have impli-
cated JUN/AP-1 in a variety of mechanosensitive cell
behaviors in smooth muscle, including gene regulation,
proliferation and migration [5,24-26,28,33,34]. Moreover,
findings from our studies revealed significant overlap be-
tween mechanical and PDGF-stimulated signals in their
ability to regulate signal transduction, gene expression and
cell cycle transit [5,26,35]. In genome-wide expression
profiling, we found that >70% of genes selectively induced
by cyclic stretch-relaxation of SMC in vitro were similarly
up-regulated by PDGF treatment [26]. In that study,



Figure 6 Effect of inhibition of MYC and JNK/JUN function on PDGF-induced changes in cell growth and migration. (A, B) Effects of MYC
(A) and JUN (B) inhibition on the PDGF-stimulated increase in cell biomass, assessed 24 h or 48 h following treatment with growth factor (C, D)
Inhibition of PDGF-directed cell migration in the presence of the MYC (C) and JUN (D) inhibitors. **, p < 0.05.

C

B

D

E

Veh JNKi MYCi

DIAPH3

GAPDH

PDGF (h): 0 4 24 0 4 24 0 4 24

PDGF:
siCtrl siDIAPH3

- + +-

DIAPH3

GAPDH

A PDGF

Cytoskeleton 
regulation

Mitotic 
cell cycle

Cell 
migration

MAPK signaling

CDC42, NCKAP1, KRAS
MAP2K2, MAP2K1, MAPK1

DIAPH3 MYC & JUN

UBE2C, CDK2
CYR61, COL15A1

SERPINE1

Figure 7 DIAPH3 is a novel target of PDGF that regulates lamellipodium formation. (A) Predictive model for MYC-JUN-DIAPH3 pathway in
response to PDGF in pBSMC. (B) Immunoblot analysis depicting kinetics of DIAPH3 expression in pBSMC pre-treated with vehicle, JNK inhibitor
(JNKi) or MYC inhibitor (MYCi) and subsequently treated with PDGF for 4 h or 24 h (C, D) Representative immunofluorescence images of pBSMC
with (C, arrow) or without (D) lamellipodium formation. (E) Silencing of DIAPH3 attenuates the PDGF-mediated increase in lamellipodia formation
in pBSMC (lower panel). Upper panel: immunoblot confirming efficiency of DIAPH3 knockdown in pBSMC. **, p < 0.05.
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informatics analysis revealed AP-1 as the transcription fac-
tor most significantly associated with stretch-induced gene
expression. We proceeded to demonstrate that mechan-
ical injury of the bladder promoted rapid phosphorylation
of the PDGF receptor, independently of exogenous ligand,
to promote up-regulation of the AP-1 target thrombomo-
dulin [5]. Together, these observations suggest a mechan-
ism underlying convergence of mechanical and growth
factor signaling that involves PDGF receptor activation.
Among the overlapping genes and proteins identi-

fied in the current study as significantly enriched in re-
sponse to PDGF treatment, CYR61, HMOX1 and CXCL12
emerged as genes linked to biological processes relevant
to tissue remodeling, i.e. proliferation, migration and mo-
tility. Elevated CXCL12 and CYR61 have been implicated
in fibroproliferative responses of vascular SMC and fibro-
cytes in arterial and airway remodeling [36-38], whereas
CYR61 is elevated in hypertrophic smooth muscle of the
bladder wall secondary to outlet obstruction and following
cyclic stretch-relaxation of bladder SMC in vitro [27,39].
Conversely, up-regulation of HMOX1 has been reported
to attenuate both mitogen-induced proliferation and
migration of SMC in vitro [40,41], as well as smooth
muscle remodeling in response to hypoxic injury [42].
In the current study, CYR61, HMOX1 and CXCL12
were also linked to the process of angiogenesis. A similar
angiogenesis-focused gene signature was identified by
Yang and colleagues in SMC exposed to mechanical
stretch [27]. In that study AP-1, EGR-1 and MYB were
identified as putative transcriptional regulators of the
mechanosensitive transcriptional program, in agreement
with our current and prior findings (Figure 2, [26]). Al-
though MYC itself was not identified, the MYC family
members upstream regulatory factor 1 (USF1) and USF2
were implicated as putative transcriptional regulators in
both studies that evaluated stretch-induced gene expres-
sion in bladder SMC [27]. USF1 and USF2 bind to E-box
motifs in target gene promoters and antagonize MYC
activity [43,44]. Notably, USF1 and USF2 have been shown
to directly up-regulate transcription of HMOX-1 in vitro
and in vivo [45,46]. Our current findings showing that
PDGF-induced downregulation of HMOX-1 in visceral
SMC was reversed by pharmacologic inhibition of MYC is
consistent with negative regulation of HMOX-1 expression
by MYC and with its antagonistic interaction with USF1/2
at target gene regulatory regions. Exposure of hollow or-
gans to mechanical stress in vivo induces transient hypoxia,
as a result of vascular compression, which in turn enhances
blood flow [47]. The identification of angiogenesis-asso-
ciated gene signatures in SMC exposed to convergent
mechanical or growth factor stimuli may therefore be a
component of the subsequent hypertrophic and hyper-
plastic response that enables tissues to adapt to and coun-
teract increased intraluminal pressure within the organ.
In a recent report, Yohannes and coworkers employed
2D-differential in-gel electrophoresis (2D-DIGE) to profile
proteins that were differentially expressed in the bladder
smooth muscle of rats subjected to streptozotocin-
induced diabetes for different periods of time [48]. Diabetes
promotes a spectrum of pathologic changes in the urinary
tract, including profound alterations in smooth muscle
mass and contractility [49]. Although not identified by
2D-DIGE as differentially expressed in experimental
diabetes, MYC, along with EGR1 and the AP-1 subunit
c-Fos, emerged as interconnected nodes following interro-
gation of differentially expressed proteins using MetaCore
software [48]. Similarly, in our analysis, the transcription
factors JUN, MYC and EGR1 were not identified as PDGF-
induced proteins by quantitative proteomics analysis
of primary SMC cultures, but were revealed through
higher order transformation of expression data as master
regulators of PDGF-stimulated transcriptional and protein
changes in visceral SMC.
In the present study, analysis of the gene targets for

each of the master regulators identified in Figure 2
revealed a high degree of potential cross-regulation, in
that the promoter for each transcription factor contained
putative binding sites for all other factors analyzed (data
not shown). Consistent with the possibility for functional
interaction, a recent study revealed time-dependent up-
regulation of transcription factor-specific gene modules
in an in vitro model of acute MYC activation [50]. In
response to MYC induction, genes harboring AP-1 and
CREB motifs were induced first, followed by those
targeted by EGR1, and concluding with putative MYC
targets. Taken together, these findings argue for a co-
ordinated, temporal relationship between the master
regulatory nodes we identified here. Given the potential
for positive feedback regulation, they may also provide an
explanation for the sustained fibroproliferation evident in
hollow organ remodeling.
We further validated the network we have described

by functional analysis of DIAPH3, which emerged as one
of 22 targets that were induced at both mRNA and pro-
tein levels in response to PDGF. DIAPH3 is a member
of the diaphanous-related formin family that regulates
the actin and microtubule cytoskeletons downstream of
the small Rho GTPases, Rho, Rac and Cdc42, in a variety
of cell types (reviewed in [51]). Although primarily
studied in epithelial cells and fibroblasts, the murine
ortholog of DIAPH3, mDia2, has been implicated as a
regulator of smooth muscle-specific gene expression
in vascular SMC [52]. In that study, the primary activity of
mDia2 and its homolog mDia1 was to enhance actin
polymerization and thereby promote nuclear localization
of the transcription factors MRTF-A and MRTF-B to
induce expression of genes encoding smooth muscle
contractile proteins. In the current study, silencing of
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DIAPH3 expression in visceral SMC did not affect
migration or proliferation, but rather attenuated PDGF-
stimulated formation of lamellipodia. These observations
are consistent with a recent report describing a role for
mDia2/DIAPH3 in nucleation of actin filaments in both
filopodia and lamellipodia [32]. Notably, our prior quanti-
tative proteomics study identified a cohort of actin cyto-
skeleton regulators that were up-regulated in caveolar
lipid raft microdomains of PDGF-treated SMC [14]. Given
the localization of activated PDGFR, actin regulators and
DIAPH3 to lipid rafts ([14,53,54] and unpublished results,
M.R.F), they support the functional importance of such
microdomains as sites of integration for signals that regu-
late cell morphology and motility [55-57].
The mechanisms underlying regulation of DIAPH3

expression are largely unexplored. Our findings showed
decreased expression of DIAPH3 in PDGF-treated SMC
following pharmacologic inhibition of either JUN or MYC
activity. Interestingly, the transcriptional co-activator
Yes-associated protein (YAP) has been shown to promote
DIAPH3 mRNA expression in fibroblasts [58] and to
interact functionally with both JUN and MYC [59,60].
Moreover, YAP is known to be upregulated in vascular
SMC exposed to PDGF, and was found to be necessary for
PDGF-mediated SMC proliferation [61]. Taken together,
these findings are consistent with a direct role for MYC
and/or JUN/AP-1 in transcription of the DIAPH3 gene.

Conclusions
In summary, our results implicate MYC and JUN/AP-1
as key regulators of normal visceral SMC proliferation
and migration, and provide the first evidence of a
PDGF-sensitive MYC-regulated network in any cell type.
These findings imply that MYC is a novel target for
pharmacological intervention, not only in fibroprolifera-
tive expansion of smooth muscle in hollow organs, but
also in cancers in which PDGFR-dependent signaling
and/or MYC activation are drivers of tumor progression.
Although transcription factors are challenging to target
pharmacologically using small molecules, recent studies
have reported encouraging results with inhibition of MYC
in preclinical models of fibrosis and cancer [62-64]. Future
studies evaluating these inhibitors in models of pathologic
remodeling and cancer are clearly warranted.

Materials and methods
Materials
Recombinant human PDGF-BB was from R&D Systems
(Minneapolis, MN). Antibodies to PDGFRα, PDGFRβ,
phospho-PDGFRα/β Tyr849/Tyr857, c-Jun, phospho-c-
Jun Ser63, c-Myc, EGR1, RUNX1, DDIT3, CYR61 and
GDF15 were from Cell Signaling Technology (Danvers,
MA); antibodies to Myb and NFAT5 were from Epitomics
(Burlingame, CA); antibodies to SOX5 and GAPDH were
from Santa Cruz Biotechnology (Santa Cruz, CA); anti-
body to β-actin was from Sigma Aldrich (Sigma Chemical
Company, St. Louis, MO); antibody to DIAPH3 was a
generous gift from Henry Higgs, Dartmouth Medical
School. The c-Myc TF ELISA kit was from Active Motif
(Carlsbad, CA). SP600125 and 10048-F4 were from EMD
Biosciences (Billerica, MA). iScript cDNA synthesis re-
agents were from BioRad Laboratories (Hercules, CA).
Universal PCR master mix for qRT-PCR and gene-specific
assays were from Applied Biosystems (now Life Tech-
nologies, Grand Island, NY). Primers for human tran-
scripts were as follows: Hs00171022_m1 for CXCL12;
Hs00998500_g1 for CYR61; Hs01107330_m1 for DIAPH3;
Hs02758991_g1 for GAPDH; Hs00171132_m1 for GDF15;
Hs01110250_m1 for HMOX-1; Hs00998018_m1 for
PDGFRA; and Hs01019589_m1 for PDGFRB. Primers
for mouse transcripts were Mm00487499_g1 for Cyr61;
Mm99999915_g1 for GAPDH; Mm00442228_m1 for
Gdf15; Mm00435546_m1 for Pdgfrb.

Cell culture and triplex SILAC labeling
Primary human bladder smooth muscle cells (pBSMCs)
were cultured in smooth muscle cell medium (SMCM,
Sciencell Research Laboratories, Carlsbad, CA) at 37°C
in a humidified incubator with 5% CO2. For triplex
SILAC labeling, pBSMCs were grown in arginine- and
lysine-depleted SMCM (Sciencell Research Laboratories)
supplemented with 2% (v/v) dialyzed fetal bovine serum
(Invitrogen, Grand Island, NY) and L-arginine (Arg0)
and L-lysine (Lys0), 13C6-L-arginine (Arg6) and 4,4,5,5-
D4-L-lysine (Lys4), or 13C6

15N4-L-arginine (Arg10) and
13C6

15N2-L-lysine (Lys8) (Cambridge Isotope Laborator-
ies, Andover, MA). After at least 6 population doublings,
pBSMCs cultured in “light”, “medium”, and “heavy”
SILAC media were serum starved overnight and treated
with 1 nM PDGF-BB for 0, 4, and 24 h, respectively.

RNA extraction and microarray analysis
After triplex SILAC labeling and PDGF treatment, RNAs
were isolated from pBSMCs and hybridized to Human
Gene 1.0 ST arrays (Affymetrix, Santa Clara, CA), which
comprise 28,869 well-annotated genes. A quality assess-
ment of the microarray data was performed essentially
as described [65]. Several diagnostic plots including
histogram and scatter plots of probe intensities in the
arrays were used to check systemic bias of microarray
experiments, such as high level of background intensity,
signal saturation, and inter- and intra-group variation of
the arrays. After the adjustment of background signal
using the Plier method, probe intensities were normal-
ized using the quantile normalization procedure with
Affymetrix Expression Console software [66]. The raw
data were deposited in the Gene Expression Omnibus
(GSE52488).
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Identification of differentially expressed genes (DEGs)
With the normalized intensities, DEGs in samples at 4 h
or 24 h after PDGF treatment in comparison with con-
trol samples were identified using an integrated statis-
tical method previously described [50]. Briefly, two
independent tests—the T-test and the log2 median ratio
test—were performed. For each test, an empirical distri-
bution of the null hypothesis that the means of the gene
expression levels are not different was estimated by
random permutations of the samples. For each gene,
adjusted p-value was computed by performing a two-
tailed test using the empirical distributions. The two
sets of adjusted p-values were combined to compute
the overall adjusted p-values using Stouffer’s method
[67]. In addition, to determine the cutoff value of fold
changes, we computed fold changes of randomly per-
muted samples and fitted a Gaussian distribution to the
random fold changes. The 2.5 percentile (i.e., the level of
significance α = 0.05 in the two-tailed test) was calculated
to be less than 1.4. Thus, the DEGs were selected based
on the criteria that the overall p is less than 0.05 and that
the absolute fold-change is larger than 1.4. Finally, to iden-
tify GOBPs or major pathways represented by the DEGs,
the enrichment analysis was performed using the DAVID
software [68]. Specifically enriched cellular processes
between up- and down-regulation were selected with
p < 0.05. Bar graphs were used to represent the level
of significance of each cellular process with enrichment
score (-log10P).

Identification of key transcription factors (TFs) regulating
DEGs
To identify key TFs, 278,346 TF-target interaction
data points for 350 TFs were collected from public
databases including TRED [17], EEDB [18], mSigDB
[19], Amadeus [20], bZIPDB [21], and OregAnno [22].
The targets of each TF (TFi) were counted among the up-
or down-regulated DEGs (e.g., n DEG targets of TFi). The
same number of genes as up- or down-regulated DEGs
were then randomly sampled from the whole genome
and the target of TFi in the randomly sampled genes
was counted. This procedure was repeated 100,000
times. Next, an empirical distribution (null hypothesis
distribution) of the 100,000 counts of random targets
of TFi was generated. For the number of targets of
TFi, the probability (P) that the actual count of tar-
gets of TFi in the DEGs can be observed by chance
was computed using a one-tailed test with the empirical
distribution. The P values of TFi for up- and down-
regulated DEGs were then combined using Stouffer’s
method [67]. The same procedure was repeated for
all TFs. Finally, eight TFs whose targets were signi-
ficantly (combined p < 0.01) enriched by the DEGs
were selected.
Hierarchical clustering of DEGs and differentially
expressed proteins (DEPs)
From the comparisons of 4 h versus 0 h and 24 h versus
0 h, we identified a total of 1,695 DEGs. We performed
hierarchical clustering using Euclidean distance as the
dissimilarity measure and the average linkage method: 4
clusters (Clusters 1-4) for DEGs that were up-regulated
and 3 clusters (Clusters 5-7) for DEGs that were down-
regulated (see heat maps in Figure 1B). The same clus-
tering approach was applied in categorization of up- and
down-regulated DEPs.

Network model reconstruction
To reconstruct a sub-network describing regulatory tar-
get cellular processes by 5 key TFs in PDGF-perturbed
pBSMCs, we first selected 255 target genes (from the 1,695
DEGs) of the 5 TFs, which are involved in 8 enriched cellu-
lar processes. We then built a network model describing
the key TF-target interactions and protein-protein interac-
tions among the targets. The TF-target interactions and
protein-protein interactions of the 255 target genes and 5
key TFs were obtained from six databases: TRED [17],
EEDB [18], mSigDB [19], Amadeus [20], bZIPDB [21], and
OregAnno [22], for TF-target interactions, and HPRD [69],
BioGRID [70], STRING [71] and KEGG [72] for protein-
protein interactions. We downloaded all protein-protein in-
teractions (PPIs) in HPRD, BioGRID, STRING, and KEGG
and combined information from the four databases into
one list. During this process, we converted protein IDs used
in each database into Entrez IDs, converted directed PPIs
from the KEGG pathway database into undirected PPIs, to
be compatible with undirected PPIs obtained from the
three databases, and generated a list of non-redundant in-
teractions by removing redundant PPIs (i.e. multiple inter-
actions) in the four databases. Also, by converting directed
PPIs into undirected ones, the PPIs obtained from the data-
bases should not be conflicting with each other. All these
procedures were implemented in MATLAB. We then used
Cytoscape version 2.8.2 to display PPIs. The nodes in the
network with the same GOBPs [73] and KEGG pathway
annotations [72] were arranged and grouped into the same
network module. To quantitatively assess the regulatory
potential of each key TF to 8 functional modules, we
computed the fold enrichment score (FES) defined by (the
number of target genes within a module)/(the total number
of genes within the module)/(the total number of target
genes in the network)/(the total number of genes in the
network). This is a modified version of fold enrichment
score from DAVID software [68].

Protein preparation, separation, and tryptic digestion for
mass spectrometric analysis
Whole cell lysates from differentially SILAC-labeled and
PDGF-treated pBSMCs were extracted with RIPA lysis
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buffer. Protein concentrations were determined using
Micro BCA assay (Thermo Fisher Scientific, Rockford,
IL) according to the manufacturer’s protocol. Proteins
extracted from SILAC-labeled pBSMCs were mixed in
equal amounts. 40 μg of protein mixture was resolved
on a 10% SDS-PAGE gel and visualized with Coomassie
Blue R-250 staining solution. Each gel lane was excised
into 10 slices of similar size and cut into approximately
1 mm3 particles prior to in-gel reduction, alkylation, and
tryptic digestion as previously described [74]. Tryptic
peptides were extracted, dried down in a SpeedVac
(Thermo Savant, Holbrook, NY), and stored at -80°C until
mass spectrometric analysis.
Mass spectrometric analysis
Mass spectrometric analysis was conducted essentially as
described [75]. Briefly, tryptic peptides were redissolved
with 10 μL 1.5% acetic acid and 7.5% acetonitrile solution.
5 μL samples were analyzed by online C18 nanoflow
reverse-phase HPLC (Eksigent nanoLC · 2D™, Dublin, CA)
connected to an LTQ Orbitrap XL mass spectrometer
(Thermo Fisher Scientific, Waltham, MA) essentially as
described [76,77]. Briefly, samples were loaded onto
an in-house packed C18 column (Magic C18, 5 μm, 200Å)
(Michrom Bioresources, Auburn, CA) with 15 cm length
and 100 μm inner diameter, and separated at about
200 nl/min with 60 min linear gradients from 5 to
35% acetonitrile in 0.2% formic acid. Survey spectra
were acquired in the Orbitrap analyzer with the reso-
lution set to a value of 30,000. Lock mass option was
enabled in all measurements and decamethylcyclopen-
tasiloxane background ions (at m/z 371.10123) were
used for real-time internal calibration. Up to five of
the most intense ions per cycle were fragmented and
analyzed in the linear ion trap.
Protein identification and quantification
For protein identification and quantification, raw mass
spectrometric data were analyzed with MaxQuant
software (version 1.0.13.13) [78]. The parameters were
set as follows. In the Quant module, SILAC triplets
was selected; oxidation (M) and acetyl (Protein N-
term) were set as variable modification; carbamido-
methyl (C) was set as fixed modification; concatenated IPI
human database (version 3.52) (74,190 forward sequences
and 74,190 reverse sequences) was used for database
searching; all other parameters were default. Tandem
mass spectra were searched by Mascot (version 2.2.0.4)
(Matrix Science, Boston, MA). In the Identify module, all
parameters were default, except that maximal peptide
posterior error probability was set as 0.05. False discovery
rates for protein and peptide identifications were both set
at 0.01.
Identification of DEPs
Quality assessment of the SILAC datasets was per-
formed as described [79]. The statistical analysis of the
SILAC data and the calculation of fold-change cutoff
were the same as for the microarray data. The DEPs
were identified using the following criteria: 1) overall
P values are less than 0.05; 2) proteins quantified in
at least two replicates; and 3) absolute fold changes larger
than 1.3.

Assessment of correlation between PDGF perturbed
transcriptome and proteome
Within each time point, correlation between normalized
probe and SILAC intensity of genes and corresponding
gene products product were estimated for the genes that
had protein intensity data by Spearman’s rank correlation
analysis. Relationships between fold change of DEGs and
SILAC ratio of corresponding DEPs at 4 h and 24 h were
estimated by the same method.

Target validation by real-time RT-PCR
pBSMCs were seeded at a density of 100,000 cells per
well in a 6-well plate, cultured for 24 h, serum starved
for an additional 24 h, and then treated with 25 ng/ml
(1 nM) PDGF-BB (R&D Systems, Minneapolis, MN) for
the indicated times. After the treatment, cells were har-
vested in 500 μl Trizol reagent (Invitrogen, Carlsbad, CA).
Total RNA was reverse transcribed using the iScript cDNA
synthesis reagent (Bio-Rad, Hercules, CA) and cDNAs
were amplified using gene-specific primers (Life Technolo-
gies, Grand Island, NY) according to the manufacturer’s
instructions. In selected experiments cDNAs from a mouse
model of bladder injury [28] were analyzed similarly.
Briefly, injury was created in wild type female CD-1 mice,
in which the proximal urethra was ligated with 6-0 nylon
suture. Bladder distension injury was achieved by urine
production by the mouse over a 24 h period. At the end of
the experiment, tissues were harvested for analysis. Bladder
smooth muscle was separated from the urothelium, prior
to isolation of RNA and cDNA synthesis. All procedures
were approved by the Institutional Animal Care and
Use Committee. In each case relative abundance of
each gene was normalized to levels of the housekeeping
gene GAPDH. Quantification of gene expression was
carried out using the 2-ΔΔCt method.

Immunoblot analysis
Immunoblot analysis was performed essentially as
described [80]. Briefly, equal amounts of whole cell or
tissue lysates were resolved by SDS-PAGE and electro-
transferred to nitrocellulose membranes. Membranes were
blocked with 10% non-fat dried milk in phosphate buff-
ered saline containing 0.1% Tween-20 (PBS-T), rinsed
with PBS-T, and incubated with protein-specific primary
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antibodies (1:1000 dilution) overnight at 4°C. After
washing, membranes were incubated with species-specific
HRP-conjugated secondary antibodies, and proteins were
visualized following incubation with SuperSignal WestPico
chemiluminescence reagent (Thermo Fisher Scientific,
Rockford, IL) and exposure of membranes to X-ray film.

Cell biomass and viability assays
Cell biomass was assessed using the crystal violet assay
essentially as described [25]. Cells were fixed in 1%
glutaraldehyde for 15 min and then in 0.5% (w/v) crystal
violet solution for an additional 15 min. The plates were
washed and dried overnight. 250 μl of Sorenson’s solu-
tion was added to each well and incubated for 15 min.
Then the solution was transferred to a 96-well plate and
the absorbance at 570 nm was measured using a FLUOstar
Omega microplate reader (BMG LabTech, Durham, NC).
To determine viability, cells were incubated in medium
supplemented with 10% AlamarBlue reagent for 2 h at
37°C, 5% CO2. Relative fluorescence intensity of medium
was measured as described [81].

Transwell migration assays
After a 24 h serum depletion period, 1 × 106 pBSMCs
were nucleofected with 1 μg pmaxGFP (Amaxa, Inc.,
nucleofection program A033) and ~1.6 × 105 cells seeded
in each of four transwell FluoroBlok™ inserts (BD Biosci-
ences, San Jose, CA) containing 500 μL serum-free
SMCM with JNK inhibitor, MYC inhibitor or vehicle
(DMSO). The transwells were placed in the corresponding
wells of a companion plate containing 1 ml/well serum-
free SMCM. 25 ng/ml PDGF-BB was added 60 min later
to the SMCM in the bottom wells. The remaining cells
were seeded in two wells of a six-well plate for confirm-
ation of transfection efficiency. At the indicated times
after adding PDGF, transwell inserts were rinsed three
times with PBS for 5 min and then transferred to a glass-
bottomed 24-well black plate (Greiner, Monroe, NC).
GFP fluorescence signal was measured with a FLUOstar
Omega microplate reader (BMG LabTech) using the
bottom optic, with excitation and emission wavelengths of
485 nm and 520 nm, respectively.

DIAPH3 functional assay
1 × 106 pBSMCs were nucleofected as described above
with 1 μg pmaxGFP and 1 μM DIAPH3 siRNA or non-
targeting control. 10,000 cells from each nucleofection
mix were seeded onto sterile coverslips in 6-well plates
for 24 h. Following a 24 h serum depletion, cells were
treated without or with 1 nM PDGF-BB and harvested
after 24 h for assessment of lamellipodia formation.
Briefly, cells were fixed for 10 min in 4% paraformalde-
hyde with gentle shaking, followed by 2 washes for 5
min each with PBS. Cells were permeabilized with 0.1%
Triton X-100 in PBS for 5-10 min, washed and incu-
bated in blocking buffer (PBS containing 1% goat serum
and 0.2% BSA) for an hour, with gentle shaking. Cells
were washed 3 times with 0.2% BSA/PBS for 5 min each
and incubated in a 1:1000 solution of rhodamine-phalloidin
(Invitrogen, Grand Island, NY) in 0.2% BSA/PBS for 1 h
with gentle shaking. Finally, cells were washed 3 times
with PBS for 5 min each and the coverslips mounted
onto slides in Vectashield mounting medium containing
DAPI. The slides were allowed to dry overnight at 4°C
prior to imaging on a Zeiss Axioplan 2 microscope. Cells
were scored as lamellipodia-positive or negative by two
independent observers (A.R and S.M.), from three inde-
pendent trials, using at least 50 cells per condition, and
data combined for determination of statistical significance.

Statistical analysis
In most cases, comparisons between experimental groups
were performed using Student’s t-test. P values are indi-
cated in figure legends. Real-time RT-PCR data between
conditions were analyzed using the non-parametric
Mann-Whitney test. For comparison of lamellipodia for-
mation data were analyzed using a linear model with fixed
conditions (siDIAPH3/siControl, PDGF+/Vehicle, Rater,
Experimental Run) and interaction terms between PDGF
and condition, and Experimental Run and Rater were fit
to the ratio of lamellipodium-positive cells to total
number of cells. The diagnostic plots were examined.
No transformations were necessary to the outcome
variable, and no violations of model assumptions were
observed on the plots. The Tukey Honestly Significant
difference test was used to determine statistical signifi-
cance of the difference in cell ratios between each pair of
conditions. Statistical analyses were performed using R
statistical software packages base (http://www.R-project.
org/) and multcomp [82].

Supporting data
The datasets supporting the results of this article are avail-
able in the Gene Expression Omnibus (GSE52488, http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52488)
and in the ProteomeXchange Consortium (http://proteome
central.proteomexchange.org) via the PRIDE partner
repository [83], with the dataset identifier PXD000624
and doi:10.6019/PXD000624).

Additional files

Additional file 1: Figure S1. PDGFR expression in vitro and in vivo.
Primary human bladder smooth muscle cells (pBSMC) were analyzed for
relative expression of PDGFRA and PDGFRB isoforms by real-time RT-PCR
(A) or immunoblot analysis of 5 or 10 μg pBSMC lysate with the indicated
antibodies (B). (C) cDNAs from bladder muscle from the indicated strains,
genders and ages of mice were analyzed for relative expression of PDGFRα
and PDGFRβ isoforms by real-time RTPCR. (D) Cell lysates from pBSMC
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treated with PDGF for the indicated times (in h) were subjected to
immunoblot analysis using the specified antibodies. Data are representative
of at least 2 trials.

Additional file 2: Figure S2. Workflow for the quantitative
transcriptomics and proteomics analyses of pBSMCs in response to PDGF
treatment. pBSMCs were triplex SILAC labeled and treated with PDGF for
0, 4, and 24 h. RNAs were isolated from each population of pBSMCs and
analyzed on Human Gene 1.0 ST arrays. Proteins were extracted from each
population of pBSMCs and mixed at a 1:1:1 (w/w/w) ratio. The protein
mixture was analyzed by gel-enhanced liquid chromatography-tandem
mass spectrometry (GeLC-MS/MS). The transcriptomics and proteomics
datasets were analyzed to construct a putative network model for the
molecules regulated by PDGF in pBSMCs.

Additional file 3: Figure S3. Quality assessment of microarray data.
(A) The histogram shows density of the microarray data. As shown in the
figure there are no significant differences between the distribution of 12
samples in terms of shape and range after normalization with quantile
method, demonstrating no problems with high level of background
intensity and signal saturation. (B) The scatter plots illustrate
reproducibility based on inter- and intra-group variations of the arrays.
The diagonal shows the intensity distribution in each array. All pairwise
correlation coefficients between samples were > 0.98. The Pearson
correlation coefficient within groups was higher (>0.995) than those
between groups.

Additional file 4: Table S1. A total 1,695 DEGs perturbed by PDGF
stimulation.

Additional file 5: Figure S4. Representative mass spectra for triplex
SILAC quantification. (A) and (B) show a trio of SILAC peptides derived
from hippocalcin-like protein 1 (HPCAL1), which was significantly
upregulated by PDGF treatment in two-dimensional (2D) and three-
dimensional (3D) modes, respective. (C) and (D) show a trio of SILAC
peptides derived from β-type PDGF receptor (PDGFRB), which was
significantly downregulated by PDGF treatment in 2D and 3D modes,
respective. In the MaxQuant-generated 3D pictures, the SILAC peptide
trios were shown as 3D objects in m/z, elution time, and signal intensity
space.

Additional file 6: Table S2. 241 DEPs perturbed in response to PDGF
treatment.

Additional file 7: Figure S5. Overall correlation between the proteome
and transcriptome. Relationship between PDGF perturbed protein and
gene expression. Correlations between SILAC intensities and normalized
probe intensities at each time point were estimated by Spearman’s rank
correlation analysis to determine the correlation between all identified
genes by microarray analysis and proteins by SILAC-based proteomics
analysis.

Additional file 8: Table S3. 40 common mRNA and protein species in
response to PDGF treatment.

Additional file 9: Figure S6. Confirmation of JNK and MYC inhibitor
efficacy. (A) Nuclear extracts prepared from pBSMC treated with PDGF for
various time periods were assessed for DNA binding activity of MYC
using a transcription factor ELISA. Nuclear extract from Jurkat cells was
included as a positive control. (B) TF ELISA depicting a reduction in
DNA-binding function of MYC in nuclear extracts prepared from pBSMC
pre-treated for an hour with 32 μM MYC inhibitor followed by stimulation
with PDGF for 2 hours. (C) Immunoblot confirming efficacy of the JNK
inhibitor as evidenced by lack of c-Jun phosphorylation in pBSMC
pre-treated for an hour with the inhibitor, followed by exposure to PDGF
for 4 h or 24 h.
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