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ABSTRACT With the progressive automation of factories, the demand for deep learning methods capable
of recognizing characters is rising. A billet identification number (BIN) is a string of characters that contains
all information about the billet, but it is often oriented arbitrarily. Because each plant has different features
of data, it requires time and effort to secure enough data to train the model that can be applied to each
plant. In addition, the existing BIN recognition model confuses characters with similar shapes when rotated
because it shares a feature extractor for angle estimation and character recognition. In this study, we propose
a method to solve the problems and improve the BIN recognition performance. We separate the two parts of
extracting angles and characters, allowing each module to independently focus on the features of the data.
Label distribution is used to enhance the angle estimation accuracy with a small dataset, and the triangular
distribution results in the highest accuracy. Finally, to train rotated characters, a large amount of data that are
randomly rotated is required, but by separating the angle and character module, the variation within classes
is reduced, resulting in high BIN recognition performance even with a small dataset.

INDEX TERMS Angle estimation, billet identification, character recognition, label distribution.

I. INTRODUCTION
Deep learning (DL) has been applied to tasks in various fields
[1], [2], [3], including factory automation in the steel industry
[4], [5]. Text recognition is imperative in this industry, and
DLmodels are used to recognize billet identification numbers
(BINs). BINs contain information related to the material
of the billet, which is tailored to the customers’ needs [6].
As the characteristics of the billet depend on its material, the
incorrect recognition and entry of even a single BIN can cause
significant financial loss. Therefore, the character recognition
accuracy of BINs should ideally be close to 100%. Character
recognition is performed at various industrial sites, and each
factory has a different environment; a variety of cameras
are used to extract data. Thus, the data become noisy and
complicated. In the case of BIN data, the characteristics of
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data, such as font and steel type, vary from factory to factory,
and the location of the characters is not fixed. Therefore,
to achieve high accuracy, it is essential to acquire and train
on new data. However, obtaining and labeling data from the
factories can be a time-consuming and costly process, so it
is crucial to quickly label a small amount of data and train a
model to ensure satisfactory performance.

Various algorithms from traditional computer vision meth-
ods to neural networks have been proposed [7], [8], [9].
Processing factory data in a traditional method is necessary
to modify the algorithm several times to handle new input
data. However, the algorithm based on a neural network is
easy and simple because a model can be applied directly
to other data once developed. In addition, the development
of an actively studied DL model has far exceeded the
performance of the traditional method. Several DL models
have also been developed, increasing detection accuracy.
Even DL-based methods have been proposed to identify
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steel products without additional location information of
characters required in vision tasks, pre-processing to leave
only the area of characters, or noise canceling [10], [11].
This has improved character recognition performance for
slabs [12]. An end-to-end model capable of arbitrarily
oriented BINs has also been proposed [13]. It simultaneously
handles the classification and positioning of extracted
features, and achieves high performance on randomly rotated
BINs. The area to be recognized in the billet images is
a portion of the overall image. If the entire billet image
is input into the character recognition model, noise from
the background causes performance degradation. Therefore,
by extracting and inputting only the area of characters into the
model, the performance can be enhanced [14]. Furthermore,
various studies are being conducted, including methods that
extract individual region of each character [15] and increase
the resolution of the extracted characters [16] to improve
character recognition performance.

DL method is being applied to character recognition with
various datasets, not limited to BIN data. For instance,
there are studies focused on recognizing handwritten text in
historical documents. This data has low-quality annotations,
and a single sentence has multiple annotations due to
simultaneous labeling by multiple people and models [17].
Additionally, due to the characteristics of the handwritten
dataset, a method for page-level text recognition, along with
its associated evaluation metrics, has been proposed [18].
Another data is scene text data, which is the most well-
known publicly available dataset in character recognition.
Inspired by characters forming sequences to create mean-
ingful words, the DL model extracts additional contextual
features which are useful for predicting words [19]. The
introduction of an attention module and the utilization of
character position features improve character recognition
performance [20]. After the introduction of Transformers in
the field of image processing, which achieved high perfor-
mance, the Vision Transformer (ViT) model has been used
as the base network for feature extraction [21]. Afterward,
several approaches, including modifying the ViT to mix
and merge image patches [22], and new frameworks that
combine attention mechanisms and transformers [23], have
appeared.

Scene text and handwritten data are not rotated, so the
proposed methods do not take the angle of the characters
into consideration. Furthermore, the two datasets consist
of meaningful words, whereas the BIN data is a random
sequence of alphabets and numbers, making it impossible
to extract contextual features. Finally, the former datasets
contain a large amount of trainable data, whereas the
BIN data requires training the model with limited data.
Therefore, achieving high performance when applying the
aforementioned models to BIN data is difficult. The end-to-
end BIN recognition model [13] exhibited high performance
for BIN data rotated in four directions but performed poorly
for BIN data rotated through arbitrary angles. Recognizing
characters that are all inclined at the same angle is easier

than recognizing ones that are rotated at any angle. The
background and other neighboring characters must also
be taken into account when recognizing randomly rotated
characters to distinguish two different pairs of characters
that appear to be identical when rotated. This prevents the
character recognition algorithm from focusing only on the
character itself, causing performance degradation. Once all
data are oriented similarly, high recognition accuracy is
expected as the models can concentrate solely on character
recognition. Furthermore, sufficient data for each angle class
are required during model training, but obtaining enough data
corresponding to each angle evenly takes time and effort.
Therefore, algorithms that can be applied to real data must
be efficiently trained with fewer data. If the orientations of
all data are homogenized, high accuracy is achieved based on
training with significantly fewer data. Therefore, we propose
a method of homogenizing the orientations of images and
then using the image for character recognition to ensure high
character recognition performance.

Ambiguous data problems are related to data containing
incorrect labels based on subjective judgment. These include
a person’s age [24], the number and severity of acne [25], the
angle of rotation of objects, among others. These data have
ambiguous parts to judge; thus, labels can vary from person
to person, and labeling requires time and effort. Finally,
this labeling load increases label errors. Instead of giving
a single value to a label, there is an efficient way to give
label weights to surrounding classes that may be confused
with ground truth. By giving the margin for the error, the
algorithm can learn the information that the prediction is not
the ground truth, but the close value around it. The label
distribution method is adopted in this study to reduce the loss
of predictions close to ground truth so that the model can be
trained efficiently.

The proposed method involves two stages—an angle
estimation algorithm to homogenize the orientations of
images and a character recognition module. We apply a
method of making data have homogenized angles using
an angle prediction algorithm to increase the character
recognition performance. We use label distribution learning
to improve the accuracy of the angle estimation algorithm and
propose a suitable distribution. The existing label distribution
learning method commonly uses the Gaussian distribution
with a mean of 0 and a standard deviation of 1, and
more suitable distributions may be available for the angle
estimation problem. The Gaussian distribution assigns some
values to 3–4 classes close to the ground truth, but the values
decrease rapidly as one moves further from the ground truth.
Thus, it is only effective in corresponding to a few classes
and is ineffective on data with many classes. In addition,
unlike ordinal data, which are assigned values in ascending
order without setting a range for assigning weights around a
ground truth, data with periodical classes like BIN angle data
require a range for weight assignment. This selected range
affects performance; thus, we propose an appropriate method
to assign weights to the desired label range.
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FIGURE 1. The overall structure of two-stage BIN recognition.

The contributions of this paper are as follows:
1) The proposed model comprises two dedicated stages,

enabling each stage to focus on their respective role to
achieve high performance.

2) An effective distribution for label distribution learning
is identified and applied to ambiguous angle labels to
improve angle estimation performance.

3) Good performance is achieved using a small dataset.
Furthermore, the recognition model can be trained and
tested quickly for altered data.

The remainder of the paper is organized as follows.
In Section II, we introduce the BIN dataset and describe the
proposed method. Section III compares the performance of
the proposed algorithm with that of an existing character
recognition model. Finally, Sections IV and V discuss and
summarize the conclusions of the paper.

II. PROPOSED METHOD
Recognition of BIN data of homogenized orientation is
easier than that of BIN data rotated through arbitrary angles.
Plenty of training data are required corresponding to each
angle likely to appear during detection to train a model to
recognize rotated characters accurately [26], [27]. However,
homogenized BIN data has a single angle label; thus, there is
no need for a lot of data to be evenly distributed [28]. In this
context, we propose a framework that predicts the rotated
angles of BIN data, makes the rotation angles of BIN data
consistent, and then recognizes characters.

A. OVERALL FRAMEWORK
Fig. 1 illustrates the overall structure of the proposed
algorithm. The framework consists of two stages: the angle
prediction module and the BIN recognition module, and
the training process and the testing process are slightly
different. The modules are trained separately, and they
operate sequentially in the testing process.

Train In the angle estimation module, we train on the train
dataXtrain ∈ RH×W . In the BIN recognition module, we train
on the refined train data X̂train. Here, X̂train is the result of
rotating Xtrain counterclockwise by the angle ground truth
yangle ∈ R using the rotation module r . The train phase
involves separately training the angle estimation module and
the BIN recognition module in this manner.

Test In the test phase, we initiate the process by inputting
the test data Xtest , which lacks angle information, into the
angle estimation module f to predict the angle pangle ∈ R.
Subsequently, we rotate Xtest using the rotation module r to
obtain X̂test . Finally, the BIN is extracted from X̂test using the
BIN recognition module g.

B. ANGLE ESTIMATION MODULE
The angle estimation module utilizes a pre-trained ResNet-
18 as the base model (Fig. 2). The output of the last fully
connected layer in ResNet-18 is modified to have a dimension
of Cangle = 360, where Cangle is the number of angle class.
The module is trained to minimize the multi-class cross-
entropy loss as follows.

Langle = −

Cangle−1∑
i=0

yangle,ilog(pangle,i). (1)

The label distribution and prediction of the module corre-
sponds to yangle ∈ RCangle and pangle = f (X) ∈ RCangle .
The accuracy is determined based on the highest proba-

bility predicted angle. Predicted angles within ±10 degrees
from the ground truth are considered correct. The values of
yangle and pangle range between 0° and 359°. We assume that
0° follows 359°; thus, the difference between 359° and 0°
is 1°, not 359°. In this paper, eangle(x) denotes the minimum
difference between two angles and cannot be negative (2).
The parameter α denotes the maximum absolute error that
the angle estimation algorithm treats as the correct answer

VOLUME 11, 2023 129313



H. Jang et al.: Two-Stage Billet Identification Number Recognition Using Label Distribution

FIGURE 2. Angle estimation module.

FIGURE 3. Label distribution graph: (a) One-hot encoded graph,
(b) Gaussian distribution graph, (c) Uniform distribution graph, and
(d) Triangular distribution graph.

within the range of the predicted angle away from the ground
truth. The larger the tilted angle of the BIN image, the more
difficult it is to recognize the character. Therefore, α was set
to 10° empirically.

eangle(x) = min(|yangle − x|, 360 − |yangle − x|). (2)

Label distribution is adopted to increase detection accuracy
and consider the periodicity of the labels. The rotation angle
of BIN data must be predicted to homogenize the orientations
of randomly rotated data. An angle estimation algorithm
is proposed in this study for this purpose. However, the
labels themselves may be erroneous [29] owing to manual
labeling. Moreover, angle labels are periodic. By using label
distribution, values of label are distributed around the ground
truth based on one-hot encoded labels; This enables the
consideration of variable loss based on the distance from
the ground truth during the prediction of surrounding values.
Therefore, label distributions are more effective than squared
error loss at reflecting the periodicity of angle labels.

The distribution should be applied to certain labels within
the desired range of classes because the BIN angle data

comprises 360 classes, and α was used for the class margin of
label distribution.We consider three distributions—the Gaus-
sian distribution [24], uniform distribution, and triangular
distribution. The Gaussian distribution assigns values to the
neighboring classes following the Gaussian distribution with
the mean value assigned to the ground truth (3). The uniform
distribution assigns the same value to all neighboring classes,
including the ground truth (4). The triangular distribution
assigns values to the surrounding classes following the
triangular distribution, with the maximum value assigned to
the ground truth (5). Fig. 3 depicts graphs of four types
of label distributions. The X-axis represents the error with
respect to the ground truth, and the Y-axis represents the value
assigned to the label.

hGauss(x) =


1

√
2π

e
−e2angle(x)

2 , if eangle(x) ≤ α.

0, otherwise.
(3)

hUni(x) =


1

2α + 1
, if eangle(x) ≤ α.

0, otherwise.
(4)

hTri(x)=

 −
1

(α + 1)2
eangle(x)+

1
α+1

, if eangle(x)≤α.

0, otherwise.

(5)

C. BIN RECOGNITION MODULE
The BIN recognition module [13] consists of one encoder
and two decoders (Fig. 4). The encoder serves as a feature
extractor, while the decoders play the role of generators.
The feature extractor utilizes a modified VGG-19 model,
in which the fully connected layers are removed. The
two decoders are composed of a positioning part and a
classification part. The positioning part generates the order of
characters, while the classification part generates the classes
of characters. The decoder uses transposed convolution to
increase the size, followed by an elementwise sum of the
output feature from the decoder and encoder, both of which
have the same size. The two decoders have a similar structure,

129314 VOLUME 11, 2023



H. Jang et al.: Two-Stage Billet Identification Number Recognition Using Label Distribution

FIGURE 4. BIN recognition module.

but they are trained to predict different ground truths. As a
result, the number of output channels differs between the
positioning part (10 channels) and the classification part
(35 channels). In the Fig. 4, the blue rectangles represent
convolutional layers. For example, ‘‘3 × 3 conv, 64, 2’’
indicates that a 3 × 3 convolution with an output channel of
64 is applied twice. Similarly, ‘‘4× 4 deconv, 10, 1’’ indicates
that a 4 × 4 deconvolution with an output channel of 10 is
executed once.

The loss is calculated by computing the pixel-wise multi-
class cross-entropy between the output obtained from each
decoder and the corresponding ground truth. The BIN
recognition module is trained to minimize the sum of the
position loss from the position class part and the character
loss from the character class part.

LBIN = Lpos + Lchar , (6)

Lpos = −
1

H ·W

× (
H∑
y=1

W∑
x=1

Cpos−1∑
i=0

Ypos,i(x, y)log(Ppos,i(x, y))), (7)

Lchar = −
1

H ·W

× (
H∑
y=1

W∑
x=1

Cchar−1∑
i=0

Ychar,i(x, y)log(Pchar,i(x, y))),

(8)

where Cpos and Cchar are the number of position classes
and the number of character classes, respectively, with
Cpos being 10 and Cchar 35, Ypos ∈ RH×W×Cpos and

Ychar ∈ RH×W×Cchar are the ground truth of BIN position
and character, respectively, and Ppos ∈ RH×W×Cpos and
Pchar ∈ RH×W×Cchar are the output of the position decoder
part and character decoder part of BIN recognition module,
respectively. The final string is extracted using the position
output and character output generated by the decoders. The
position output represents the pixel-wise order information
of characters, and the character output the pixel-wise class
information. By selecting the most frequent character class
among the pixels in each position class and outputting them
in sequential order, we obtain the recognition value of BIN.

III. EXPERIMENTS
A. DATASETS
BIN data is a rectangular gray image of 480 × 640 size on
the cross-section of a long bar shaped billet. There are two
types of BIN painting: paint-type (Fig. 5(a)) and sticker-type
(Fig. 5(b)). Paint-type BINs are directly painted in white on
the surface of gray billets at the end, and they consist of two
or three lines of eight or nine capital letters and numbers.
The first and second lines include four characters, and an
optional third line comprises one character. Sticker-type BINs
are printed in black on white square paper, and they comprise
two lines of seven or eight characters. The font and style differ
from the paint-type and the size of characters is smaller than
that of the paint-type. There are few characters that are erased
or poorly visible in sticker-type BINs, but there are cases
where characters from the paint-type are not fully concealed
and protrude slightly behind the sticker.

In BIN, the first character in the first row is an alphabet.
In addition, the alphabets O and I are not used because
they are difficult to distinguish from the numbers 0 and 1,
respectively. The billet may be rotated through arbitrary
angles, and thus, so may the BIN. Therefore, BIN recognition
methods should be capable of handling data rotated through
various angles. In this paper, 5,719 paint-type BIN data
are considered, with most of the data corresponding to
labels of 0°, 90°, 180°, 270°, and some having other angles.
Additionally, 2,415 sticker-type BIN data are included, with
most of the data concentrated on surrounding labels of 270°.

Each BIN image has a label of an angle and a string to
be used for angle estimation module and BIN recognition
module. In Fig. 5(c), a red dot is placed in the center of
the string, the direction of the string is drawn with a red
line, and the angle difference from the yellow line is used
as an angle label for the angle estimation module. The order
and class of the characters are generated from the center
of each character. Fig. 5(d), 5(e) demonstrates the order
label on which characters are listed and the class label of
the character. These two labels are used to train the BIN
recognition module.

B. IMPLEMENTATION DETAILS
In the experiment, a total of 5,719 BIN data were used,
including 3,811 for training, 638 for validation, and 1,270
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FIGURE 5. Example of rotated BIN data of (a) paint-type and (b) sticker-type. Our method uses three types of labels: (c) angle label, (d) order label,
and (e) character class label, and these are visualizations of each label.

FIGURE 6. Confusion matrices of the detection performances based on (a) One-hot, (b) Gaussian, (c) Uniform, and (d) Triangular distributions. The
upper figures represent the results for paint-type BIN data, while the lower figures sticker-type. The points in the yellow area are correct answers
within the tolerance range, and the other points are the incorrectly predicted samples. In (d) triangular, most of the points are in the yellow area,
and the incorrectly predicted samples also do not deviate significantly from the yellow area.

TABLE 1. Comparative accuracies achieved using different label
distributions with respect to the one-hot label. Acc denotes the ratio of
the correct predictions and the total number of testing data.

for testing. Additionally, 2,414 sticker-type BIN data were
used, with 1,932 for training, 241 for validation, and 241 for
testing. Both datasets are used in the label distribution and
BIN recognition experiments. The angle estimation algorithm
is trained using a learning rate of 0.01, a weight decay of
0.0005, and a batch size of 32. Themodel is optimized using a
stochastic gradient descent optimizer and a cosine annealing
schedule [30]. The BIN recognition model is trained using
a learning rate of 0.0001, a batch size of 1, and the Adam
optimizer. The learning rate is scheduled by multiplying it

by 0.95 in each epoch, and dropout with a keep probability
of 0.2 is utilized. An early stopping point for training after
10 epochs is used based on validation loss in the absence
of continuous updates. The two-stage model is trained on a
computer running Windows 10 with Intel Core i7-10700k
CPU @ 3.80GHz, 32 GB RAM, and NVIDIA GeForce RTX
3090.

C. LABEL DISTRIBUTION
The network correctly recognizes BIN characters even when
the BIN image is slightly tilted. Thus, a margin is set for the
calculation of accuracy. Predicted results within an error of
10 ◦ with respect to the ground truth are treated as correct
answers.

Table. 1 summarizes the accuracy of angle estimation.
In the case of one-hot label, the accuracy is low, and several
observations lie outside the diagonal in Fig. 6 because the
distance between wrong predictions and the ground truth
is not reflected in the calculation of loss in this case. For
example, the predicted loss corresponding to 180° and 179°,
and 180° and 0°, are identical, even though the former
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TABLE 2. Performance comparison of the BIN recognition model based on the label distribution. Accuracy (Acc.) represents the percentage of correct
predictions out of the total number of testing data. ‘‘Two’’ means our proposed 2-stage framework. ‘‘-O,’’ ‘‘-G,’’ ‘‘-U,’’ and ‘‘-T’’ represent different label
distributions used in the angle estimation module: one-hot encoded label, Gaussian distribution, uniform distribution, and triangular distribution.

loss should be much smaller. Ideally, the loss should be
directly proportional to the proximity between the angles.
The Gaussian and uniform distributions improved the model
accuracy in relation to the accuracy of the one-hot label, but
wrong samples are still observed. The triangular distribution
yields the highest accuracy, and the corresponding error is
small as well.

D. COMPARISON WITH STATE-OF-THE-ART
The two-stage model exhibits higher accuracy compared
to using the BIN recognition module alone. The highest
BIN recognition accuracy is achieved when images with
homogenized angles are used to train the model. The data
presented in Table. 2 indicate that the BIN recognition model
performs better when the angle estimation model predicts
rotational angles accurately. The angle estimation accuracy
is the highest when the triangular distribution is used as the
label distribution. Thus, the highest BIN recognition accuracy
is achieved using the triangular distribution as the label
distribution.

The BIN is incorrectly predicted in some cases, e.g., letters
are detected to be identical to ambient letters and those with
similar shapes, with the first type being more common. Two-
stage BIN recognition alleviates this problem and predicts
each BIN character independently without referring to
surrounding characters. Furthermore, the proposed network
does not confuse letters with those with similar shapes after
being rotated.

Due to the infrequency of recognizing non-existent charac-
ters or detecting missing characters, the experimental results,
excluding the one-hot encoded labels of the two-stage model,
achieve an F1 score of 0.98 or higher. In particular, the
two-stage model with the triangular distribution achieves the
highest F1 score, precision, and recall values. The two-stage
model, except for the triangular distribution, shows lower pre-
cision, recall, and F1 score compared to using the BIN recog-
nition module independently. This is due to the two-stage
model’s BIN recognition module being trained only on char-
acters with the same angle, resulting in incomplete character
recognition if the angle prediction module fails to predict
the angle correctly. Using only the BIN recognition module
allows recognition of rotated characters, but the overall

FIGURE 7. Accuracy of angle prediction based on the standard deviation
of the Gaussian distribution.

performance of character recognition is compromised. The
two-stage model, which enhances performance by focusing
on character learning with consistent angles, is suitable for
practical industrial applications as it treats single incorrect
characters and completely wrong BIN strings equally.

IV. DISCUSSION
When cross-entropy loss is used, the original single-label
distribution exhibits identical losses corresponding to the
pair, 10° and 20°, and the pair, 10° and 100°. However, ideally,
small errors should correspond to small losses. The proposed
model exhibits high accuracy when appropriate weights are
assigned to classes that are close to the ground truth. Model
accuracy also depends on the type of distribution used.
Assigning smaller weights with progressive distance from the
ground truth yields higher accuracy than assigning constant
weights to all labels. Moreover, moderately small weights
yield better results than very small weights for labels that
are very far from the ground truth. We conducted additional
experiments to investigate the impact of varying the size
of the standard deviation in the Gaussian distribution and
assigning values to classes that have maximum allowable
error from the ground truth. In Fig. 7, as the standard
deviation decreases, there is a tendency for the accuracy to
decrease. The weights in the table correspond to the smallest
weight value for each distribution, which is set based on the
respective standard deviation. When comparing the values
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FIGURE 8. The average confidence values of the predicted classes by the
angle estimation module varied based on the label distribution.

of the smallest weights, the minimum weight value from
the triangular distribution lies between the smallest weight
values of Gaussian distributions weight standard deviations
of 4 and 5. Thus, the value of the smallest weight should not
be smaller than 0.00442, which is a point where the accuracy
begins to decrease.

The Gaussian distribution assigns high values to labels
belonging to the correct class, but the value is too high
considering the values assigned to surrounding classes.
The uniform distribution assigns equal values to all
labels within 10°, but does not emphasize the correct
class. The triangular distribution is observed to be an
optimal combination of the two—the highest value is
assigned to the ground truth class, but the value is not
excessive in relation to those assigned to surrounding
classes. Thus, the triangular distribution yields the highest
angle estimation accuracy among the three aforementioned
distributions.

The dataset used in this paper contains a large number
of classes, and it is possible that there are inaccuracies in
the assigned labels, so we consider the classes surrounding
a single ground truth as correct answers. In contrast to
the triangular distribution, the Gaussian distribution requires
parameter adjustment to find an appropriate standard devi-
ation as the number of classes and the tolerance range
changes. Therefore, when the data has such characteristics,
it is advantageous to apply the triangular distribution.
In addition, we verify that the confidence predicted by the
angle estimation module has a distribution similar to that
of the label. Fig. 8 demonstrates that using the triangular
distribution yields the most symmetric outcomes. However,
the other graphs deviate from symmetry. This indicates that
using the triangular distribution ensures that the assigned
weights for each class are effectively applied.

The 2-stage framework method with the addition of the
angle estimation module significantly improved the BIN
recognition accuracy on a limited dataset. The previously
high-performing BIN recognition model [13] encountered a
decline in accuracy from 99% to 92% when the amount of
training data reduced from 15,763 images to 3,811 images,
which is approximately a 24% decrease. To address the

performance decline due to the lack of data, we opted for
reducing feature variance as a solution. When all characters
have the same orientation, the feature variance to be learned
is reduced, allowing for sufficient feature learning with
a smaller training dataset. Therefore, we constructed a
2-stage framework with the addition of an angle estimation
module, resulting in an improvement in BIN recognition
accuracy from 91.7% to 99.1% for paint-type BIN and from
87.1% to 96.3% for sticker-type BIN. The results indicate
that by reducing the feature variance of the training data
in situations with limited data, themodel’s performance could
be enhanced.

V. CONCLUSION
In this paper, we proposed a method for estimating the
rotation angle of BIN data using label distribution and the
2-stage BIN recognition framework. This method achieved a
high BIN recognition performance with a randomly rotated
and limited training data.

In the 2-stage framework, features for angles and charac-
ters are separately trained in the angle estimation module and
the character recognition module, respectively. Each module
focuses on its respective features independently, and the
reduction in the variation of the features being trained leads
to improved performance in each module. Consequently, the
overall framework’s performance is enhanced. In addition,
employing triangular distribution labels in the angle estima-
tionmodule resulted in a higher accuracy of 22.5%p for paint-
type BIN data and 7.9%p for sticker-type BIN data compared
to one-hot encoded labels.

In future work, we will validate whether the triangular
distribution labels used in the angle estimation module
represent the most optimized distribution and whether
aligning the range for treating correct answers with the
range that assigns values to labels results in the highest
performance.
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