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Abstract: Despite the impressive performance of deep neural networks on many different vision
tasks, they have been known to be vulnerable to intentionally added noise to input images. To
combat these adversarial examples (AEs), improving the adversarial robustness of models has
emerged as an important research topic, and research has been conducted in various directions
including adversarial training, image denoising, and adversarial purification. Among them, this
paper focuses on adversarial purification, which is a kind of pre-processing that removes noise before
AEs enter a classification model. The advantage of adversarial purification is that it can improve
robustness without affecting the model’s nature, while another defense techniques like adversarial
training suffer from a decrease in model accuracy. Our proposed purification framework utilizes
a Convolutional Autoencoder as a base model to capture the features of images and their spatial
structure. We further aim to improve the adversarial robustness of our purification model by distilling
the knowledge from teacher models. To this end, we train two Convolutional Autoencoders (teachers),
one with adversarial training and the other with normal training. Then, through ensemble knowledge
distillation, we transfer the ability of denoising and restoring of original images to the student
model (purification model). Our extensive experiments confirm that our student model achieves high
purification performance(i.e., how accurately a pre-trained classification model classifies purified
images). The ablation study confirms the positive effect of our idea of ensemble knowledge distillation
from two teachers on performance.

Keywords: adversarial robustness; adversarial attacks; adversarial purification; knowledge distillation;
image classification; convolutional autoencoders

1. Introduction

Deep Neural Networks have achieved promising performances in many domains
including computer vision [1,2], natural language processing [3,4] and medical image
analysis [5,6]. However, there have been a lot of adversarial attacks that can fool the deep
learning models [7]. Adversarial robustness is thus critical in real-world scenarios because
deep learning models, when deployed in practical applications, can be vulnerable to such
maliciously crafted inputs (i.e., adversarial examples) designed to deceive or mislead them.
These adversarial attacks can have severe consequences, especially in safety-critical systems
such as autonomous vehicles, medical diagnosis, or financial systems. Ensuring adversarial
robustness is critical to maintaining the integrity, safety, and reliability of AI-driven systems
in diverse real-world environments.

Consequently, there has been an active research effort to improve the adversarial
robustness of recent neural models. In the field of computer vision, adversarial examples
(AEs) are obtained by perturbing the original image to introduce small noises that are diffi-
cult to discern by human eyes. Adversarial attacks are designed to cause misclassification
of the model by creating these AEs, and adversarial defenses are designed to make the
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model more robust so that it can classify well even when these AEs are mixed into the
input. There are many types of adversarial attacks, and one popular technique is to add
noise to an image based on gradients (FSGM, PGD, etc.) [8–10]. Other methods include
generating AEs that minimize a loss function over the input [11], changing only one of the
most critical pixels in the image [12], and combining multiple methods of creating AEs [13].
The effectiveness of the attack usually depends on the value of the parameter ε, which
controls the amount of noise added to images.

Adversarial defense strategies to combat these attacks have also been actively studied.
Representative areas include adversarial training [8], which uses AEs together to train a
model, and image denoising, which tries to remove noise from the input AEs [14,15]. Image
denoising aims to restore the AEs as close as possible to the original image by removing
the noise in the image, and among them, adversarial purification aims to remove the noise
by assuming that the noise is definitely an adversarial purturbation caused by adversarial
attacks. However, both methods have limitations in that their robustness performance
decreases with different types of attacks, and their accuracy for normal inputs decreases.

In this paper, we propose a novel purification technique that can improve adversarial
robustness. The main idea of the proposed method is to transfer the knowledge of two
Convolutional Autoencoder [16] models (one with adversarially trained and the other
with normally trained) to a student model through ensemble knowledge distillation [17].
Convolutional Autoencoder is an image-friendly structure that replaces the multi-layer
perceptron (MLP) with Convolutional layers in the original MLP-based Autoencoder. It
has shown good performance in image restoration and generation because it can capture
the local features and spatial structures of images better than MLP. Using this structure as
our base model, the knowledge of the adversarially trained teacher model (AT) and the
normally trained teacher model (NT) is transferred to the student (purification) model by
ensemble knowledge distillation, where the ability to remove the added noise is learned
from the AT teacher and the ability to restore the features of the original image is learned
from the NT teacher.

We measure the performance of the proposed purifier on a widely utilized benchmark
dataset. Specifically, the purified images were fed into a pre-trained classification model
to evaluate whether it can accurately predict the class; the better the purification ability,
the higher the classification accuracy of the model. The experimental results show that the
proposed purifier can indeed prevent accuracy degradation when classifying the original
image, and is robust to both the attacks used in training and the attacks not used in training.
An ablation study was conducted to verify the effectiveness of the teacher models used in
knowledge distillation, and the results showed that the student model using both teacher
models as proposed outperformed the other alternatives.

The rest part of this paper is organized as follows. In Section 2, we highlight existing
methodologies regarding adversarial training and adversarial purification. In Section 3, we
introduce our novel adversarial purification method. In Section 4, we report the experi-
mental settings and results, demonstrating its efficacy and superiority. Finally, Section 5
concludes our study.

2. Related Work on Adversarial Defense

This chapter introduces two representative approaches in the context of adversarial
defense: adversarial training and adversarial purification. Our work is in line with the
latter category.

2.1. Adversarial Training

Adversarial Training involves training a model on adversarial examples (AEs) along
with the normal training data. The idea is to expose the model to adversarial attacks during



Appl. Sci. 2023, 13, 11313 3 of 11

training, so it can learn to resist them. Formally, adversarial attacks manipulate an original
image x into the adversarial example x′ using the following method:

x′ = x + δ s.t. ‖δ‖∞ ≤ ε (1)

where δ indicates the adversarial noise to be injected. The strength of the attack is controlled
by ensuring that the L∞ norm of the noise does not exceed a hyper-parameter, ε. The
noise introduces subtle changes to the original image that are imperceptible to the human
eye [18]. Various adversarial attacks have been developed over the years. For example, Fast
Gradient Sign Method (FGSM) [8] creates AEs by adding a perturbation in the direction of
the gradient of the loss with respect to the input data. Projected Gradient Descent (PGD) [9]
is an iterative version of FGSM, which applies the perturbation step multiple times, each
time projecting the adversarial example back into a valid input space. A Carlini and Wagner
(CW) [11] attack is a more sophisticated optimization-based approach that aims to find the
smallest perturbation necessary to induce misclassification, often resulting in more subtle
changes and thus challenging AEs than the aforementioned two methods. In addition, it
minimizes the distance of the original image from the corresponding AE, making it more
likely to be misclassified using a distance function, such as L0, L2, L∞, as an objective.

AdvProp [19] enhanced robustness of the model by adversarial training using a mini-
batch consisting solely of normal data as well as a supplementary minibatch consisting of
PGD-generated AEs. The AEs in the supplementary minibatch have different underlying
distributions than normal examples, which helps to mitigate the issue of distribution mis-
match and makes it easier for the model to learn valuable features from both clean and
adversarial domains. Robust Contrastive Learning (RoCL) [20] proposes a novel adversar-
ial training approach without the need for labeled data. It uses instance-wise adversarial
attacks and a contrastive learning framework to maximize the similarity between trans-
formed examples and their adversarial perturbations. Ref. [21] explores adversarial training
with imperfect supervision, specifically with complementary labels (CLs), and proposes a
new learning strategy using gradually informative attacks to address the challenges of this
setting. The authors aim to reduce the performance gap between adversarial training with
ordinary labels and CLs (such as noisy or partial labels).

2.2. Adversarial Purification

Adversarial purification is a preprocessing technique that removes noise before the
classification model receives input images, resulting in clean images. It does not require
model modification or additional training, preserving the unique features and performance
of each model. The concept of adversarial purification was first introduced by the authors of
PixelDefend [22]. This method trains a PixelCNN [23] as a purifier by making small changes
to input images to return AEs to the distribution of original dataset. However, because
PixelDefend makes changes at the pixel level of images, which involves pixel-by-pixel
operations which, in turn, increases computational overhead. The authors of [24] propose
to improve the purification performance by training an Energy-Based Model (EBM) with a
score function trained by Denoising Score-Matching (DSM).

Purification based on Generative Adversarial Nets (GAN) [25] has also been studied
to purify AEs by training a generator to remove noise and a discriminator to distinguish
the purified images produced by the generator from original images [26,27]. However, the
training of GANs is inherently unstable, and there are vulnerabilities in the latent space
that can be exploited by adversarial attacks to produce wrong images [28]. NRP [29] uses
a similar idea to GANs to train a purifier. The purified image is passed through a “critic”
network, which acts as a discriminator, and a feature extractor. The loss of the feature
extractor is defined as the distance between the AEs and the original images. It is trained
to minimize the loss of the critic network as well as to maximize the loss of the feature
extractor, and noise is generated based on the loss of the feature extractor and added to
the input image. SOAP [30] simultaneously performs the main task of classification and
auxiliary tasks to train a purifier, where the auxiliary tasks include some widely-used tasks
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in self-supervised learning, such as data reconstruction and rotation prediction. Other
works used autoencoders and VAEs [31] to remove noise [32–34], and employed diffusion
models to clean up AEs [35].

3. Method

The overview of the proposed framework for learning purifiers based on knowledge
distillation is as follows. First, we train two Convolutional Autoencoder-based teacher
models with the same structure. One is trained by adversarial training and the other
by normal training using original images. The knowledge of the teacher models is then
distilled in an ensemble fashion to the purifier (student model). After the knowledge is
transferred, the purifier cleans the images affected by various adversarial attacks, and
then classifies the purified images with a pre-trained classification model (ResNet56). This
classification result is compared to the classification result of the corresponding original
image. The closer the results match, the better the purification.

3.1. Base Model: Convolutional Autoencoders

In our work, the two teacher models and the student model in the knowledge distilla-
tion framework are based on the same Convolutional Autoencoder structure (see Figure 1).
An Autoencoder is an encoder–decoder neural structure that compresses the input through
the encoder and restores it to its original dimension through the decoder. The bottleneck
layer between the encoder and decoder has a low-dimensional latent representation that
retains important features of the original input. The decoder aims to produce an output
that is as close as possible to the original input based on this latent. Autoencoders have
been widely used for tasks such as data generation, super resolution, and data restoration.
We believe that autoencoders are also well suited to the task of purification, which is the
task of restoring images by removing noise from AEs.

… …

Encoder Decoder

Skip connection

Conv BatchNorm ReLU ConvTranspose Tanh

Figure 1. The structure of the Convolutional Autoencoder used in our work, inspired by [34]. The
colors of the layers have the following meanings. Blue: Convolutional layer, green: batch normal-
ization layers, orange: ReLU operations, gray: transposed Convolutional layers, yellow: Hyperbolic
tangent operations.

Furthermore, Convolutional Autoencoders are specialized in dealing with image data.
Instead of a fully connected network (FCN), a Convolutional layer with local connections
is mainly utilized, which can better learn the spatial features of images. Here, the encoder
consists of a series of Convolution, batch normalization, and Rectified Linear Unit (ReLU)
layers in one block, for a total of 15 blocks. The Convolution layer extracts various features,
colors, textures, etc., from images, while the batch normalization layer keeps the distribu-
tions within a batch consistent for stable learning. The ReLU activation function mitigates
the problem of gradient vanishing. The decoder also consists of 15 blocks, each of which
consists of a series of Convolutional Transpose, batch normalization, and ReLU operations.
A tangent hyperbolic (Tanh) operation is added to the end of the last block. The latent
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representation is upsampled by the Convolutional Transpose operation to decode as close
to the input image as possible.

Our Convolutional Autoencoder is quite deep, with a total of 30 blocks. This has the
advantage of learning a good quality of latent representation, but because of its depth,
there is a risk that the gradient may vanish or explode during backpropagation. To avoid
this, we make skip connections at the encoder and decoder to convey the gradient flow
directly. This also has the effect of helping the decoder to reconstruct images by preventing
the loss of information or details that are useful for reconstruction. As a result, the network
structure of this study is similar to that of U-net [36].

3.2. Teacher Models

Next, we describe the training of two teacher models, as depicted in Figure 2. The
teacher models are of the same Convolutional Autoencoder structure, but one is trained
adversarially using the PGD attack (AT teacher model) and the other is trained using the
original image (NT teacher model).

The objective function LAT for training the AT teacher model consists of two loss terms,
Lp and Ladv, as follows:

PGD (ϵ=
8

255
)

… …

… …

Original image

Purified image

Restored image

Teacher model with adversarial training (AT)

Teacher model with normal training (NT)

Figure 2. Training of the two teacher models, one with adversarial training (NT) using the PGD attack
and the other with the normal training (NT) with original images. The ε value for PGD is set to 8

255 .

LAT = Lp + Ladv = MSE( fAT(x′), x)− log(σ(pout − advout))

=
1
n

n

∑
i=1

( fAT(x′)i, xi)
2 − log

(
1

1 + e−(pout−advout)

)
(2)

Here, n is the number of pixels in an image. Lp computes the Mean Squared Error (MSE)
of the original image x and the purified image fAT(x′) (x′ is the adversarial example). Ladv
is the adversarial loss function, where pout and advout denote the output of the classification
model with the purified image fAT(x′) and with the adversarial sample x′, respectively.
These two outputs should be maximized while minimizing the MSE term for training the
AT teacher model.

Next, the NT teacher model is trained to minimize the difference between the restored
image and the original image. For this, the loss function LNT uses the mean square error as
shown below:

LNT = MSE( fNT((x), x)

=
1
n

n

∑
i=1

( fNT(x)i − xi)
2 (3)
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where fNT(x) is the image restored by the NT teacher model.
As a result, the AT teacher model learns to remove noise by restoring the original

images from the adversarial images, and the NT teacher model learns to restore original
images by extracting the important features. The respective abilities of the two teachers are
distilled to a purifier (student model).

3.3. Training Purifier via Knowledge Distillation

We next build a purifier model as a student to distill the knowledge of the two
previously trained teacher models. The purifier also uses a Convolutional Autoencoder
with the same structure as the teacher models. Overall, The purifier learns to effectively
denoise the AEs, just like the AT teacher model. The purifier is trained based on the
ensemble knowledge distillation framework: by distilling the restoration ability of the NT
teacher model to the purifier, we hope that the denoised part of the purified image will be
restored similar to the original image; by distilling the denoising ability of the AT teacher
model to the purifier, we expect the purifier’s denoising ability to be improved.

Figure 3 depicts our process of learning a purifier based on knowledge distillation.
As we introduced, the AT teacher model is given AEs generated by the PGD attack to
purify them, and the NT teacher model is given pure images to restore them. The purifier
takes AEs (each denoted by x′) as input and tries to remove the noise. Then, the difference
between the purified image fs(x′) and the original image x is defined as the reconstruction
loss function Ls for our purifier, which is computed as follows:

Ls = MSE
(
( fs(x′), x

)
=

1
n

n

∑
i=1

( fs(x′)i, xi)
2 (4)

*𝐿𝑘𝑑

Pretrained teacher model (AT)

Student model

… …

… …

Pretrained teacher model (NT)

… …

PGD (ϵ=
8

255
)Original image

Purified by AT teacher

Restored by NT teacher

Purified by student

*𝐿𝑠

Figure 3. The proposed framework for learning a purification model based on knowledge distillation.

Another loss function of our purifier, the ensemble knowledge distillation loss function
Lkd, consists of the Kullback–Leibler distance and the mean square error between the
outputs of multiple teacher models fTj and student models fs, as follows:

Lkd =
1
M

M

∑
j=1

(
KL

(
g
(

fTj

(
x′
))

, g
(

fs
(
x′
)))

+ MSE
(

fTj

(
x′
)
, fs

(
x′
)))

(5)

where M is the number of teacher models (in our case, M = 2) and Tj is each teacher
model. The Kullback–Leibler divergence function KL() computes the difference between
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the output distribution of the teacher model and that of the student model, where each
probability distribution is computed by the Softmax function g.

As a result, the purifier learns the denoising ability and image restoration ability of the
two teacher models, respectively, and is simultaneously optimized by the Kullback–Leibler
divergence and the mean square error, which can reduce both the distribution difference
between the student and teacher models and the output image difference. The final loss
function L for training the purifier is configured as follows:

L = β · Ls + γ · Lkd (6)

where β and γ control the importance of the reconstruction loss Ls and the knowledge
distillation loss Lkd, respectively. For simplicity, we assume that the two loss terms have
equal importance and set β = γ = 0.5.

3.4. Purification Process

Figure 4 depicts the overall purification process. After training with ensemble knowl-
edge distillation, the purifier is able to cleanse the AEs generated by various attacks (in
our experiments, we used a variety of attacks that the student model has not encountered,
including FSGM, BIM, CW, and AutoAttack, in addition to the PGD attacks used in the
training of the AT teacher model.) to output purified images (see Figure 5 for an example
of images actually purified by our method). We feed the purified images into a pre-trained
classification model (ResNet [37] is used) to classify them. If the classification result is the
same as the classification result of the corresponding original image, we can say that the
purification is successful.

PGD(ϵ=
8

255
)

Pretrained

Classifier
“bird”… …

Student model

Purified image

Figure 4. Purification process. A pre-trained ResNet56 [37] was used as a classification model.

(a) Original images.

(b) Adversarial images by PGD.

(c) Purified images.

Figure 5. From top to bottom, we show the original images, the adversarial examples generated by
the PGD attack, and the purified images using our proposed method. We can see that the noise has
been well removed from the purified images.
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4. Evaluation
4.1. Settings

We used CIFAR-10 (https://www.cs.toronto.edu/~kriz/cifar.html, accessed on 5
September 2023), which is a collection of 60,000 32× 32 color images (i.e., each image is
a three-dimensional array of size 32× 32× 3, where the third dimension represents the
RGB color channels.) in 10 classes, with 6000 images per class. This dataset was collected
by the well-known researcher Alex Krizhevsky [38]. There are 50,000 training images and
10,000 test images. The dataset is divided into five training batches and one test batch, each
containing 10,000 images. The test batch contains exactly 1000 randomly selected images
from each class. The 10 different classes represent airplanes, cars, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. These classes are mutually exclusive, meaning an image
can only belong to one class.

To evaluate the performance of our purifier, we first applied the aforementioned
adversarial attacks to the all images in the test set. Then, we computed the classification
accuracy as a metric, i.e., we fed the AEs generated by the adversarial attack into our
purifier, and fed the purified image into a pre-trained classification model to predict the
class of the image. We calculated the percentage of the predictions that matched the original
image’s predictions. Formally, let ctarget be the number of images correctly predicted by the
classification model, and T be the total number of (attacked) test set images. The accuracy
is then calculated as follows:

Accuracy(%) =
ctarget

T
× 100 (7)

In our training, we used a batch size of 128, a learning rate of 0.01, and an Adaptive
Moment Estimation (Adam) optimizer. The teacher model was trained for 100 epochs, while
the student model was trained for 40 epochs. In the test scenarios, we used five different
adversarial attacks: PGD, FGSM, BIM, CW, and AA. PGD, FGSM, and BIM generate noise
using gradients which are then added to the input images. FGSM adds noise once, while
PGD and BIM add noise iteratively to the images. Specifically, PGD generates noise based
on the gradient from the adversarial sample produced in the previous iteration, while BIM
consistently computes the gradient from the original input image. Consequently, when the
iteration counts are equal, the magnitude of the noise produced by BIM is greater than that
produced by PGD. The value of ε for each attack is set to 8

255 by default. However, for PGD,
since the value of 8

255 was also used to train our purifier, we used an additional value of
16

255 , which was not used in the training. We name them PGD8 and PGD16, respectively.
For PGD and BIM, we used α (step size) of 2

255 and the iteration number of 20. For CW, we
used L2 as the distance function, 40 as the iteration number, and an Adam optimizer with a
learning rate of 0.01.

4.2. Results and Analyses

First, to evaluate the superiority of our proposed purifier, we purified the AEs gen-
erated by the adversarial attacks described above, and then fed the purified images into
a pre-trained classification model, ResNet56, to measure the classification accuracy. The
accuracy of this classification model on CIFAR-10 is 89.46%. We employed NRP [29] and
SOAP [30] as baseline purifiers for comparison.

Table 1 reports the experimental results. The proposed purifier generally performed
satisfactorily against the gradient-based attacks PGD, FGSM, BIM, and AA. However, it
performed slightly worse than SOAP against the PGD16 (ε = 16

255 ) and the BIM attacks,
which add slightly stronger noise than PGD8 which was used for training. We also observed
that our purifier did not perform well on samples subjected to CW attacks, which is likely
due to the fact that CW is a different type of attack than the gradient-based attack used in
the adversarial training of the AT teacher model.

https://www.cs.toronto.edu/~kriz/cifar.html
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Table 1. Comparison of purification performance against various adversarial attacks. Each bold
number means the best performance against each adversarial attack.

Ours NRP [29] SOAP [30]

Original 89.46 89.46 89.46
PGD8 40.20 35.07 39.14
PGD16 33.57 35.57 35.65
FGSM 40.12 39.79 37.43
BIM 38.37 31.96 40.18
CW 56.87 57.24 79.22
AA 46.91 12.34 41.03

Next, we performed an ablation study. Table 2 reports the results. The last row of
the table is the proposed method (training two teacher models, AT and NT, and distilling
their knowledge to our purifier model), and the two rows above it are versions of distilling
the knowledge of only one teacher model, AT or NT, to the purifier, respectively. Finally,
the first row is a purification method using only adversarial training without knowledge
distillation. Through this experiment, we aim to gain insight into whether the performance
of the purifier (student) model changes depending on the number of teacher models used
and their learning strategies.

Table 2. Resultsof our ablation study. X indicates that the corresponding component is adopted. Each
bold number means the best performance against each adversarial attack.

AT NT KD PGD8 PGD16 FGSM BIM CW AA

X - - 34.16 28.01 38.07 33.29 56.54 43.20
X - X 35.46 28.70 38.42 34.92 56.32 42.77
- X X 35.77 29.47 36.93 34.88 57.90 40.50
X X X 40.20 33.57 40.12 38.37 56.87 46.91

The experimental results show that the proposed method generally performs best, and
that using only one of the two teacher models or no knowledge distillation leads to lower
performance. In particular, distilling the knowledge of the NT teacher model resulted in
good performance, which suggests that the knowledge of image restoration is helpful in
the purification task. However, the NT teacher model’s knowledge alone was not sufficient
to improve adversarial robustness of the student model, and we found that ensemble
knowledge distillation from both AT and NT teachers was most effective.

5. Conclusions

In this paper, we proposed a novel adversarial purification framework for improving
the robustness of deep neural networks against adversarial attacks. Our approach utilizes a
convolutional autoencoder to capture image features and spatial structure, and a student
model is trained on the purified images using knowledge distillation from two teacher
models. Experimental results demonstrate that our proposed method can effectively remove
adversarial noise from input images and improve model robustness against both white-box
and black-box attacks. We also find that the number of teacher models used for knowledge
distillation and the way they are trained affects the performance of the student model, and
that using two different teacher models improves the performance of the purifier the most.
Our approach also outperforms existing state-of-the-art methods in terms of accuracy and
robustness. Future work will focus on exploring the effectiveness of our approach on other
types of neural networks and datasets.
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