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Abstract

Brain-computer interface (BCI) is a communication system that translates the brain signal di-

rectly to a computer or external devices. It is a promising solution for the patients with neuro-

logical disorders as the system is able to restore the movement ability. Various neuroimaging

modalities have been utilized for brain signal acquisition, however, functional near-infrared

spectroscopy (fNIRS) provides many advantages over other modalities. Hence, it has gained

attention for implementing in BCI system. For developing BCI system, the appropriate ma-

chine learning algorithm and discriminating features from the hemodynamic response signal

are desired, as the previous studies have reported the performance enhancement of fNIRS-

based BCI in terms of classification accuracy by focusing on the classifier as well as signal

features. The aim of this thesis is to improve the classification accuracy in fNIRS-based BCI

by classifying and extracting feature automatically. The convolutional neural network (CNN)

was applied owing to the automatic feature extractor and classifier instead of manual feature

extraction in the conventional methods. In the experiment, four healthy subjects were measured

the hemodynamic response signal evoked by performing tasks including rest, right and left hand

motor executions. The conventional methods of fNIRS-based BCI using signal mean, slope,

peak, variance, skewness, and kurtosis as the features, and support vector machine (SVM)

and artificial neural network (ANN) as the classification methods were compared with CNN-

based method. The results show the improvement of classification accuracy of CNN-based

method over SVM-based and ANN-based method 6.92% and 3.75%, respectively. The main

contributions of this thesis are (1) the promising feature extraction and classification method

for fNIRS-based BCI using CNN and (2) the analysis of the feature extracted by conventional

methods and convolutional filter of the CNN.

Keywords: Functional near-infrared spectroscopy, brain-computer interface, convolutional

neural network, support vector machine, artificial neural network, feature extraction.
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I. INTRODUCTION

1. Motivation

A brain-computer interface (BCI) is the system allows communication pathway between sub-

ject and external devices by translating neural activity into the actions of devices using only

thought. BCIs can be achieved by measuring and interpreting brain signal from the sub-

ject. [1–8]. The process of BCI comprised of (1) brain signal acquisition using neuroimaging

modality, (2) signal processing and feature extraction, (3) interpretation of subject’s intention

by translating signal features, and (4) sending output command to control external devices. The

overall process of BCI system is shown in Fig. 1.1. The design of BCI is helpful for the patients

with severe motor disability to improve their quality of life. The achievements of BCI in the

clinical applications have been reported for the post-stroke patients [9,10], amyotrophic lateral

sclerosis (ALS) [11, 12], or spinal cord injury (SCI) [13, 14] to control external devices.

Figure 1.1. Schematic of BCI system (taken from [1])
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For brain signal acquisition, various invasive and non-invasive neuroimaging modali-

ties have been applied in the BCI system including, electroencephalography (EEG) [13, 15–

19], magnetoencephalography (MEG) [9, 20], electrocorticography (ECoG) [21, 22], func-

tional magnetic resonance imaging (fMRI) [23–25], and functional near-infrared spectroscopy

(fNIRS) [10, 11, 14, 15, 26–31]. In spite of the fact that the invasive measurements have benefit

on the signal quality, yet high risk due to the surgery is the critical issue. From this reason,

non-invasive techniques are widely used in BCI system.

Among the non-invasive modalities, EEG is the most famous in developing BCI applica-

tions as a consequence of its high temporal resolution, low cost, and portability, and numerous

studies have reported the success of EEG-based BCI. However, the major drawbacks of EEG

are low spatial resolution, high sensitivity to head movement and electrical noise interference.

On the other hand, fNIRS, as a promising tool for brain signal acquisition in BCI system, offers

moderate temporal and spatial resolution, portability and robustness to noise. Consequently, in

this thesis, fNIRS was utilized for brain signal acquisition.

In addition, an fNIRS-based BCI is a promising solution for the patients with severe motor

disabilities as emerging tool and its advantages over other neuroimaging modalities. Most of

the BCI studies rely on improving the classification accuracy, since it is crucial and vital for

the safety reason. The previous fNIRS-based BCI studies have proposed various approaches to

improve classification accuracy, however, many factors can affect to the accuracy when using

conventional methods. Therefore, in this thesis, the proposed method is provided in order to

improve performance of fNIRS-based BCI in terms of classification accuracy compared with

conventional methods.

2. Objective

The previous studies reported that the convolutional neural network (CNN) have successfully

achieved in many applications such as image recognition [32,33], artificial intelligence [34,35],

and speech recognition [36], because CNN has ability to learn and generalize the important

features from the training data. Thereby, it is reasonable that CNN may be able to enhance per-

formance of fNIRS-based BCI. In this thesis, CNN was utilized to classify and extract features

2



automatically from the hemodynamic response signal.

The aim of this thesis is to investigate two research questions: (1) can CNN outperform

conventional methods in fNIRS-based BCI in terms of classification accuracy? In order to pur-

sue this question, the classification accuracy of performing feature extraction and classification

by CNN was compared with the conventional methods in fNIRS-based BCI [37]. (2) how does

CNN outperform the conventional methods? The second question was investigated by the anal-

ysis of the feature visualization.

The chapters of this thesis are separated into five parts: introduction in Chapter I, back-

ground and related work in Chapter II, method in Chapter III, results and discussions in Chapter

IV, and conclusion in Chapter V. Chapter II introduces the basic principle of fNIRS, review of

fNIRS-based BCI including feature extraction and classification and evaluation method. Chap-

ter III describes the experimental procedure, signal preprocessing and classification, and fea-

ture visualization. Chapter IV discuss about the results obtained from the conventional and

proposed scheme as well as the future work. The conclusion is given in Chapter V.
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II. BACKGROUND AND RELATED WORK

1. Functional Near-Infrared Spectroscopy (fNIRS)

The fNIRS has been introduced as a novel non-invasive neuroimaging technique to measure

hemodynamic response throughout the past few decades. The change in hemoglobin during

brain activation in the cerebral cortex caused by neurovascular coupling leads the increase of

oxygenated hemoglobin (HbO) and decrease in deoxygenated hemoglobin (HbR) as shown in

Fig. 2.1(a). The increment of oxygen metabolism, cerebral blood flow (CBF), and cerebral

blood volume (CBV) due to neural firing cause the changes of hemoglobin in the cerebral

cortex (see Fig. 2.1(b)).

The fNIRS utilizes light sources to transmit light with near-infrared wavelength (600∼900

nm), and then receivers measures the light reflected from the cerebral cortex, in which the light

passes through scalp, tissue, and skull to reach the brain [38–40]. The purely absorption or

attenuation of the light in medium with known optical path length, homogeneous absorption

coefficient, and non-scattering of light, is described by Beer-Lambert law. However, in fact,

the biological tissues in the brain are highly scattering, unable to reflect true path length, and

(a) (b)

Figure 2.1. Physiological response of hemodynamic signal (taken from [38]). (a) concentration changes of HbO,
HbR, and total hemoglobin represented by red, blue, and green lines, respectively. Stimulus period is presented in
gray block. (b) Physiological reaction of oxygen metabolism, cerebral blood flow and volume, and concentration
changes of HbO and HbR during task stimulus.
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absorbed by different compounds. A modified Beer-Lambert law (MBLL) has been developed

by assuming that the tissues are homogeneous, constant scattering, and known optical path

length. As HbO and HbR have different absorption coefficients in near-infrared wavelength,

the relationship between light attenuation due to absorption and scattering and the changes of

HbO and HbR concentration can be expressed by MBLL [27, 38, 39].

2. fNIRS-based BCI

Currently, fNIRS has gained attention in BCI research as an emerging tool for brain signal

acquisition. The experiments in fNIRS-based BCI have been conducted in the various tasks

including mental arithmetic [27, 28], mental rotation [41], motor imagery [26, 27, 29, 31], and

motor execution [15,28,29,42]. The results demonstrated the feasibility of using fNIRS in BCI

applications owing to its classification accuracy.

To design the appropriate BCI system, numerous factors must be considered such as ac-

curacy, speed, and ease of use. As the primary aim of BCI is to predict subject intention,

misclassification can be a serious cause for unexpected accidents, thus improving accuracy is

the most essential part that needed to be concerned [43, 44]. Consequently, it is mandatory

to have appropriate classifier as well as features that accurately represent the variability in the

hemodynamic response signal to accomplish high classification accuracy [37].

The previous studies related to fNIRS-based BCI have emphasized the improvement in

classification accuracy by investigating on the various combination of signal features as well

as the machine learning algorithms [37]. In the feature extraction process, statistical properties

from time-domain signal [37] and filter coefficients from discrete wavelet transform [45, 46]

have been reported. In the classification part, various machine learning algorithms such as

linear discriminant analysis (LDA) [15, 26–28, 43, 47], support vector machine (SVM) [11, 29,

48], hidden markov model (HMM) [29], and artificial neural network (ANN) [49] have been

successfully implemented in fNIRS-based BCI.

Among the mentioned techniques for fNIRS-based BCI, ANN has been reported as the

classifier that achieved the highest performance [50]. Additionally, for feature extraction, most

of the studies relied on the statistical properties from time-domain signal. However, it has been

5



discussed that approaching the high classification accuracy varies based on various factors such

as selecting the best features combination [50], size of time window [27], and classification

method. Accordingly, appropriate techniques for feature extraction and classification play an

important role in fNIRS-based BCI. Herein, a method to overcome the limitation of conven-

tional method was investigated.

3. Feature Extraction and Classification

This section introduces the commonly used features in fNIRS-based BCI, machine learning al-

gorithms (i.e. SVM, ANN, and CNN), and how to evaluate the performance of the classification

model in BCI system.

3.1 Feature Extraction

Numerous numbers of fNIRS-based BCI studies have extracted various features from the hemo-

dynamic response signal, while the commonly used features are the statistical properties of the

signal in time-domain: signal mean, variance, kurtosis, skewness, peak, and slope, where such

features are computed as [37]

µ =
1
N

N

∑
i=1

xi, (2.1)

σ
2 =

∑
N
i=1(xi−µ)2

N
, (2.2)

K =
∑

N
i=1(xi−µ)4/N

σ4 , (2.3)

and

S =
∑

N
i=1(xi−µ)3/N

σ3 , (2.4)

where µ is signal mean, σ2 is variance, K kurtosis, S is skewness, N is the total number of

samples, xi represents the concentration changes of HbO and HbR data at ith in the time series

data. The signal peak is calculated by selecting the maximum value of the input data, and the

slope is computed by using linear regression. The descriptions of the commonly used features
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in fNIRS-based BCI: signal mean, slope, variance, peak, skewness, and kurtosis, are provided

in Table 2.1.

3.2 Support Vector Machine (SVM)

The SVM is a discriminative classifier which is able to optimize a separating hyperplane by

maximizing the margin [29, 48, 51, 52]. The support vectors are the points which are nearest to

the separating hyperplane. Figure 2.2 illustrates the separating hyperplane and support vectors.

The separating hyperplane is obtained by

min(
1
2
‖w‖2)+C

L

∑
i=1

εi s.t. yi(xi ·w+b)−1+ εi ≥ 0, (2.5)

where w is the weight vector, C is the regularization parameter which is greater than or equal

to zero. In order to avoid overfitting issue, proper hyperparameter C is needed to determine

throughout the training process. εi is the training error which is greater than or equal to zero.

xi and yi are input and the class label for the ith sample. b is the bias value.

3.3 Artificial Neural Network (ANN)

An ANN is a non-linear classifier, inspired by the neurons in the human brain, which has

capacity of pattern recognition [53]. In general, ANN consists of multiple layers including input

layer, fully connected layer (or hidden layer), and output layer, each of which layer contains

one or more neurons (see Fig. 2.3). The training process of ANN is comprised of forward

Table 2.1. The commonly used features of the hemodynamic response signal in fNIRS-based BCI.

Feature Description

Mean Average value of signal amplitude within the window

Slope Value describes the direction and steepness of the line

Peak Maximum value of signal amplitude within the window

Variance Expectation value of the squared deviation or how far the data is
spread out

Skewness Value describes the asymmetry

Kurtosis Value describes the sharpness of the peak
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propagation and backpropagation. The output is estimated through the forward propagation

based on the activation function as described by

al
j =


f (∑i wl

jixi) if l = 2

f (∑i wl
jia

l−1
j ) if l > 2

(2.6)

where al
j is defined as the activation of the jth neuron of the lth layer. wl

ji is denoted as the

weight for the connection from jth neuron in the lth layer, to the ith neuron in the (l−1)th layer.

x0 and al
0 are bias value. xi is the input data which is used to compute a2

j in the second layer.

The activation from the previous layer, (l−1)th, is used as the input for the lth layer.

Through the forward propagation, the weight values are initialized for the first iteration. To

improve the classification performance of the neural network, weight initialization is one of the

important factors [54]. Afterward, the weight values are updated throughout backpropagation

to minimize the error between output values from the forward propagation and the desired out-

put. The iteration is performed until approaching the minimum loss based on gradient descend

learning.

In order to obtain effective model of ANN, various hyperparameters such as learning rate,

batch size, and number of epochs should be considered. The learning rate is the parameter to

control how fast the weight values can be updated during the training process. The cost function

Figure 2.2. SVM in binary classification. The optimal hyperplane (solid line) is obtained by maximizing the
distance between support vectors (circled points) or margin (dot lines).
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does not converge to a minimum point if the learning rate is too high, while it converges slowly

if the learning rate is too low. Additionally, the cost function can converge faster by using batch

training. In the batch learning technique, the data are divided into several sets with identical

number of sample followed by propagating through the forward propagation and backpropaga-

tion, where the batch size is the number of samples in each set [54]. Epoch is defined as the

total number of times to complete the training procedure.

3.4 Convolutional Neural Network (CNN)

The CNN is a classification technique inspired by the visual cortex. The CNN is one of the

powerful techniques in deep learning because of its capability of learning and generalizing

the appropriate features from the input data automatically. The training process in the CNN

optimizes the weight parameters of each filter through forward propagation and backpropaga-

tion [55]. The structure of CNN contains input layer, convolutional layer, subsampling layer,

Figure 2.3. The structure of ANN consists of input layer, fully connected layer (hidden layer), and output layer.

9



fully connected layer, and output layer (see Fig. 2.4).

For forward propagation in the training process, the convolutional filter in the convolu-

tional layer is convolved with the input data. The convolutional filter usually has width size

equal to dimensionality, d, of the input data and kernel size (height) of h, where the ith output

from 1D convolution can be obtained by [56]

oi = f (w ·X[i : i+h−1]) (2.7)

and

mi = f (oi +b) (2.8)

where w is the weight matrix of the convolutional filter with dimension of h× d. The input

matrix is defined as X, where X[i : j] is the sub-matrix of the input from row i to j. oi is the

output, and mi is the activation of oi called feature map. Likewise ANN, the feature map from

the current convolutional layer is the input data for the next convolutional layer.

After the convolutional layer, additional subsampling layer including max-pooling or

dropout are added in order to enhance the performance of the neural net. Max-pooling [56]

and dropout [57] are well-known methods to boost up performance in the deep learning. The

max-pooling was used in order to reduce the size of data while keeping outstanding infor-

mation. Dropout was introduced as a regularization technique for the deep learning to avoid

Figure 2.4. The structure of convolutional neural network consists of input, convolutional layer, subsampling
layer, fully connected layer, and output.
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overfitting by randomly dropping out one or more hidden nodes. The hyperparameters intro-

duced for ANN (i.e. learning rate, batch size, and number of epochs) should be also considered

in order to improve the performance of CNN.

4. Evaluation

K-fold cross-validation is a statistical analysis that evaluates the performance of a predictive

model [52,58]. Figure 2.5 represents the procedure of k-fold cross-validation. First, entire data

is divided equally into k folds. Then, every single fold is used as a test set and the remaining

folds are used as a training set. This process is repeated until each fold is used as a test set,

where the accuracy obtained from each of tested fold is averaged as described by

C̄V =
1
K

K

∑
i=1

CVi (2.9)

where C̄V is the estimated performance of the predictive model, K is the total number of fold,

CVi is the classification accuracy of the ith fold.

Figure 2.5. K-fold cross-validation procedure.
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III. METHOD

1. Participants

A total of four healthy subjects were recruited in the experiment (all right-handed, mean age

23 ± 2.5, three females). Figure 3.1(a) represents the subject during the signal measurement.

None of the subjects has history of neurological disorder or surgery or brain injury. All the

subjects were asked to avoid smoking and drinking alcohol or coffee within 3 hours prior to the

experiment. A written consent forms were obtained from each participant. The experimental

procedure was approved by the DGIST Institutional Review Board (DGIST-170414-HR-004-

01).

2. Data Acquisition

The multichannel continuous wave fNIRS device, LABNIRS from Shimadzu, with three wave-

lengths (780, 805, and 830 nm) and sampling rate of 25.7 Hz was utilized to acquire hemody-

namic response signal. A total of 34 channels combined from 12 pairs of light sources and

detectors with distance 3 cm were placed over motor cortex area C3 and C4 based on interna-

tional 10-20 system [59] which correspond to the motor area of right and left hand, respectively

(see Fig. 3.1(b)).

3. Experimental Procedure

In the experiment, subjects were asked to sit on a comfortable chair and relax to ensure that

blood flow is steady. A monitor screen was placed in front of the subjects approximately 80 cm

and displayed the tasks. Black screen, right arrow, and left arrow indicate rest, right hand finger

tapping, and left hand finger tapping, respectively. Each subjects performed 10 experiments,

each of which experiment is comprised of five repetitions of 10 seconds of rest, 10 seconds of

right hand finger tapping, 10 seconds of rest, and 10 seconds of left hand finger tapping (see

Fig. 3.2). The experiment for all the subjects was conducted within three days. The total of
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100 samples of rest, 50 samples of right and 50 samples of left hand motor executions were

obtained from each subject.

4. Preprocessing

4.1 Concentration Changes of Hemoglobin

The measured light intensities were converted into the concentration changes of HbO and HbR

using MBLL. The MBLL equation is expressed by

∆ [HbO]

∆ [HbR]

=
1

d ·DPF

εHbO
λ1 εHbR

λ1

εHbO
λ2 εHbR

λ2

−1∆ODλ1

∆ODλ2

 (3.1)

where the concentration changes of HbO and HbR are defined as ∆[HbO] and ∆[HbR], respec-

tively. d is the distance between light source and detector set as 3 cm in the experiment. DPF

is the differential path length factor. ε is the extinction coefficient at wavelength λ , and ∆OD

is the optical density change.

(a) (b)

Figure 3.1. (a) A subject with optodes over right and left hemisphere. (b) The source and detector configuration
in total of 34 channels. Channel number 1-17 and 18-34 were placed over motor area C4 and C3 based on the
international 10-20 system, respectively.

Figure 3.2. Experimental procedure includes rest and two motor tasks: right and left hand motor execution. Each
task lasts 10 seconds.
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4.2 Filtering

The measured hemodynamic response signals contaminated by physiological noises including

very low frequency oscillations, mayer wave, respiration, and heart rate at frequency of 0.03,

0.1, 0.2, and 0.8 Hz, respectively [37, 39, 43]. Figure 3.3 represents each component of phys-

iological noises in hemodynamic response signal. In order to remove undesired physiological

signal components, wavelet filtering was applied [60].

The wavelet transform is a method for time-frequency analysis which adjusts the window

width in time and frequency domain. To remove undesired frequency components, wavelet

transform expresses the signal, S[n], by shifting and dilating wavelet mother function, and then

remarkable coefficients related to hemodynamic response signal are reconstructed. For sig-

nal decomposition and reconstruction, multi-resolution analysis (MRA) based discrete wavelet

transform (DWT) was exploited. By MRA based DWT, MRA decomposes the signal into tree

structure using DWT, decomposed signals are an approximation coefficient (low-frequency

component) and detailed coefficient (high-frequency component). The wavelet mother func-

Figure 3.3. Physiological noises in fNIRS signal including heart rate, respiration, mayer wave (M-wave), and
very low frequency oscillations (B-wave) (taken from [39]).
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tion, approximation coefficients and detailed coefficients are computed by

ψ j,k[n] =
1√

j
ψ(

n− k
j

), (3.2)

Aφ [ j0,k] =
1√
M ∑

n
S[n]φ j0,k[n], (3.3)

and

Dψ [ j,k] =
1√
M ∑

n
S[n]ψ j,k[n], (3.4)

where φ j0,k[n] is the scaling function, M is total points, Aφ [ j0,k] is approximation coefficients,

Dψ [ j,k] is detailed coefficients, and the wavelet mother function, ψ j,k, is dilated with scaling

parameter j which is greater than zero, and k is translating parameter. A signal S[n] is expressed

by

S[n] =
1√
M ∑

k
Aφ [ j0,k]φ j0,k[n]+

1√
M

∞

∑
j= j0

∑
k

Dψ [ j,k]ψ j,k[n]. (3.5)

The approximation coefficients and detailed coefficients can be rewritten as

a j0 =
1√
M ∑

k
Aφ [ j0,k]φ j0,k[n], (3.6)

and

d j =
1√
M ∑

k
Dψ [ j,k]ψ j,k[n], (3.7)

so, the signal S[n] can be reconstructed from the detailed components by

S[n] = a j0 +
j0

∑
j=−∞

d j. (3.8)

The 10 level wavelet decomposition using Daubechies (db5) as wavelet mother function was

applied in order to remove undesired high and low frequency components of physiological

noises. The bandpass frequency between 0.02-0.1 Hz was desired to obtain the hemodynamic

response signal. The combination of detailed components d8 and d9 from 10 level decomposi-

tions contains the signal corresponding to the frequency of 0.02-0.1 Hz, thus the filtered signal

was reconstructed by S̃[n] = d8 + d9, where S̃ is filtered signal of the hemodynamic response
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signal. After filtering, the hemodynamic response signals were rescaled into the range of [0,1].

5. Feature Extraction and Classification

After signal preprocessing, the conventional scheme of fNIRS-based BCI (SVM and ANN-

based fNIRS) and the proposed scheme (CNN-based fNIRS) were trained and tested using

hemodynamic response signals from each of the subject. The classification accuracies from the

conventional methods and the proposed method were computed in the testing session. In this

section, the details of the conventional scheme and proposed structure of CNN are described.

5.1 Conventional Method

In the conventional methods, the commonly used signal features of fNIRS-based BCI from

the hemodynamic response were extracted manually (i.e. signal mean, peak, slope, variance,

skewness, and kurtosis) [37]. The signal features were rescaled into a range of [0,1]. The

input data consisted of 408 feature dimensions (6 features × 2 signals of HbO and HbR × 34

channels).

The SVM and ANN were used as classifiers since they have been reported as high perfor-

mance classifiers in fNIRS-based BCI [37]. Before applying SVM, as such high-dimensional

features usually suffer from performance degradation [61], thus principle component analysis

(PCA) was applied in order to decrease the dimension of the data by maximizing variance with

fewer number of principle components [51]. The regularization was likewise applied to reduce

overfitting in ANN. The performances of the conventional methods (SVM and ANN-based)

were estimated by computing classification accuracy using 10-fold cross-validation.

For further comprehensive investigation, different structures of ANN with different num-

ber of neurons in the hidden layers were considered. Table 3.1 represents the number of neu-

rons and hidden layers in each structure of the ANN. All the hyperparameters were tuned for

each individual subject (see Table 3.2). In this thesis, the results of linear SVM and multiple

structures of ANN were reported.
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5.2 Proposed Structures of CNN

The CNN was employed as a classifier owing to its major property of performing feature ex-

traction automatically. The signals of concentration changes of HbO and HbR were passed

through convolutional layer of the CNN. Instead of extracting features from the hemodynamic

response signals manually, the concentration changes of HbO and HbR were used as the input

Table 3.1. Number of neurons and hidden layers in the structure of the ANN.

Structure Hidden layer Neurons in each hidden layer

ANN-1a 1 128

ANN-1b 1 256

ANN-1c 1 512

ANN-2a 2 256 - 128

ANN-2b 2 512 - 256

ANN-2c 2 512 - 128

Table 3.2. Hyperparameter of each subject for training ANN.

Subject Parameters ANN-1a ANN-1b ANN-1c ANN-2a ANN-2b ANN-2c

A
Epochs 100 100 50 50 50 100

Batch size 32 32 32 64 16 64

Learning rate 0.001 0.0005 0.0005 0.001 0.0005 0.001

B
Epochs 50 100 100 100 50 50

Batch size 16 16 16 32 32 32

Learning rate 0.001 0.0005 0.001 0.001 0.0005 0.001

C
Epochs 100 100 50 100 100 100

Batch size 16 16 16 32 32 32

Learning rate 0.001 0.001 0.0005 0.001 0.001 0.001

D
Epochs 50 50 100 100 50 50

Batch size 64 64 64 32 64 16

Learning rate 0.001 0.001 0.001 0.001 0.0005 0.0005

17



for the CNN. The input is M by N matrix where M is the number of data points during 10

seconds corresponding to the sampling rate (M = time× sampling rate ≈ 257) and N is the

number of channels for both HbO and HbR (34 channels of each HbO and HbR).

Various numbers of convolutional layer and filters of the CNN structure were utilized for

the comprehensive examination (see Table 3.3). Each convolutional layer consists of convo-

lutional filters with kernel size of 3, and the gradient descent algorithm was used to update

weight value throughout learning process. All the convolutional filters in the convolutional

layers performed 1D convolution with the input data along the vertical axis as shown in Fig.

3.4.

The subsampling layers were applied after each convolutional layer to improve the CNN

performance. As aforementioned, max-pooling and dropout have been introduced as techniques

for improving the deep learning model, hence they were employed into the subsampling layer.

Each subsampling layer contains max-pooling with kernel size of 2 followed by dropout with

a dropout rate 50%.

The convolutional and subsampling layers were followed by two layers of the fully con-

nected layers and the output layer. The first and second fully connected layers contain 256

and 128 neurons, and the output layer has 3 neurons corresponding to the three classes which

were determined by using softmax. For better comprehension about the CNN structure, the

convolutional and subsampling layers as well as input and output size of the proposed structure

CNN-2a is clarified in Table 3.4.

The activation function to transform the output also plays an important role in the deep

Table 3.3. Number of convolutional layer and filters in each convolutional layer of the CNN.

Structure Conv-layer Filters in each Conv-layer Neurons in each hidden layer

CNN-1a 1 16 256 - 128

CNN-1b 1 32 256 - 128

CNN-1c 1 64 256 - 128

CNN-2a 3 16 - 16 - 16 256 - 128

CNN-2b 3 32 - 32 - 32 256 - 128

CNN-2c 3 64 - 64 - 64 256 - 128
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learning. In the proposed structure, all activation functions were set to the rectified linear unit

(ReLU) which is non-linear function. In comparison with other activation functions, ReLU

has major benefit of converging to the optimum point much faster in practice and avoiding

vanishing gradient which inhibits the update of weight values in the deep layers. Consequently,

ReLU was implemented as an activation function to enhance the performance in the training

process of deep neural network on large scale and complex datasets. The function of ReLU can

Table 3.4. Input and output size of the proposed structure CNN-2a

Layer Input Size Output Size Properties
Convolutional layer 1 257, 68 257, 16 16 filters with kernel size 3

Max-pooling 1 257, 16 128, 16 kernel size 2
Dropout 1 128, 16 128, 16 dropout rate 50%

Convolutional layer 2 128, 16 128, 16 16 filters with kernel size 3
Max-pooling 2 128, 16 64, 16 kernel size 2

Dropout 2 64, 16 64, 16 dropout rate 50%
Convolutional layer 3 64, 16 64, 16 16 filters with kernel size 3

Max-pooling 3 64, 16 32, 16 kernel size 2
Dropout 3 32, 16 32, 16 dropout rate 50%

Fully connected layer 1 512 256 256 hidden nodes
Fully connected layer 2 256 128 128 hidden nodes

Output layer 128 3 3 hidden nodes

Figure 3.4. The input data consisted of the concentration changes of HbO (red) and HbR (blue) overall channels.
A convolutional filter move through the input data along the vertical axis.
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be expressed by [62]

a(x) =


0 if oi < 0

oi if oi ≥ 0.

(3.9)

Additionally, Table 3.5 represents the hyperparameters for training the CNN of each

individual subject including epochs, batch size, and learning rate determined by using grid

search [52, 63] and 10-fold cross-validation. The Adam was utilized as a gradient descent

optimization algorithms, where its parameters β1, β2, and ε were set to 0.9, 0.1, and 10−8,

respectively [64].

Table 3.5. Hyperparameter of each subject for training CNN.

Subject Parameters CNN-1a CNN-1b CNN-1c CNN-2a CNN-2b CNN-2c

A
Epochs 100 100 100 50 100 100

Batch size 16 64 16 16 16 32

Learning rate 0.0005 0.001 0.0005 0.0005 0.001 0.001

B
Epochs 50 50 50 100 100 100

Batch size 32 16 64 16 64 16

Learning rate 0.001 0.001 0.001 0.0005 0.001 0.0005

C
Epochs 100 50 50 100 100 100

Batch size 16 16 32 64 32 32

Learning rate 0.0001 0.0001 0.0005 0.0005 0.0001 0.001

D
Epochs 100 50 100 100 50 50

Batch size 16 16 16 64 64 32

Learning rate 0.0005 0.001 0.0005 0.0005 0.0005 0.001

6. Feature Visualization

In this thesis, the CNN was proposed as a method to improve the classification accuracy in

fNIRS-based BCI due to the automatic feature extraction. To interpret the feature extraction
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performance, the visualization of the hemodynamic response signal, commonly used features,

and feature map of the CNN were compared. Figure 3.5 represents the overall procedure to

visualize the aforementioned features. As high-dimensional data is complicated to visualize,

the PCA was employed to reduce the dimensionality. The first and second principle components

from PCA were extracted for the visualization.

To estimate the distribution between each class, the first and second components of the

PCA were rescaled into [0,1] and used as the input data. The global and local mean of each

class are computed as

µg =
1
N

N

∑
i=1

pi (3.10)

and

µ j =
1
n j

n j

∑
i=1

p j
i (3.11)

where µg is the global mean, µ j is the local mean of class j, pi is the data point at ith, p j
i is the

data point at ith of class j, and n j is the number of samples of class j. The euclidean distance

between q1 and q2 is obtained by

d(q1,q2) =

√
m

∑
i=1

(q1,i−q2,i)2 (3.12)

where d(q1,q2) is the euclidean distance between q1 and q2, and m is the space of q1 and q2.

The estimation of the distribution between each class is obtained from

R j =
d(µ j,µg)

E(d(P j,µ j))
(3.13)

where E(X) is the expected value of matrix X, P j is a matrix of data point in class j, and R j

is the ratio of the euclidean distance between µg and µ j to the expected value of euclidean

distances between P j and µ j of class j. In the case that all the classes are well separated, R j

value is expected to be large.
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Figure 3.5. The overall procedure to visualize hemodynamic response signal, commonly used features, and
feature map by extracting the first two principle components from PCA.
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IV. RESULTS AND DISCUSSIONS

1. Measured Hemodynamic Responses

In the experiment, the concentration changes of HbO and HbR were measured from each sub-

ject and used as the input data to train the CNN, and signal features extracted from the measured

signal were used to train ANN and SVM. The hemodynamic response signals across full ses-

sions of each task: rest, right and left hand motor executions, were averaged as shown in Fig.

4.1(a), 4.1(b), and 4.1(c), respectively. The vertical and horizontal axis of the input data indi-

cate each channel and the hemodynamic response signal while performing tasks, respectively.

The signal amplitude is represented by the color intensities of red and blue which imply maxi-

mum and minimum amplitude, respectively. From beginning to end of the tasks correspond to

0 to 10 seconds.

It has been reported that the changes of the cerebral blood oxygenation induced by neural

activity lead to the increment of HbO and decrement of HbR concentration changes in the

local area [38]. In the measured hemodynamic response, similar behavior of the hemodynamic

response could be observed as shown in Fig. 4.1. The hemodynamic response signal obtained

over C3 indicted relatively higher cortical activation during 5-10 seconds in the right hand

motor execution as shown in Fig. 4.1(b). While, the hemodynamic response signal over C4

showed higher activation in the left hand motor execution as shown in Fig. 4.1(c).

Figure 4.2 represents the averaged signal across the sessions overall channels of both left

and right hemispheres. As the experimental protocol was the repetition of rest followed by

task, the HbO responses decreased with time (see Fig.4.2(a)). The concentration changes of

HbO was obviously higher than HbR in the left hemisphere during right hand motor execution

as shown in Fig. 4.2(b). Unlike, the concentration change of HbO was higher in the right

hemisphere during the left hand motor execution as shown in Fig. 4.2(c). Figure 4.2(b) and (c)

also show the increment of HbO over the other hemisphere or non-corresponding area, since a

reduction in local oxygen caused by neural activity increases the CBF, and arteriolar vasodila-

tion responses to increase the local CBF. However, the hemodynamic response measured from
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the experiment indicates the possibility of discriminating three-class: rest, right and left hand

motor executions, since the brain response showed the differences of cortical activation over

the left and right hemispheres.

2. Classification Accuracy

The hemodynamic response signal of three-class: rest, left, and right hand motor executions,

were discriminated by the conventional scheme (SVM and ANN-based fNIRS) and the pro-

posed scheme (CNN-based fNIRS). The classification accuracies of both schemes were cal-

culated by 10-fold cross-validation in order to estimate the performance. Table 4.1 represents

Figure 4.1. Average result of each execution measured from subject-B: (a) rest, (b) right and (c) left hand motor
execution. Each input presents concentration changes of HbO and HbR overall 34 channels. Red and blue colors
represent maximum and minimum amplitude, respectively.
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Figure 4.2. Average signal amplitude of subject-B across all sessions of left (C3) and right (C4) hemisphere
of each class: (a) rest, (b) right and (c) left hand motor execution. Red and blue colors imply the concentration
changes of HbO and HbR, respectively. Solid and dot lines are related to the C3 and C4 motor areas in that order

the classification accuracies of subject-A, -B, -C, and -D from both conventional and proposed

schemes. Since various structures of ANN and CNN were examined, the structure ANN-2b

and CNN-1b which achieved the highest classification accuracy were selected for the com-
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parison. The classification accuracies of SVM, ANN (ANN-2b), and CNN (CNN-1b) from

each individual subject is shown in Fig. 4.3. It shows that the classification accuracy of CNN

outperforms both SVM and ANN in three out of four subjects. In the statistical assessment,

the average accuracies across all the subjects of SVM, ANN, and CNN (84.00%, 87.17%, and

90.92%, respectively) indicate the superior performance of CNN over the conventional meth-

ods. The CNN shows the excellent performance in consequence of its capability of learning

the patterns from the input data by optimizing the weight values through the training process.

3. Feature Visualization

The CNN is able to learn and recognize the patterns of three-class: rest, right and left hand

motor executions, based on updating the weight values of the filters in the convolutional layer

and hidden layer. In this section, the structure CNN-1b of the CNN was investigated that

the CNN transforms the input data into better separable feature by convolving the input with

convolutional filter.

While convolutional methods perform feature extraction manually, CNN is remarkable to

extract proper features automatically. To better understand the feature extraction performance,

the hemodynamic response signal and feature extracted by conventional methods and convo-

lutional filter were visualized by plotting the first two principle components of PCA. Figure

Table 4.1. Classification accuracies of each subject (%)

Structure Subject-A Subject-B Subject-C Subject-D Average
SVM 88.50 79.00 84.00 84.50 84.00

ANN-1a 91.50 79.00 85.00 83.17 84.67
ANN-1b 92.67 81.00 84.83 85.00 85.86
ANN-1c 91.83 83.33 84.83 85.33 86.33
ANN-2a 91.33 82.50 85.16 85.67 86.16
ANN-2b 91.67 84.00 85.33 87.67 87.17
ANN-2c 92.17 82.67 85.50 86.17 86.63
CNN-1a 92.17 90.00 85.00 93.33 90.12
CNN-1b 92.67 90.83 85.00 95.17 90.92
CNN-1c 92.17 89.50 84.83 94.33 90.21
CNN-2a 92.50 90.33 82.33 91.33 89.12
CNN-2b 92.67 91.33 81.50 92.83 89.59
CNN-2c 92.50 90.17 83.00 92.17 89.46
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4.4 illustrate the visualizations of the above-mentioned features from subject-A and subject-

B which explicitly shows the outputs from the convolutional filter was better discriminating

compared with the others.

When considering just the binary classification of rest and motor execution, both the con-

ventional methods and CNN resulted in the well separable features. However, for the multi-

class or binary classification of right and left motor executions, CNN was be able to extract

better discriminated features as compared with the conventional methods.

Table 4.2 represents the values of the ratio obtained from Eq. 3.13. The higher ratio im-

plies that the data were well discriminated between all the classes, while lower ratio indicates

poor separable data. The average ratio values across all the subjects of the feature map, hemo-

dynamic response, and commonly used features (1.22, 0.68, and 0.66, respectively) confirmed

that the features extracted by convolutional filter were better discriminated compared with the

others.

Consequently, the proposed method will be appropriate for various applications that re-

quire multi tasks to command or vital applications. For instance, a brain-controlled wheelchair

for a patient with severe motor impairment require high accuracy and multi tasks to control

Figure 4.3. Average classification accuracies of each method. The classification accuracies of SVM, ANN, and
CNN are represented in blue, red, and green bar.
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wheelchair in several directions, since any misclassification would probably lead to a serious

accident.

4. Future Work

While many studies have investigated on the various feature combinations and machine learn-

ing algorithms to achieve high classification accuracy in fNIRS-based BCI, the proposed CNN

as feature extractor and classifier demonstrated the gain in performance over conventional

scheme. However, only classical machine learning algorithm (SVM) and classifier reported

as the most appropriate in fNIRS-based BCI (ANN) [50] with commonly used features in time-

domain signal (signal mean, peak, slope, variance, skewness, and kurtosis) were used as con-

ventional schemes. Other features and machine learning algorithms needed to be investigated

for more comprehensive study.

In this thesis, the CNN was proposed as a promising method to discriminate hemodynamic

Figure 4.4. The visualization of the signal including hemodynamic response signal, commonly used features,
and output of the convolutional filter (feature map) from subject-A and subject-B.
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Table 4.2. The ratio of the distance between global and local mean to the average distance between each data
point and local mean.

Subject Input Rest Right Hand Left Hand Average

A
Feature Map 1.03 1.19 1.58 1.27

Hemodynamic Response 0.92 0.81 1.25 1.00

Commonly used features 0.78 0.80 1.12 0.90

B
Feature Map 0.76 1.31 1.47 1.18

Hemodynamic Response 0.32 0.22 0.53 0.36

Commonly used features 0.41 0.16 0.70 0.42

C
Feature Map 0.87 0.92 0.88 0.89

Hemodynamic Response 0.92 0.97 0.93 0.94

Commonly used features 0.84 1.01 1.00 0.95

D
Feature Map 0.78 1.93 1.86 1.52

Hemodynamic Response 0.44 0.47 0.42 0.44

Commonly used features 0.41 0.39 0.32 0.38

response signal in fNIRS-based BCI. The results implied that the use of CNN yields better per-

formance in terms of classification accuracy over conventional schemes. As the classification

accuracy plays the most important role in BCI, future work will implement various techniques

in deep learning for further improvement of the accuracy.

The experiment was conducted merely with healthy subjects. However, the cortical acti-

vation in the patients with brain injury or motor disabilities probably be dissimilar to healthy

people. Accordingly, the future work will explore the study to examine the feasibility of using

fNIRS-based BCI in the patients with motor impairment. Additionally, the experimental pro-

tocol was designed for the initial study. To imitate the use in real application, the experimental

protocol will be improved in the future study.

This thesis examined the use of CNN in fNIRS-based BCI with offline signal processing

and classification. However, the final goal of BCI is to operate the system in real-time, thus

the future study will include the investigation of online signal processing as well as signal

classification for fNIRS-based BCI.
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V. CONCLUSION

In the last few decades, BCI researches have implemented fNIRS for measuring brain signal,

since it offers many benefits over other modalities. To enhance the classification accuracy for

BCI system, the conventional scheme of fNIRS-based BCI primarily focused on finding the

appropriate feature such as signal mean, peak, slope, variance, kurtosis, and skewness, and the

machine learning algorithm such as SVM and ANN.

The main objective of this thesis is to improve the classification accuracy of fNIRS-based

BCI by classifying and extracting feature automatically. To this end, the proposed method

using CNN was compared with the conventional methods using SVM and ANN. Related to

the first research question, the results indicated that the CNN-based method outperforms both

SVM and ANN-based methods with the gain in accuracy up to 6.92% and 3.75%, respectively.

Additionally, the features extracted by the convolutional filter of CNN were better discriminat-

ing, as illustrated in the visualization, compared with the conventional methods which answers

the second research question.

In summary, the results demonstrates the feasibility of using CNN as feature extractor and

classification method for fNIRS-based BCI, since it shows the performance over conventional

scheme as well as its capability of learning and generalizing feature from the input automati-

cally.
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