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Abstract A time delay estimation based general
framework for trajectory tracking control of robot
manipulators is presented. The controller consists of three
elements: a time-delay-estimation element that cancels
continuous nonlinearities of robot dynamics, an injecting
element that endows desired error dynamics, and a
correcting element that suppresses residual time delay
estimation error caused by discontinuous nonlinearities.
Terminal sliding mode is used for the correcting element
to pursue fast convergence of the time delay estimation
error. Implementation of proposed control is easy
because calculation of robot dynamics including friction
is not required. Experimental results verify high-accuracy
trajectory tracking of industrial robot manipulators.
Keywords High-accuracy tracking control, robot
manipulators, time delay estimation, terminal sliding
mode.

1. Introduction

Conventional model based controls of robot manipulators
require calculations of nonlinear robot models [1, 2].
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Implementation of these controls are not easy due to
computational complexity of the robot models, and
impossible if precise models of the robot manipulators
are unknown. To cope with this problem, intelligent
control techniques (neural-network or fuzzy logic) have
received considerable attention in the last two decades [3-
7]. The intelligent control techniques have the capability
to approximate nonlinear functions in robot dynamics;
however, they introduce a number of weighting
parameters or fuzzy rules that make implementation
difficult.

It is noteworthy that time-delay estimation (TDE) [8-11],
can estimate nonlinear functions in robot dynamics
simply and effectively. This approach assumes that the
unknown functions do not change much for a sufficiently
small time period, and estimates unknown functions by
intentionally using time-delayed information of the state
derivatives and control inputs. The TDE is proven to be
highly efficient and effective; no off-line identification or
prior knowledge of robot model is required when TDE is
used; and compensation speed of TDE is faster than that
of neural networks [12, 13]. The TDE technique has
motivated the time delay control (TDC), which consists of
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two elements: the TDE element (or the auxiliary
controller) and an injecting element calculated from
desired error dynamics (or the error based servo
controller) [9, 11].

Recently, the necessity for exploiting the third element is
reported [14]. From the TDE viewpoint, the nonlinear
terms in robot dynamics are classified into two categories:
soft nonlinearities (including gravity, Coriolis and
centrifugal torques, viscous friction, disturbance, and
interaction torques) that can be estimated perfectly by the
TDE; and hard nonlinearities (due to Coulomb friction,
stiction) that are not compatible with the TDE [14]. When
the TDE is used to estimate unknown functions, hard
nonlinearities result in so-called TDE error that cause the
resulting dynamics to deviate from the target dynamics;
and thus lead to large tracking error. In [14], the TDE
error, comes from hard nonlinearities, is suppressed by

adding a third element—ideal velocity feedback term.

In this paper, a highly accurate trajectory tracking control
of robot manipulators is proposed. Terminal sliding
mode (TSM) [15, 16], which provides faster convergence
than linear hyperplane, is used for the third element to
suppress the TDE error. The proposed controller consists
of three elements: a TDE element that cancels soft
nonlinearities, an injection element calculated from target
error dynamics, and a TSM element that suppresses the
effect of hard nonlinearities. The implementation of the
proposed control, due to the TDE, is easy since
calculation of robot model is not required. Highly
accurate position tracking control can be realized by
properly choosing the fractional powers of the TSM.

The proposed control, thanks to TSM, shows a better
tracking performance than Hsia's control [11] and Jin's
free space tracking control [14]. Interestingly, the
proposed formulation has a generalized structure: on
certain conditions, the proposed control becomes Hsia's
formulation [11], or Jin's free space tracking control
formulation [14]. In other words, the controllers proposed
in [11, 14] can be regarded as specific cases of the
proposed formulation.

Benefitted from the transparent structure and simple
formation of the proposed control, it is easy to provide a
systematic design guideline for designing the gains. The
superiority of the proposed control, especially when
compared with Hsia' and Jin's controls, is shown through
simulations of a single arm and experiments of industrial
manipulators, by which synergistic effects of TSM and
TDE have been observed. The robustness of proposed
control against parameter variations is also studied in
experiments. The proposed control assures fast
convergence due to the TSM, and provides model-free
control due to the TDE. The proposed TDE based TSM
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control is practical —model-free, simple in form, highly
accurate, and robust.

Compared with our previous study [17], the contents in
this paper are advanced with respect to the follows: a
more thorough presentation of the controller design, a
more complete and rigorous stability analysis, a new
design guideline for practical applications, two
simulation studies including both a 1-DOF and a 2-DOF
manipulator, and additional experimental studies with a
3-DOF spacial manipulator for studying the robustness of
the proposed control against parameter variations.

This paper is organized as follows: In Section 2, the new
control is proposed. Section 3 provides a Lyapunov based
stability analysis for the closed loop dynamics. Section 4
briefly discusses properties of proposed control and
presents a systematic design guideline. In Section 5, the
function of TSM that compensates TDE error of hard
nonlinearity is analyzed through numerical simulation.
Section 6 shows the experimental results on both a
SCARA-type and a PUMA-type robot manipulators.
Section 7 concludes the paper.

2. Controller Design
2.1 Robot Dynamics

The standard form of the dynamical equation of n-DOF
robot manipulator is as follows:

M(q)q+C(q,9)q +G(q) +F(q,q)+7,=7, (1)

where q,q,q €R" represent the position, velocity, and
acceleration of the joints, respectively, and M(q)<R"™"
stands for the generalized inertia matrix, C(q,q) € R™ the
Coriolis/centripetal matrix, G(q)€R" the gravitational
F(q,q)eR" 7,€R" the

disturbance torques, and 7 € R" the joint torques.

vector, the friction forces,

2.2 Control Objective

Suppose the reference input trajectory is denoted by
q,€R", then the control objective of robot trajectory
tracking is to make a robot position vector q follow q, .
To this end, we first define e=q,—q, €=q,-q, and

€=, —(q . The target error dynamics is given by
ée+K e+K,e=0, ()
where K, e R"",

gain matrices. Achieving (2) is equivalent to that of
tracking the following integral sliding surface s =0 [18],

and K, e "™ are constant diagonal
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with
s:= jﬂ’(é +K, e +K,e)dt. 3)

2.3 Controller Design

Introducing a constant, diagonal matrix, M, one can obtain
another expression of (1) as follows:

M +N(q,9,4) =", )
where
N(q,4,9) =[M(q)-MJq +C(q,9)q 5)
+G(q) +F(q,q) + T,
The control input can be designed as
©=Mu+N(q,4,§) (6)

where N(q,q,(j) denotes the estimate of N(q,q,¢), and

u=u, +Bsig(s)", @)
u,=q,+K,e+K.e, (8)
T
sig(s)” :DSI n sgn(s,), s, & sgn(sn)} , 9)
and B=diag(B,--,B,) , Y=diag(y,--v,) , B>0,

O<y,<1(i=1,---,n).

In the above control input, u, is used to inject the target
error dynamics (2) similar with the computed torque
method [19]. Bsig(s)’ is to inject the TSM element to

suppress the effect of hard nonlinearities and to provide
faster convergence near the equilibrium point.

The estimation of N(q,q,{) is based on (4), from which

N(q,4,4), =T, - Mg, (10)

Clearly it would be much easier to evaluate T, —Mgq,
than to evaluate N(q,q,q),; but it is acausal to evaluate
t, ~Mg, . However, a causal evaluation becomes possible
when we use time delayed N(q,q,q), , to approximate
N(q,q,q), - This is called time delay estimation (TDE) [11]
and given by

N(q,4,4)=N(q,4,4), ., (11)

where e, | denotes time-delayed value of ¢, and L is

t-L
the estimation time delay. The smallest achievable L is
the sampling period in practical digital implementation.

From (10), we can obtain
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N(q/q/q)z—L =T - Mqt—L' (12)

Thus, with the combination of (6), (7), (11), (12) the
control law is expressed by

t=1, , ~Mq, ,+M[u, +Bsig(s)’]. (13)

Incidentally, the past acceleration ¢, , is given by

numerical differentiation as

qi—L = (qz - 2qt—L + qr—zL) / L. (14)

Thanks to TDE in (11) and (12), the proposed control (13)
does not use the knowledge of robot model. That is, the
proposed control require any
computation of plant models, nor does it require any real-
time estimation of parameters as adaptive controls do;
thus, it is simple and efficient. Considering that it often
takes much time and effort in practice to make a plant

does not real-time

model or to use it for real-time purposes, this feature is
truly significant from a practical viewpoint.

3. Stability Analysis

In this section, we first obtain the closed loop dynamics,
and then based on the Lyapunov function, we prove the
boundedness of the sliding surface. Two lemmas will be
given before obtaining the final theorem.

Substituting the control input (6), (7), (11) into robot
dynamics (4) yields the closed loop dynamics

u, — ¢ +psig(s)’ =¢ (15)
or
$+Psig(s)’ =¢ (16)

with the TDE error € defined as
e=M'(N-N,_). (17)

Lemma 1. Let x,yeiRl be vectors, Ae®R™ be a
symmetric matrix, and g be the maximum of HAH If

x = Ay, then HXH < ,tuH .

Lemma 2: If the control input 7 (13) is applied to the robot
manipulator (1), and if HI —M’W[H <1 is achieved by

tuning M, then the TDE error & in (16). is ultimately
bounded.

Proof: Considering (7) and (15) gives

e=u—q. (18)
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A combination of (18), (6), (7), (12), and (13) gives

Me=M(u-q)
=Mu+Cq+G+F+1,-t (19)
=Mu+Cq+G+F+t,-Mu-N, .

From (5), the delayed nonlinear term is given by

Nth = [Mth - M]qu + (Cq)f,L

(20)
+G, +E_ +(1,),_,-
Substitute (19) into (18), and we have
Me=M-M)u-(M, , ~-M)4, , +9, (21)
where
6=Cq-(Cq), ,+G-G, 22)

+F-E_, +t,—(t,),_,-

It is clear that ® is bounded for a sufficiently small L.

Substituting ¢, ;, =u, , —¢, ; from (18) yields

L

Me=M-M)u-(M-M)q, ,
+M-M, )4, ,; +0
=M-M)u-M-M)(u, , —¢,,)
+M-M, )4, , +0
=(M-M)e, , +(M-M)(u-u, ;)
+M-M, ,)q, , +0O.

(23)

Therefore, € is given by
e=Ee  +En, +n,, (24)

where
E=I-M"M,
mn=u-u_, (25)
n, =M"'[(M-M, ,)q, , +d]

For a sufficiently small time delay L, 1, and n, are
bounded. Note that the assumption HEH <1 can be easily
satisfied by suitable choice of M [20].

In the discrete-time domain (24) can be represented as
e(k) = E(k)e(k - 1) + E(k)n, (k) + 1, (k). (26)

The solution of the above difference equation can be
obtained as

k

e(k) = [ JE(m)e(0)+ X T TE(p)n, (m)

m:lk . m=1p=m (27)
+ ZZHE(P)HZ(W ~1)+n,(k),
m=2p=m
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where €(0) is the initial value of (k) .

Let A denote the maximum of HE , and A<1. Assume

p, and p, are positive constants such that quH <p, and

HnZH < p, . By (27) and Lemma 1, we have

k
o] < # e + 4
m=1

k
+ Z /fik—ﬂwl
m=2

n,(m)|

1, (m = 1) +|n,(K)|

k k-1
<Ak He(O)H +o D A+ py > A"
m=1 m=0
cPATP
T 1-21 ’

as k—> .

Note that p is a positive constant. Therefore, the TDE
error € is ultimately bounded. u]

Theorem 1: If the control input 7 (13) is applied to the
robot manipulator (1), and if the TDE error € is bounded
as a result, then the closed loop sliding surface is globally
uniformly ultimately bounded.

Proof: Consider the Lyapunov function V:%sTs .

Differentiating V with respect to time, and substituting
(16) into it yields

V=s"§
=s'[-Bsig(s)" +¢]

n
- Sl
i=1 i=1
n 147, n
< _ﬁminz + z
i=1 i=1
n
Y
i=1

Y s e, (29)

S.
i

S; S;1|€;

7i -1
S _ﬂmin Ei 4

i

- ﬂmin

S.

where g . :=min(f, ---,5,)>0. Thus, V is negative for
any none zero s, satisfying ‘si"v‘ > ﬁ:m g| . By Lemma 2
and considering (28), s, is bounded by
1 1
S| S (Bon|&) < (BrinP) (30)

To conclude, according to the Definition 4.6 in [21], the
closed loop sliding surface is globally uniformly
ultimately bounded.
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4. Properties of Proposed Control
4.1 Generalized Formulation

The proposed formulation (13) has a generalized
structure. If =0 , the proposed formulation (13)

becomes Hsia's formulation [11], as
t=r1,_, -Mq, +M({, +Kye+K,e). (31)

If B#0 and y,=1 (i=1,---,n), the proposed formulation

(13) becomes Jin's position control formulation [14], as
t=1,_,-Md,  +M(4, +K,e+K,e+ps).  (32)

If B#0 and y,=0 (i=1,---,n), the proposed control (13)

becomes sliding mode control, as
t=n, , -Mq, , +M(q, +K,é+K,e+Ppsgn(s)). (33)

If B0 and O<y,<1 (i=1,---,n) the TSM becomes
activated in the proposed formulation (13). Incidentally,
the proposed control is chattering free since sig(s)' is

continuous.
4.2 Simplicity and Efficiency

Due to the TDE, calculations of complex robot dynamics
are unnecessary for the proposed control. The proposed
control is simple and easy to implement. The nonlinear
term in robot dynamics is estimated by T, , ~Mg, , in
(13), which can be calculated efficiently. Comparing with
the neural network, the TDE is normally faster as

reported in [13] and [14].
4.3 Function of M as a LPF

In real experiments, the encoder signal is always
contaminated by noise. The noise effect is amplified when
q, , is calculated by numerical differentiation (14). As a
solution to this problem, a low-pass filter (LPF) may be
used before q, , is differentiated. Without using a LPF,
however, it is possible to attenuate noise: by lowering the

elements of M as shown below [14, 22].

Combining (6) and (7) leads to a compact expression of (13):
t=r1, , +M(u-g, ). (34)

If a digital LPF with the cutoff frequency « is adopted,
the control law can be modified as follows:

v=ad(l+a) t+(1+a) '],

(@' =al), (35
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where T denotes the input to the filter and t/ is the
output from the filter. Substituting (34) into (35), one can
obtain the following filtered control law:

v=r/, +a(1+a)'Mu-4, ). (36)
Comparing (34) with (36), if we let
M =d'(1+a')™'M, (37)

then (34) and (36) are identical except the difference

between M and M’ . Since a'(1+a’)" <1, one can

conclude that lowering the elements of M has the same
effect as using a first-order digital LPF.

Therefore, we do not need to apply any LPF in the design
of proposed control, and alternatively tune M by
increasing the diagonal elements from small positive
values just before the closed loop system has noisy
response.

4.4 Guideline for Designing Proposed Control

The proposed control has five diagonal gain matrices
with clear meanings. This helps simplify the design
procedure, which is briefly introduced as follows.
1. Determine the target sliding surface (3) by
selecting the desired natural frequency w, and

«th

damping ratio ¢ . The i" diagonal element of

K, and K, can be determined by K, :a)fi ,
and K, =2(®,,.
2. Select a sampling time interval L with

consideration of the controller hardware. Since
the TDE error in (17) becomes smaller as L
becomes smaller, L is commonly chosen as
small as possible.

3. Tune M . Since M plays a key role in
guaranteeing the boundedness of the closed
loop sliding surface, M should be tuned first.
Tuning M, a diagonal matrix, is quite easy: to
increase the diagonal elements from small
positive values, while checking the control
performance by trial-error.

4. B and vy should be further tuned to achieve the

optimal performance.

Note that the above design procedure does not require
any calculation of robot model. M, B and vy are all the

gains that need to be tuned. The design of the proposed
control is straightforward and simple.
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4.5 Consideration regarding the state observability

In the case that some elements of the robot’s state vector
are not measurable, we may consider to reconstruct the
state by using state observers. A model reference
observer [23], [24] is useful to reconstruct states and their
derivatives in a stable manner. It works quite well in the
presence of plant uncertainties while preserving the
control performance. Subsequently, time delay observer

(TDO) [25], [26], [27] are introduced for the same purpose.

These observers can be used with proposed controller
when some elements of the robot’s state vector are not
measurable.

5. Simulation Studies

There are two simulation studies are performed. In
Simulation One, we examine the cancellation effect of soft
nonlinearities using TDE and the suppression effect of
hard nonlinearities using TSM. In Simulation Two, the
performance of the proposed control is evaluated in
comparison with Hsia's and Jin's control.

External spring as disturbance
Joint Coulomb friction and viscous friction

Figure 1. A single arm with friction used in Simulation One.
5.1 Simulation One
5.1.1 Simulation Setup

For simplicity and clarity, a single arm with soft and hard
nonlinearities is considered as shown in Fig. 1. The
simulation parameters are as follows: The mass of the link
is m=8.163 Kg , the link length is [=0.35m , and the

inertia is I =1.0 Kgm® ; the stiffness of the external spring

as disturbance is K =10 Nm / rad ; the acceleration

disturbance
g=98Kgm/s" .

and viscous

due to gravity is Coulomb friction

coefficient C. =20 friction coefficient
C, =15. The sampling frequency of the simulation is 1

KHz.
The dynamics of a single arm is

r=10+G(0)+F,(0)+F(0)+d, (38)
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where
G(0) = mglsin(6),
d = _Kdisfurhzznffa’
F(0)=-C,9,

F.(8)=—C_sgn(0).

The lumped soft nonlinearity and hard nonlinearity can
be expressed by

S(0,0)=G(0)+FE,(0)+d, (39)
H(6,0,0) =F.(0). (40)

Through all the comparisons, identical parameters are
used for the error dynamics, as K, =100, and K, =20.

The desired trajectory is shown in Fig. 2 and defined by
0, = A[1-exp(-wt)]sin(at)

where =27 /p, p=5s,and A=0.15rad .

5.1.2 Simulation Results

The simulation results are arranged in Figs. 3.— Figs. 5.
Fig. 3 (a) shows the soft nonlinearity S(#,0) and the TDE
error of soft nonlinearity S(H,@)—S(H,H)H. Because soft
nonlinearity is a continuous function, the TDE error of
soft nonlinearity is almost zero, and TDE works well on
the cancellation of soft nonlinearity. Fig. 3 (b) shows hard
nonlinearity H(9,6,6) and the TDE error of hard
nonlinearity H(H,é’,é)—H(H,é’,é"),fL .
nonlinearity is a discontinuous function, the TDE error of
hard nonlinearity cannot be ignored. The TDE error of
Coulomb friction can be regarded as a pulse type
disturbance when the velocity changes its sign. The TSM
element in the proposed control can reduce the tracking
error due to Coulomb friction by properly selecting £

Because the hard

and y, as shown in Fig. 4.

Two elements of the proposed control input, Mu, and
Mpsig(s)’ , are plotted in Fig. 5. The TSM term

(Mpsig(s)’ ) is almost zero in the presence of only soft

nonlinearity in Fig. 5 (a); however, it activates in the
presence of hard nonlinearity Fig. 5 (b). Note that the
TSM element in the control input has larger value when
y =0.6 than y =1. The smaller error when y =0.6 than
7 =1 is due to the larger counteracting control input when
7 =0.6 than y =1 when hard nonlinearity exist.
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The Desired Trajectory injecting element and correcting element

0.2

e M Uy

~— m B sig(s)’ I

Nm
o
—
-

At
2 p=40
y=1
0.2 \ \ % 5 10 15
0 5 10 15 time(sec)
time(sec) injecting element and correcting element
Figure 2. The desired trajectory used in Simulation One. ‘ , mu,
2 _ ia(s)! [l
(a) Soft Nonlinearity & Estimation Error m P sigls)
6 : : i
-=-=-Soft Nonlinearity 1
41 — Soft Noninearity Estimation Error E o | | |
z U1 1 =
2f l"\‘ I" \‘\ / \\\ I I
SN J \ TR 1 i
{0 A oA
E o ’-' kY £ \ i 3,
= v v | 2 p=40 |
Vo2 iy 2 \ 7 [\ =0.6
2 Ls¢ \‘ ': \‘ 'l \‘ | Y
\er ‘\/' \\ 3 L L
al | 0 5 10 15
- time(sec)
'60 5 1‘0 15 Figure 5. Control input: target dynamics injection torque ( M u,)and
time(sec)

(b) Hard Nonlinearity & Estimation Error TSM torque (Mﬂsig(s)y )- The correcting TSM element is activated

when hard nonlinearities exist. Note that the TSM element in the

30| ~~=-Hard Nonlinearity y control input has larger value when y =0.6 than y =1.
—Hard Nonlinearity Estimatoin Error
0 [ [ = -
1
10} ] ! ]
: | -
£ H i
= o : |
-10f i i i 1
1 1 1
O I R (O S A I g
-30 i
0 5 10 15
time(sec)

Figure 3. Nonlinear terms and their estimation errors. (a) Soft
nonlinearity and its estimation error. (b) Hard nonlinearity and
its estimation error.

x10° Errors
1.5 ’I ‘ [ Figure 6. The desired trajectory used in Simulation Two.
1 i n
[l I [}
1 i i EE 5.2 Simulation Two
0.5 i ! .
\ - \ \ . .
Y k3 ] rs 2 .2.1
T ok s 't-.‘\ . ::} s -,‘ 5.2.1 Simulation Setup
[ H )
-0.5t Ef ] i ] In this simulation, a 2-DOF robot manipulator is adopted
H i |TB=0 as shown in Fig. 6.
-1r |.: :: ....... B - 40’ Y=
! ‘ f —PB=40,y=06 The functions in the robot dynamics (1) are given as
-1.5
0 5 10 15
time(sec)
Figure 4. The effect of TSM in the proposed control.
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M(q),, = m, + 21, L,m,c, + 7 (m, +m,)
M(q),, =M(q),, = l:mz + l1l2mzcz
M(q),, = lgmz

C(q,9)q = |:_m2lllzszq§ - 2mzlllzszéhé]2:i

mZIllZSZq.z

G(q) — mzlzgclz + (ml + mz)llgcl
mzlngn
Fq.q) :[qul * Fasgnwl)}
FvZ‘?Z + FCZ Sgn(qz)

sin(4xt)
T, = .
sin(47t)
where [, m;, and F_, denote the i" link length, mass,

viscous friction coefficient, Coulomb friction coefficient,
respectively; ¢ denotes the local acceleration due to

gravity, and s, =sin(q,) , ¢, =cos(q;) and ¢, =cos(q, +q,);

7, represent unknown disturbance torques.

The parameter values of the robot dynamics are
m, =10kg , L=10m , 1,=10m ,
F,=50N-m-s/rad , F,=50N-m-s/rad ,
F,=50N-m , F,=50N-m and g=98m/s’ . A
distributed  stochastic between
-1.0x10°rad and +1.0x10°rad was added to the

measured angular position g, and g, to mimic a noisy

m,=1.0kg ,
noise

uniformly

angular sensor.

t(s) | 00| 30|90 | 150 | 21.0 | 27.0 | 30.0
q,() 1 00|30 |-30| 3 | -30 | 30 | 0.0
3,,(C) [ 00|30 [-30] 30 | -30 | 30 | 0.0

Table 1. Initial and final position of each segment of the desired

trajectory in Simulation Two.

A fifth-order polynomial trajectory is used for the sixth
path segments listed in Table 1., where both the initial
position and the final position of each segment are listed
along with the initial time and the final time. The velocity
and the acceleration at the beginning and end of each
segment are set to zero. The desired trajectory for both
q,, and gq,, are shown in Fig. 7. (a) and (b).

5.2.2 Simulation Results

Three model-free controls are compared through
simulations: Hsia's control (31), Jin's control (32), and the
proposed control (13). For fair comparison, all three
controllers are implemented with the same gains:

M = diag(0.4,0.2), K, = diag(20,20), K, = diag(100,100) .
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The additional parameters of Jin's control (32) are
B =diag(10,10)

and the additional parameters of the proposed control
(13) are

B =diag(10,10), v =diag(0.4,0.4) .

The position responses, tracking errors and control inputs
of both joints are respectively shown in Figs. 7. (a), (b), (c),
(d), (e) and (f). The simulation results, especially the
tracking error in Figs. 7. (c) and (d), demonstrate the
importance of y . Since Hsia's, Jin's and the proposed

controls are equally based on the same uncertainty
cancelation scheme -- TDE, the performance difference is
likely to be accounted for by the TSM. The peaks of the
tracking error shown in Fig. 7. (c) and (d) came from the
TDE error due to discontinuity of Coulomb friction [14],
through which the TSM is shown effective on
counteracting the tracking deviation caused by the TDE
error. The proposed control shows a high-accuracy
performance due to the superimposing effect of both TDE
and TSM.

Angular Position (degree)

Angular Position (degree)

15 20 2 30
Time (5)

© ()

——Proposed
R

Hsia's

o 5 10 15
Time (5)

@) ()
Figure 7. Simulation results with a 2-DOF robot manipulator. (a)
Tracking trajectory of joint 1. (b) Tracking trajectory of joint 2. (c)
Tracking error of joint 1. (d) Tracking error of joint 2. (e) Control
input of joint 1. (f) Control input of joint 2.

15
Time (5)

6. Experimental Studies

We have conducted two experiments to demonstrate the
high-accuracy performance of the proposed control,
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besides which two important properties of the proposed
control are studied in separate experiment. In Experiment
One, the effect of y on the tracking performance is

demonstrated through a 2-DOF SCARA-type robot
manipulator. In Experiment Two, the robustness of the

proposed control against parameter variations is
examined through a 3-DOF PUMA-type robot
manipulator.

==

Figure 8. A 2-DOF planar robot system.

6.1 Experiment One
6.1.1 Experimental Setup

The robot used in the experiment is a 2-DOF SCARA-type
robot as shown in Fig. 8. The lengths of the two links are
[[=035m and [,=029m ;

m, =11.17 Kg and m, =6.82 Kg . The distance from the

joint axis to the center of mass for each link is [, =0.30 m

and their masses are

and [, =0.18 m ; the moment of inertia about the joint axis
is I, =1.0 Kgm® and 1,=0.224 Kgm®. At joint 1, an AC
servo motor with a stall torque of 2.39Nm is used to
transmit power through a harmonic drive with a gear
reduction ratio of 100:1. At joint 2, a motor with a stall
torque of 0.92Nm is used with a gear reduction ratio 80:1.
Each joint has a resolver attached at its shaft to sense the
angular with  the
4096pulses/rev. The implementation of the controller was
made in QNX, a real-time operating system, with a
sampling frequency of 1 KHz.

displacement resolution  of

6.1.2 Experimental Results

We have experimented with the three model-free
controls: Hsia's control (31), Jin's control (32), and the
proposed control (13). For all three
controllers are implemented with the same gains:
M =diag(0.15,0.02) , K, =diag(20,20) , and
K, =diag(100,100) . The additional parameters of Jin's
B =diag(40,40) ; the

comparison,

control (32) are additional
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parameters of the proposed control (13) are
B =diag(40,40) and vy =diag(y,,7,), 0<y, <1, 0<y,<1.

Circle Trajectory

In the first group of experiments, the robot was
commanded to draw a circle as shown in Fig. 9. in 4s. The
experimental results are arranged in Fig. 10. and Table 2.
The proposed control shows the smallest error among the
three controllers. The smallest error comes as a result of
the use of TSM.

Desired Trajectory (Circle)
0.4

0.35-

0.3f

Y (m)

0.25-

0.2f

0.15 : ; : :
035 0.4 045 05 055

Figure 9. Experiment One: the desired circle trajectory.
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Figure 10. Experiment One: comparison of position error with
circle trajectory. (a) X direction (b) Y direction.

X Y
Hsia’s control 0.5558 0.4489
Jin’s control 0.1118 0.0734
Proposed control | 0.0493 0.0253

Table 2. Experiment One: comparison of RMS errors with circle

trajectory (x107 m).
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Figure 11. Experiment One: comparison of root mean square error
with circle trajectory. (a) X direction (b) Y direction.

Fig. 11 shows root mean square (RMS) error, where
Y =diag(0.4,0.4) error. Both
v =diag(0,0) (33) and vy =diag(l,1) (32) show larger
error than TSM. By properly choosing the fractional
powers, a trade-off between tracking precision and
robustness to unmodeled dynamics can be obtained. The
proposed control can enjoy benefits of both high
precision and chattering attenuation.

shows the smallest

Chaotic Trajectory

The chaotic trajectory is widely applied for effective fluid
mixing [28], which is a key issue in contemporary
systems for micro-total analysis.

In the second group of experiments, the robot was
commanded to follow a chaotic trajectory [29] whose
dynamics is

X _xmlme + C‘xm
bx

m2 = 2

X3 =X,,X

mltm2 m3”

where x X and x, , are state variables. The

ml 7 m2
parameters of the above Lu system are selected to be

a=235,b=3 and ¢=20. The initial values of the desired
=-5, and x,,=5. The

chaotic system are x, , =-10, x
m m 3

1 2
3D phase portrait of the above trajectory is shown in Fig.
12. Regarding the fact that the robot under control is a 2-

DOF planar robot, x,, and x,, were chosen as the

desired states of jointl and joint2 respectively, whose
phase portrait is shown in Fig. 13.

The experimental results are arranged in Fig. 14 and
Table 3. The proposed control shows the smallest error
among the three controllers. The smallest error comes as a
result of the use of TSM.
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Fig. 15 shows root mean square (RMS) error, where
Y =diag(0.4,0.4) shows the smallest error. Both
Y =diag(0,0) (31) and vy =diag(1,1) (32) show larger error
than TSM. By properly choosing the fractional powers, a
trade-off between tracking precision and robustness to
unmodeled dynamics can be obtained. The proposed
control can enjoy benefits of both high precision and
chattering attenuation.

Desired Trajectory (3D Chaotic)
0.2

0.15

0.1

Xm3 (m)

0.05

0.1

00s 0 005 01
Xmzm 901 04 O e o

Figure 12. Experiment One: 3D desired chaotic trajectory.
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Figure 13. Experiment One: 2D desired chaotic trajectory.
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Figure 14. Experiment One: comparison of position error with
chaotic trajectory. (a) X direction (b) Y direction.
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X Y
Hsia’s control 0.7081 0.3323
Jin’s control 0.1443 0.0535
Proposed control | 0.0396 0.0200

Table 3. Experiment One: comparison of RMS errors with chaotic

trajectory (x107 m).
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Figure 15. Experiment One: comparison of root mean square error
with chaotic trajectory. (a) X-direction (b) Y-direction.

6.2 Experiment Two
6.2.1 Experimental Setup

The robot used in the experiment is a 3-DOF PUMA-type
robot as shown in Fig. 16. The maximum payload of the
robot is 3 Kg, and the maximum continuous torques are

0.637, 0.637, and 0.319 Nm for joints 1, 2, and 3,
respectively. The gear reduction ratio and the encoder
resolution of each joint are 120 : 1 and 8192 pulses/rev,
respectively. Resolution of joint is

each robot

3.66x10™* deg . The parameters of robot dynamics were

assumed to be unknown, and thus were not used. All of
the joints are commanded by the same trajectory shown
in Fig. 17. The sampling time L is selected as 0.001s.

6.2.2 Comparative Studies

Figure 16. (Left) A 3-DOF PUMA-type robot in which the
positive directions are denoted by arrows. (Right) The 3-DOF
PUMA-type robot with a 2.15 kg payload.
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Angular Position (degree)
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Time (s

Figure 17. Experiment Two: the desired trajectory.

We have experimented with total three model-free
controls: Hsia's control (31), Jin's control (32), and the
proposed control (13). For three
controllers are implemented with the same gains:

comparison, all

M= diag(0.764,0.560,0.229),
K, = diag(20,20),
K, =diag(100,100).

The additional parameters of Jin's control (32) are

B = diag(10,15,20);

and the additional parameters of the proposed control
(13) are

B =diag(10,15,20),

Y =diag(0.4,0.4,0.4).

The design of controllers
presented in subsection 3.4 and did not require any
calculation of robot model.

followed the guideline

The experimental results are arranged in Fig. 18. and Table 4.,
and the tendency is in good agreement with simulation
results. Examining the tracking errors of Jin's and proposed
control shown in Figs. 18. (a), (c) and (e), the proposed
control shows far better tracking performance, justifying the
effect of y on the further improvement of the tracking
accuracy. The peaks of the tracking error around
t=0s,5s5,155 TDE error

discontinuity of Coulomb friction [14]. The TSM is shown
effective on counteracting the tracking deviation caused by
the TDE error as shown in Figs. 18. (a), (c) and (e).

came from the due to

The root-mean-squared (RMS) errors of proposed control
in Table 4. reveal that the obtained performance is highly
accurate regarding the resolution of robot. Figs. 18. (b),
(d) and (f) show that the control inputs are a little noisy
but bounded without any noticeable control chatterings.
The proposed control can enjoy benefits of both high
precision and chattering attenuation.
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Table 4. Experiment Two: comparison of RMS errors with other

two model-free controllers (x107 deg).

Joint 1 Joint 2 Joint 3 Joint1l | Joint2 | Joint3
Hsia's control 4.5 13.2 21.6 Proposed w/o payload | 1.1 1.2 14
Jin’s control 2.7 4.8 7.6 Proposed with payload | 1.1 1.2 1.5
Proposed control | 1.1 12 14 Table 5. Experiment Two: comparison of RMS errors by proposed

control without or with payload (x107° deg ).

Angular Position (degree)

—-=Hsias
Jin's
—— Proposed

Torque (Nm)

——-Hsia's
Jin's
—— Proposed

(b)

10
Time (s)

Angular Position (degree)
5 5o
S

in's
——Proposed

Torque (Nm)

-20

-40

-60

20

——-Hsia's
Jin's
— Proposed

10
Time (s)

(©)

15 20

(d)

10
Time (s)

0.05+

T
i
¥
I

1
i
t

——-Hsia's
Jirts
——Proposed

x10
6r ——=Without payload
— With payload

@ 4f
w
=)
L F]
g2
c
2
3 0
o
5
32
c
=

4t

-6 1

0 5 10 15 20
Time (s)
@)
30} | ——-Without payload ]

—With payload

Angular Position (degree)
Torque (Nm)

01k E———— i
?‘ Jin's “

—Proposed 30

5 15 20 0 5 15 20

Tine 9 Tine 9
@) (®)
Figure 18. Experiment Two: experimental results with a 3-DOF
robot manipulator. (a) Tracking error of joint 1. (b) Control input
of joint 1. (c) Tracking error of joint 2. (d) Control input of joint 2.
(e) Tracking error of joint 3. (f) Control input of joint 3.

6.2.3 Robustness Against Parameter Variations

In order to show the robustness of the proposed control
against parameter variations, we first tuned the proposed
control for no-payload condition, and then verified the
performance using the same gains with a 2.15Kg

payload (72% of maximum payload). The experimental
results are shown in Fig. 19. and Table 5. The tracking
performances of the proposed control with or without
payload are quite similar. More precisely, the RMS errors
in Table 5. show that only joint 3 has a slight performance
degradation. The control input magnitude of joints 2 and
3 is increased to compensate the payload gravity as
shown in Figs. 19. (d) and (f).

To summarize, high accuracy control can be realized

through the proposed control by using both TDE and
TSM.
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Figure 19. Experiment Two: experimental results of the proposed
control without payload (black solid) and with a 2.15 kg payload
(red dotted). (a) Tracking error of joint 1. (b) Control input of
joint 1. (c) Tracking error of joint 2. (d) Control input of joint 2.
(e) Tracking error of joint 3. (f) Control input of joint 3.
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7. Conclusion

A time delay estimation based general framework for
trajectory tracking control of robot manipulators is
presented. The controller consists of three elements: a
time-delay-estimation element that cancels continuous
nonlinearities of robot dynamics, an injecting element
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that endows desired error dynamics, and a correcting
element that suppresses residual time delay estimation
error caused by discontinuous nonlinearities. Terminal
sliding mode is used for the correcting element to pursue
fast convergence of the time delay estimation error.
Implementation of proposed control is easy because
calculation of robot dynamics including friction is not
required.

Synergistic effects have been obtained with the
combination of the TSM and the TDE through both
simulations and experiments. The proposed control
assures fast convergence due to the TSM, and provides
mode-free control due to the TDE, which facilitates an
effective and efficient control. It was verified through
both simulations and experiments that the proposed
control is easily implementable and highly accurate. The

proposed TDE based TSM control is practical—model-

free, simple in form, highly accurate, and robust.
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