
2932 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 2, FEBRUARY 2024

Deep Reinforcement Learning-Driven
Scheduling in Multijob Serial Lines: A Case

Study in Automotive Parts Assembly
Sanghoon Lee , Jinyoung Kim , Gwangjin Wi , Yuchang Won ,

Yongsoon Eun , Senior Member, IEEE, and Kyung-Joon Park , Senior Member, IEEE

Abstract—Multijob production (MJP) is a class of flexible
manufacturing systems, which produces different products
within the same production system. MJP is widely used
in product assembly, and efficient MJP scheduling is cru-
cial for productivity. Most of the existing MJP scheduling
methods are inefficient for multijob serial lines with prac-
tical constraints. We propose a deep reinforcement learn-
ing (DRL)-driven scheduling framework for multijob serial
lines by properly considering the practical constraints of
identical machines, finite buffers, machine breakdown, and
delayed reward. We analyze the starvation and the block-
age time, and derive a DRL-driven scheduling strategy to
reduce the blockage time and balance the loads. We val-
idate the proposed framework by using real-world factory
data collected over six months from a tier-one vendor of
a world top-three automobile company. Our case study
shows that the proposed scheduling framework improves
the average throughput by 24.2% compared with the con-
ventional approach.

Index Terms—Multijob serial lines, production schedul-
ing, reinforcement learning (RL), smart manufacturing.

I. INTRODUCTION

SMART and flexible manufacturing is gaining in great pop-
ularity with the development of the Internet of Things, 5G,

big data, and most of all, artificial intelligence (AI) and machine
learning (ML) [1], [2]. For example, a multijob production (MJP)
serial line widely used in practice is a flexible manufacturing
system that produces multiple products within the same serial
line system [3].

Efficient production scheduling is crucial for improving the
throughput of a production line without structural changes. How-
ever, it is challenging to derive an efficient scheduling solution

Manuscript received 30 November 2022; revised 27 April 2023; ac-
cepted 25 June 2023. Date of publication 8 August 2023; date of current
version 19 January 2024. This work was supported by the DGIST
R&D Program of the Ministry of Science and ICT, South Korea, un-
der Grant 23-DPIC-16. Paper no. TII-22-4898. (Corresponding author:
Kyung-Joon Park.)

The authors are with the Department of Electrical, Engineering, and
Computer Science, Daegu Gyeongbuk Institute of Science and Tech-
nology, Daegu 42988, South Korea (e-mail: leesh2913@dgist.ac.kr;
tndnjs101@dgist.ac.kr; wgj2050@dgist.ac.kr; yuchang@dgist.ac.kr;
yeun@dgist.ac.kr; kjp@dgist.ac.kr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2023.3292538.

Digital Object Identifier 10.1109/TII.2023.3292538

within a reasonable time because most production scheduling
problems are nondeterministic polynomial-time (NP) hard with
complex practical constraints [4].

The AI and ML techniques have been applied to production
scheduling problems, e.g., [5] and [6]. In particular, a scheduling
problem, once formulated as a Markov decision process (MDP),
can be solved with reinforcement learning (RL) [7]. Recently,
deep reinforcement learning (DRL) has been applied to solve
scheduling problems in assembly lines [8], [9], [10]. However,
applying DRL-driven scheduling to serial lines under practical
constraints is still challenging. Most of all, MDP modeling of
production scheduling has not been well established [11]. The
MDPs in recent studies are primarily for production systems
with a parallel structure [11], [12], [13], and cannot be directly
applied to MJP serial lines.

In this article, we propose DRL-driven scheduling in MJP
serial lines under practical constraints. The contributions of this
article are listed as follows.

1) We formulate an MJP serial line as an MDP model, which
includes the following practical constraints: identical ma-
chines, finite buffers, machine breakdown, and delayed
reward. To the best of authors’ knowledge, this is the
first study on MJP serial line scheduling with RL that
considers all of these practical constraints.

2) We propose a DRL-driven scheduling framework for
the MJP serial line. We adopt the double dueling deep
Q-learning network (DDDQN) as a main learning algo-
rithm. Unlike existing studies, we use a queueing strategy
to consider the delayed reward of a serial line.

3) We validate our proposed scheduling framework using
real-world factory data collected over six months. Our
performance evaluation shows that the proposed algo-
rithm improves the average throughput by 24.2 % with re-
duced variance compared with the conventional approach.

Our target manufacturing system is an MJP serial line with a
single serial structure, which is widely used in practice. In this
structure, in order to improve the throughput, identical machines
that perform the same task are often placed in series. Scheduling
of identical machines has been substantially studied. However,
most of them have considered identical machines in parallel [14],
[15]. In the meantime, little research has been conducted on
the scheduling of identical machines in series, which is more
complicated than the parallel case. For example, if there are

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-8160-8952
https://orcid.org/0000-0003-4627-3744
https://orcid.org/0000-0002-0152-002X
https://orcid.org/0000-0001-7115-9658
https://orcid.org/0000-0002-2304-7106
https://orcid.org/0000-0003-4807-6461
mailto:leesh2913@dgist.ac.kr
mailto:tndnjs101@dgist.ac.kr
mailto:wgj2050@dgist.ac.kr
mailto:yuchang@dgist.ac.kr
mailto:yeun@dgist.ac.kr
mailto:kjp@dgist.ac.kr
https://doi.org/10.1109/TII.2023.3292538

LEE et al.: DEEP REINFORCEMENT LEARNING-DRIVEN SCHEDULING IN MULTIJOB SERIAL LINES 2933

two identical machines, MA and MB in a parallel placement,
the scheduler only needs to consider the buffer states of both
machines. However, in a serial placement, the scheduler further
needs to consider the order of machines. Assume that the two
machines are placed in the order of MA–MB . Then, even when
MB’s buffer is empty, MB cannot be assigned a job until MA’s
job is completed. Therefore, serial placement of the identical
machines introduces additional starvation and blockage, which
further complicates scheduling.

In our target system, both the model to be produced and the
pattern of the machine employed must be scheduled at the same
time. In addition, the system has finite buffers, and may also
suffer machine breakdown. Thus, each machine experiences
either starvation or blockage, depending on the state of the
buffers and the machines. Because of the serial nature of the
line, the system response to scheduling or so-called the reward
for an action is delayed and should be carefully considered in
MDP modeling of RL. Existing approaches do not properly deal
with these practical constraints.

II. RELATED WORK

An approach for improving the throughput of production
lines is to update the structure of the production lines [16].
However, practical constraints, such as production halts, space
limitations, and budgetary concerns make it difficult to alter the
line structure. A practical approach without structural changes
is efficient production scheduling.

Because most MJP scheduling problems are NP-hard, it is
difficult to derive optimal solutions within a reasonable time.
Therefore, production scheduling using ML techniques is in-
troduced to derive near-optimal scheduling within a reasonable
time [5], [6]. Recently, following the development of DRL [17],
DRL-driven scheduling has been widely studied in assembly
production lines [8], [9], [10].

DRL-driven production scheduling has specific considera-
tions, depending on the target production system. In semicon-
ductor manufacturers, the order of workplace reservation is de-
termined by considering waiting operations, setup status, action
history, and utilization history [8]. The aero-engine assembly
scheduling problem considers the waiting queues, emergency
level of the product, remaining processing time, and machine
utilization to the appropriate machine [9]. In a shipyard assembly
production system, the loading sequence of blocks is determined
by considering the remaining processing time of each block [10].
However, none of these studies consider the practical constraints
of identical machines, finite buffers, machine breakdown, and
delayed reward.

If the MDP describing the production system is complex, it
is difficult to implement DRL-driven scheduling in practice. A
lack of theoretical methodology on MDP modeling leads to a
variety of approaches for modeling the MDP of production sys-
tems [11], [12], [13]. In particular, the use of an effective reward
function significantly affects the performance of DRL-driven
scheduling [18]. In job shop scheduling, the reward is defined as
the critical ratio of the selected action to the cost of the job held
by the system between two consecutive actions [11]. In gantry

work cells, production loss attribution (PLA) and production
loss risk are used for the reward [12]. The researchers in [13]
use a reward table for different action properties. However, their
reward function is inapplicable to our case, which has a serial
structure.

Our case can be modeled as a serial line system, a type of
Bernoulli serial line that includes a finite buffer and machine
failures [19]. In addition, our case includes a constraint of serial
placement of identical machines. Due to the characteristics of the
serial line and the constraint of identical machine placement, it
is not feasible to utilize the MDP model of existing production
systems. To the best of authors’ knowledge, there is no MDP
modeling for the serial line of our case for production efficiency.
Yan and Zheng [20] proposed an MDP model for the serial
line for energy consumption optimization, but only included
evaluation of system production loss in the reward function, and
was scheduled for maintenance. Wang et al. [21] proposed an
MDP model for the serial line, but targeted real-time control of
each machine instead of scheduling of multiple tasks and parts.

As mentioned previously, the adoption of DRL scheduling
methods in production lines contributes to improving production
throughput. However, a DRL-based scheduling method that
appropriately considers the real constraint conditions of a serial
line system has not been studied. In this study, we propose a
DRL-based scheduling method for MJP serial lines by designing
an MDP that considers the characteristics and real constraint
conditions of the serial line.

III. TARGET PRODUCTION SYSTEM

The production system in this study is an automotive parts
assembly system used by a tier-one vendor of a world top-three
automobile company. The data on the assembly line is collected
over six months from May to October 2021. In this section, we
describe the steps involved in processing the collected data and
the target serial line system in detail.

A. Assembly Line

The target system produces a total of 29 models of A/T Levers,
which are levers used to adjust gears in automatic transmissions.
Each of the 29 models is designed for a specific automotive
model. Models go through several processes, including screw
fastening, assembly, performance testing, pressing, calibration,
and end-of-line final inspection.

The assembly line is an automated conveyor system consisting
of 20 machines and 19 buffers. The parts move in one direction,
and there is no reentrant process. Workers put the parts of the
product model into M1 and collect the finished products from
M20. The movement between the machines and the buffers is
fully automated by a pallet on the conveyor. When a machine
finishes assembling, the part moves through the conveyor to
the next buffer. If the next buffer is already full, the part waits
in the machine, which is logged as blockage by sensor data col-
lected every second. Pallets are collected at M19 and resupplied
to M1. So, there is no loss of productivity due to an insufficient
or excessive number of pallets.

2934 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 2, FEBRUARY 2024

Fig. 1. Structure of the serial assembly line.

Fig. 2. WIP of the assembly line.

Fig. 1 shows the structure of the assembly line, where the
circles and squares indicate the machines and the buffers, re-
spectively. The numbers in the squares denote the capacity of
the buffer, and Mi denotes the ith machine. The machines in
black eliminate defective parts. The branch at the valve symbol
afterM19 towardM1 denotes pallet carrying, and there is a buffer
with the capacity of 58 for pallets.

This assembly line can be used to produce multiple models.
Each machine includes processing modules that can perform
processes for multiple models on the same machine. For ex-
ample, M3 performs solenoid cover assembly for all models,
and M5 performs console and lever assembly. When the target
model is changed, the radio frequency identification (RFID)
tag containing information on the target production model is
placed on the pallet and passes through the machines. When the
information is read by a machine, the settings are automatically
altered. Therefore, there is no additional time delay caused by
model changes.

The machine breakdown is managed by the fault monitoring
system of the line. All machines transmit operation data to the
fault monitoring system every second and issue warnings in
the event of a breakdown. This fault monitoring system has
been developed in our previous research [22]. If a machine
breakdown, the assembly process of the machine stops and the
part turns defective. Machine breakdown require repair, and
defective parts can also occur without machine breakdown.
In the case of breakdowns requiring repair, machine repair is
performed by workers. Stopping the entire line for one machine
repair significantly reduces productivity. Therefore, during the
repair of a malfunctioning machine, other machines continue to
operate normally.

Machines following the block after service or block before
service rules operate automatically until blockage occurs. Con-
sequently, if the repair time becomes longer, the machines before
the broken one experience blockage, and subsequent machines

experience starvation. The assembly line machines can handle
defective parts and transfer them to inspection machines M11

andM19 for disposal, if only defective parts are found. Machines
except M11 and M19 identify defective parts and do not proceed
with assembly processing, but have a task time similar to that of
normal parts due to the automated line process.

B. Data Processing

The data from the assembly line are collected every second
using RFID sensors, which includes information on the machine
status, pallet number, inspection status, working time, logging
time, vehicle model, part number, and specifications. The col-
lected data are saved every hour in a CSV file format.

1) Work Time: Because the data are collected all the time,
it also includes information when the plant is not operational.
Fig. 2 shows the work-in-process (WIP) of the assembly line for
one specific day. From the figure, we can know when the line
is interrupted. The causes of interruptions include worker break
time, machine breakdown, and product changes. Since inten-
tional interruptions are excluded when calculating the efficiency
of the machines, it is crucial to identify whether the interruptions
are intentional or not from the data. Interruptions within the
regular work schedule are considered unintentional. The red
horizontal segments at WIP = 0 in Fig. 2 denote the duration of
each work time between intentional breaks. The graph in blue
denotes the WIP of the line. If this graph hits WIP = 0 in a certain
work time, it is considered as an unintentional interruption due
to machine breakdown.

2) Machine Parameters: In this study, the system parameters
of the task time, the average uptime, the average downtime,
and efficiency are extracted from factory data and used for
performance evaluation. The blockage, starvation, and machine
breakdown can shut down machines. However, blockage and
starvation are flow problems that do not affect the downtime of

LEE et al.: DEEP REINFORCEMENT LEARNING-DRIVEN SCHEDULING IN MULTIJOB SERIAL LINES 2935

Fig. 3. Multiple working patterns between M15 and M18 due to pairs of identical machines.

TABLE I
EFFICIENCY OF MACHINES FOR MODEL 46700-H2100

the machine. Hence, only machine interruptions due to machine
breakdown are regarded as the downtime.

We calculate the average uptime and the average downtime
from the collected data. The average uptime represents the
average value of the operation time from one breakdown to
the next breakdown, and the average downtime represents the
average from the breakdown time to the time when the repair
is completed. Thus, the efficiency e of the machine can be
expressed as u/(u+ d), where u is the average uptime and d is
the average downtime.

The efficiency e of the machine calculated from actual data
varies according to which product model is produced. For exam-
ple, the efficiency of the machine M4 is 98.58% for the model
46700-H2100, but 99.37% for the model 46700-M6210. There-
fore, we model the target system by calculating the efficiency of
the machine for each product model. For example, the efficiency
of the model 46700-H2100 is shown in Table I.

3) Buffers: The buffer is the space between machines where
the part is held before the next step. The buffer state can be
obtained from the difference between the serial numbers of parts
in progress for each machine. All parts must pass through M1

to M20 in the order in which they are loaded into the machines.
Therefore, there is no scheduling between buffers and modules.

C. Line Characteristics

A distinctive behavior pattern on the assembly line exists
betweenM15 andM18. Budget and space constraints prevent the
assembly line from operating in parallel. Instead, it is designed
using a series of identical machines that perform the same task. In
particular, (M15,M16) and (M17,M18) are two pairs that handle
the same task, respectively. The calibration process is performed
at M15 and M16, and the force testing process is performed at

M17 and M18. Each model belongs to one of two sets, JA or JB .
The models in set JA require the calibration process once, while
those in JB require the calibration process twice. In addition,
the two sets have different task times in the force testing process.

Fig. 3 shows the pattern of task times between M15 and
M18. Each machine pair, (M15,M16) and (M17,M18), has two
patterns: p1 and p2. In p1, the parts are assembled at the former
machine, M15 and M17, and spend a brief verification time at
the latter machine, M16 and M18. In p2, the parts pass the former
machine and are assembled in the latter.

Therefore, the working pattern set P for model j is given as

P (j) =
{(

p1
x(j), p

2
y(j)

) | x ∈ {1, 2}, y ∈ {1, 2}} (1)

where p1
x(j) is the working pattern for (M15,M16), p2

y(j) is the
working pattern for (M17,M18), and j is the product model.

D. Scheduling Problem

This study aims to minimize the makespan of the entire stock
by selecting the product model and its working pattern for the
next loaded part of M1. The schedule for each scheduling step
i = 0, . . . , NS is defined as

ai = {(ji, pi) | j ∈ J, p ∈ P (j)} s.t Σj∈JNj = NS (2)

where NS denotes the total stocks to be produced, and Nj

denotes the stock of model j. J denotes the set of all product
models. In our case, |J | is 29, and NS is 51 200. In addition,
Tables II and III show Nj for each model j. P (j) denotes the
working pattern set defined in (1). Pattern pi is applied after
M15. However, because the machine’s setting in the factory is
determined by the RFID tag inserted in M1, the product model
and the working pattern should be selected at the beginning of
each scheduling step i. Each scheduling occurs whenever M1 is
uptime and available, therefore the length of scheduling steps is
not fixed.

Moreover, scheduling continues normally even in the case of
blockage or breakdown in the line. This is because our system is
fully connected in a serial manner, and the insertion of parts does
not cause additional blockages. For example, if a breakdown or
blockage occurs atMi+1, parts accumulate in the buffer between
Mi and Mi+1. If the buffer between Mi and Mi+1 becomes full,
inserting a new part causes a blockage in Mi. However, if no
new part is inserted, Mi will experience starvation. As M1 to
M20 are connected in a serial manner, this relationship holds

2936 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 2, FEBRUARY 2024

TABLE II
MODEL INFORMATION - PART 1

TABLE III
MODEL INFORMATION - PART 2

for all i. Therefore, the insertion of a new part does not cause
additional delays in the line.

All the machines (except M14, . . . ,M18) have different task
times for each of the 29 products. Therefore, the scheduling is
to select one out of 116 scheduling actions, which is one of
four patterns for each of 29 products. This is different from
simply scheduling of the 116 products. For example, a part j
with a total of Nj stock has four possible cases of P (j). In
order to consider them as four different parts j, the constraint
of Nj1 +Nj2 +Nj3 +Nj4 = Nj must be satisfied. This leads
to an additional optimization problem to find appropriate com-
binations of (Nj1 , Nj2 , Nj3 , Nj4). If stock is N and the number
of patterns is r, the complexity becomes

(
N+r−1
r−1

)
. Therefore,

the constraint of identical machines adds significant complexity
to scheduling, which highlights the essential need for using
DRL-based scheduling.

IV. DEEP REINFORCEMENT LEARNING SCHEDULING

In this section, we introduce DRL-driven scheduling based
on the DDDQN. First, we describe the agent and environment
of RL. Then, we formulate the target production system as an
MDP and introduce a DRL-driven scheduling framework.

A. Agent and Environment of Reinforcement Learning

In RL, the agent takes an action in the environment and
learns through feedback. Here, the environment is a virtual
production line constructed by the collected data from the actual
production line in Section III. Based on the machine efficiency
obtained by the factory data, the breakdown event of a ma-
chine is implemented as an exponential model. We assume that
the breakdown of a machine follows an exponential distribution.
The exponential model is one of the most widely used probability
models in the related studies [23], [24]. The probability of
breakdown Υ is calculated as follows:

Υj
M (t) = 1− exp(−λE · t). (3)

Here, λE = − ln e, where e is the efficiency of machine M for
product model j, and t is the machine’s uptime. Because, the
breakdown of each machine is monitored in every second by the
fault monitoring system, the unit of t in (3) is 1 s.

In our system, the agent is the scheduler that determines
the next schedule ai at every scheduling step i. We assume
that the scheduler observes the state of the production system
before determining the schedule. This assumption is practically
reasonable because the actual system can monitor the production
state in real time using RFID sensors.

B. Markov Decision Process

Here, we formulate the production system as an MDP. We
consider the practical constraints of identical machines, finite
buffers, machine breakdown, and delayed reward.

1) State: The state si of the production system is observed
at every scheduling step i, which is updated when M1 is empty
in its uptime. Table IV gives the components of the state. In the
table, NM denotes the total number of machines in the assembly

LEE et al.: DEEP REINFORCEMENT LEARNING-DRIVEN SCHEDULING IN MULTIJOB SERIAL LINES 2937

TABLE IV
COMPONENTS OF STATE si

line, NB is the total capacity of the buffer, and |J | is the number
of elements in J . The state consists of information on the parts
in progress for each machine and whether they are in assembly
process or stored in a buffer.

This state design enables recognition of machine breakdowns
and defective parts. The breakdown status of each machine is
recognized through the breakdown feature, made possible by
sending operation data to the breakdown monitoring system
every second. If defective parts are removed at M11, the agent
can recognize information about their disposal through the item
feature of machines and buffers.

We use the task times of each machine, τ (with applying
working pattern) for product model identifier. τ(ai,Mi) denotes
the task times of the product that enters machine Mi through ai.
For example, if a part of schedule a2 is processed in machine
M3, the cycle time is τ(a2,M3). The product model identifier
for a2 is defined as τ(a2,M1), τ(a2,M2),..., τ(a2,M20). Using
the task times of machines as a model identifier eliminates the
need for additional normalization or preprocessing to identify
the product model.

2) Action: The action of agent is determining ai based on
the observed si. Therefore, the dimension of the possible action
is |J | ×NP , where |J | is the number of product models and
NP is the number of possible working patterns. When the
agent performs action ai at si, the environment returns the next
actionable state si+1. It should be noted that an empty action
ai = 0 is used after NS < i because there are no more parts in
the stock. However, even in this case, there are still parts in the
machine and the buffer.

3) Reward: Typically, the reward ri according to action ai is
determined between si and si+1. Most research on production
scheduling formulates an MDP that determines the reward ri
between si and si+1. However, it is ineffective to determine the
reward ri between si and si+1 for a serial system. Due to the
characteristics of serial production lines, the action ai, which
load a part in M1, does not immediately affect the system.

The action a3 that triggers a state transition from s3 to s4

initially affects the machine M1 only. Then, during the part
inserted into the system by a3 is under production, a3 affects
the products, starvation, and blockage. For example, if the part
inserted by a3 has become a product between s40 and s41, then it

means that the system is affected by the action a3 from s4 to s40.
Therefore, the reward r3 with respect to the action a3 cannot be
determined immediately after the action, but can be determined
only after the action is no more in effect to the system, which is
considered as a delayed reward.

The major changes between si and si+1 caused by the se-
quence of previous actions Ap are given as Ap ⊂ {ak |max(0,
i− (NB +NM)) < k < i+ 1}, where i is the current schedul-
ing step, NB and NM are the total number of buffers and
machines, respectively. Consequently, serial systems are char-
acterized by a delayed environmental reward. In fact, a delayed
reward is common in the real world, which means that the reward
for an action is available after a certain time period, rather than
immediately.

Delayed reward refers to the situation where the agent does
not receive an immediate reward for any action it takes, but
instead must wait for a certain amount of time step k before
receiving feedback on the reward. The delay in delayed reward
is typically assumed to be constrained by a polynomial function,
representing the time interval during which the agent occupies a
state and receives feedback (state observation and reward) [25].

A delayed reward results in bias in temporal difference learn-
ing and high deviation in Monte Carlo learning [26]. Traditional
solutions for delayed environmental rewards include wait agent,
memoryless policies, and the augmented approach [27]. How-
ever, these approaches are practically difficult to apply in our
case. Wait agent, waiting for k steps to observe the reward for the
current action is not feasible, and the use of memoryless policies
leads to poor learning performance. Moreover, the augmented
approach constructs an MDP with a larger state space ofS ×Ak

[28], leading to an exponential increase in the state space with
respect to k, making it difficult to apply in practice.

Walsh et al. [27] use planning approaches in environments
with delayed feedback. The planning approaches rely on the
estimation of the most probable current state to determine the
transition kernel. State estimation is sensitive to the size of
the state space, making it infeasible in domains with large
state spaces. Derman et al. [29] propose a method where fu-
ture k steps are inferred before each decision, and the tuple
(st+k, rt+k, at, st+k+1) resulting from executing action at is
used for learning. However, this approach has the drawback of
requiring a fixed value of k to infer states. In addition, Han et al.
[30] propose an off-policy method that explicitly decomposes
the value function into components consisting of history (H)
and current (C) step information. However, this method cannot
use general RL algorithms due to the non-Markovian property
of the modeling.

In this context, we propose a method to solve the schedul-
ing problem in an environment with delayed rewards by
prestoring si, ai, and si+1 and get the reward ri after k steps
for saving it in a replay buffer. The reason we can use this
method is that in the MJP serial line environment, we can clearly
define the range of time steps that directly affect the action,
allowing us to dynamically determine the step k. In the serial
line, we can observe the effect of action ai until step k, where
i+NM < k < i+NM +NB is the step until the production

2938 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 2, FEBRUARY 2024

Fig. 4. Overall framework of DRL-driven scheduling.

of action ai is completed. Therefore, we can extract the reward
ri from the steps separated from si and ai.

Because the objective of scheduling is to minimize the
makespan of the entire stock, the sum of the rewards should
be designed to minimizeT , which is the time required to produce
the entire stock NS . To design the reward, we determine the task
time of the part. The loaded part inM1 at step i is expressed as ai
in (2) and the task time of ai in Mk is expressed as τ(ai,Mk).
Hence, the sum of every task time of ai for each machine is
given as

Ti =

NM∑
l=1

τ(ai,Ml). (4)

Subsequently, the reward ri for action ai is expressed as

ri = Ti − (τout(ai)− τin(ai)) (5)

where τout and τin are the end and the start times of production,
respectively. The reward ri for action ai is not determined
between si and si+1, but determined between sk and sk+1,
where i+NM < k < i+NM +NB . Because, we can observe
τout(ai) between sk and sk+1. In (5), the reward ri is defined as
the negative value of the total delay time of the product loaded at
step i. Thus, maximizing ri for all scheduling step i minimizes
the total production time T .

We do not include rewards for machine breakdowns and
defective parts in our reward function ri. The causal relationship
between machine breakdowns, defective parts, and scheduling
in the target system is unknown. Therefore, including machine
breakdowns and defective parts in the scheduling reward is not
appropriate. The purpose of our reward design is solely to reduce
the total production time through scheduling, not to reduce the
breakdown rate.

C. DRL-Driven Scheduling

In this study, we choose the DDDQN as the RL method, which
is a learning algorithm based on the Deep Q Network (DQN)
introduced in [17]. The DDDQN is a double DQN [31] that
adopts a dueling method [32].

In DDDQN, the agent selects the action with the highest
Q-value by entering the state of the environment into the neural

networks (NN) of the Q-network. The NN is suitable for ex-
pressing the possible states of high dimensions. The Q network
in DDDQN consists of an advantage network (A-network) and
a value network (V-network). Using dueling Q-network for the
A-network and the V-network allows the network to learn which
state is valuable or not. We adopt a target Q-network to prevent
overestimation of the Q-value. The DDDQN uses the Q-network
to select the action and obtain the Q-value from the target
network with the selected action. The weight of the Q-network
is periodically copied to the target Q-network for the stationary
target network.

Fig. 4 shows the overall structure of the proposed DRL-driven
scheduling framework. The virtual production line is a data-
driven event simulator that provides the state of the production
line to the Q-network and receives an appropriate action. The
state si containing the machine and line information is an input
into the Q-network, and the Q-value for each action to be exe-
cuted at the next time step is returned as the output. The Q-value
of ai in si is represented as Q(si, ai; θ) in the Q-network with
the weight of θ. The action ai is selected from the Q-network and
the learning algorithm. The details are presented in Algorithm 1.

Algorithm 1 describes the overall DRL-driven scheduling.
We use the ε-greedy policy in Line 4. With a probability of ε, ai
performs a random action. With a probability of 1− ε, the action
with the highest Q-value is selected. As the episode progresses,
ε decreases. However, the minimum value of ε requires further
exploration. The process in Lines 6–18, which determines the
part and the pattern to be loaded, is performed when the first
machine M1 accepts the next part.

After taking the action ai in the state si, the state si+1

is returned by the environment. However, the reward ri is
not obtained between si and si+1, but between sj and sj+1,
where i+NM < j < i+NM +NB . To resolve this delayed
reward issue, the state-action queue SA is adopted. The tuple
(si, ai, si+1) is stored in SA when si+1 is observed. After ri and
di are determined in step j, the transition (si, ai, si+1, ri, di) is
saved in the replay buffer B as a batch. Here, di is the signal
that the episode ends. If there is no stock left, and all buffers and
machines have no parts, di = 1. Otherwise, di = 0.

The training process in Lines 26–32 is performed if the replay
buffer B exceeds a certain threshold. For effective learning,

LEE et al.: DEEP REINFORCEMENT LEARNING-DRIVEN SCHEDULING IN MULTIJOB SERIAL LINES 2939

Algorithm 1: DRL-Driven Scheduling.
Input: Selection problem
Output: Q-network
1: Initialization: Set Q-network (V -network and

A-network) with random weight θ, target network Q̂
with θ̂

2: for e = 1, 2,..., NE do
3: Reset virtual product line (Machine, Buffer, Stock)
4: ε = max(0.1, 0.8− 0.1(e/200))
5: i = 0
6: while di �= 1 do
7: Observe si
8: x← random value between 0 and 1
9: if J �= ∅ then

10: if x < ε then
11: ai ← randomly in J and P
12: else
13: ai ← argmaxQ(si, ai; θi)
14: end if
15: else
16: ai ← 0
17: end if
18: Load ai in line
19: if ri, di is determined then
20: pop (si, ai, si+1) from SA
21: store transition (si, ai, ri, si+1, di) in B
22: end if
23: Observe si+1

24: push (si, ai, si+1) in SA
25: end while
26: if Size of B > Ntr then
27: for t = 1, 2, . . ., Ntr do
28: Sample transitions (su, au, ru, su+1, du)∈B
29: qu ← Q(su, au; θu)
30: amax(su+1; θu) = argmaxau+1 Q(su+1, au+1)θu
31: yu = ru + γ ∗ Q̂(su+1, a

max(su+1; θu); θ
′) ∗ di

32: Calculate loss L from (8)
33: Perform gradient descent step on L with θ
34: end for
35: end if

replace Q̂ = Q every Nu episodes
36: end for
37: return Q-Network

B must be sufficiently large. The learning algorithm trains
the Q-network using a minibatch of transitions at the end of
each episode. Randomly selected transitions in B are used for
learning because of the problem of correlation between samples
in Line 28. The learning is repeated Ntr times for each episode.

During the training process, the Q-value is calculated as

Q(s, a; θ) = V (s; θ) +

{
A(s, a; θ)− 1

|A|
∑
a′

A(s, a; θ)

}
.

(6)

The Q-value of the sampled transition is given as qu in
Line 29. The maximum Q-value of the next state si is cal-
culated using the target network for a stationary target in
Line 31. The loss l is obtained using a smooth L1 function in
Line 32 [33] as

f(yu, qu) =

{
0.5(yu − qu)

2/β, if |yu − qu| < β

|yu − qu| − 0.5β, otherwise
(7)

where, yu represents the actual value, qu represents the pre-
dicted value, and β is a threshold hyper-parameter. This func-
tion operates as an L2 loss function, i.e., squared difference
between yu and qu, when the prediction error is less than β.
This enables faster convergence similar to the conventional L2
loss function. On the other hand, when the difference between
yu and qu exceeds β, the function operates as an L1 loss func-
tion, i.e., absolute difference between yu and qu. This method
helps to reduce the impact of outliers. Moreover, when the
difference between yu and qu exceeds β, the function adds
−0.5β to make it converge to zero. In this study, we set β to
1. As the value of β increases, the function behaves similarly
to the L1 loss, and when β equals to 0, it behaves as an
L1 loss.

In line 33, the weight θ of the V and A networks is updated
using gradient descent update rule. The gradient descent update
rule using ADAM is as follows:

θt = θt−1 − η
m̂t√
v̂t + ε

(8)

where η is the step size, and m̂ and v̂ are bias corrected estimators
for the first and second momentum, respectively. m̂ and v̂ are
calculated using the moving average and the variance of the slope
of the batch, respectively. Here, ε is a very small number to avoid
dividing by zero. More details can be found, for example, in [21,
p. 2]. In Line 35, for the stationary target, the target network
is a copied Q-network at the intervals of Nu episodes, rather
than every episode. Once the training is finished, the trained
Q-network model is returned.

V. EXPERIMENTAL RESULTS

In this section, we validate the proposed scheduling frame-
work based on real-world factory data. First, we describe the
datasets and training details. Then, we compare the throughput
performance of the proposed scheduling method with that of
the conventional rigid scheduling, deterministic scheduling, and
random scheduling.

A. Data Sets and Training Details

We use the data collected for six months from a tier-one vendor
of a world top-three automobile company. The production line
produces 51 200 products for 29 types of models. TheQ-network
is trained using ADAM [34] with a gradient descent algo-
rithm. The hyperparameters used in the experiment are listed in
Table V.

For training, we use collected data with the conventional
scheduling method that is simple and repetitive. It should
be noted that it is formidable to train the RL scheduling by

2940 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 2, FEBRUARY 2024

TABLE V
HYPERPARAMETERS FOR RL

Fig. 5. Production time and reward with respect to the episode.

applying it to the actual factory without complete verifica-
tion on its effectiveness. Therefore, we conducted the training
of RL policies through data obtained from production with
the conventional rigid scheduling. In the meantime, it is also
possible to train the RL policies with data using other poli-
cies because the DQN is an off-policy algorithm. A detailed
description of conventional rigid scheduling is provided in
Section V-C.

Fig. 5 depicts the learning process with accumulated episodes.
Each bold line in Fig. 5 indicates the moving average of the
reward and production time, respectively. The blurred lines are
the raw data of the reward and production time. As learning
progresses, the reward gradually increases, and the production
time tends to decrease. This is the same for DQN, DDQN, and
DDDQN. Overall, DDDQN shows better learning performance
than DQN and DDQN.

B. Effect of the State-Action Queue

We validate the effect of adopting a state-action queue in
serial line scheduling by comparing with the case without a
state-action queue. The reward function used for comparison

Fig. 6. Production time with respect to the episode. Proposed versus
conventional.

is given as

ri =

{
0, Nout = 0∑Nout

k=1
Tk − (τout(ak)− τin(ak)) Nout > 0

(9)

where Nout denotes the number of products produced between
si and si+1. The definitions of the other symbols are the same
as those in (5).

The reward design is appropriate for the objective function,
which is minimizing the total production time T . However,
the learning process with accumulated episodes shows that
this reward design is ineffective. Fig. 6 shows the learning
process of DDDQN-driven scheduling using different reward
functions. The orange and purple lines indicate production times
of the scheduling using the reward function in (5) and (9), re-
spectively. The blue dotted horizontal line represents the average
production time of rigid scheduling for comparison, which is
the conventional scheduling method. We can know from Fig. 6
that the conventional reward design is inefficient because its
production times are always above the blue dotted line. On the
other hand, scheduling using the state-action queue is effec-
tive because its production times become lower than the blue
dotted line.

C. Throughput Performance Evaluation

We compare the throughput performance of the proposed
DRL-driven scheduling method with those of the conventional
scheduling, deterministic scheduling, and random scheduling.
The throughput of the scheduling methods are measured through
a data-driven discrete-event simulator. We build the simulator
model based on the actual data collected for six months from
a certain factory line. We use production systems engineering
(PSE) theory to model the discrete event of factory line [35]. The
convergence of the numerical algorithms in PSE theory has been
analytically proven and applied to various real-manufacturing
systems. PSE theory has been used for analysis of engine as-
sembly lines and block production lines in Toyota factories [36],
which share many similarities with our system. The modeling
process of our target system through PSE theory is described in

LEE et al.: DEEP REINFORCEMENT LEARNING-DRIVEN SCHEDULING IN MULTIJOB SERIAL LINES 2941

Fig. 7. Throughput performance of the scheduling algorithms.

our previous study [22], [37]. As a result of the validation using
actual data, the average throughput of the simulator gives an
error of less than 5% with the actual throughput. The data used
for validation in this context is distinct from the data used for
modeling. In addition, DRL scheduling is implemented using
Python’s deep learning module PyTorch.

The conventional rigid scheduling is from the raw data anal-
ysis of the actual factory. In the rigid method, ai is determined
using the following simple rules:

ai =

{(
jf ,

(
p1

1(jf), p
2
1(jf)

))
if i mod 2 = 0(

jf ,
(
p1

2(jf), p
2
2(jf)

))
if i mod 2 = 1

(10)

where jf is the first model of the remaining stock J . Thus,
until the stock jf is executed, ai always chooses model jf . If
scheduling step i is odd, the working pattern is (p1

1(jf), p
2
1(jf)).

If it is even, the working pattern is (p1
2(jf), p

2
2(jf)).

The deterministic scheduling circulates the product model one
by one, which is hence titled the circular method. Here, ai is
determined as

ai =

{(
jc,

(
p1

1(jc), p
2
1(jc)

))
if i mod 2 = 0(

jc,
(
p1

2(jc), p
2
2(jc)

))
if i mod 2 = 1

(11)

where c = i mod |J | is the number of cycles, which equals the
types of model left in the stock. Therefore, the model of ai does
not overlap in one cycle. Here, we use the same working pattern
scheduling as in (10). Finally, random scheduling is a scheduling
method that randomly chooses ji and pi.

Fig. 7 shows the throughput performance of the schedul-
ing algorithms. To eliminate the bias caused by failure, we
conduct 100 runs for each method. As a result of the exper-
iment, the proposed scheduling method achieves an average
performance improvement of approximately 24.2% over the
conventional rigid method. As reported in [3], circular schedul-
ing has a higher throughput than rigid scheduling with the
same working pattern pi. In the meantime, random scheduling
degrades the throughput performance compared with the rigid
method.

TABLE VI
THROUGHPUT COMPARISON OF SCHEDULING METHODS

The throughput performance evaluation is summarized in
Table VI. DRL-driven scheduling improves the average through-
put over rigid scheduling by 24.2% and reduces the variance by
approximately 57%. This is because the next schedule ai in the
proposed scheme is dynamically determined by observing the
system state si.

We compare the blockage and starvation times of each ma-
chine to analyze the performance of the proposed scheduling in
detail. Blockage occurs when a part cannot be released because
the next buffer is full, even though the machine has completed
its operation. Starvation is a state in which the machine cannot
perform any work even though the machine is in uptime and
empty because the previous buffer is empty.

Fig. 8 compares the blockage and the starvation for each
machine, respectively. In most machines, the proposed method
results in less blockage. In particular, the blockage times from
M6 to M16 are significantly reduced. In the meantime, the
starvation times from M7 to M16 tend to increase. This is
because our reward function aims to minimize the production
time of each product. Therefore, the Q-network chooses an
action to minimize the blockage time of each product because
the blockage time affects the production time of each product
more significantly than the starvation time. Therefore,
we conclude that DRL-driven scheduling increases the
average throughput by dramatically reducing the blockage time
at the expense of an increase in the starvation time.

In the rigid method, the starvation times of M16 and M18 are
longer than those of M15 and M17. This means that the working
pattern of the rigid method causes more loads to be allocated to
the former machines M15 and M17 in each pair of the identical
machines, respectively. In the proposed scheduling, the loads on
identical machines are well balanced. In addition, the starvation
times of M15 and M16 are similar.

VI. CONCLUSION

In this article, we have investigated the scheduling problem
of a multijob serial line under practical constraints of identi-
cal machines, finite buffers, machine breakdown, and delayed
reward. First, we have formulated an MDP model consider-
ing the delayed reward. Based on the formulated MDP, we
have proposed a DRL-driven scheduling framework with the
DDDQN.

We have evaluated the throughput performance of the pro-
posed DRL-driven scheduling algorithm using real-world fac-
tory data collected over six months. Our evaluation results
have shown that the proposed scheduling method improves the
throughput performance by 24.2% over the conventional one.

2942 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 2, FEBRUARY 2024

Fig. 8. Blockage time and the starvation time of each machine with respect to scheduling.

Our scheduling results can be widely applicable to indus-
trial processes that adopt MJP serial lines. We expect that our
scheduling results will contribute to improving productivity in
various industrial fields, such as automotive parts assembly
processes [36] and multiproduct furniture manufacturing pro-
cesses [38], [39].

REFERENCES

[1] J. Wan et al., “Reconfigurable smart factory for drug packing in healthcare
industry 4.0,” IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 507–516,
Jan. 2019.

[2] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu, “Smart manufacturing
scheduling with edge computing using multiclass deep Q network,” IEEE
Trans. Ind. Informat., vol. 15, no. 7, pp. 4276–4284, Jul. 2019.

[3] P. Alavian, P. Denno, and S. M. Meerkov, “Multi-job production sys-
tems: Definition, problems, and product-mix performance portrait of serial
lines,” Int. J. Prod. Res., vol. 55, no. 24, pp. 7276–7301, 2017.

[4] C. Dimopoulos and A. M. Zalzala, “Recent developments in evolutionary
computation for manufacturing optimization: Problems, solutions, and
comparisons,” IEEE Trans. Evol. Comput., vol. 4, no. 2, pp. 93–113,
Jul. 2000.

[5] M. Saidi-Mehrabad and P. Fattahi, “Flexible job shop scheduling with
tabu search algorithms,” Int. J. Adv. Manuf. Technol., vol. 32, no. 5,
pp. 563–570, 2007.

[6] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for the
flexible job-shop scheduling problem,” Comput. Oper. Res., vol. 35, no. 10,
pp. 3202–3212, 2008.

[7] R. S. Sutton et al. Introduction to Reinforcement Learning. Cambridge,
MA, USA: MIT Press, 1998.

[8] I. Park, J. Huh, J. Kim, and J. Park, “A reinforcement learning approach to
robust scheduling of semiconductor manufacturing facilities,” IEEE Trans.
Autom. Sci. Eng., vol. 17, no. 3, pp. 1420–1431, Jul. 2020.

[9] H. Wang, B. R. Sarker, J. Li, and J. Li, “Adaptive scheduling for assembly
job shop with uncertain assembly times based on dual Q-learning,” Int. J.
Prod. Res., vol. 59, no. 19, pp. 5867–5883, 2021.

[10] J. H. Woo, Y. I. Cho, S. H. Nam, and J.-H. Nam, “Development of a
reinforcement learning-based adaptive scheduling algorithm for block
assembly production line,” in Proc. Winter Simul. Conf., 2021, pp. 1–12.

[11] T. Zhang, S. Xie, and O. Rose, “Real-time job shop scheduling based on
simulation and Markov decision processes,” in Proc. Winter Simul. Conf.,
2017, pp. 3899–3907.

[12] X. Ou, Q. Chang, and N. Chakraborty, “A method integrating Q-learning
with approximate dynamic programming for gantry work cell scheduling,”
IEEE Trans. Autom. Sci. Eng., vol. 18, no. 1, pp. 85–93, Jan. 2021.

[13] D. Shi, W. Fan, Y. Xiao, T. Lin, and C. Xing, “Intelligent scheduling of
discrete automated production line via deep reinforcement learning,” Int.
J. Prod. Res., vol. 58, no. 11, pp. 3362–3380, 2020.

[14] D. Anghinolfi, M. Paolucci, and R. Ronco, “A bi-objective heuristic
approach for green identical parallel machine scheduling,” Eur. J. Oper.
Res., vol. 289, no. 2, pp. 416–434, 2021.

[15] J.-H. Lee and H.-J. Kim, “A heuristic algorithm for identical parallel ma-
chine scheduling: Splitting jobs, sequence-dependent setup times, and lim-
ited setup operators,” Flexible Serv. Manuf. J., vol. 33, no. 4, pp. 992–1026,
2021.

[16] X. Xie and J. Li, “Modeling, analysis and continuous improvement of food
production systems: A case study at a meat shaving and packaging line,”
J. Food Eng., vol. 113, no. 2, pp. 344–350, 2012.

[17] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[18] X. Ou, Q. Chang, and N. Chakraborty, “Simulation study on reward
function of reinforcement learning in gantry work cell scheduling,” J.
Manuf. Syst., vol. 50, pp. 1–8, 2019.

[19] L. Zhang, C. Wang, J. Arinez, and S. Biller, “Transient analysis of
Bernoulli serial lines: Performance evaluation and system-theoretic prop-
erties,” IIE Trans., vol. 45, no. 5, pp. 528–543, 2013.

[20] C.-B. Yan and Z. Zheng, “Problem formulation and solution methodology
for energy consumption optimization in Bernoulli serial lines,” IEEE
Trans. Autom. Sci. Eng., vol. 18, no. 2, pp. 776–790, Apr. 2021.

[21] X. Wang, Y. Dai, L. Wang, and Z. Jia, “Transient analysis and scheduling
of Bernoulli serial lines with multi-type products and finite buffers,”
IEEE Trans. Autom. Sci. Eng., 2022, early access, Oct. 5, 2022,
doi: 10.1109/TASE.2022.3210259.

[22] Y. Won, S. Kim, K.-J. Park, and Y. Eun, “Continuous productivity improve-
ment using IoE data for fault monitoring: An automotive parts production
line case study,” Sensors, vol. 21, no. 21, 2021, Art. no. 7366.

[23] S. Kim, Y. Won, K.-J. Park, and Y. Eun, “An indirect estimation of machine
parameters for serial production lines with Bernoulli reliability model,” in
Proc. 59th IEEE Conf. Decis. Control, 2020, pp. 5540–5545.

[24] S. Kim, Y. Won, K.-J. Park, and Y. Eun, “A data-driven indirect estimation
of machine parameters for smart production systems,” IEEE Trans. Ind.
Informat., vol. 18, no. 10, pp. 6537–6546, Oct. 2022.

[25] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Planning and learning
in environments with delayed feedback,” in Proc. Mach. Learn.: ECML:
18th Eur. Conf. Mach. Learn., 2007, pp. 442–453.

[26] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brand-
stetter, and S. Hochreiter, “Rudder: Return decomposition for delayed
rewards,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 13544–13555.

https://dx.doi.org/10.1109/TASE.2022.3210259

LEE et al.: DEEP REINFORCEMENT LEARNING-DRIVEN SCHEDULING IN MULTIJOB SERIAL LINES 2943

[27] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Learning and planning
in environments with delayed feedback,” Auton. Agents Multi-Agent Syst.,
vol. 18, pp. 83–105, 2009.

[28] K. V. Katsikopoulos and S. E. Engelbrecht, “Markov decision processes
with delays and asynchronous cost collection,” IEEE Trans. Autom. Con-
trol, vol. 48, no. 4, pp. 568–574, Apr. 2003.

[29] E. Derman, G. Dalal, and S. Mannor, “Acting in delayed environments
with non-stationary Markov policies,” in Proc. Int. Conf. Learn. Repre-
sentations, 2021. [Online]. Available: https://openreview.net/forum?id=
j1RMMKeP2gR

[30] B. Han, Z. Ren, Z. Wu, Y. Zhou, and J. Peng, “Off-policy reinforcement
learning with delayed rewards,” in Proc. Int. Conf. Mach. Learn., 2022,
pp. 8280–8303.

[31] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI Conf. Artif. Intell., 2016, vol. 30,
pp. 2094–2100.

[32] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[33] P. J. Huber, “Robust estimation of a location parameter,” Ann. Math.
Statist., vol. 35, no. 1, pp. 73–101, 1964.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Representations, San Diego, vol. 500, 2015.

[35] J. Li and S. M. Meerkov, Production Systems Engineering. Berlin, Ger-
many: Springer, 2008.

[36] J. Li, “Continuous improvement at Toyota manufacturing plant: Appli-
cations of production systems engineering methods,” Int. J. Prod. Res.,
vol. 51, no. 23/24, pp. 7235–7249, 2013.

[37] Y. Won et al., “Toward implementation of production systems engineering
(PSE) method for industry 4.0,” Ph.D. dissertation, Daegu Gyeongbuk
Inst. of Sci., Technol., Daegu, South Korea, 2022.

[38] C. Zhao and J. Li, “Analysis and improvement of multi-product assembly
systems: An application study at a furniture manufacturing plant,” Int. J.
Prod. Res., vol. 52, no. 21, pp. 6399–6413, 2014.

[39] C. Zhao, J. Li, N. Huang, and J. A. Horst, “Flexible serial lines with setups:
Analysis, improvement, and application,” IEEE Robot. Autom. Lett., vol. 2,
no. 1, pp. 120–127, Jan. 2017.

Sanghoon Lee received the B.S. degree in
computer science from the School of Under-
graduate Studies, Daegu Gyeongbuk Institute of
Science and Technology, Daegu, South Korea,
in 2022, where he is currently working toward
the Ph.D. degree in computer science with the
Department of Electrical Engineering and Com-
puter Science.

His research interests include industrial
cyber-physical systems and industrial artificial
intelligence.

Jinyoung Kim received the B.S. degree in engi-
neering and the M.S. degree in information and
communication engineering from the Daegu
Gyeongbuk Institute of Science and Technology,
Daegu, South Korea, in 2019 and 2021, respec-
tively.

He is currently a Technical Research Person-
nel with Begas, Seoul, South Korea. His re-
search interests include data-mining and indus-
trial artificial intelligence.

Gwangjin Wi received the B.S. degree in com-
puter science and engineering from Kookmin
University, Seoul, South Korea, in 2019, and the
M.S. degree in electrical engineering and com-
puter science from the Daegu Gyeongbuk Insti-
tute of Science and Technology, Daegu, South
Korea, in 2023.

He is currently a Technical Research Person-
nel with LIG Nex1, Pangyo, South Korea. His
research interests include scheduling and re-
source management in wireless networks.

Yuchang Won received the B.E. degree in
computer engineering from Gachon University,
Seongnam, South Korea, in 2014, and the M.S.
and Ph.D. degrees in information and commu-
nication engineering from the Daegu Gyeong-
buk Institute of Science and Technology, Daegu,
South Korea, in 2016 and 2022, respectively.

He is currently a Senior Engineer with
SEMES, Hwaseong, South Korea. His current
research interests include production systems
engineering, digital twin, digital transformation,

and automated material handling systems.

Yongsoon Eun (Senior Member, IEEE) re-
ceived the B.A. degree in mathematics and the
B.S. and M.S.E. degrees in control and instru-
mentation engineering from Seoul National Uni-
versity, Seoul, South Korea, in 1992, 1994, and
1997, respectively, and the Ph.D. degree in elec-
trical engineering and computer science from
the University of Michigan, Ann Arbor, MI, USA,
in 2003.

From 2003 to 2012, he was a Research Sci-
entist with Xerox Innovation Group, Webster,

NY, USA, where he worked on technologies in the xerographic marking
process and production inkjet printers. Since 2012, he has been with
the Daegu Gyeongbuk Institute of Science and Technology (DGIST),
Daegu, South Korea, and is currently a Professor with the Department
of Electrical Engineering and Computer Science and also the Direc-
tor of DGIST Resilient Cyber-Physical Systems Research Center. His
research interests include control systems with nonlinear sensors and
actuators, control of quadrotors, communication network, Industry 4.0
production systems, railroad vehicle platooning, and resilient cyber-
physical systems.

Kyung-Joon Park (Senior Member, IEEE) re-
ceived the B.S. and M.S. degrees in electri-
cal engineering and the Ph.D. degree in elec-
trical engineering and computer science from
Seoul National University, Seoul, South Korea,
in 1998, 2000, and 2005, respectively.

From 2005 to 2006, he was a Senior Engi-
neer with Samsung Electronics, Suwon, South
Korea. From 2006 to 2010, he was a Postdoc-
toral Research Associate with the Department
of Computer Science, University of Illinois at

Urbana-Champaign,Champaign, IL, USA. He is currently a Professor
with the Department of Electrical Engineering and Computer Science,
Daegu Gyeongbuk Institute of Science and Technology, Daegu, South
Korea. His research interests include resilient cyber-physical systems
and smart production systems.

https://openreview.net/forum{?}id$=$j1RMMKeP2gR
https://openreview.net/forum{?}id$=$j1RMMKeP2gR

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

