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ABSTRACT 

In this thesis, we propose a new soft computing-based approach for sensorless fault-

tolerant control in brake-by-wire (BBW) systems.  

Research on BBW systems in the automobile industry is actively proceeding. In or-

der to mount and drive the electro-mechanical brake (EMB) used as the brake actuator in 

the hybrid vehicles and electric vehicles for operation reliability it is imperative that the 

clamping force data is not lost even if a failure occurs in the electrical and electronic sys-

tems.  

In this study, the mathematical modeling of the mechanical part and the electric mo-

tor of the EMB system was first established and the cascaded PI controller was designed 

based on the EMB model. The mechanical part consisted of a reduction gear, screw, in-

ner/outer pads, and caliper. A permanent magnet synchronous motor (PMSM) was used 

for the electric motor and an electronic control unit (ECU) including the micro-controller 

and the inverter was constructed and experiments were performed. The EMB controller is 

configured as a cascaded PI control type, and the clamping force controller, speed control-

ler, and the current controller are located in the order of the external controller to the inter-

nal controller. The gain of the controller is designed to be easily adjusted using the param-

eters of the motor. Also, the vector control method was applied to the PMSM to ensure 

optimal torque operation. 
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Our goal is to apply a new hybrid-type system identification and estimation methods 

against failure or for sensorless control that can occur in the EMB electronic pedal sensor 

system and the clamping force sensor by applying the soft computing techniques such as a 

neural network, fuzzy and genetic algorithm. 

First, we propose a novel identification of an electronic brake pedal system for a vir-

tual sensor system based on a hybrid approach using the group method of data handling 

(GMDH) and the genetic algorithm (GA). The main idea in the GMDH is to build an ana-

lytical function in a feed-forward network based on a quadratic node transfer function 

whose coefficients are obtained using a regression technique. The analytical GMDH mod-

el has been found, and application of this model is very quick and inexpensive compared 

to other identification techniques. To develop the best network architecture for the 

GMDH, the GA is arranged in a new approach to design the whole architecture of the 

GMDH. 

Second, we study estimation of the clamping force in the EMB actuator part. The 

main sensors used in the EMB control system are a clamping force sensor to measure 

clamping force, a rotor position sensor to measure motor rotation angle, and a current sen-

sor to measure the current of the three-phase motor. It is necessary to judge the failure of 

each sensor or developing without sensors in terms of cost and implementation and replace 

with an appropriate estimation value in the case of failure. In this study, the estimation of 

the clamping force is more accurate considering the hysteresis at the time of applying and 

releasing, and the dynamic stiffness model and torque balance model are combined by us-

ing a novel Kalman filter optimized by the GA. The application of the GA improves the 

estimation accuracy by optimizing the noise covariance matrices of the Kalman filter and 

enables on-line estimation when using a high performance parallel processor. 
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Finally, we verified the performance of the proposed algorithm through experi-

ments. 

 

 

 

Keywords: Brake-by-wire, Electro-mechanical brake, Group method of data handling, Ge-

netic algorithm, Kalman filter 
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I. Introduction 

 

 

1.1 Background and Motivation 

 

In future cars, X-by-wire systems will be introduced to implement various advanced 

functions. The technology to control the target plant by removing the mechanical link or the 

hydraulic line and transmitting an electric signal shows better performance in terms of 

space, cost, function, and environment. Since the parts can be modularized, it is possible to 

apply one designed system to various models without changing the structure, which is ad-

vantageous in terms of production cost. This technology is also environmentally friendly 

because it is relatively lightweight and fast in response and suitable for performing chassis 

control functions and does not use hydraulic oil [1]. 

X-by-wire systems can be divided into drive-by-wire (DBW), steer-by-wire (SBW), 

and brake-by-wire (BBW) depending on the purpose of use. The technique of replacing 

mechanical connections with the transmission of electrical signals can improve perfor-

mance with the development of in-vehicle network systems. In order to apply X-by-wire to 

real vehicles, it is necessary to improve the reliability and to develop a large capacity power 

system [2]. 

The BBW systems related to braking via X-by-wire can be classified into hydraulic 

drive type electro-hydaulic brake (EHB) and electric drive type electro-mechanical brake 

(EMB) or electro-wedge brake (EWB) depending on the drive type [3]. The EHB has been 

developed based on hydraulic braking technology using existing mechanical devices. How-

ever, by replacing the physical control using mechanical devices with electronic parts and 

signals, due to the durability and complicated structure of the electronic parts constituting 
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EHB, EMB and EWB technology is under development. Figure 1.1 shows the technology 

roadmap for the vehicle braking system [4]. In the case of EHB, Bosch (Germany) pro-

duced the sensortronic brake control (SBC) system and Delphi (USA) developed the Gali-

leo system [5]. In particular, the Galileo system is equipped with a front wheel braking sys-

tem that is a mixture of electric and hydraulic, and mechanical devices such as electric mo-

tors and bearings on the rear wheels. The EMB system which has yet to be mass-produced 

but, is a key part of BBW, is an electro-mechanical braking method that uses an electric 

motor to brake the vehicle, unlike conventional hydraulic brakes. This system is character-

ized by a completely dry electrical component system that replaces conventional actuators 

with electric motor-driven units (see also Figure 1.2). It shows a faster response than exist-

ing methods for applying brake control technology such as anti-lock braking system (ABS) 

or electronic stability control (ESC) [6]. However, the EMB requires large power for brak-

ing the front wheels, and it suffers from reduced efficiency due to friction between the 

screw and gear system, degraded actuator efficiency due to environmental changes such as 

temperature and humidity, and a communication problem for real-time control. Further-

more, the clamping force sensor is costly. The EWB has been studied to solve the problem 

of high voltage required to generate high braking force. The EMB is a method to generate 

braking force by inputting torque generated by an electric motor, but EWB can ensure the 

same braking force with less power consumption than EMB by using disk rotating force as 

braking force by using a wedge in the caliper part. 
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Fig. 1.1. Roadmap for the automotive brake system 

 

 

Fig. 1.2. Electro-mechanical brake system (developed by DGIST) 

 

The demand for space constraints and light-weight automobiles has led to the adop-

tion of permanent magnet synchronous motors (PMSMs) as actuators in electronic control 

systems. PMSMs are widely used as actuators in various industrial fields because of their 

higher energy density and easier maintenance than DC motors or induction motors. As au-

tomotive components, PMSM drive systems must operate at low cost and have a long ser-

vice life corresponding with the life cycle of the vehicle and maintain high system reliabil-



- 4 - 

ity. 

The control methods of PMSMs used as an actuator in EMBs have been widely 

studied. Field-oriented control (FOC) or vector control, which controls the torque by con-

trolling the magnitude and phase direction of the stator current based on the flux vector in 

space, is widely used. A study on clamping force control of the EMB has been carried out 

[7]. The authors proposed a method to detect the contact point between the pad and the disk 

by constructing an EMB control system incorporating a current controller, speed controller, 

and the force controller. Line et al. [8] designed a PI controller to avoid the use of the max-

imum speed, maximum power, and maximum current of the motor during clamping force 

control. They developed a simulator including the Coulomb friction model of the motor and 

the back-EMF model, and evaluated the efficiency of the controller. In order to solve the 

problem of instability of the PI controller due to the nonlinear characteristics of the EMB 

actuator, a study using the model predictive control (MPC) method was also performed [9]. 

In addition, an optimal control method was proposed to efficiently control the EMB while 

minimizing power consumption in various disturbance input environments [10]. 

Due to the increase of new electronic sensors, actuators, and electronic control unit 

(ECU) devices in tandem with strengthened environmental and safety regulations in the au-

tomobile industry and demand for consumer convenience, it is necessary to replace conven-

tional mechanical and hydraulic controlled steering or braking devices with electronic con-

trol methods and related research is actively under way. Eco-friendly cars such as hybrid 

and electric vehicles are accelerating this trend [11]. 

In an EMB system, failure of the PMSM drive and pedal system including ECUs 

may affect the safety of the entire vehicle and lead to personal injury. Therefore, various 

fault-tolerance techniques including fault detection are needed. Effective fault-tolerance can 

increase the reliability of the system and reduce the occurrence of additional maintenance 
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costs [12-14]. 

Fault-tolerance can be divided into hardware redundancy and analytic redundancy. 

The hardware redundancy method has the advantage of using two or more hardware having 

the same function to allow failure, and is the most reliable and simple method to imple-

ment. However, it has the disadvantage of a complicate structure and incurs additional 

costs. To resolve the drawbacks of hardware redundancy, the concept of analytic redundan-

cy has been studied since the 1970s [15, 16]. Even if a device plays a different role, the 

same effect as using hardware redundancy can be obtained by using information about the 

dynamic characteristics inside the system. 

In the EMB, it is difficult to mount a torque sensor or a clamping force sensor due to 

the complicate structure and the additional cost, and studies have been conducted to control 

the EMB without a clamping force sensor. Since such sensorless control methods are main-

ly used for EMB control by estimating the clamping force, it is possible to detect faults for 

fault-tolerance and use them for controller redesign. A method of estimating the clamping 

force by calculating the average value of the motor torque at the time of increasing and de-

creasing the clamping force and using the torque-force relationship has been proposed [17]. 

However, this method produces an error in estimating the clamping force when the motor 

rotates at a high speed. Saric et al. [18] proposed an estimation method based on the rela-

tionship between the rotation angle of the motor and the clamping force. In addition, a 

technique has been developed to accurately estimate the rotation angle and the speed of a 

motor using a resolver signal [19]. Most recently, Eum et al. [20] proposed a robust sensor-

less control method for an EMB system that can be applied to commercial city buses. A 

cascade control strategy is proposed and a disturbance observer is employed to enhance the 

control robustness against model variations. 

Due to the industrial property rights within the automotive industry, very little stud-
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ies have been published. There are no previous studies describing actual tests and perfor-

mance results of BBW with EMB beside those that have been carried out through the Ref. 

[21]. 

 

 

1.2 Research Objective and Contribution 

 

This thesis proposes a soft computing-based approach to identification of the elec-

tronic brake pedal system of the BBW and to estimate the clamping force which is the core 

technology the of BBW among the increasingly electronic automobile chassis control tech-

nology. 

During the last four decades, researchers have proposed many model-based control 

strategies. In general, these design approaches involve various phases such as modeling, 

analysis, simulation, implementation, and verification. These conventional model-based 

methods have been practically applied and have provided satisfactory solutions for the 

complex systems under various uncertainties. However, as Zadeh articulated as early as 

1962, “often the solution of real life problems in system analysis and control has been sub-

ordinated to the development of mathematical theories that dealt with over-idealized prob-

lems bearing little relation to theory” [22].  

In a broad perspective, intelligent systems underlie what is called “soft computing” 

[23]. In traditional hard computing, the main purposes of the computations are precision 

and certainty. In soft computing, however, the precision and certainty are costly. Therefore, 

it is realistic to consider the integration of computation, reasoning and decision making for 

the trade-off between precision and uncertainty. This integration of methodologies provides 

a foundation for the conceptual design and deployment of intelligent systems. The theories 
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are fuzzy logic, neural network, genetic algorithm, and probabilistic reasoning. Further-

more, these methodologies are complementary rather than competitive. Increasingly, these 

approaches are also utilized in combination, and referred to as “hybrid”. Presently, the most 

well-known systems of this type are neuro-fuzzy systems. Hybrid intelligent systems are 

likely to play a critical role for many years to come [24].  

Unlike model-based methods, soft computing methodologies mimic consciousness 

and cognition in several important ways: they can learn from experience; they can univer-

salize into domains where direct experience is absent; and through parallel computer archi-

tectures that simulate biological processes, they can quick perform an input-to-output map-

ping rather than inherently serial analytical representations [25, 26]. 

An identification approach for linear or non-linear system, which is the basis of the 

input/output data and regression analysis of the prediction problem, is useful. However, if 

the system to be modeled is a complex and large-scale structure, the regression analysis 

cannot be applied because the input/output relationship is not limited to a representable 

functional type. In general, complex multivariate modeling has the following problems 

[27]. 

 Among many input variables, we cannot determine the variables that make up the 

model. 

 The structure of the model (function form) cannot be determined. 

 If the number of coefficients to be estimated is large, the amount of data required 

for estimation becomes large. 

In order to solve this problem, a method based on the discrimination by Volterra se-

ries or a polynomial expression of Kolmogorov-Gabor has been proposed. Group method of 

data handling (GMDH) is a valid method for this kind of problem. It is one of the most 

powerful tools that have been widely employed in recent years in various fields such as 



- 8 - 

sensors, measurement and control, and engineering [28]. GMDH was proposed by A. G. 

Ivakhnenko [29], and nonlinear model estimation is obtained by hierarchically combining 

partial expressions by quadratic expression of two variables in the case of nonlinear rela-

tions in which the input/output relation or function type of the model is not specially de-

fined. Regression analysis by partial expression is applied at each hierarchy. By applying 

the quadratic expression of two variables, nonlinear functions of input/output relations can 

be easily obtained, and it is possible to identify and predict complex multivariable and non-

linear systems with small data. Over the past 40 years it has been improving and evolving, 

first by works in the field of what was known in the USA as adaptive learning networks in 

the 1970s and 1980s and later by significant contributions from scientists from Germany, 

Ukraine, Japan, and China, etc. 

The unique feature of the self-organizing modeling approach of GMDH is that it al-

lows, systematically and autonomously, optimal complex models to be developed by per-

forming both parameter and structure identification. It inductively builds the model struc-

ture or composition of terms or network topology, automatically. This is possible, because 

self-organizing modeling closely links model accuracy to model complexity. It introduces 

the concept of an optimal complex model as a model that optimally balances model quality 

on a learning data set and its generalization power on new, not previously seen data with 

respect to the data’s noise level and the purpose of modeling. This has been the key idea for 

solving the basic problem of experimental systems analysis of avoiding over-fitted models 

based on the data’s information, and this makes advanced implementations of this algo-

rithm a powerful, efficient, and easy-to-use knowledge extraction tool [30]. 

Today, in engineering, there is a spectrum of self-organizing modeling algorithms. 

This thesis adds to this spectrum a new element by combining GMDH with other state-of-

the-art soft computing methods. The main idea of this work is to develop a mathematical 
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model to identify the electronic brake pedal system using hybrid soft computing in our 

BBW systems. Thus, instead of directly using a physical device, we introduce a virtual sen-

sor (or soft sensor) system that includes alternative devices that are easier to implement. 

The virtual sensor is a valuable tool in many different industrial fields of application. It is 

expected to solve a number of different problems such as measuring system back-up, real-

time prediction for control, and fault diagnosis strategies. 

The successful use of a clamping force sensor in the EMB poses a challenging engi-

neering task. In order to implement various chassis control functions in the EMB, it is im-

portant to accurately feedback the clamping force of the system. If a clamping force sensor 

is placed close to a brake pad, it will then be subject to severe high temperature that will 

challenge its mechanical integrity. This situation can be avoided by embedding a clamping 

force sensor deep within the EMB, i.e. at the near end of the ball-screw. It has been shown 

that embedding this sensor leads to hysteresis, which is influenced by friction between the 

clamping force sensor and the pad and disk interface. This hysteresis significantly influ-

ences the accuracy of clamping force measurement. In addition, it is costly to mount a sen-

sor to measure the clamping force. Due to the cost and engineering problems involved with 

including the clamping force sensor, it is highly desirable to eliminate this component from 

the BBW systems. A potential opportunity to achieve this lies in the development of a vir-

tual sensor. That is, to accurately estimate the clamping force based on alternative meas-

urements leading to the omission of a clamping force sensor. This thesis further develops a 

virtual clamping force sensor that can lead to the omission of a physical force sensor in our 

EMB systems. Therefore, the clamping force can be estimated without a physical sensor by 

combining the dynamic stiffness model and torque balance model with a hybrid genetic al-

gorithm and Kalman filter. The EMB test bench was developed and the validity was veri-

fied through experiments. 
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1.3 Thesis Organization 

 

This thesis is organized as follows: in chapter 2, mathematical modeling and con-

troller design of an EMB system are performed. Nonlinear characteristics such as friction 

and backlash were simulated. Chapter 3 describes the identification of the electronic brake 

pedal system using hybrid GMDH/GA. Experimental results are compared with other tradi-

tional methods. In chapter 4, we propose a clamping force estimation method combining 

two models by a hybrid genetic algorithm and Kalman filter. Finally, we discuss possible 

future works and conclude this thesis in chapter 5. 
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II. Modeling and Control of Electro-Mechanical Brake System: 

Basic Principle 
      

      

2.1 Introduction 

 

The X-by-wire (XBW) systems have the advantage of improving vehicle design 

flexibility and fuel economy by replacing existing complex mechanical systems with elec-

trical systems using in-vehicle networks. Among the XBW systems, the brake-by-wire 

(BBW) systems use sensors and actuators to replace the existing hydraulic system compo-

nents such as pumps, hoses, oil, vacuum servos, and master cylinders, thus providing the 

advantages of fast braking and accuracy including the above advantages. The BBW systems 

use an electro-mechanical brake (EMB) as a wiring harness and a brake actuator instead of 

the conventional hydraulic and mechanical link [31]. 

The EMB is an eco-friendly BBW system that does not use hydraulic pressure. It 

generates braking force using a motor with a fast response. Therefore, the braking force re-

sponse characteristic is relatively fast. This characteristic enables control of new concepts 

as well as an anti-lock braking system (ABS), traction control system (TCS), and electronic 

stability program (ESP) control. However, the EMB requires large power for braking the 

front wheels, and it has a power problem of the 12 V power system, reduced efficiency due 

to friction between the screw and gear system, degraded actuator efficiency due to envi-

ronmental changes such as temperature and humidity, and communication problems for re-

al-time operation, as well as requiring a costly clamping force sensor [32]. 

The EMB can be divided into a screw-type EMB with screw direct pressurization 

and an electro-wedge brake (EWB) with wedge. Figure 2.1 shows the screw-type EMB and 
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the wedge-type EWB structure. 

 

 

Fig. 2.1. Structures of the EMB and EWB 

 

The screw-type EMB presses the pad onto the disk through the piston connected to 

the screw. The wedge-type EWB uses self-reinforcing to push the wedge again by the force 

of the wedge through the screw and the braking frictional force. The EWB has advantages 

of reducing the driving power of the actuator and increasing the efficiency of the system by 

self-boosting, but it may incur jamming due to the wedge, which requires more precise high 

performance control [33, 34]. Currently, the EMB was developed by TRW, Bosch, Hyundai 

Mobis, Mando, erae Automotive Systems, etc. and the EWB was developed in Siemens 

VDO but has not yet reached the practical stage [35-38]. 

Figure 2.2 shows the structure of a typical BBW system. The operation of the BBW 

system causes the electronic brake pedal according to the braking input, which occurs when 

the driver depresses the pedal. At this time, the central electronic control unit (ECU) deter-

mines the required braking force by using the position signal of the pedal, and determines 

the target braking force of each wheel through cooperative control with the regenerative 

braking device. The ECU of each wheel controls the EMB to generate the target braking 

Clamping force 

= Motor power 

Clamping force 

= Motor power + Friction force

Friction force

Clamping force 

Motor power 

Clamping force 

Motor
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force transmitted from the central ECU. The EMB receives the braking command from the 

actuator ECU and generates the braking force from the electric motor, gear, and screw 

mechanism. In order to provide regenerative braking coordination control, an electronic 

brake system with fast a response such as the EMB is indispensable, and high performance 

control of the motor applied to the EMB is essential to generate this target braking force 

accurately and quickly. 

 

 

Fig. 2.2. BBW system architecture 

 

In this chapter, mathematical modeling is established for the EMB system applying 

a permanent magnet synchronous motor (PMSM) as an actuator. The cascade PI controller 

was then designed. The modeling of the components is based on Ref. [31]. The system 

models are implemented by MATLAB/Simulink. 

 

 

2.2 Modeling of the EMB System 
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The EMB system consists of an electric motor, a planetary gear reducer, a screw 

gear, an inner/outer pad, and a caliper, as shown in Figure 2.3. The rotational motion of the 

motor is converted into a linear motion by a screw thread, and a clamping force is generated 

between the brake pads and the disk by the force. 

 

 

Fig. 2.3. Configuration of the EMB 

 

2.2.1 Modeling of the PMSM 

 

Modeling of the PMSM uses reference frame transformation. Reference coordinate 

system transformation is a commonly used method for easily modeling, analyzing, and con-

trolling an AC system, and it converts coordinate systems such as voltage, current, and 

magnetic flux into an easy to use system. The voltage equation of the PMSM used in the 

EMB system is expressed in the form of a time-varying differential equation when the mo-

tor rotates. The three-phase source of  ,  , and   phase is converted into a coordinate 
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system of  -axis,  -axis, and  -axis through reference coordinate system conversion. 

Here, the  -axis is the axis on which the excitation flux exists in a direct axis. The  -axis 

is a quadrature axis, and the electrical angle is positioned by a phase difference of 90 de-

grees ahead of the direct axis in the forward rotation. The  -axis is the neutral axis and 

does not affect the formation of the rotor [39-41]. 

Conversion of  ,  , and   to the stationary coordinate system in the  ,  , and   

coordinate system and vice versa can be obtained through the Park’s transformation and the 

inverse transformation of Eqs. (2.1) and (2.2), respectively. 
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In Eqs. (2.1) and (2.2),   denotes the variables such as voltage, current, and flux, and    

denotes the electrical angle. 

The voltage equation of the PMSM can be expressed as Eq. (2.3) by the    sta-

tionary coordinate system [42]. 
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where 𝜓𝑞 = 𝐿𝑞𝑖𝑞, 𝜓𝑑 = 𝐿𝑑𝑖𝑑 + 𝜙; 𝑣𝑑, 𝑣𝑞 is the  -axis and  -axis voltage [V]; 𝑖𝑑, 𝑖𝑞 

is the  -axis and  -axis stator current [A]; 𝐿𝑑, 𝐿𝑞 is the  -axis and  -axis inductance 

[H]; 𝑅 is the stator resistance [Ω]; 𝜔  is the electrical angular speed (or motor synchro-

nous speed) [rad/s], and 𝜙 is the flux linkage by the rotor magnet [V/rad/s]. 

The electric torque and the load motion equation generated by the motor are ex-

pressed by the following Eqs. (2.4) and (2.5). 
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where 𝑇𝐸 is the electric torque [Nm], 𝜔𝑚 is the angular speed of the rotor [rad/s], 𝑃 is 

the number of poles, 𝐽 is the inertia moment of the rotor [kgm
2
], 𝑇𝐿 is the load torque 

[Nm], and 𝑇𝐹 is the friction torque [Nm]. 𝑇𝐹 = 𝐵𝜔𝑚 where 𝐵 is the damping coefficient 

of the rotor [Nm/rad/s]. 

The vector control of the PMSM controls the phase of the three-phase current to be 

maintained at a right angle to the rotor flux and the magnetic field rotating at the synchro-

nous speed so that the maximum torque is generated. That is, in normal operation, the  -

axis current 𝑖𝑑, which is the magnetic flux component of the stator current, is controlled to 

be zero. Therefore, if the electric torque is rewritten, the following Eq. (2.6) is obtained. 



- 17 - 

 

3

2
E qT P i                               (2.6) 

 

The motor rotor angular speed 𝜔𝑚 has the relationship delineated in Eq. (2.7) be-

low with the motor synchronous speed 𝜔 . 
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Finally, the following Eq. (2.8) can be obtained from Eqs. (2.3), (2.4), and (2.5). 
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Table 2.1 shows the parameters of the PMSM that is applied. 

 

Table 2.1. PMSM parameters 

Stator resistance 𝑅 [Ω] 0.386 

 -axis inductance 𝐿𝑞 [H] 0.0000653 

Rotor inertia 𝐽 [kgm
2
] 0.00000333 

Damping coefficient 𝐵 [Nm/rad/s] 0.0000016 

Number of poles 𝑃 4 

Flux linkage 𝜙 [V/rad/s] 0.0092 

 

Figure 2.4 shows the rotor angular speed and the electrical torque response when a 

step input of 12 V is applied. 
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(a) 

 

(b) 

Fig. 2.4. Simulation results of the PMSM model; (a) Rotor angular speed, (b) Electrical 

torque 
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2.2.2 Modeling of the Planetary Gear 

 

The motor used in the EMB system has difficulty supplying torque to achieve suffi-

cient braking force due to the size, installation space problems, and current limit. Therefore, 

in this study, a planetary gear reducer was used to increase the torque of the motor. The 

planetary gear reducer occupies a small space in a limited space, thereby making it possible 

to minimize the mechanism and the apparatus, and to transmit the input shaft torque to the 

output shaft with high efficiency. The ring gear is a fixed gear, the sun gear is a driving 

gear, and the carrier is a driven gear in the planetary gear reducer. The output shaft of the 

motor is connected to the sun gear, and the power is transmitted through the carrier because 

the ring gear is fixed. Figure 2.5 shows a planetary gear reducer. 

 

 

Fig. 2.5. Planetary gear reducer 

 

The speed and torque of the reducer carrier are given by the following equations: 
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where    is the reduction gear ratio, 𝜔  𝑑 is the carrier speed [rad/s], 𝑇  𝑑 is the carrier 

torque [Nm], and 𝑇𝑚 is the sun gear torque (motor load torque). 

The EMB system changes in various parts as time passes. In particular, a backlash 

may occur. If the backlash occurs in the gear reducer, the response of the brake is delayed, 

which can directly affect the safety of the driver. The backlash changes the speed output of 

the reducer. 

Figure 2.6 shows the output of the planetary gear reducer model. The simulation 

was performed with a gear ratio of 15:1. The output results are also given in consideration 

of the backlash. 
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(b) 

 

(c) 

Fig. 2.6. Simulation results of the planetary gear reducer; (a) Carrier speed, (b) Carrier 

torque, (c) Sun gear torque 
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In the section, a friction model based on Coulomb friction, viscous friction, and stat-

ic friction is applied to accurately express the friction due to the rotational motion of the 

motor and the reducer [31]. Figure 2.7 shows the friction torque characteristics according to 

rotational speed considering Coulomb friction, viscous friction, and static friction. 

 

 

Fig. 2.7. Friction model for the motor and reducer 

 

The friction model is expressed by the following equation. 
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s

rm s

F C S C V rmT T T T e B


 



                       (2.10) 

 

where 𝑇  is the Coulomb friction torque [Nm], 𝑇  is the static friction torque [Nm], 𝐵  

is the viscous friction coefficient, and 𝜔  is the Stribeck velocity [rad/s]. Table 2.2 shows 

the parameters used in the friction model. 

 

Table 2.2. Friction model parameters 

Coulomb friction torque 𝑇  [Nm] 0.2 
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Static friction torque 𝑇  [Nm] 0.324 

Viscous friction coefficient 𝐵  0.01 

Stribeck velocity [rad/s] 8.695 

 

Figure 2.8 shows the simulation results of the friction model. We could get a curve 

similar to the Figure 2.7. 

 

 

Fig. 2.8. Simulation result of the friction model 

 

2.2.3 Modeling of the Screw Thread 

 

The screw thread is composed of a male screw and a female screw and it converts 

rotation motion into linear motion. The male screw connected to the reducer carrier is con-

nected to the screw, and the female screw is connected to the piston. The screw converts the 

rotational motion transmitted from the reducer to the linear motion of the piston, and press-

es the pad connected to the piston against the disk to obtain the clamping force. 
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In this study, the screw was modeled as a torsional spring damper. The rotation 

speed of the screw is defined as follows. 

 

cos
scr m pis

scr

N x
r


                           (2.11) 

 

where      is the screw rotation speed [rad/s],   is the screw lead angle,      is the 

screw radius, and      is the displacement of the piston. 

The rotational motion of the screw pushes up the piston on the oblique plane of the 

thread angle   as shown in Figure 2.9. However, since the piston is fixed in the right and 

left directions and cannot rotate, only linear motion is performed. The force 𝑃 acting 

through the screw and the reaction force   acting on the piston due to the clamping force 

act on the piston. 
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where 𝑘    is the modulus of elasticity of the screw,      is the damping coefficient of the 

screw, and 𝐹    is the force of the piston. 
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Fig. 2.9. Structure of the screw thread 

 

The forces 𝑃 and   acting on the pistons are divided into normal force and verti-

cal force perpendicular to the bevel of the screw. 
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The equation of motion of the piston by screw rotation is as follows: 

 

cos sinpis pis FM x F P Q                          (2.14) 

 

where      is the mass of the piston [kg], and      is the displacement of the piston at the 

screw bevel [mm]. 

Since the direction of the piston in Eq. (2.14) is fixed in the right and left directions 

and moves in the vertical direction, the displacement of the piston is as follows: 
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where     
′  is the displacement of vertical direction [mm], and 𝑝 is the pitch of the screw 

[mm]. 

The piston receives the force transmitted from the screw and generates a clamping 

force to transfer it to the pad. The piston is modeled as a spring damper. The equation of 

motion is as follows: 

 

pisc pis padi

pis pis pisc pis pisc

x x x

F k x b x

  

  
                       (2.16) 

 

where      
′  is the displacement of the piston compression,   𝑎𝑑  is the displacement of 

the inner pad, 𝑘    is the elasticity modulus of the piston, and      is the damping coeffi-

cient of the piston. 

Table 2.3 shows the parameters of the screw thread. 

 

Table 2.3. Screw thread parameters 

Thread angle   [deg] 3.2 

Pitch 𝑝 [mm] 2.5 

Screw radius      [mm] 11.5 

Screw stiffness 𝑘    [Nm/rad] 4000 

Screw friction coefficient      [Nm/rad/s] 0.1 

Mass      [kg] 1 

 

Figure 2.10 shows the vertical force acting on the piston of the screw thread. 
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Fig. 2.10. Force acting on the piston 

 

The screw gear converts the rotational motion generated by the motor into a linear 

motion and pushes the brake pad to generate a clamping force. Now we consider the fric-

tion model of the screw thread gear. A friction force is generated which interferes with the 

movement of the piston due to the vertical force   acting on the piston. The friction force 

is simulated by the LuGre friction model which simulates the friction characteristics of stat-

ic and dynamic behavior [43]. Considering the frequently transition between static and dy-

namic operation range of EMB system, the dynamic LuGre friction model is suitable for 

our modeling work. All frictions are modeled by LuGre friction model for its ability to cap-

ture most characteristics of the friction. The LuGre friction model is modeled the contact of 

two objects using a function formula according to the deformation of the bristles. When two 

objects are in contact, the bristles are deformed and a relative velocity is generated between 

the contact surfaces. The average deformation of the bristles can be modeled by selecting 

the state variables. The LuGre friction model can be expressed as 
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where 𝐹  is the Coulomb friction force,    is the Coulomb friction coefficient, 𝐹  is the 

static friction force,    is the static friction coefficient,   is the average deformation 

length of the bristles, 𝑣 is the relative velocity of the friction surface,  (𝑣) is the function 

to simulate the nonlinear friction (Stribeck effect), 𝑣  is the Stribeck velocity,    is the 

stiffness coefficient of the bristles,    is the damping coefficient, and    is the viscous 

damping coefficient. Table 2.4 shows the parameters applied. 

 

Table 2.4. Friction model parameters of screw thread gear 

Coulomb friction coefficient    0.4 

Static friction coefficient    0.3 

Stribeck velocity 𝑣  [m/s] 0.1 

Stiffness coefficient    [N/m] 100000 

Damping coefficient    [Ns/m] 1000 

Viscous coefficient     0.01 

 

The accurate parameters of the LuGre friction model require sophisticated experi-

ment equipment and procedures, which is not available in our case. Therefore, the parame-

ters of the LuGre friction model are derived from the design specifications. The relationship 

between screw efficiency and friction can be expressed as 
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where   is the screw efficiency. If we choose the screw efficiency, then the screw Cou-

lomb friction coefficient can obtained by Eq. (2.18). It is assumed that the influence of vis-

cous friction in the EMB system is almost negligible.  

Figure 2.11 shows the force output of the LuGre friction model of the screw thread 

gear. 

 

 

Fig. 2.11. Simulation result of LuGre friction model of the screw thread gear 

 

 

2.2.4 Modeling of the Caliper 
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as follows. During operation, the force of the motor rotation causes the inner pad to come 

into close contact with the disk through the piston, and the piston cannot advance any fur-

ther. When the caliper housing connected to the motor body is pushed back by the reaction 

of the piston, the outer pad is pulled to squeeze the pad onto the disk. As a result of this ac-

tion, the outer pad and the inner pad are simultaneously pressed against the disk and the 

braking force due to friction is obtained. The caliper is modeled by a mass, spring, and 

damper. The equation of motion is as follows: 
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M x b x k x b x k x
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 

 

             (2.19) 

 

where   𝑎  is the mass of the caliper,   𝑎  is the displacement of the caliper,   𝑎   is the 

compression displacement of the caliper,   𝑎  is the damping coefficient of the caliper, 

𝑘 𝑎  is the elasticity modulus of the caliper, and 𝐹 𝑎  is the force of the caliper. 

Table 2.5 shows the applied caliper parameters. 

 

Table 2.5. Caliper parameters 

Caliper stiffness 𝑘 𝑎  [N/m] 2.5 10
11

 

Caliper friction coefficient   𝑎  [Ns/m] 10000 

Caliper mass   𝑎  [kg] 5.5 

 

2.2.5 Modeling of the Pads 

 

The pads are located on both sides of the disk and the clamping force is generated to 

compress the disk by the force transmitted from the piston of the EMB and the force trans-

mitted from the caliper. An air gap is maintained between the pad and the disk to prevent 
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drag torque when releasing the brake. Therefore, the clamping force is not generated until 

the pad moves a distance as much as the gap. 

The spring-damper model is given by the following equations (the inner pad): 
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where   𝑎𝑑 is the mass of the pad,   𝑎𝑑  is the displacement of the inner pad,   𝑎𝑑 is 

the damping coefficient of the pad, 𝑘 𝑎𝑑 is the elasticity modulus of the pad, and   𝑎  is 

the gap distance between the pad and disk. 

The equation of motion of the outer pad is given by the following equations: 
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where   𝑎𝑑  is the displacement of the outer pad, and 𝐹 𝑎  is the force by the caliper. 

The clamping force 𝐹   is expressed by the sum of the inner pad force by the piston 

and the outer pad force by the caliper. 
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where 𝐹 𝑎𝑑  is the inner pad force and, 𝐹 𝑎𝑑  is the outer pad force. If   𝑎𝑑 
′  and   𝑎𝑑 

′  
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are equal, the clamping force can be expressed as follows: 

 

 2cl pad pad pad padF k x b x                          (2.23) 

 

Table 2.6 shows the parameters of the applied pad. 

 

Table 2.6. Pad parameters 

Pad stiffness 𝑘 𝑎𝑑 [N/m] 3 10
7
 

Pad friction coefficient   𝑎𝑑 [N/m/s] 2 10
8
 

Mass   𝑎𝑑 [kg] 0.3 

 

Figure 2.12 shows the displacement of the pad and the output of the clamping force. 

We set the initial air gap of 0.2 mm. From Figure 2.12, it can be confirmed that the dis-

placement of pad of about 0.2 mm and the clamping force accordingly. 
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(b) 

Fig. 2.12. Simulation results of the pad model; (a) Displacement of the pad, (b) Clamping 

force 

 

 

2.3 Control of EMB System 

 

The EMB controller in this thesis has the control structure as shown in Figure 2.13. 

The central ECU transmits the required clamping force corresponding to the driver’s input 

to the controller ECU via CAN communication. The clamping force controller in the con-

troller ECU controls the actuator to precisely follow the received clamping force. The speed 

controller outputs the current command using the speed command received from the host 

controller such as the clamping force controller and the speed measurement obtained 

through differential calculation of the electrical angular. The current controller converts the 

three-phase current of the motor to the   -axis and outputs the voltage required to rotate 
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the rotor using the current measurement and the current command received from the speed 

controller. The output voltage is applied to the motor via the inverter. To improve each con-

troller response, integral anti-windup is incorporated as well as feed-forward compensation 

of the back-EMF and Coulomb friction. The anti-windup technique used the inverse calcu-

lation method. This method reduces the integral term by suppressing the accumulation of 

the integrator by multiplying the difference between the pre- and post-limit values of the 

controller output by the gain. We referred to the Ref. [8, 44, 45, 46, 47] to implement the 

cascaded PI controller. 

 

 

Fig. 2.13. Block diagram of EMB control system 

 

2.3.1 Design of the Current Controller 

 

The current controller uses the PI controller type. The input of the controller is the 

  -axis current command and the current measurement output from the speed controller. 

Assuming that the back-EMF of the motor is forward-compensated, the current controller is 

as shown in Figure 2.14. 
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Fig. 2.14. PI current controller 

 

The   -axis current measurement is obtained by   -axis transformation the phase 

current of the motor. The current controller outputs a voltage required to rotate the rotor in 

accordance with the current command and the current measurement. It is modulated 

through a PWM inverter to allow the motor to apply the appropriate three-phase voltage. 

The maximum torque is generated in the PMSM when the magnetic rotor and the rotating 

frame are maintained at a right angle with the three-phase current control. In this case, the 

 -axis current, 𝑖𝑑, is set to be zero. 

The gain of the current controller depends on the electrical constants 𝐿, 𝑅, and the 

bandwidth 𝜔   of the motor. The equation is expressed as follows. 
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                           (2.24) 

 

In Eq. (2.23), the bandwidth is selected as 10 kHz. The gain of the integral anti-windup 

controller is selected as 1 𝐾  ⁄ .  

 

2.3.2 Design of the Speed Controller 

 

The speed controller uses the PI controller type. The input of the controller is the 

speed command transmitted via CAN communication and the speed measurement measured 
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through the position sensor. Figure 2.15 illustrates a control system with a PI speed control-

ler. 

 

 

Fig. 2.15. PI speed controller 

 

The current controller designed in the previous section is regarded as the 1
st
 order 

time delay type with bandwidth 𝜔  , and the friction coefficient was neglected by includ-

ing the load torque. The speed measurement is calculated from the electrical angle of the 

rotor. However, it is sensitive to the system noise which contains high-frequency compo-

nents, because it is obtained through the derivative of the rotor electric angle. Therefore, a 

properly designed low-pass filter is applied to remove noise. The output of the speed con-

troller is the torque component current command, and the magnetic flux component current 

reference is always set to zero unless a weak field operation is required. 

The gain of the speed controller depends on the motor’s mechanical constant 𝐽, 

torque constant 𝑘 , and bandwidth 𝜔  . This equation is expressed as follows. 
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The bandwidth 𝜔   of Eq. (2.24) is usually chosen to be less than 1/5 of the bandwidth of 
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the current controller. The gain of the integral anti-windup controller is selected as 1 𝐾  ⁄ .  

 

2.3.3 Design of the Force Controller 

 

The clamping force controller is a PI controller, and its output determines the input 

of the speed controller. The force controller controls the clamping force between the pad 

and the disk. Since the force controller determines the command input of the speed control-

ler, the output of the force controller should not exceed the maximum speed of the motor. 

The gain tuning is appropriately performed based on the proportional gain thus obtained. 
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                           (2.26) 

 

where 𝜔𝑚𝑎𝑥 is the maximum speed of the rotor, and 𝐹𝑚𝑎𝑥 is the maximum clamping 

force. The small integral gain is chosen to eliminate the steady state error.  

 

2.3.4 Simulation Results 

 

During application with no initial air gap, the EMB must obtain a clamping force of 

30 kN with less than 5% overshoot and a rising time of 0.15 second. The results of clamp-

ing force control are shown in Figures 2.16-2.18. Typical inputs, specifically, step, absolute 

sine wave of 0.5 Hz, and pulse wave of 1 Hz, are taken into account. 
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Fig. 2.16. 30 kN step response 

 

 

Fig. 2.17. 0.5Hz |sine| wave response  
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Fig. 2.18. 1 Hz pulse wave response 

 

The results show that the EMB cascaded PI controller can regulate the clamping 

force accurately. 

 

2.3.5 Experiment for Evaluation of Simulation Results 

 

This chapter briefly describes the developed EMB system, and verifies the model by 

comparing the EMB simulation results and real EMB output.  

Figures 2.19-2.20 show the prototype and components of the EMB. First, the power 

is generated by a power source applied to the electric motor. The torque of the motor is 

measured through the current sensor built into the inverter and the speed of the motor is 

measured through the encoder. In the Gearhead, the power input from the motor is lowered 

by the reduction ratio and the torque is increased. In the Gear 1, the increased torque of re-
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ducer is transmitted to Gear 2. In the Gear 2, the torque transmitted through the Gear 1 is 

transmitted to the Gear 3 engaged with the screw shaft. In the Gear 3, the torque input 

through the Gear 2 is transmitted to the screw. In the screw, the rotary motion is converted 

into a linear motion and the piston is moved in accordance with the rotation of the Gear 3 

coupled with the shaft. The clamping force generated by the piston is measured in the load 

cell (clamping force sensor).  

 

 

Fig. 2.19. EMB prototype 

 

 

Fig. 2.20. Components of the EMB 
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Figure 2.21 shows the concept of the operation principle described above.  

 

 

Fig. 2.21. Concept diagram of the EMB operation 

 

The EMB system specifications are listed in the Table 2.7. 

 

Table 2.7 Specification of the EMB system 

Electric motor Nominal voltage   48 V 

Nominal speed    15,000 rpm 

Nominal current   3.68 A 

Nominal torque    92.9 mNm 

Gear ratio 86:1 

Weight 8.3 kg 

Size 85 mm   130.5 mm   187.5 mm 

Stroke 29 mm 

Pad lining area   thickness 60 cm
2
   12 mm 

Required clamping force 24 kN or more 

 

The hardware platform for EMB controller consists of a control unit that receive 

commands from the host controller to generate necessary control pulses and an inverter 

unit that switches power supplied to the PMSM according to the control pulses. We used a 

Freescale MPC5643L microcontroller unit, and the detailed configuration is as follows. 
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 CAN, FlexRay, Analog command with host controller interface support 

 DAC 4ch as interface for monitoring 

 Motor quadrature encoder (A, B, Z) interface and hall sensor signal input 

I/O support 

The inverter is configured to supply the required 5 V to each logic circuit through a linear 

regulator by supplying the FET driver with step down to 15 V through the buck converter 

power circuit of the operating power 48 V. Figure 2.22 and Table 2.8 show the control 

board and connectors, respectively. Figure 2.23 shows the configuration of the EMB and 

control system.  

 

 

Fig. 2.22. Control board 

 

Table 2.8 Connectors of control board 

Connector Reference number 

JTAG port P1 

Inverter PWM I/O P2 

Power & command I/O P3 

Encoder & Hall sensor input P4 
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Fig. 2.23. Configuration of the EMB control system 

 

The closed loop control of the EMB model is compared to the clamping force meas-

urement data obtained by the real controlled EMB system. The reference, simulated and 

real clamping force are shown in Figure 2.24. We can see that the controlled clamping 

forces are tracking the reference fairly well. Figure 2.25 shows the simulated and real mo-

tor currents. As the clamping force increases to 24 kN, the instantaneous motor current in-

creases in the reverse direction and then decreases due to the static friction force of the 

gear and screw, and the kinetic frictional force due to rotation. 
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Fig. 2.24. Simulated and real clamping force 

 

 

Fig. 2.25. Simulated and real motor currents 
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As we can notice in Figures 2.24 and 2.25, there are some discrepancies between the 

simulated and real measured value, which means our EMB model and development works 

need further adjustment. These discrepancies relate to a common factor as gear and screw 

thread frictions. As the friction increase, the motor current required increases accordingly. 

In conclusion, the peak and steady state difference of motor current is resulted from the 

friction.  

 

2.4 Conclusions 

 

In this chapter, the mathematical modeling and control system of an EMB used as a 

braking actuator in a BBW systems was designed and its performance was examined 

through simulations. The PMSM used in the EMB actuator, planetary reduction gear, 

screw, inner/outer pad, and caliper was modeled and a cascaded PI controller was designed. 

The equations of motion of each component are derived based on Newton’s second law. 

The EMB model also captures the important effects such as nonlinear stiffness of caliper 

and pad are considered, and friction of the system which is modeled by the LuGre friction 

model. The EMB model can be used sufficiently as a simulator. The developed model will 

be integrated with the full vehicle dynamics and the ABS logics in the future. 
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III. Nonlinear Identification of Electronic Brake Pedal System 

Using Hybrid GMDH and Genetic Algorithm 
 

 

3.1 Introduction 

 

The X-by-wire (XBW) system is a relatively new technology being increasingly 

implemented in modern automobiles. The XBW system is an automotive system that inter-

prets the driver’s inputs and executes appropriate commands to produce desired vehicle be-

havior, typically via a microprocessor based control system. For fault tolerance, a typical 

XBW system consists of redundant sensors, actuators, microprocessors, and communication 

channels. In the XBW equipped vehicle, there are no mechanical or hydraulic connections 

between the driver’s input interface (e.g., throttle, brake, steering) and the target vehicle 

system [48, 49]. 

The brake-by-wire (BBW) system, a type of XBW, was first introduced in the Mer-

cedes Benz SL series in 2001 [50]. However, that BBW system was decommissioned and 

removed from the vehicle a few years later due to a number of field problems. Work on the 

electro-mechanical brake (EMB) in the BBW was being pursued in the late 1990’s by a 

number of automotive companies, including Bosch, Continental, and TRW [51]. However, 

issues related to reliability still remain and must be addressed before these systems can be 

used in an automobile [13]. 

To ensure the BBW system reliability, accurate modeling of the real system is an 

important step. Models can be used for the EMB analysis, to gain a better understanding of 

the system. The models also allow us to predict and simulate the system’s behaviors. Fur-

thermore, models are necessary for designing new processes, analyzing existing processes, 
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designing controllers, optimizations, supervision, and fault detection and diagnosis. For the-

se purposes, various system identifications have been applied in many fields to model and 

predict the behavior of complex nonlinear systems based on given input/output data. 

In this chapter, first of all, the developed BBW systems were described. Based on 

the systems, brake pedal sensor signals were measured. Secondly, a hybrid GMDH/GA was 

applied to identify the system for virtual sensor. We then evaluated the performance of the 

hybrid GMDH/GA as a system identification tool. 

 

 

3.2 Related Works 

 

Many soft computing approaches for identifying and modeling the nonlinear sys-

tems have been proposed. Most of these methods require large amounts of data to estimate 

the parameters of the model in higher order systems [52]. For example, neural networks and 

fuzzy logics are used to identify and predict the nonlinear systems based on empirical raw 

data. Especially, the neural networks are one of the most powerful methods in various fields 

that have been widely employed in recent years [53, 54]. However, when using such meth-

ods, the nonlinear dynamics are not explicitly expressed as a mathematical model. There-

fore, a GMDH was first developed by A. G. Ivakhnenko as a multivariate analysis method 

for complex systems modeling and identification [55]. The main idea in GMDH is to build 

an analytical function in a feed-forward network based on a quadratic node transfer func-

tion whose coefficients are obtained using regression technique. Note that once the analyti-

cal GMDH model has been found, application of this model is very quick and cheap. In ad-

dition, the GMDH identification is often “black boxes”, and they are especially valuable 

when the underlying physics is complex or uncertain while there is plenty of data to devel-
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op a virtual sensor [56]. Kim et al. [57] had applied the GMDH to the analysis of the stop-

ping maneuver of the driver in the new three-dimensional driving simulator. Consequently, 

GMDH provides an effective approach for the identification of higher order nonlinear sys-

tems. However, the GMDH needs a suitable optimization method to find the best network 

architecture. For the best network architecture, the GA is arranged in a new approach, to 

design the whole architecture of the GMDH. This provides the optimal number of neurons 

in each hidden layer and the connectivity configuration needed to find the optimal set of 

appropriate coefficients of quadratic expressions to model the system. 

 

 

3.3 Configuration of Developed BBW Systems 

 

The developed BBW system architecture is proposed and shown in Figure 3.1. It 

consists of the EMB modules, the electronic brake pedal system, a communication network, 

main and local electronic control units (ECUs) and power supplies. The EMB actuators are 

based on the electric motors and a mechanism that applies force to friction pads. The de-

tailed BBW systems are mainly comprised of four types of elements: 

1) Electronic Control Units (ECUs), 

2) Sensors – pedal sensor, hall sensor, and encoder, 

3) Actuator – electric motor, reduction gear, screw and caliper, 

4) Communication network – CAN and FlexRay. 
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Fig. 3.1. Architecture of developed BBW systems 

 

Figure 3.2 illustrates the block diagram of the developed BBW systems. Once the 

driver inputs a brake command to the system via the brake pedal, a clamping force com-

mand signal is generated by the main ECU. This command signal is sent to the EMB local 

ECU and display via a communication network. The controller uses the clamping force 

command as a reference input. The controller provides drive control commands for a motor 

drive module. This module controls three-phase currents for the brake actuator which is a 

PMSM, energized by a 42 V power source. In addition to tracking its reference, the control-

ler also controls the current and position of the PMSM. 

 

 

Fig. 3.2. Block diagram of the developed BBW systems 

 

 

3.4 Review of System Identification Based on Soft Computing 
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In this chapter, the architecture and features of neural network, fuzzy, and GMDH 

are briefly described. 

 

3.4.1 Neural Networks 

 

One of the most widely used non-linear system identification is based on the appli-

cation of artificial neural networks (ANNs) [58]. The structure and functionality of ANNs 

has been motivated by the architecture of the human brain. In other words, ANNs are de-

signed to make a computer have human learning ability. ANNs show the ability to learn 

from the environment in an interactive way. They also have remarkable abilities of learn-

ing, recall, generalization, and adaptation to changes of the operating environments [25]. 

ANNs consist of several interconnected processing elements arranged together with 

weighted connections. These elementary units are called neurons. Each neuron in the net-

work operates by taking the sum of the weighted inputs and passing the results through a 

non-linear activation function. Figure 3.3 shows the general architecture of neural networks. 

Network learning is performed through training or exposure to a set of input and output da-

ta where the training algorithm adjusts the weights iteratively [26].  
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Fig. 3.3. Neural network architecture 

 

The system identification of neural networks is defined as the procedure used to find 

the inputs and output relationship of a dynamic model. This step involves four steps: collec-

tion of high quality input/output data, selection of a network structure, training of the net-

work and validation of the trained network. The quality of the trained network is related to 

the quality of the training data that can be obtained by either an experiment of the real sys-

tem to be modeled or from a simulation using a mathematical model of the system. To cre-

ate a meaningful model of the identified system, the training data must include information 

about the overall operating range of the system. Then, the network architecture should be 

selected. The next steps involve training and evaluating the model, respectively. A com-

monly used verification method is to investigate prediction errors by running sets of test 

data on the trained model [59].  

ANNs has several properties that make them an attractive tool for system identifica-

tion. However, the successful application of the ANNs in the system identification depends 
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on a proper selection of the neural network architecture. For the multi-layer perceptron 

(MLP) of the classical ANNs, the problems are the selection of number of layers and the 

number of neurons in a particular layer. If the obtained network does not satisfy pre-defined 

requirements, a new network structure is selected and the parameter estimation is repeated 

again. An arbitrary selection of the ANNs structure can cause the model uncertainty [58]. 

 

3.4.2 Fuzzy Model 

 

The human brain interprets the information of the ambiguous and uncertain stimuli 

perceived by the senses. Fuzzy is a systematic calculation method to deal with this unclear 

information. Fuzzy logic, introduced by Zadeh in 1962, emulates the way in which the hu-

man brain deals with concepts such as uncertainty, vagueness, and imprecision [22]. It al-

lows human to express and process relationships in form of rules. The rules of fuzzy models 

are generally determined by an expert who knows the system very well or by numerical 

methods. A typical fuzzy model consists of a rule-base module that contains a number of 

fuzzy if-then rules, a database that defines the membership functions (MFs) of the fuzzy 

sets used by the fuzzy rules, a decision-making subsystem that performs the inference oper-

ations on the rules, a fuzzification module that transforms inputs to degrees of membership 

to different fuzzy sets and finally, a defuzzification module that transforms the fuzzy results 

into an output [60]. Figure 3.4 shows the block diagram of a typical fuzzy inference system.  
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Fig. 3.4. Block diagram of fuzzy inference system 

 

3.4.3 Group Method of Data Handling 

 

In general, the complex multivariate modeling has difficulties in determining the 

structure of a model by selecting variables among the many input and output variables, and 

the amount of data required for estimation becomes large when the number of the coeffi-

cients of the estimation method increases. To overcome this drawback, A. G. Ivakhnenko 

proposed a GMDH algorithm [55]. GMDH is a multilayered network with a certain struc-

ture determined through training. Not only is the nonlinear dynamics are expressed as a 

mathematical model, the polynomials are characterized by higher order terms without in-

stability problems [61, 62]. It aims to find relationships between one output and a frequent-

ly large set of possible inputs. The network determines which of the possible inputs can ac-

tually be associated with the system being identified. Therefore, the network is built up lay-

er by layer during training. Each layer has a neuron with only two inputs; the output of each 

neuron is a quadratic function of its both inputs. The parameters of the quadratic functions 

are obtained using linear regression analysis. Before adding a new layer, the previous layer 

is trained. During this training, for each unique combination of two inputs, a neuron is 

trained and on the basis of a certain selection criteria, only the best performing neurons are 

selected. Then, a new layer is added, and the whole procedure of training is performed 
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again on this new layer. Adding new layers are done if some stopping criteria are achieved 

[30, 63, 64].  

The Table 3.1 shows the historical trend of soft computing. A detailed description of 

GMDH algorithm and its application in the electronic brake pedal system identification will 

be provided in the following chapter. 

 

Table 3.1. Historical trend of soft computing 

 Neural Networks Fuzzy Other Methodologies 

1950s Perceptron (1957)   

1960s Adaline, Madaline 

(1960) 

Fuzzy sets (1965) GMDH (1968) 

1970s Back-propagation 

(1974),  

Cognition (1975) 

Fuzzy controller 

(1974) 

Genetic algorithm (1970) 

1980s Self-organizing map 

(1980),  

Hopfield net (1982) 

TSK model (1985) Artificial life immune 

modeling (1985) 

1990s  Neuro-fuzzy (1990), 

ANFIS (1991), CAN-

FIS (1994) 

Genetic programming 

(1990) 

 

 

3.5 Application of Hybrid GMDH/GA to the Electronic Brake Pedal Sys-

tem 

 

In this section, we describe for a hybrid GMDH/GA and propose the schematic of 

brake pedal system identification. 

 

3.5.1 GMDH Algorithm 

 

The general connection between the inputs and output variables can be expressed by 
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a complicated polynomial series in the form of the Volterra series, known as the Kolmogo-

rov-Gabor polynomial [29, 30]: 
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where   is the input to the system,   is the number of inputs and   are coefficients. For 

most applications the quadratic forms for only two variables, which are called partial de-

scriptions, are used in the form to predict the output as follows: 
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To obtain the value of the coefficients   for each model, a system of Gauss normal 

equations is solved. The coefficient of nodes in each layer is expressed as follows. 
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The main function of GMDH is based on the forward propagation of a signal 

through nodes of the net similar to the principal used in classical neural nets. Every layer 

consists of simple nodes each of which performs its own polynomial transfer function and 

passes its output to nodes in the next layer. The basic steps involved in the GMDH model-

ing are as follows [57, 65]: 

Step 1: Select input variables 𝑋 = {  ,   , … ,  𝑚}. Divide the available data into training 

and checking data sets. Before applying the algorithm, the inputs and output are normal-

ized. 

Step 2: Construct 𝑘 = (𝑚
 
) =  ( − 1) 2⁄  new variables 𝑍 = {  ,   , … ,  𝑘} in the train-

ing data set and construct the regression polynomial for the first layer by forming the quad-

ratic expression which approximates the output 𝑦. 

Step 3: Identify the contributing nodes at each hidden layer according to the value of the 

root mean square error (RMSE). Eliminate the least effective variable by replacing the col-

umns of 𝑋 (old data) by the new columns of 𝑍. 

Step 4: The GMDH algorithm is carried out by repeating Step 2 and 3 of the algorithm. 

When the errors of the checking data in each layer stop decreasing, the iterative computa-

tion is terminated. 

The network constructed using the self-organizing GMDH algorithm is shown in 

Figure 3.5 [66]. 
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Fig. 3.5. Self-organizing GMDH algorithm 

 

3.5.2 Hybrid GMDH/GA based on Genome Representation 

 

The GA is commonly used in the training of neural networks in terms of associated 

weights or coefficients, and has successfully performed better than traditional gradient-

based techniques. In most GMDH algorithms, the neurons in each layer are only connected 

to neurons in the adjacent layer. Taking advantage of this feature, it is possible to present a 

simple encoding scheme for the genotype of each individual in the population [67, 68]. 
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Fig. 3.6. Genome representation 

 

In Figure 3.6, neurons in the first hidden layer are connected to the output layer by 

directly going through the second hidden layer. The genome or chromosome representation, 

which shows the topology of a GMDH, simply consists of a symbolic string composed of 

an alphabetic representation of the input variables [28]. In this encoding scheme, each input 

variable is assigned an alphabetic name, and a chromosome is a string of concatenated sub-

strings of these alphabetic names of inputs. It should be noted that such repetition occurs 

whenever a neuron passes through some adjacent hidden layers and connects to another 

neurons in the next 2
nd

 , 3
rd

 ,… following hidden layer. In this encoding scheme, the num-

ber of repetitions of that neuron depends on the number of passed hidden layers  , and is 

calculated as 2 . 

 

3.5.3 Proposed Scheme of Electronic Brake Pedal System Identification 

 

In the BBW equipped vehicle, the brake pedal sensor is safety-critical component, 

and this failure will disrupt the vehicle’s operation and endanger human lives [69]. The 

main ECU must always be informed of the driver’s intentions to brake or to stop the vehi-
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cle, and fault data from the pedal sensor is a serious problem for vehicle control systems. 

For this reason, the design of a these vehicles need to include safeguards that prevent ab-

normal behavior. General solutions to this problem include providing hardware redundant 

sensors, and applying a fail-safe mechanism. In addition to the complete loss of sensor in-

formation, the ECU may also suffer from an intermittent data loss. This may result from an 

instantaneous short circuit or disconnection, a communication network fault, or a sudden 

increase in noise. To address these problems, we introduce a system identification approach 

based on hybrid GMDH/GA as the virtual sensor [70, 71]. The following Figure 3.7 shows 

the proposed scheme of the electronic brake pedal system identification. In order to model 

and identify the brake pedal system, the following sensory information is captured as in-

puts: pedal effort force [kgf], voltage signal AD1 [V], voltage signal AD2 [V], and pedal 

displacement [%]. The output is the clamping force command [N]. The residual analysis 

will conduct the fault diagnosis function; in other words, it will be used with the measured 

data given by the pedal behavior to compare with the results obtained using the estimated 

data generated by the hybrid GMDH/GA. 

 

 

Fig. 3.7. Proposed scheme of electronic brake pedal system identification using hybrid 

GMDH/GA 
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3.6 Experimental Results 

 

3.6.1 Experimental Setup 

 

For the system identification, tests were made on the BBW systems. Our BBW sys-

tems are composed of brake pedal, pedal effort force sensor, ECUs, wheel speed sensors, 

and EMBs as Figure 3.8 and 3.9. In the EMB system, the electric motor is of the PMSM 

type maxon EC 4-pole motor with ratings of 200 W and 15,000 rpm and ensures that the 

required clamping force command (up to 30 kN) can be achieved. Figure 3.10 shows the 

data sheet of the maxon EC 4-pole motor [72]. 

 

 

Fig. 3.8. Electronic brake pedal system in real car 
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Fig. 3.9. Front wheel equipped with EMB 

 

 

Fig. 3.10. Maxon EC 4-pole motor data sheet 

 

The parameters of interest in this four-input one-output system, which both affect 

the performance of the clamping force command are the pedal effort force [kgf], voltage 

signals (AD1 [V] and AD2 [V]) and pedal displacement [%]. We used the DEWETRON 
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monitoring system in order to acquiring data [73]. DEWETRON software is widely used as 

modular data acquisition equipment in automotive, aerospace and heavy industry. The mon-

itoring system updates in-vehicle information received from each ECU via CAN and over-

all EMB status information in real-time as Figure 3.10. Accordingly, there were a total of 

100,000 experimental data considering four input parameters, as shown in Figure 3.11. Out 

of which 70,000 data points are randomly selected for the training data set while the re-

maining 30,000 data points are selected for the checking data set. We choose the sampling 

interval of 0.2 ms. 

 

 

Fig. 3.10. DEWETRON monitoring system in real car 
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Fig. 3.11. Experimental data; pedal effort force [kgf] (first), voltage signal AD1 [V] (se-

cond), voltage signal AD2 [V] (third), and pedal displacement [%] (fourth) 

 

In the hybrid GMDH/GA, a population size of 20 was employed together with a 

crossover probability of 0.9 and a mutation probability of 0.1 in a generation number of 6 

and number of hidden layer of 4. The hybrid GMDH/GA was implemented on a PC with an 

Intel Core CPU 1.5 GHz and RAM 8 GHz. We can construct the structure of the network, 

which is shown in Figure 3.12. 

 

 

Fig. 3.12. Network structure of the brake pedal system identification using hybrid 

GMDH/GA 
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3.6.2 Comparison of Results and Discussions 

 

The well-known criterion for comparing the different identification methods is the 

root mean square error (RMSE) and correlation coefficients (R) of the predicted outputs 

from each model. The reason for using these criterions is that we need to measure the quali-

ty of the models and also the predictability of the models. 

The neural network was trained for 1000 epochs using the Levenberg-Marquart 

back-propagation algorithm with a learning rate of 0.001 and an error goal of 0.01. Figure 

3.13-3.15 shows the results for the measured, estimated output data and residual errors for 

neural network, GMDH, and hybrid GMDH/GA identification, respectively. When a ran-

dom stepwise and sinusoidal clamping force command is applied, the estimated values fol-

low the target values, which show close agreement with the measured values. Especially, 

the figures show that proposed hybrid GMDH/GA identification offers good estimation per-

formance. 
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Fig. 3.13. Neural network identification results 

 

 

Fig. 3.14. GMDH identification results 
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Fig. 3.15. Hybrid GMDH/GA identification results 

 

Table 3.2. Comparison of performances for different identification techniques 

Identification Techniques RMSE [N] R 

Neural network 3211.8 0.95556 

GMDH 1561.8 0.98949 

Hybrid GMDH/GA 117.5 0.99223 

 

Table 3.2 shows a numerical comparison of the RMSE and R results from different 

modeling methods applied to identification of the brake pedal behavior. As indicated in Ta-

ble 3.2, considering the RMSE and R which are here regarded to be performance indicators, 

the experimental results clearly demonstrate that the hybrid GMDH/GA outperforms the 

other identification methods. In the case of the RMSE performance comparison, the hybrid 

GMDH/GA performed about 92% better than the GMDH and about 96% better than the 

neural network. Considering the RMSE and R performance, the hybrid GMDH/GA identi-

fication may be the best choice because it had the smallest error compared with the other 

methods. In addition, the hybrid GMDH/GA identification shows good performance in cor-



- 67 - 

relation analysis. 

 

 

3.7 Conclusions 

 

In this chapter, we have presented a hybrid GMDH/GA approach which was suc-

cessfully used for the modeling and prediction of the brake pedal behavior. In conclusion, 

the results obtained using the hybrid GMDH/GA were better than those obtained using the 

other identification methods under random complex braking conditions. The accurate mod-

el obtained using the hybrid approach is expected to play an important role in the fault-

tolerant control of the BBW systems in the future. 
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IV. Clamping Force Estimation of Electro-Mechanical Brake 

Using a Hybrid Genetic Algorithm and Kalman Filter 
 

 

4.1 Introduction 

 

Recently, X-by-wire (XBW) for vehicle electronic control has been actively studied 

in the automotive industry. XBW has the effect of improving the design freedom of the ve-

hicle and the fuel efficiency by replacing existing mechanical hydraulics with electrical sys-

tems. It was developed to improve actuation response times by replacing the mechanically 

actuated systems used in conventional vehicles [7]. Furthermore, design and implementa-

tion of brake-by-wire (BBW) systems in the XBW has been the focus of researchers and 

industry experts for decades [12-14]. In previous chapter, Figure 2.2 shows a schematic di-

agram of the typical BBW systems. The human-machine interface (HMI) in the BBW sys-

tem is provided by a pedal feel emulator. Such an electronic pedal is equipped with sensors 

that indicate the level of brake demand required by a driver. The output signals from these 

sensors are processed by an electronic control unit (ECU) that appropriately controls the 

actuators. A high level of safety is employed in BBW systems to ensure fault-tolerant oper-

ation [20]. 

The BBW systems approach reduces weight and is more environmentally friendly 

(due to brake fluid omission) than electro-hydraulic technologies. This scheme uses an elec-

tric motor drive coupled to a reduction gear set-up to provide brake control to each wheel. 

The BBW systems are divided into the electro-hydraulic brake (EHB) which electronically 

controls the hydraulic brake system using a solenoid valve, and the electro-mechanical 

brake (EMB) which controls the brakes directly using an electric motor. The EMB types 
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can be divided into screw-type EMB with screw direct pressurization and electro-wedge 

brake (EWB) with self-reinforcement features of a wedge structure [33, 34]. The EMB sys-

tem allows removal of the brake booster and hydraulic hose, so it requires less space, is 

eco-friendly, and provides faster response time. An electric motor coupled to reduction 

gearing is the general setup used for the EMB actuator. The motor is typically a three-phase 

permanent magnet synchronous motor (PMSM) or brushless DC motor for reasons of com-

pactness and enhanced commutation efficiency. Moreover, there are no sparks in this case, 

unlike when using a brush-type motor. A planetary gear-set connected to a ball-screw are 

generally the components used in the reduction gearing. The reduction gearing generally 

consists of a planetary gear-train connected to a ball-screw that can generate clamping 

force. 

To control the EMB caliper clamping force, a clamping force sensor is typically 

used to close the control loop. A standard motion control architecture (cascaded force, 

speed, and current control loops), after slight alteration, can be used to control an EMB. 

Line et al. [8] exchanged the position control loop with a force control loop for EMB con-

trol purposes. The control system requires the use of the force sensor (normally an encod-

er), and the current sensor for a three-phase PMSM. 

A clamping force sensor is a relatively high-cost device. The elimination of a 

clamping force sensor from EMB designs is highly desirable because of the cost, engineer-

ing problems, and research challenges involved with its use. Moreover, if a clamping force 

sensor is placed close to a brake pad, it will then be subjected to severe high temperature 

that would challenge its mechanically integrity. This situation can be avoided by embed-

ding a clamping force sensor deep within the EMB, (i.e. at the near end of the ball-screw). 

It has been shown that embedding a sensor in this way leads to hysteresis that is influenced 

by friction between the clamping force sensor and the pad and disk interface [17]. This hys-
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teresis significantly influences the accuracy of the clamping force measurement. 

Due to the cost issues and engineering problems involved with using an actual 

clamping force sensor, an opportunity presents itself for the development of a virtual 

clamping force sensor. That is, the opportunity here is to accurately estimate the clamping 

force based on alternative sensor measurements, leading to omission of a clamping force 

sensor. Accurate clamping force estimation techniques are important for automotive safety-

critical systems, and highly dynamic braking situations are known to cause significant inac-

curacies in typical clamping force estimation. Also, if the EMB system fails to operate due 

to a sensor failure, the braking force is lost and the probability of a fatal accident rises 

sharply. 

The focus of this work is to develop a virtual clamping force sensor for sensorless 

control of automotive BBW systems. Two independent models (dynamic stiffness model 

and torque balance model) were proposed to estimate clamping force with the help of in-

formation from the remaining sensors. Then, a hybrid approach using a Kalman filter and 

genetic algorithm (GA) was developed to improve clamping force estimation performance. 

The GA was applied because the distribution of noise is usually unknown, and manual tun-

ing of the Kalman filter using the trial-and-error is very time consuming. A real-coded GA 

was used to optimize the noise matrices and thereby improve the performance of the Kal-

man filter. The dynamic stiffness model was used as the state-space system equation, and 

the torque balance model was used as the measurement equation. 

 

 

4.2 Related Works 

 

A clamping force estimation algorithm was first studied by Schwarz et al. [17] for 
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use on an EMB caliper designed for a disk brake. Schwarz et al. [17] proposed a clamping 

force estimation method using the relationship between the angular displacement of the mo-

tor and a clamping force. This method has the advantage that it does not need to consider 

friction because it utilizes the average torque during the clamping and the releasing; how-

ever, this method has errors because nonlinear effects were not considered. Saric et al. [18] 

proposed another method using the relationship between the angular displacement of the 

motor and the clamping force in the frequency domain. This method can be adopted in a 

system that is required to have rapid response characteristics such as anti-lock braking sys-

tem (ABS). Most recently, Eum et al. [20] proposed a sensorless robust force control for 

improving the control performance of an EMB applicable for commercial city buses. A cas-

cade control strategy was proposed and a disturbance observer was employed to enhance 

control robustness against model variation. There have been some previous studies on the 

estimation techniques used for clamping force in the EMB, but some intrinsic characteris-

tics of the brake unit have not been fully studied. 

Sensor fault diagnosis and fault-tolerant control can be found in the literature on 

PMSM drives [74]. Regarding the motor position estimation method for a PMSM, the liter-

ature is concentrated in three main areas. The first group of methods use estimation based 

on the back-EMF voltage. In voltage model methods, the measured voltage and currents are 

used to estimate the position of the rotor flux linkage on the basis of the voltage equations 

of the permanent magnet motor. However, the problem with using the back-EMF technique 

to estimate position is that at zero speed, the back-EMF approaches zero [75]. The second 

group of methods uses robust control algorithms, such as sliding mode control techniques. 

These algorithms are insensitive to parameter variations and disturbances [76]. Therefore, 

sliding mode control has been presented as a robust estimation method. A negative aspect 

of the sliding mode control technique is the discontinuous nature of its control action [77]. 
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Finally, the third group of methods consists of techniques based on recursive filter algo-

rithms. These techniques are ideally suited to estimate motor position and speed, and to re-

ject measurement noise [78, 79]. However, tuning of the matrices of the model and the 

measurement errors is difficult and requires highly skilled operators. Therefore, there have 

already been approaches to combine a GA with an estimator, e.g. Warwick and Kang [80] 

used a GA in combination with a recursive least squares algorithm. 

 

 

4.3 EMB System Modeling 

 

In this section, we briefly summarize the contents of chapter 2 again. Figure 2.3 

shows the configuration of the EMB which consists of an electric brake motor, ball-screw, 

caliper, brake pad, and disk. Figure 4.1 displays a section view of our developed floating 

type EMB system. 

 

 

Fig. 4.1. Section view of the developed EMB 
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4.3.1 Electrical Modeling of the EMB 

 

The EMB system is an electro-mechanical system consisting of an electric motor, 

caliper, and disk. Therefore, this system requires a complex modeling of both the electric 

motor (electrical part), and the caliper and disk (mechanical parts). 

The motor torque and the motor speed, which correspond to output quantities of the 

electrical subsystem, are dependent on the controllable magnitude and the adjustable fre-

quency of the inverter output currents, 𝑖𝑎, 𝑖 , and 𝑖 . The three-phase inverter output cur-

rents, produced by the pulse-width modulation of the three-phase inverter, are generally 

dealt with as the   -axis currents 𝑖𝑑, 𝑖𝑞, and the neutral-axis current 𝑖  in the electronic 

controller that performs the speed and torque control. 

The    transformation is used for PMSM to transform the reference frame of the 

voltage, current, and magnetic flux [42]. 
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where 𝑣𝑑, 𝑣𝑞 is the  -axis and  -axis voltage; 𝑖𝑑, 𝑖𝑞 is the  -axis and  -axis stator 

current; 𝑅 is the resistance; 𝐿𝑑, 𝐿𝑞 is the  -axis and  -axis inductance; 𝜓𝑑, 𝜓𝑞 is the 

 -axis and  -axis flux linkage; 𝜔  is the motor synchronous speed (or electrical angular 

speed); 𝜙 is the flux linkage due to magnetic rotor. 

The electrical motor torque of the PMSM can be expressed as, 
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The maximum torque is generated in the PMSM when the magnetic rotor and the 

rotating frame are maintained at a right angle with the three-phase current control. In this 

case, the  -axis current, 𝑖𝑑, is set to zero and the following assumption is made. 

 

3

2
m q m qT P i k i                            (4.3) 

 

where 𝑘𝑚 is a motor torque constant. The relationship between the synchronous speed 𝜔  

and the rotational speed 𝜔𝑚 is as follows. 

 

1
m r

P
                                (4.4) 

 

4.3.2 Mechanical Modeling of the EMB 

 

The system used in this study is a method of generating the clamping force needed 

to push the brake pads. The torque generated by the motor is changed from rotational to 

translational motion through a ball-screw; then transmitted to the brake pad. The mechani-

cal components of the model are expressed as, 

 

m l m f

d
T T J T

dt
                             (4.5) 

 

where 𝑇  is the load torque, 𝐽 is the moment of inertia, 𝜔𝑚 is the motor angular speed, 
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𝑇𝑓 is the resistance torque due to friction and viscosity. 

The load torque is directly related to the clamping force between the brake pad and 

rotor. The resistance torque is mainly from viscous friction torque in the ball-screw. 
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s
l cl cl

g
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T F F

n


 
                            (4.6) 

 

where 𝐹   is the clamping force, 𝑝  is the screw pitch,    is the gear ratio,   is the 

screw efficiency, and 𝛾 is the gear-train gain. 

 

4.3.3 Nonlinear Characteristics in the EMB 

 

The dominant nonlinearities to consider in the EMB system are force ripple and 

friction. These are caused by the electromagnetic structure of the motor, the mechanical 

structure from which torque generated by the motor is converted to the clamping force 

through the caliper and other imperfect physical factors. 

Force ripple is caused by cogging force and reluctance force. The cogging force oc-

curs as a result of mutual attraction between the rotor magnet and the slot of the stator, 

which occurs even when no current flows through the windings and appears as a periodic 

relationship to the position of the stator relative to the magnet. The reluctance force is 

caused by the change in the self-inductance of the winding to the relative position between 

the magnet and the stator. In particular, the force ripple appears to be large at low speed or 

low load. In order to solve this problem, it is necessary to design the motor with considera-

tion of the electromagnetic structure to minimize the force ripple, and to provide a control 

technique for ripple rejection. 
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Friction is the most nonlinear phenomenon in the entire system due to the nonlinear 

characteristics of all mechanical systems. This phenomenon is also seen in the EMB sys-

tem, which causes errors and performance degradation. 

In previous studies, several models have been proposed to explain the phenomenon 

caused by friction. In general, friction acts in the direction opposite the motion, and the fric-

tion model is expressed in the form of a function of velocity. A typical friction torque mod-

el can be represented by a combination of Coulomb friction, viscous friction, and Stribeck 

friction torque [31]. 
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                 (4.7) 

 

where 𝑇  is the Coulomb friction torque, 𝑇  is the stiction friction torque, 𝜔  is the 

Stribeck velocity, and 𝐵  is the coefficient of viscous friction. 

 

 

4.4 Estimation of the EMB Clamping Force 

 

4.4.1 Dynamic Considerations 

 

Figure 4.2 shows the clamping force versus motor position where the latter is varied 

in a uniform random manner. The uniform random means that all numbers within a speci-

fied range can lead to the same chance of occurring. It is apparent from Figure 4.2 that there 

is significant dynamics in the system, and that the use of a characteristic curve to estimate 

the clamping force has limitations for highly dynamic cases. The clamping force was ele-
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vated during apply and reduced during the release. It was tested in total 4 times of applying 

and releasing actions. The cause of this dynamic will be described and modeled in the fol-

lowing section. 

 

 

Fig. 4.2. Characteristic curve for the EMB 

 

4.4.2 Dynamic Stiffness and Torque Balance Modeling 

 

As shown in section 3, to determine an induced clamping force in an EMB caliper 

using motor current information, the model can be solved as follows: 
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                         (4.8) 
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Application torque 𝑇  is linearly proportional to the clamping force 𝐹   with reduction 

gearing gain 𝛾, which is determined using the specifications from the gear-train and ball-

screw. The inertial torque is linearly proportional to the motor angular acceleration 

   𝑚    ⁄  with a lumped inertia gain 𝐽 that involves both rotational and translational mo-

tions. 

Eq. (4.8) shows that the frictional torque 𝑇𝑓 term is undefined, this is because as 

Olsson et al. [43] explained, deriving an accurate friction model from first principles is 

simply not possible due to the random nature of friction. To improve accuracy, general fric-

tion models should be used in accordance with compensation for friction phenomena that 

occur in a particular system. Friction models of any sort tend to be avoided in trying to es-

timate the clamping force in an EMB caliper because of issues related to accounting for 

wear in the reduction gearing. 

Employment of an applying and releasing action technique avoids the need for using 

a friction model, which is explained in more detail as follows [81, 82]. At both these in-

stants the application of Eq. (4.8) yields: 
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                       (4.9) 

 

where 𝑇𝑚,   and 𝑇𝑚,   indicate applying and releasing torque, respectively. The friction 

terms in Eq. (4.9) have approximately the same magnitudes but opposite signs due to the 

change in the course of motor travel. Adding Eq. (4.9) cancels out the friction terms, and 

after some manipulation the following equation to estimate clamping force 𝐹   can be 
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found: 
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In general, the main problem with this method for clamping force estimation is the 

limitation for high speed applications. It is very difficult to collect the applying and releas-

ing actions with the same motor angle information at high speed. A means to cope with the-

se problems was first proposed by Schwarz et al. [17], who put forward the use of a caliper 

characteristic curve to provide feedback control of the applied clamping force. In the in-

stants where Eq. (4.10) can be applied, it is used to adapt the parameter variations in the 

characteristic curve associated with pad wear and thermally dependent stiffness changes. 

Saric et al. [18] developed a dynamic stiffness model to handle such viscoelastic ef-

fects. Consider a first order transfer function expressed by the following equation: 

 

 
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                         (4.11) 

 

where  𝑚 and 𝐹   denote the motor position and estimated clamping force in s-domain, 

respectively. The gain 𝐾  and time constant 𝜏 are the parameters to be determined. Con-

verting Eq. (4.11) into time-domain yields: 
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When the electric motor is at low speed  𝐹    ⁄ ≈ 0, therefore the clamping force will 

nearly be linearly proportional to the motor position. However, as shown in Figure 4.2, a 

characteristic curve for an EMB is non-linear and can be accurately described by a third-

order polynomial. This non-linearity, at the very least, can be attributed to variation in stiff-

ness exhibited by the brake pads and the caliper bridge [83]. Based on this, a more accurate 

variation of Eq. (4.12) is as follows: 
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where Λ , Λ , and Λ  are stiffness parameters. The discrete-time notation of Eq. (4.13) is 

more practical for use in a digital processing system and is expressed in a simplified form 

as follows: 

 

         3 2
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where  3,   ,   , and    are experimentally determined constants. Because high speed 

measurement was used for parameter tuning in Eq. (4.14) such situations are weighted more 

heavily with regards to accuracy. This is a desired outcome because it allows performance 

for high deceleration safety-critical braking situations to be optimized. 

The generalized discrete-time model based on the torque balance approach will now 

be described. A simplified friction model is as follows [43]: 

 

 sgn m
f g cl

d
T F C

dt




 
   

 
                      (4.15) 



- 81 - 

 

where    and   are the reduction gearing coefficient of kinetic Coulomb friction and ki-

netic friction offset respectively. The kinetic friction offset is required to take into account 

frictional resistance prior to inducing a clamp. The sign function    ( ) (1 for positive and 

-1 for negative arguments) is included to model the friction sign change that occurs between 

applying and releasing actions. It should be noted that stiction is not included in the friction 

model. This is because this paper is concerned only with estimating the clamping force for 

dynamic braking scenarios. 

To calculate clamping force using a torque balance model approach, it is necessary 

that the friction model parameters be updated at timely intervals. A discrete-time form for 

practical use in clamping force is as follows: 
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where    is the sampling time. 

After some algebraic manipulation of Eq. (4.16), the result is shown below in dis-

crete-time notation: 
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The following section details how we setup the novel Kalman filter optimized by 

GA for tracking EMB clamping force obtained from Eq. (4.14) and (4.17). 
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4.5 Design of a Hybrid Genetic Algorithm and Kalman Filter to Combine 

the Dynamic Stiffness Model and Torque Balance Model 

 

4.5.1 Combining the Dynamic Stiffness Model and Torque Balance Model Using a 

Kalman Filter 

 

In the previous chapter, we introduced the dynamic stiffness model and the torque 

balance model. In this chapter, we design a Kalman filter suitable for the EMB clamping 

force virtual sensor and fuse and track both models. A Kalman filter is a linear, recursive, 

and optimal estimator and is widely implemented in control systems to give improved sys-

tem state estimates [84]. Figure 4.3 shows a block diagram representation of a Kalman filter 

in a control system. By using recursive calculations, the Kalman filter is capable of estimat-

ing the state of a linear dynamic system from a series of noisy measurements (Gaussian 

noise). The Kalman filter uses system dynamics as well as other measurement sources to 

estimate states. The noises that affect both of the kinds of estimates received by the Kalman 

filter (see Figure 4.3), are required to be uncorrelated. 

 

 

Fig. 4.3. Computational scheme of a discrete Kalman filter 
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The Kalman filter is able to estimate unknown variables of a dynamic system using 

the following information [85]: 

1) A linear model of the dynamic system including statistics (covariance matrix  ) of the 

random disturbances that enter the system (including random model error). 

2) A linear relationship between the measurable output variables of the dynamic system and 

the variables to be estimated. This relationship may be represented by an output matrix (i.e., 

measurement matrix)  , and also includes random noise (i.e., random measurement error) 

with covariance matrix 𝑅. 

3) Output measurements. 

The Kalman filter uses a predictor-corrector approach, which consists of the follow-

ing two steps: 

1) Predict the unknown variables and the associated error covariance matrix. This is an a 

priori estimate. This predictor step uses the process model and the covariance matrix of the 

input disturbances (including the model error). 

2) Correct the predicted variables and the associated error covariance matrix. This is an a 

posteriori estimate. This corrector step uses the output relationship (measurement matrix) 

and the covariance matrix of the measurement noise. 

The derivation of the Kalman filter algorithm is as follows. A discrete state-space 

representation of a linear dynamic system with noises may be written in the following form: 
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where   is the system state vector, 𝑢 is the control inputs, 𝑤 is the process error vector, 
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  is the measurement vector, 𝑣 is the measurement error vector, 𝐾 is the Kalman filter 

gain, 𝐴 is the transition matrix, 𝐵 is the control input matrix, and   is the measurement 

matrix. 

It is assumed that the transition matrix and control input matrix are not time-

varying. The discrete-time notation, 𝑘 𝑘 − 1, indicates that the estimate at 𝑘 was deter-

mined given knowledge at 𝑘 − 1. The linear estimator and filter gain are defined as fol-

lows: 
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where 𝑃 is the covariance matrix of state estimates, and 𝑅 is the measurement error co-

variance matrix. 

The matrices 𝑃(𝑘 𝑘 − 1) and 𝑃(𝑘 𝑘) for a Kalman filter are given below as: 
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where   is the process error covariance matrix, and   is the identity matrix. 

It should be noted that the process error covariance   and measurement error co-

variance 𝑅 matrices may be time-variant, however, here, we assume them to be constant. 

A Kalman filter of any type involves the recursive application of prediction and filtering 

cycles. Many researchers have given complete derivations of the Kalman filter algorithm 

[86-89]. 
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To employ a Kalman filter for the EMB clamping force estimation, we first used Eq. 

(4.14) as our state-space system equation. The constant    from Eq. (4.14) is taken to be 

equal to 𝐴(𝑘). The clamping force in Eq. (4.14) is non-linearly proportional to the motor 

position input data. This non-linearity does not require the use of an extended Kalman filter 

(EKF) because it is not state dependent. To integrate this non-linearity within the Kalman 

filter algorithms we apply the following equality: 
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where  ̂ is taken to be 𝐹̂  . The a priori estimate of the state 𝐹̂  (𝑘 𝑘 − 1) is taken to be 

directly equal to  ̂(𝑘 𝑘 − 1). The measurement equation is as follows: 
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For this situation, the matrix  (𝑘) is taken to have a constant unit value. In Eq. (4.24), the 

measured data is substituted into the calculated clamping force of Eq. (4.17). The two mod-

els are combined using the Kalman filter to give an optimized estimate of clamping force. 

Figure 4.4 shows a block diagram of the Kalman filter applied to the EMB system. 
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Fig. 4.4. Block diagram of the Kalman filter for the EMB system 

 

4.5.2 Optimizing the Noise Matrices of a Hybrid Genetic Algorithm and Kalman Filter 

 

Since we cannot know   and 𝑅 matrices in a real vehicle environment, we pro-

pose a method to improve the EMB clamping force estimation performance by applying 

optimization technique to the Kalman filter. The GA, introduced by John Holland, is a 

method based on biological evolution [90]. Essentially, the GA is a guided random search 

technique, which follows a scheme of random selection, evaluation and evolution, and a 

good research summary may be found in [26]. 

The GA has a powerful encoding mechanism that enables the representation of a so-

lution vector as either a binary string or real-coded. In order to find the best matrices  , 

and 𝑅 for the Kalman filter, a real-coded GA was employed. The real-coded GA has many 

advantages for optimization of numerical function over binary encoding. Efficiency of the 

real-coded GA is increased because there is no need to convert chromosomes to phenotypes 

before each fitness evaluation; less memory is required and; there is no loss in precision 

from the conversion between binary and real values. The procedure for making the real-

coded is outlined as follows [91]: 

1) Population Representation: The covariance matrices  , and 𝑅 are coded into a long 
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real-coded string, chromosome. 

2) Initial Generation: The process begins by randomly generating an initial population of 

long real-coded strings.  

3) Fitness Evaluation: In the current generation, each of the strings is decoded back to the 

corresponding diagonal elements of the two matrices. Then, these diagonal elements from 

each string are separately sent to the Kalman filter of the EMB system to yield an objective 

function (which is the mean squared error of the predicted clamping force). Finally, these 

strings are ranked according to the value of the objective function by a linear ranking meth-

od. 

4) Reproduction: Reproduction is a process in which parent structures are selected to form 

new offspring (children). For this, the stochastic universal sampling method was employed. 

5) Crossover: The single-point recombination method is used to exchange information be-

tween two chromosomes. 

6) Mutation: A Breeder GA is used to implement the mutation operator for the real-coded 

GA, which uses a nonlinear term for the distribution of the range of mutation applied to the 

gene values. This mutation algorithm is able to generate most points in a hypercube defined 

by the variables of the individual and range of the mutation. By biasing mutation towards 

smaller changes in gene values, the mutation can be used in conjunction with recombination 

as a foreground search process. 

7) Replace: Place new offspring in the old population to create a new population and use 

the newly generated population for the next run of the algorithm. 

8) Iteration: The real-coded GA runs iteratively repeating processes 3) to 7) until a popula-

tion convergence condition is met, or the given maximum number of iterations is reached. 

The GA calculation procedure is summarized in Figure 4.5. 
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Fig. 4.5. GA calculation process 

 

With the Kalman filter optimized by GA concept to track the clamping force in the 

EMB system defined, the next section briefly describes the test bench developed to obtain 

necessary the data for analysis. 

 

 

4.6 Experimental Setup and Results 

 

4.6.1 Experimental Setup 

 

Our test bench was setup for use on the newly developed EMB caliper. Figure 4.6 

shows the developed systems. The electric motor is of the PMSM-type maxon EC-4 pole 30 

motor, with ratings of 200 W and 15,000 rpm and ensures that maximum clamping forces 

can be achieved. To interface with the motor and ECU devices, the CAN and FlexRay net-

works were utilized. The PC provides a real-time operating system that was implemented to 

control the motor position. The electric motor is controlled by cascaded PI controller with 

the standard motion control architecture; force, speed, and current control loops. The PC 

has an Intel Core CPU 1.5 GHz and RAM 8 GHz. To measure the motor position, encoder 

output is taken from the coupled the servo-motor. The resolution of this encoder output 

provides 1,000 counts per turn. A clamping force sensor is placed in between the brake 
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pads to measure the actual force induced by the brake pads. The sensor data was collected 

using the DEWETRON monitoring system. The monitoring system updates in-vehicle in-

formation received from each ECU via CAN and overall EMB status information in real-

time. Figure 4.7 shows the actual clamping force signal measured for 32 seconds for the 

stepwise dynamic braking. The clamping force sensor data was gathered at 0.2 ms sample 

intervals. Therefore, total acquired data are 160,000 samples.  

 

 

Fig. 4.6. Test bench with the EMB 
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Fig. 4.7. Actual clamping force for stepwise dynamic braking 

 

4.6.2 Comparison of Results and Discussions 

 

The Kalman filter used for tracking the clamping force was applied to the two mod-

el’s data. We used constant process error variance of 1 and measurement noise variance of 

1 to initialize the error variance. Then, the GA was implemented on the PC. To optimize the 

noise matrices of the Kalman filter for the EMB system, the parameters of the GA were set 

as follows: 

1) Initial population size: 40, 

2) Maximum number of generations: 20, 

3) Probability of crossover: 0.9, 

4) Mutation probability: 0.01, 

5) Initial range of real-coded strings: [0.0001; 0.1]. 
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Figure 4.8 shows a gradient convergence process of the real-coded GA. At the 20
th

 

generation, the best mean squared error (MSE) of the predicted clamping force has de-

creased to 8649.778 with the optimized matrices  , and 𝑅. 

 

 

Fig. 4.8. Iteration of GA 

 

Figure 4.9 shows the estimation performance of the proposed method to track the 

clamping force in the EMB system for various clamping force. We used the root mean 

squared error (RMSE) between actual and estimated values as performance indicators. Dur-

ing total 32 seconds, RMSE of the dynamic stiffness model and torque balance model was 

404.670 N and 413.773 N, respectively. The RMSE of the hybrid GA/Kalman filter was 

324.796 N. This is approximately 21.44% improvement on the RMSE of the Kalman filter 

alone of 413.449 N for total 32 seconds. Therefore, we have demonstrated that the use of 
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hybrid GA/Kalman filter which has a recursive aspect, improves the RMSE performance of 

the clamping force estimation. In order to verify the validity of the experiment, the simula-

tion was performed using the EMB model developed by MATLAB/Simulink. The results 

are shown in Figure 4.10. 

 

 

Fig. 4.9. Experimental results of clamping force estimation 
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Fig. 4.10. Simulation results of clamping force estimation 

 

The RMSE performances of each estimation techniques are summarized in the Ta-

ble 4.1. 

 

Table 4.1. Comparison of RMSE performances for different estimation techniques 

Estimation techniques RMSE [N] (Experiment) RMSE [N] (Simulation) 

Dynamic stiffness model 404.670 391.325 

Torque balance model 413.773 420.916 

Kalman filter 413.449 420.653 

Hybrid GA/Kalman filter 324.796 330.904 

 

We refer to Ref. [81] for selecting the criteria of estimation accuracy. The author’s 

goal is to have a smaller RMSE than a clamping force of 390 N at 0.03 g of vehicle longi-

tudinal deceleration in the braking range from 0 to 12 kN and sampling intervals of 1 ms. 

This is a target value set on the assumption that a deceleration of about 0.03 g occurs when 

a clamping force of 390 N is generated at four wheels during braking of the vehicle. It can 
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be confirmed that the estimation accuracy is satisfactory since the RMSE result of the hy-

brid GA/Kalman filter is smaller than the target value of 390 N. Especially, since our de-

veloped EMB system has more than twice the braking range than the system of Ref. [81], 

the estimation accuracy seems to be satisfactory. This estimation performance shows that 

its adaptation for sensorless and fault-tolerant control is possible.  

The advantage of the GA is that a large range of parameters can easily be covered 

without exact a priori knowledge of the actual parameters. One disadvantage of the pro-

posed approach is the demand for high computation power. This is not a problem, while 

doing the calculation offline. For online estimation, however, the calculation has to be done 

in less than real-time, thus requiring several parallel processors, which would increase the 

cost of implementation. Therefore, the practical engineers will need to make appropriate 

application of the GA for the EMB system. 

 

 

4.7 Conclusions 

 

In this chapter, we proposed a cost and design effective solution for an automotive 

EMB actuator in BBW systems. The objective of making a virtual clamping force sensor in 

the EMB system is strongly encouraged by the results. A dynamic stiffness model was used 

to estimate the clamping force that relied on output from an encoder. Based on a torque bal-

ance approach, a second model was used to estimate the clamping force that relied on the 

use of the motor current sensor and encoder. The outputs from the two independent models 

were combined using a hybrid GA/Kalman filter to give accurately track the actual clamp-

ing force. The newly developed estimator was shown via experimental verification to be 

able to handle highly dynamic braking situations. Real-coded GA was found to be a power 
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technique for optimizing the Kalman filter as applied to the EMB system. Based on a real-

coded GA, the optimization procedure enables the noise matrices, on which the Kalman fil-

ter performance critically depends, to be properly selected. The experimental results 

demonstrated that the Kalman filter optimized by GA has good noise rejection and that its 

performance is less sensitive during the dynamic braking. With continued development, the 

possible cost savings inherent in making an accurate virtual clamping force sensor could be 

accomplished in the EMB implementations. However, the clamping force estimator valida-

tions were not performed yet on a rotating disk in the real car. The significance of this issue 

should be investigated in future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



- 96 - 

V. Conclusions and Future Works 

 

 

The EMBs are the brake systems that replace existing hydraulic braking systems 

with eco-friendly and future-oriented technologies and are key technologies for hybrid ve-

hicles. In this thesis, mathematical modeling and the controller for the EMB system were 

designed and implemented using MATLAB/Simulink. In order to simulate the rotational 

motion of motor and reducer, a friction model including Coulomb, viscous, and static fric-

tion model was used and the LuGre model was used to simulate the friction generated from 

the screw by the clamping force. The EMB controller is a cascaded PI type, and the clamp-

ing force controller, speed controller, and current controller are located in order from the 

outside to the inside.  

Then, we proposed a novel identification and estimation method for sensorless con-

trol of an EMB system used as a braking actuator in the BBW systems. In the existing liter-

ature, there was insufficient study on sensorless and fault-tolerant control of the EMB sys-

tem. In this study, we proposed the system identification and estimation based on hybrid 

soft computing, and suggested a method to control the braking force using the estimated 

value even in the case of sensor failure. In the EMB system, the electronic pedal sensor sys-

tem including the ECU and the clamping force sensor are very important factors in terms of 

safety. In the identification study of the electronic pedal system, the performance is clearly 

improved by the hybrid method relative to the conventional methods. The clamping force 

estimation study employed combined model based on a dynamic stiffness model and a 

torque balance model considering the hysteresis during applying and releasing. Also, the 

Kalman filter algorithm optimized by GA improves the estimation performance. Consider-

able amounts of experimental data have been presented in this thesis and this data can pro-
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vide material support for continued future research in the emerging technology. 

In order to improve the existing methods to estimate the clamping force, further re-

search is required. The thermal expansion of the disk was not modeled. An empirically 

based model of the disk thermal expansion with temperature could be developed in future 

work. In addition, the clamping force estimator validations were not performed on a rotat-

ing disk in a real car. The significance of these issues should be investigated in future work. 

As such, the EMB is an eco-friendly and future-oriented technology, and R&D is 

indispensable for regenerative braking systems in green cars such as hybrid vehicles, elec-

tric vehicles, and fuel cell vehicles as well as for improving the performance of existing ve-

hicle brake systems. In addition to the above-mentioned estimation techniques, research on 

ABS control logic in vehicles with the EMB and efficient regenerative braking studies in 

hybrid vehicles should be continued in the future. 
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요 약 문 

전기기계식 브레이크 기반 Brake-By-Wire 시스템에서의 센서리스 

제어를 위한 소프트 컴퓨팅 접근법 

 본 논문에서는 전기기계식 브레이크 (EMB) 기반 brake-by-wire (BBW) 

시스템에서의 센서리스 고장 허용 제어를 위한 새로운 소프트 컴퓨팅 기법을 

제안한다. 

현재 자동차 산업에서 BBW 시스템에 관한 연구가 활발히 진행되고 있다. 

최근 하이브리드 자동차 및 전기 자동차에 브레이크 액츄에이터로 사용되는 

EMB 를 장착하는 연구가 진행되고 있고, 이러한 EMB 시스템의 신뢰성을 위해서 

전기 및 전자 시스템에 고장이 발생하여도 클램핑력 데이터가 손실되지 않아야 

한다.  

본 연구에서는 우선 EMB 시스템의 전동기와 기구부의 수학적 모델을 

정립하였고, 캐스캐이드 형태의 PI 제어기가 EMB 모델을 기반으로 설계되었다. 

기구부는 감속 기어, 스크류 나사 기어, 내/외부 패드 및 캘리퍼로 구성된다. 

전동기에는 영구자석 동기 전동기 (PMSM)를 사용하였으며, 마이크로 

컨트롤러와 인버터를 포함한 전자 제어 유닛 (ECU)을 구성하여 실험을 

수행하였다. EMB 제어기는 캐스캐이드 PI 제어로 구성되며 클램핑력 제어기, 

속도 제어기, 전류 제어기가 외부에서부터 내부의 순서로 배치된다. 

캐스캐이드 PI 제어기의 이득은 전동기의 파라미터 값을 이용하여 매우 쉽게 

조정할 수 있게 설계되었다. 또한 최적의 토크 운전을 보장하기 위해 벡터 
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제어 기법이 적용되었다.  

본 논문의 목적은 신경망, 퍼지 및 유전자 알고리즘과 같은 소프트 

컴퓨팅 기법을 이용하여 BBW 시스템의 전자식 브레이크 페달 센서 시스템과 

클램핑력 센서에서 발생할 수 있는 고장에 대비하거나 센서리스 제어를 위한 

하이브리드 형태의 새로운 시스템 식별과 추정 기법을 적용하는 것이다.  

첫 번째로, group method of data handling (GMDH)과 유전자 알고리즘을 

혼합한 하이브리드 식별 기법에 기반한 가상의 전자식 브레이크 페달 시스템을 

제안한다. GMDH 의 주된 아이디어는 회귀 기법을 이용하여 계수를 얻은 2 차의 

노드 전달 함수를 기반으로 피드포워드 네트워크에서 해석적 함수를 만드는 

것이다. 해석적인 GMDH 모델이 성립되면 이 모델을 이용한 응용은 다른 식별 

기법에 비해 매우 빠르고 계산량이 적다. 본 연구에서는 GMDH 의 최적의 

네트워크 아키텍처를 산출하기 위해 유전자 알고리즘을 혼합하여 전체 

아키텍처를 설계하는 새로운 접근 방식을 EMB 시스템에 적용하였다.  

두 번째로, EMB 액츄에이터 부분에서 클램핑력의 추정에 관하여 

연구하였다. EMB 제어 시스템에 사용되는 주요 센서로는 클램핑력을 측정하는 

클램핑력 센서, 모터 회전각을 측정하는 위치 센서 및 3 상 모터의 전류를 

측정하는 전류 센서이다. 각 센서의 고장을 판단하고 고장이 발생하였을 때 

또는 비용과 구현 측면에서 센서없이 개발할 경우 실제 측정값을 추정값으로 

대체할 필요성이 있다. 본 연구에서는 클램핑 및 릴리징 시 히스테리시스를 

고려한 정확한 클램핑력 추정 기법을 제안하였다. 동적 강성 모델과 토크 평형 

모델을 정립하고 유전자 알고리즘으로 최적화된 새로운 칼만 필터 알고리즘을 
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제시하여 두 모델을 결합하고 클램핑력을 추정하였다. 유전 알고리즘의 적용은 

칼만 필터의 노이즈 공분산 행렬을 최적화하여 추정 정확도를 향상시키고, 

고성능의 병렬 프로세서 사용 시 온라인 추정도 가능하게 한다.  

마지막으로 실험을 통해 제안된 알고리즘들의 성능을 검증하였다. 

 

 

 

핵심어: Brake-by-wire, 전기기계식 브레이크, Group method of data han-

dling, 유전자 알고리즘, 칼만 필터 
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