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A DEGREE REDUCTION METHOD FOR AN EFFICIENT QUBO

FORMULATION FOR THE GRAPH COLORING PROBLEM

Hyosang Kang a, ∗, Hyunwoo Jung b, Chaehwan Seol c,
Namho Hong b, Hyunjin Lim b and Seokhyun Um b

Abstract. We introduce a new degree reduction method for homogeneous sym-
metric polynomials on binary variables that generalizes the conventional degree
reduction methods on monomials introduced by Freedman and Ishikawa. We also
design an degree reduction algorithm for general polynomials on binary variables,
simulated on the graph coloring problem for random graphs, and compared the
results with the conventional methods. The simulated results show that our new
method produces reduced quadratic polynomials that contains less variables than
the reduced quadratic polynomials produced by the conventional methods.

1. Introduction

A graph is a 1-dimensional object that consists of vertices and edges. Two vertices

are called adjacent if they are connected by an edge, and a graph is called simple

if there is neither a loop nor multiple edges that joins adjacent vertices. A vertex

coloring is an assignment of “colors” to vertices in a simple graph in a way that no two

adjacent vertices are assigned by the same color. The chromatic number of a simple

graph is the minimum number of colors that a vertex coloring of the graph exists.

The graph coloring problem is a problem that concerns about finding the chromatic

number and the existence of a vertex colorings with a certain number of colors. It

applies to a range problems such as scheduling [1], register allocation in compilers

[3], and frequency assignment in wireless communications [8]. The graph coloring

problem is NP-hard, meaning that there is no known polynomial-time algorithm

that solves the problem unless P=NP [2, 5].
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For graphs with large numbers of vertices and edges, finding a solution to the

graph coloring problem may require lots of computational time and resources. To cir-

cumvent this, one can use a quantum annealing machine, such as D-Wave’s quantum

annealer, which relies on the quantum tunneling effect [4, 6]. A quantum annealing

system can solve optimization problems whose objective functions are formulated as

polynomials of binary variables, when there is no constraining equations. The num-

ber of qubits in a quantum annealing machine limits the number of binary variables

that the objective function can have. Although there are few algorithms, such as

minor-embedding, that breaks down a large problem into a set of smaller problems

that a quantum annealing machine can handle [12], it is highly desired to formulate

the original objective function with as few variables as possible.

An optimization problem that the objective function is given as a polynomial

of degree two with binary variables and no constraining equation is called QUBO

(quadratic unconstrained binary optimization) [13, 14]. D-Wave’s quantum annealer

can find a solution of QUBO, i.e. it can find the global minimum of a quadratic poly-

nomial of binary variables. However, many of discrete optimization problems, such

as K-SAT and graph coloring problems, are formulated with the objective functions

as polynomials of the degree higher than two [10]. Thus one needs to reformulate

the objective functions as quadratic polynomials by using degree reduction methods

[11].

Let p be a polynomial that consists of n binary variables x0, · · · , xn−1. A degree

reduction method is a method of finding a polynomial q of the degree less than

the degree of p that consists of binary variables x0, · · · , xn−1 and extra variables

w0, · · · , wd−1, called auxiliary variables, that attains the same values of p for

any given values for x0, · · · , xn−1. More precisely, we will say that the polynomial

q(x0, · · · , xn−1, w0, · · · , wd−1) is reduced from p(x0, · · · , xn−1) if deg q < deg p and

(1.1) p(x0, · · · , xn−1) = min
wi=0,1

i=0,...,d−1

q(x0, · · · , xn−1, w0, · · · , wd−1)

for any binary values for x0, · · · , xn−1.

The objective polynomial for the graph coloring problem is formulated as follows.

Let V and E be the sets of vertices and edges in the graph G. Suppose that all

the colors are 0, · · · , 2m − 1 for some m ≥ 1, and the color of the vertex v ∈ V

is represented by the binary representation [xv,0 · · · xv,m−1](2). Given two adjacent
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vertices v and w, we define the polynomial Pv,w as

(1.2) Pv,w =

m−1∏

k=0

(xv,kxw,k + (1− xv,k)(1 − xw,k)).

The value of Pv,w is 0 if and only if xv,k 6= xw,k for some k = 0, · · · ,m− 1, i.e. when

the colors of two vertices v,w are different. We define the polynomial QG as

(1.3) QG =
∑

(v,w)∈E

Pv,w.

The polynomial QG is the objective function for the graph coloring problem on G.

The minimum value of QG is 0 and it is attained if and only if when the graph G is

properly colored, i.e. the coloring on G satisfies the criteria of the vertex coloring.

With sufficiently large m > 0, the solution to QG = 0 always exists, while the real

question is how small the m could be in order to have such solution.

When m is small, QG = 0 may not be attainable. Even though, finding the

solution for the global minimum of QG could be necessary, because it gives the

optimal vertex coloring of the graph in the sense that it minimizes the number of

conflicts, i.e. pairs of adjacent vertices that are colored with the same color.

The degree of the QG is greater than two, except when there are only two colors

in the color set. Thus, in general, we need degree reduction methods to formulate the

graph coloring problem as QUBO. There are degree reduction methods that reduce

monomials of degree greater than 2 to a quadratic polynomial. Freedman’s method

[7] applies to the monomials whose coefficients are negative:

−
d−1∏

j=0

xj = min
w=0,1

w



(d− 1)−
d−1∑

j=0

xj



 ,(1.4)

Ishikawa’s method [9] applies to the monomials whose coefficients are positive, and

it has two distinct formulae depending on whether the degree of the monomial is

even or odd:

2d+1∏

j=0

xj =
∑

0≤i<j≤2d+2

xixj + min
wi=0,1

i=0,...,d−1





d−1∑

i=0

wi



(4i + 3)− 2
2d+1∑

j=0

xj







 ,(1.5)

2d∏

j=0

xj =
∑

0≤i<j≤2d

xixj + min
wi=0,1

i=0,...,d−1





d−2∑

i=0

wi



(4i + 3)− 2

2d∑

j=0

xj



(1.6)
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+ wd−1



(2d− 1)−
2d∑

j=0

xj







 .

From now on, we will call these degree reduction methods as the monomial

reduction methods. As an example, let us formulate the objective polynomial of

the graph G below, and apply the monomial reduction methods.

G : 0 1 2

Let the colors at the vertices 0, 1, 2 be denoted by [x1x0](2), [x3x2](2), [x5x4](2),

respectively. Then objective function QG is

QG = (x1x3 + (1− x1)(1− x3))(x0x2 + (1− x0)(1− x2))(1.7)

+ (x3x5 + (1− x3)(1− x5))(x2x4 + (1− x2)(1− x4))

= 2− x0 − x1 − 2x2 − 2x3 − x4 − x5 + x0x1 + 2x0x2 + x0x3

+ x1x2 + 2x1x3 + 2x2x3 + 2x2x4 + x2x5 + x3x4 + 2x3x5

− 2x0x1x2 − 2x0x1x3 − 2x0x2x3 − 2x1x2x3

− 2x2x3x4 − 2x2x3x5 − 2x2x4x5 − 2x3x4x5

+ 4x0x1x2x3 + 4x2x3x4x5

Let us apply Freedman’s methods (c.f. Equations (1.4)) to all monomials of the

degree 3:

−2x0x1x2 = 2x0x1 + 2x0x2 + 2x1x2 + 2 min
w0=0,1

[3w0 − x0w0 − x1w0 − x2w0]

−2x0x1x3 = 2x0x1 + 2x0x3 + 2x1x3 + 2 min
w1=0,1

[3w1 − x0w1 − x1w1 − x3w1]

−2x0x2x3 = 2x0x2 + 2x0x3 + 2x2x3 + 2 min
w2=0,1

[3w2 − x0w2 − x2w2 − x3w2]

−2x1x2x3 = 2x1x2 + 2x1x3 + 2x2x3 + 2 min
w3=0,1

[3w3 − x1w3 − x2w3 − x3w3]

−2x2x3x4 = 2x2x3 + 2x2x4 + 2x3x4 + 2 min
w4=0,1

[3w4 − x2w4 − x3w4 − x4w4]

−2x2x3x5 = 2x2x3 + 2x2x5 + 2x3x5 + 2 min
w5=0,1

[3w5 − x2w5 − x3w5 − x5w5]

−2x2x4x5 = 2x2x4 + 2x2x5 + 2x4x5 + 2 min
w6=0,1

[3w6 − x2w6 − x4w6 − x5w6]

−2x3x4x5 = 2x3x4 + 2x3x5 + 2x4x5 + 2 min
w7=0,1

[3w7 − x3w7 − x4w7 − x5w7]
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Let us apply Ishikawa’s method (c.f Equation (1.5)) to all monomials of the degree

4:

4x0x1x2x3 = 4x0x1 + 4x0x2 + 4x0x3 + 4x1x2 + 4x1x3 + 4x2x3

+ 4 min
w8=0,1

[3w8 − 2x0w8 − 2x1w8 − 2x2w8 − 2x3w8]

4x2x3x4x5 = 4x2x3 + 4x2x4 + 4x2x5 + 4x3x4 + 4x3x5 + 4x4x5

+ 4 min
w9=0,1

[3w9 − 2x2w9 − 2x3w9 − 2x4w9 − 2x5w9]

Thus QG is reduced to the following polynomial:

QG = 2− x0 − x1 − 2x2 − 2x3 − x4 − x5 + 4w0 + 4w1 + 4w2 + 4w3 + 4w4

+ 4w5 + 4w6 + 4w7 + 12w8 + 12w9 + 5x0x1 + 6x0x2 + 5x0x3 + 5x1x2

+ 6x1x3 + 10x2x3 + 6x2x4 + 5x2x5 + 5x3x4 + 6x3x5 + 5x4x5

+ min
wi=0,1
i=0,...,9









−2x0w0 − 2x1w0 − 2x2w0 − 2x0w1 − 2x1w1 − 2x3w1 − 2x0w2

−2x2w2 − 2x3w2 − 2x1w3 − 2x2w3 − 2x3w3 − 2x2w4 − 2x3w4

−2x4w4 − 2x2w5 − 2x3w5 − 2x5w5 − 2x2w6 − 2x4w6 − 2x5w6

−2x3w7 − 2x4w7 − 2x5w7 − 8x1w8 − 8x2w8 − 8x3w8 − 8x2w9

−8x3w9 − 8x4w9 − 8x5w9









Note that 10 auxiliary variables are produced, and they even outnumber the orig-

inal variables. This situation only gets worse when the number of vertices or edges

increases. For example, the objective polynomial QG for the complete graph G = K8

with eight colors (m = 3) consists of 24 binary variables and has 1429 distinct mono-

mials. The monomial degree reduction on QG produces 1156 new auxiliary variables

and there are total 5849 distinct monomials in the reduced quadratic polynomial

(c.f. Table 3 in §5).

Meanwhile, the objective function for the graph coloring problem may contain

some homogeneous symmetric polynomials. For example, QG in Equation (1.7) con-

tains the following homogeneous symmetric polynomial

(1.8) − 2P
(3)
4 (x0, x1, x2, x3) = −2(x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3).

Higher the connectivity of the graph G is, larger the homogeneous symmetric poly-

nomial that the objective function QG contains.

The values of this symmetric polynomial only depend on the number of 1’s in

the binary variables. For example, if l = x0 + · · ·+ x3, then P
(3)
4 (x0, · · · , x3) = 0 for

l < 3, and P
(3)
4 (x0, · · · , x3) =

(
l

3

)

for 3 ≤ l ≤ 4. We can easily observe that this

simple rule applies to all homogeneous symmetric polynomials of binary variables.
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Let S
(m)
n be the set of all subsets in Sn = {0, · · · , n− 1} whose cardinality is m. We

will denote P
(m)
n (x0, · · · , xn−1) as the homogeneous symmetric polynomial of degree

m on n variables x0, · · · , xn−1:

(1.9) P (m)
n (x0, · · · , xn−1) =

∑

{i0,··· ,im−1}∈S
(m)
n

xi0 · · · xim−1 .

Then, we have

(1.10) P (m)
n (x0, · · · , xn−1) =







0 if

n−1∑

j=0

xj < m

(
l

m

)

if l =
n−1∑

j=0

xj ≥ m

In this paper, we propose a new degree reduction method called the symmetric

reduction method that reduces P
(m)
n to a quadratic polynomial. It produces less

number of auxiliary variables than the monomial reduction on the objective polyno-

mials for the graph coloring problem. In §2, we state main theorems 2.1, 2.2 on the

formulae of the reduced polynomials of the symmetric polynomials with positive and

negative coefficients. In §3, 4, we prove these theorems. In §5, we describe algorithms

1, 2 that implement the symmetric methods for applications . In the same section, we

present the results on testing these algorithms on random and complete graphs with

various vertex sizes. We compared the efficiency of the symmetric reduction method

with the conventional reduction methods by comparing the numbers of variables and

monomials of reduced polynomials obtained by two methods.

2. The Main Results

Let us re-define a binomial coefficient symbol

(
n

m

)

as follows: for any two non-

negative integers n and m,

(2.1)

(
n

m

)

=







n!

m!(n−m)!
if m ≤ n

0 if m > n
.

Here we state our two main theorems.
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Theorem 2.1. Let n ≥ m > 2 and define L =

(
n− 2

m− 2

)

, d =

⌊
n− 1

2

⌋

. For each

0 ≤ i ≤ d− 1, let us define

ai = (4i + 3)

(
n− 2

m− 2

)

− (m− 1)

((
2i+ 3

m

)

−

(
2i+ 1

m

))

,(2.2)

bi =

(
2i+ 2

m− 1

)

−

(
2i

m− 1

)

− 2

(
n− 2

m− 2

)

.(2.3)

Then the following equality holds:

P (m)
n (x) = L

∑

0≤i<j≤n−1

xixj + min
wi=0,1

i=0,··· ,d−1





d−1∑

i=0

wi



ai + bi

n−1∑

j=0

xj







 .(2.4)

Theorem 2.2. Let n ≥ m > 2 and define d =

⌊
n−m+ 2

2

⌋

. If n −m = 2d − 1,

then for each 0 ≤ i ≤ d− 1,

ai = (m− 1)

((
m+ 2i+ 1

m

)

−

(
m+ 2i− 1

m

))

,(2.5)

bi = −

(
m+ 2i

m− 1

)

+

(
m+ 2i− 2

m− 1

)

for 0 ≤ i ≤ d− 1.(2.6)

If n−m = 2d− 2, then Equations (2.5), (2.6) hold for 0 ≤ i ≤ d− 2 and let

(2.7) ad−1 = (m− 1)

(
n− 1

m− 1

)

, bd−1 = −

(
n− 2

m− 2

)

.

Then the following equality holds:

(2.8) − P (m)
n (x) = min

wi=0,1
i=0,··· ,d−1

d−1∑

i=0

wi



ai + bi

n−1∑

j=0

xj



 .

Before we present the proofs for Theorems 2.1, 2.2, let us explain the underlying

ideas with examples.

Example 2.3. First, let us explain Theorem 2.1 with P
(3)
5 (x). Our goal is to find

a quadratic polynomial Q that attains the same value of P
(3)
5 (x) consists of vari-

ables x0, · · · , x4 together with d auxiliary variables w0, . . . , wd−1. The only possible

formula for Q is

(2.9) Q =
∑

0≤i<j≤4

Lijxixj +

4∑

j=0

cjxj + min
wi=0,1

i=0,...,d−1





d−1∑

i=0

wi



ai +

4∑

j=0

bi,jxj







 .

In fact, this could be the general form of any reduced polynomial if it had a constant

term. We omitted the constant term here, since we know that the minimum P
(3)
5 (x)
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is 0 (and the same for P
(m)
n (x) in general). Just for now, let us assume that bi,j = bi,

Li,j = L, and ci = 0. This means that bi,j will depend on the index of the auxiliary

variables, Li,j is a constant, and Q does not have any linear terms on xj’s.

l(x) P
(3)
5 (x)

∑

i<j

xixj Al min
w0=0,1

w0(7− 5l(x)) min
w1=0,1

w1(3− l(x))

0 0 0 0 0 0
1 0 0 0 0 0
2 0 1 −3 −3 0
3 1 3 −8 −8 0
4 4 6 −14 −13 −1
5 10 10 −20 −18 −2

Table1. The sequence Al (c.f. Equation (2.10)) when L = 3 and the
arithmetic progressions that sums up to Al.

Let l = l(x) = x0 + . . . x4 and define the sequence Al by

(2.10) Al = P
(3)
5 (x)− L

∑

0≤i<j≤4

xixj .

The second and third columns of Table 1 show the values for P
(3)
5 (x) and

∑

0≤i,j≤4

xixj

for l = 0, · · · , 5. If we choose L = 3, then the sequence Al becomes a decreasing

sequence of non-positive integers (the fourth column of Table 1). In fact, L = 3 is

the minimum integer that makes the sequence Al as a decreasing sequence. The first

two non-zero numbers in Al are −3,−8 at l = 2, 3 respectively, and they follows the

arithmetic progression 7− 5l. Let us subtract min
w0=0,1

w0(7− 5l) (the fifth column of

Table 1) from Al for each l. Then we get a sequence that has only two negatives

−1,−2 at l = 4, 5 respectively, where all other values are 0 (the sixth column of

Table 1). This sequence is the same as min
w1=0,1

w1(3− l). Thus we obtain the following

identity:

(2.11) P
(3)
5 (x) = 3

∑

0≤i<j≤4

xixj + min
w0,w1=0,1



w0(7− 5

4∑

j=0

xj) + w1(3−
4∑

j=0

xj)



 .

It is worth noticing that we reduced the polynomial P
(3)
5 (x) with only two auxiliary

variables w0 and w1, whereas the monomial reductions would produce 10 auxiliary

variables, one for each monomial (c.f. Equation (1.6)).
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l(x) Bl min
w0=0,1

w0(8− 3l(x)) min
w1=0,1

w1(12 − 3l(x))

0 0 0 0
1 0 0 0
2 0 0 0
3 −1 −1 0
4 −4 −4 0
5 −10 −7 −3

Table 2. The values of Bl in Equation (2.12) and the arithmetic
progressions that sums up to Bl.

Example 2.4. Next, let us explain Theorem 2.2 with the example of −P
(3)
5 (x). Let

us define a sequence Bl as

(2.12) Bl = −P
(3)
5 (x).

The sequence Bl is already a decreasing sequence of non-positive numbers, and its

numbers are shown in the second column of Table 2. Let us observe the first two non-

positives −1,−4 at l = 3, 4 respectively. The arithmetic progression that matches

with these numbers is 8− 3l. We subtract the sequence min
w0=0,1

w0(8− 3l) from Bl to

obtain a sequence of zeros except −3 at l = 5. Then we take the last two non-positive

integers 0,−3 at l = 4, 5 respectively, and use the arithmetic progression 12 − 3l to

match these numbers. In this way, we get the following reduction:

(2.13) − P
(3)
5 (x) = min

w0,w1=0,1



w0(8− 3

4∑

j=0

xj) + w1(12 − 3

4∑

j=0

xj).





Again, we reduced the polynomial−P
(3)
5 (x) with only two auxiliary variables whereas

the monomial reductions would produce 10 auxiliary variables (c.f. Equation (1.6))

Remark 2.5. Before we proceed to the next sections, let us point out some impor-

tant facts.

(1) In the sequence Al = P
(m)
n (x)− L · l(x), the constant L is set as minimum

as possible to make Al a non-positive decreasing sequence. There are n− 1

negatives in Al, so we need ⌊(n − 1)/2⌋ auxiliary variables in the reduced

polynomial of P
(m)
n (x).

(2) In the sequence Bl = −P
(m)
n (x), there are n−m+2 negatives. Thus, we need

⌊(n−m+2)/2⌋ auxiliary variables in the reduced polynomials of −P
(m)
n (x).

(3) Ishikawa’s formulae in Equations (1.5), (1.6) are the special cases of Theorem

2.1 when n = m. If n = 2d + 2, then for all 0 ≤ i ≤ d − 1, we have
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2i+3 ≤ 2d+1 < n = m and 2i+2 ≤ 2d < m− 1, so Equations (2.2), (2.3)

become

(2.14) ai = (4i + 3), bi = −2.

If n = 2d+ 1, then Equation (2.14) hold for all 0 ≤ i ≤ d− 2, and

ad−1 = (4d − 1)− (n − 1) = 2d− 1 bd−1 = 1− 2 = −1,

which coincides with Ishikawa’s formula in Equations (1.5), (1.6). Freed-

man’s formula in Equation (1.4) is a direct consequence of Theorem 2.2

when n = m: there is only one pair of coefficients a0, b0, which are

a0 = n− 1, b0 = −1.

Thus, we can say that Theorems 2.1, 2.2 are the generalizations of Ishikawa’s

and Freedman’s methods.

3. Proof of Theorem 2.1

The original binomial coefficients satisfies the following property: for 0 ≤ s < r,

(3.1)

(
r

s

)

+

(
r

s+ 1

)

=

(
r + 1

s+ 1

)

.

With the new definition of binomial coefficients in Equation (2.1), the same property

holds for all r, s ≥ 0: if s = r, both sides of Equation (3.1) are 1; if s ≥ r + 1, both

sides of Equation (3.1) are 0. We will use Equation (3.1) often in the subsequent

calculations.

Let us fix the variables as x0, · · · , xn−1 and omit the notation x = (x0, · · · , xn−1)

whenever there is no ambiguity. Let us define the sequence Al as follows:

(3.2) Al = P (m)
n − L

∑

0≤i<j≤n−1

xixj.

Our first task is to find a value L so that the sequence Al satisfies the following

two properties:

P1 Al is a decreasing finite sequence of non-positive integers for 0 ≤ l ≤ n;

P2 the difference between two consecutive numbers in Al is also decreasing, i.e.

(3.3) (An−i −An−i−1) ≤ (An−i−1 −An−i−2) for all 0 ≤ i ≤ n− 2.
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For each 0 ≤ i ≤ n− 2, Equation (3.2) gives a triple of consecutive numbers in Al:

An−i−2 =

(
n− i− 2

m

)

− L

(
n− i− 2

2

)

,(3.4)

An−i−1 =

(
n− i− 1

m

)

− L

(
n− i− 1

2

)

,(3.5)

An−i =

(
n− i

m

)

− L

(
n− i

2

)

.(3.6)

We can re-write the inequality (3.3) as
((

n− i

m

)

−

(
n− i− 1

m

))

−

((
n− i− 1

m

)

−

(
n− i− 2

m

))

− L

(((
n− i

2

)

−

(
n− i− 1

2

))

−

((
n− i− 1

2

)

−

(
n− i− 2

2

)))

≤ 0.

Thus we have
((

n− i− 1

m− 1

)

−

(
n− i− 2

m− 1

))

− L

((
n− i− 1

1

)

−

(
n− i− 2

1

))

=

(
n− i− 2

m− 2

)

− L ≤ 0.

The number of negatives in the sequence Al determines the numbers of auxiliary

variables in the reduced polynomial (c.f. Examples 2.3, 2.4 and Remark 2.5). Thus

L should be chosen as minimum as possible so that Al has the least number of

negatives. Therefore,

(3.7) L =

(
n− 2

m− 2

)

.

With this L, all Al’s are also non-positive (i.e. Al satisfies P1).

Next, we want to find the coefficients aj , bj that satisfy

(3.8) Al = P (m)
n − L

(
l

2

)

= min
wi=0,1

i=0,··· ,d−1

[
d−1∑

i=0

wi (ai + bil)

]

.

There are n − 1 negative integers in Al at l = 2, · · · , n. We need to split the cases

for n where n is odd or n is even.

3.1. The odd case Suppose that n = 2d+1 for some d. Then there are 2d negatives

in Al and we want d arithmetic progressions in Equation (3.8) subsequently appear

as follows:
(
2

m

)

−

(
n− 2

m− 2

)(
2

2

)

= a0 + 2b0,(3.9)



68 H. Kang, H. Jung, C. Seol, N. Hong, H. Lim & S. Um

(
3

m

)

−

(
n− 2

m− 2

)(
3

2

)

= a0 + 3b0, (w0 = 1, wk = 0 for 1 ≤ k ≤ d− 1)(3.10)

(
4

m

)

−

(
n− 2

m− 2

)(
4

2

)

= (a0 + 4b0) + (a1 + 4b1),(3.11)

(
5

m

)

−

(
n− 2

m− 2

)(
5

2

)

= (a0 + 5b0) + (a1 + 5b1),(3.12)

(w0 = w1 = 1, wk = 0 for 2 ≤ k ≤ d− 1)

...
(
n− 1

m

)

−

(
n− 2

m− 2

)(
n− 1

2

)

=

d−1∑

k=0

(

ak + (n− 1)bk

)

,(3.13)

(
n

m

)

−

(
n− 2

m− 2

)(
n

2

)

=
d−1∑

k=0

(

ak + nbk

)

. (w0 = · · · = wd−1 = 1)(3.14)

That is, for each 0 ≤ i ≤ d− 1,

(
2i+ 2

m

)

−

(
n− 2

m− 2

)(
2i+ 2

2

)

=

i∑

k=0

(

ak + (2i+ 2)bk

)

,(3.15)

(
2i+ 3

m

)

−

(
n− 2

m− 2

)(
2i+ 3

2

)

=
i∑

k=0

(

ak + (2i+ 3)bk

)

.(3.16)

This is possible because the sequence Al satisfies the inequality (3.3): the differences

Al+1 −Al are getting smaller (as negatives) as l increases. We equate Al on the left

hand-side of Equation (3.8) by introducing new arithmetic progressions of negative

common differences on the right hand-side.

To find the formulae of bi, we subtract Equations (3.15) from Equation (3.16) to

get

i∑

k=0

bk =

(
2i+ 3

m

)

−

(
2i+ 2

m

)

−

(
n− 2

m− 2

)((
2i+ 3

2

)

−

(
2i+ 2

2

))

=

(
2i+ 2

m− 1

)

−

(
n− 2

m− 2

)

((2i + 3)(i+ 1)− (i+ 1)(2i + 1))

=

(
2i+ 2

m− 1

)

− 2(i+ 1)

(
n− 2

m− 2

)

(3.17)

Thus for 0 ≤ i ≤ d− 1,
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bi =

((
2i+ 2

m− 1

)

− 2(i+ 1)

(
n− 2

m− 2

))

−

((
2i

m− 1

)

− 2i

(
n− 2

m− 2

))

=

(
2i+ 2

m− 1

)

−

(
2i

m− 1

)

− 2

(
n− 2

m− 2

)

.(3.18)

To find the formula of ai, we add Equations (3.15), (3.16) to get

2

i∑

k=0

ak + (4i+ 5)

i∑

k=0

bk =

(
2i+ 2

m

)

+

(
2i+ 3

m

)

− ((2i + 3)(i + 1) + (i+ 1)(2i + 1))

(
n− 2

m− 2

)

Applying Equation (3.17), we get

i∑

k=0

ak =
1

2

((
2i+ 3

m

)

+

(
2i+ 2

m

)

− 4(i + 1)2
(
n− 2

m− 2

)

(3.19)

−(4i+ 5)

((
2i+ 2

m− 1

)

− 2(i+ 1)

(
n− 2

m− 2

)))

=
1

2

((
2i+ 3

m

)

+

(
2i+ 2

m

)

− (4i + 5)

(
2i+ 2

m− 1

)

+((4i+ 5)(2(i + 1))− 4(i+ 1)2)

(
n− 2

m− 2

))

=
1

2

((
2i+ 3

m

)

+

((
2i+ 2

m

)

+

(
2i+ 2

m− 1

))

− 2(2i + 3)

(
2i+ 2

m− 1

)

+2(2i2 + 5i+ 3)

(
n− 2

m− 2

))

= (i+ 1)(2i + 3)

(
n− 2

m− 2

)

− (m− 1)

(
2i+ 3

m

)

,

ai = ((i+ 1)(2i + 3)− i(2i + 1))

(
n− 2

m− 2

)

(3.20)

− (m− 1)

((
2i+ 3

m

)

−

(
2i+ 1

m

))

= (4i + 3)

(
n− 2

m− 2

)

− (m− 1)

((
2i+ 3

m

)

−

(
2i+ 1

m

))

3.2. The even case Suppose that n = 2d + 2. We have 2d − 1 negatives in the

sequence Al for starting from l = 2. We can write the first few equations of Equation
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(3.8) exactly as Equations (3.9) – (3.12). However, the last three equations will be

(
n− 2

m

)

−

(
n− 2

m− 2

)(
n− 2

2

)

=

d−1∑

k=0

(

ak + (n− 2)bk

)

,(3.21)

(
n− 1

m

)

−

(
n− 2

m− 2

)(
n− 1

2

)

=

d−1∑

k=0

(

ak + (n− 1)bk

)

,(3.22)

(
n

m

)

−

(
n− 2

m− 2

)(
n

2

)

=

d−1∑

k=0

(

ak + nbk

)

(w0 = · · · = wd−1 = 1).(3.23)

This happens because the triple An−2, An−1, An are always an arithmetic progression

with a common difference:

An−1 −An−2 =

((
n− 2

m

)

−

(
n− 2

m− 2

)(
n− 1

2

))

−

((
n− 2

m

)

−

(
n− 2

m− 2

)(
n− 2

2

))

=

((
n− 1

m

)

−

(
n− 2

m

))

−

(
n− 2

m− 2

)((
n− 1

2

)

−

(
n− 2

2

))

=

(
n− 2

m− 1

)

− (n− 2)

(
n− 2

m− 2

)

=

(
n− 2

m− 1

)

+

(
n− 2

m− 2

)

− (n − 1)

(
n− 2

m− 2

)

=

(
n− 1

m− 1

)

− (m− 1)

(
n− 1

m− 1

)

= −(m− 2)

(
n− 1

m− 1

)

,

An −An−1 =

((
n

m

)

−

(
n− 2

m− 2

)(
n

2

))

−

((
n− 1

m

)

−

(
n− 2

m− 2

)(
n− 1

2

))

=

((
n

m

)

−

(
n− 1

m

))

−

(
n− 2

m− 2

)((
n

2

)

−

(
n− 1

2

))

=

(
n− 1

m− 1

)

− (n− 1)

(
n− 2

m− 2

)

=

(
n− 1

m− 1

)

− (m− 1)

(
n− 1

m− 1

)

= −(m− 2)

(
n− 1

m− 1

)

Therefore, the same formulae of ai and bi for 0 ≤ i ≤ d − 1 in Equations (3.18),

(3.20) hold.
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4. Proof of Theorem 2.2

Let us define the sequence Bl as follows:

(4.1) Bl = −P
(m)
n

The sequence Bl satisfies the properties P1, P2 in the previous section: first, each

Bl is obviously non-positive. Second, if n ≥ m+2, then for each 0 ≤ i ≤ n−m− 2,

the triple of consecutive numbers Bm+i, Bm+i+1, Bm+i+2 satisfies

(Bm+i+2 −Bm+i+1)− (Bm+i+1 −Bm+i)

= −

(
m+ i+ 2

m

)

+

(
m+ i+ 1

m

)

−

(

−

(
m+ i+ 1

m

)

+

(
m+ i

m

))

= −

(
m+ i+ 1

m− 1

)

+

(
m+ i

m− 1

)

= −

(
m+ i

m− 2

)

< 0

The goal is to find the coefficients ai, bi satisfying

(4.2) Bl = −

(
l

m

)

= min
wi=0,1

i=0,··· ,d−1

[
d−1∑

i=0

wi (ai + bil)

]

.

There are n + 1−m negative numbers in the sequence Bl for m ≤ l ≤ n. Thus we

need to split the cases for n when n−m is odd or even.

4.1. The odd case Suppose that n−m = 2d− 1, i.e. n−m+1 = 2d. Then there

are d arithmetic progressions in Equation (4.2) that appears subsequently as follows:

−

(
m

m

)

= a0 +mb0,(4.3)

−

(
m+ 1

m

)

= a0 + (m+ 1)b0, (w0 = 1, wk = 0 for 1 ≤ k ≤ d− 1)(4.4)

−

(
m+ 2

m

)

= (a0 + (m+ 2)b0) + (a1 + (m+ 2)b1),(4.5)

−

(
m+ 3

m

)

= (a0 + (m+ 3)b0) + (a1 + (m+ 3)b1,(4.6)

(w0 = w1 = 1, wk = 0 for 2 ≤ k ≤ d− 1)

...

−

(
n− 1

m

)

=
d−1∑

k=0

(

ak + (n − 1)bk

)

,(4.7)
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−

(
n

m

)

=

d−1∑

k=0

(

ak + nbk

)

. (w0 = · · · = wd−1 = 1)(4.8)

For 0 ≤ i ≤ d− 1, we have

−

(
m+ 2i

m

)

=
i∑

k=0

(

ak + (m+ 2i)bk

)

,(4.9)

−

(
m+ 2i+ 1

m

)

=

i∑

k=0

(

ak + (m+ 2i+ 1)bk

)

,(4.10)

Subtracting Equation (4.9) from Equation (4.10), we get

(4.11)
i∑

k=0

bk = −

(
m+ 2i+ 1

m

)

+

(
m+ 2i

m

)

= −

(
m+ 2i

m− 1

)

.

Therefore, for 0 ≤ i ≤ d− 1,

(4.12) bi = −

(
m+ 2i

m− 1

)

+

(
m+ 2i− 2

m− 1

)

.

By adding Equations (4.9), (4.10), we get

(4.13) 2

i∑

k=1

ak + (2m+ 4i+ 1)

i∑

k=1

bk = −

(
m+ 2i+ 1

m

)

−

(
m+ 2i

m

)

.

Applying Equation (4.11), we get

i∑

k=0

ak =
1

2

(

−

(
m+ 2i+ 1

m

)

−

(
m+ 2i

m

)

+ (2m+ 4i+ 1)

(
m+ 2i

m− 1

))

=
1

2

(

−

((
m+ 2i+ 1

m

)

+

(
m+ 2i

m

)

+

(
m+ 2i

m− 1

))

+ 2(m+ 2i+ 1)

(
m+ 2i

m− 1

))

= −

(
m+ 2i+ 1

m

)

+ (m+ 2i+ 1)

(
m+ 2i

m− 1

)

= (m− 1)

(
m+ 2i+ 1

m

)

Therefore,

(4.14) ai = (m− 1)

((
m+ 2i+ 1

m

)

−

(
m+ 2i− 1

m

))
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4.2. The even case Next, suppose that n−m = 2d− 2. In this case, the first few

equations of Equation (4.2) are exactly same as Equations (4.3) – (4.6), but the last

three equations would be

−

(
n− 2

m

)

=
d−2∑

k=0

(

ak + (n− 2)bk

)

,(4.15)

−

(
n− 1

m

)

=

d−2∑

k=0

(

ak + (n− 1)bk

)

, (w0 = · · · = wd−2 = 1)(4.16)

−

(
n

m

)

=
d−2∑

k=0

(

ak + nbk

)

+ (ad−1 + nbd−1). (wd−1 = 1)(4.17)

The last arithmetic progression ad−1 + bd−1l must satisfy a+ (n− 1)bd−1 = 0. This

means

bd−1 = −

(
n

m

)

+

(
n− 1

m

)

−
d−2∑

k=0

bk(4.18)

= −

(
n− 1

m− 1

)

+

(
m+ 2(d− 2)

m− 1

)

= −

(
n− 1

m− 1

)

+

(
n− 2

m− 1

)

= −

(
n− 2

m− 2

)

,

ad−1 = −(n− 1)bd = (n − 1)

(
n− 2

m− 2

)

(4.19)

= (m− 1)

(
n− 1

m− 1

)

.

5. Simulated Results

In this section, we introduce two algorithms, MaxSymm and SymmRed, which

implement the symmetric degree reduction method based on Theorems 2.1, 2.2.

MaxSymm is an algorithm that finds maximal (which will be defined shortly) sym-

metric polynomials in a given polynomial. SymmRed is an algorithm that obtains

a reduced quadratic polynomial from a given polynomial of binary variables, which

prioritize the degree reduction of symmetric polynomials found by MaxSymm.

After reducing all symmetric homogeneous polynomials, SymmRed still uses the

monomial reduction methods for reducing the remaining monomials.

We will call P
(m)
n (x) for x = (x0, · · · , xn−1) in Equation (1.10) as the symmetric

m-polynomial on x. We will say a polynomial q lies in a polynomial p if all
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monomials in q are monomials in p. In this case, we will say p contains q. A

symmetric m-polynomial q is said to be maximal in p if q lies in p and there is

no other symmetric m-polynomial that lies in p and contains q. For example, the

symmetric 3-polynomial on 5 variables P
(3)
5 (x0, · · · , x4) is larger than the symmetric

3-polynomial on 4 variables P
(3)
4 (x0, · · · , x3).

TheMaxSymm algorithm takes two arguments, the polynomial p and the degree

m. Again, this algorithm finds maximal symmetric m-polynomials that lies in p. We

say a symmetric m-polynomial is trivial if it consists of only m variables, and the

algorithm returns nil if there is no symmetric m-polynomial except trivial ones. Let

us call a monomial of degree m simply as m-monomial. We can represent every m-

monomial by a set of distinct m variables (or more simply, m indices). Generally, we

can represent every symmetricm-polynomial by a set of distinct variables (or indices)

whenever there is no ambiguity on the constant m. For example, the symmetric

polynomial P
(3)
5 (x0, · · · , x4) is characterized by the set {x0, x1, x2, x3, x4}, or more

simply, {0, 1, 2, 3, 4}.

Algorithm 1 MaxSymm algorithm

1: procedure MaxSymm(p, m) ⊲ p is a polynomial, m ≥ 3 is a degree
2: A,B ← the set of all m-monomials in p
3: while C is not empty do

4: B,C ← C, ∅
5: for q in B do

6: for r in A do

7: if r 6⊂ q then

8: s← the symmetric m-polynomial on q ∪ r
9: if s lie in p then

10: C ← C ∪ {s}
11: end if

12: end if

13: end for

14: end for

15: end while

16: return B
17: end procedure

Algorithm 1 is a pseudocode ot MaxSymm algorithm. It utilizes three sets

A,B,C. The set A is the set of the all m-monomials in p, and it is the reference

set so we do not change it throughout the algorithm. The set B is the set of largest

symmetric m-polynomials in p polynomials that are currently found. The set C is
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the set of all symmetric m-polynomials in p that are even larger than at least one in

B. The algorithm starts by initializing the sets A,B,C as the set of all monomials in

p. The initialization of C is only for the first iteration of the below cycle to happen.

(The line numbers refers to Algorithm 1.)

(1) Firstly, we replace the set B by C and empty the set C (Line 4). This means

we transfer all information on the symmetric m-polynomials in C to B.

(2) Secondly, we look up all pairs (q, r) of monomials in B and A (Lines 5, 6).

Only when r contains an element which is not in q (Line 7), the algorithm

creates the symmetric m-polynomial s on all variables in the set q ∪ r (Line

8). If s lies in p, we insert s in C as an element (Lines 9, 10).

(3) The cycle aborts when there is no update on C after the full iteration of (2).

After the iteration of cycles are aborted, the algorithm returns all symmetric poly-

nomials stored in the set B.

Example 5.1. Let us re-visit the example in Equation (1.7) to see howMaxSymm(p, 3)

works:

p = 2− x0 − x1 − 2x2 − 2x3 − x4 − x5 + x0x1 + 2x0x2 + x0x3

+ x1x2 + 2x1x3 + 2x2x3 + 2x2x4 + x2x5 + x3x4 + 2x3x5

− 2x0x1x2 − 2x0x1x3 − 2x0x2x3 − 2x1x2x3

− 2x2x3x4 − 2x2x3x5 − 2x2x4x5 − 2x3x4x5 + 4x0x1x2x3 + 4x2x3x4x5

At the beginning of the algorithm, the sets A,B are initialized as below (variables

are represented by their indices):

A = {{0, 1, 2}, {0, 1, 3}, {0, 2, 3}, {1, 2, 3}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

At the first cycle, the algorithm searches all pairs of elements in the set B and A. The

pair ({0, 1, 2}, {0, 1, 3}) produces a symmetric 3-polynomial s = {0, 1, 2, 3} (Line 8).

Since P
(3)
4 (x0, x1, x2, x3 lies in p, we update the set C as C = {{0, 1, 2, 3}} (Line 10)

There is no further update to the set C until the end of this cycle. Since C 6= ∅,

the algorithm goes into the second cycle, which starts with B = {{0, 1, 2, 3}} and

C = ∅. Since there is no other symmetric polynomial in p that consists of variables

more than x0, x1, x2, x3, there is no update to the set C. The algorithm returns

{{0, 1, 2, 3}} and terminates.
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The algorithm SymmRed takes a single argument, the polynomial p that re-

quires a degree reduction. It uses the algorithm MaxSymm to find any maxi-

mal symmetric m-polynomials iteratively for m from 3 to deg p. For each maximal

symmetric polynomial found, namely s, it determines a constant a so that the m-

monomials in p are maximally removed by p− a · s. For this matter, this algorithm

works properly only when the polynomial p has a discrete spectrum of coefficients.

Then the symmetric m-polynomial s is reduced to quadratic polynomial by The-

orems 2.1, 2.2. When the process of searching and reducing maximal symmetric

polynomials are done, the algorithm applies the monomial reduction methods to the

remaining monomials.

Algorithm 2 The Symmetric Reduction algorithm

1: procedure SymmRed(p) ⊲ p is a polynomial
2: q ← 0
3: for m← 3 to deg p do

4: while s←MaxSymm(p,m); s 6= 0 do

5: a← the most common coefficient of monomials in p and s
6: p← p− a · s
7: if a > 0 then

8: r ← apply Theorem 2.1 to s
9: else

10: r ← apply Theorem 2.2 to −s
11: end if

12: q ← q + |a| · r
13: end while

14: end for

15: q ← q+MonoRed(p) ⊲ do the monomial reduction
16: end procedure

Algorithm 2 shows a pseudocode for SymmRed. The constant a (Line 5 in

Algorithm 2) is determined by counting the number of occurrences of all coefficients

of monomials in p that lies in s. However, the choice of a may not be unique. For

example, suppose that s = {0, 1, 2, 3}, m = 3, and the polynomial p is

− x0x1x2 − x0x1x3 + x0x2x3 + x1x2x3

= x0x1x2 + x0x1x3 + x0x2x3 + x1x2x3
︸ ︷︷ ︸

Theorem 2.1

−2x0x1x2 − 2x0x1x3
︸ ︷︷ ︸

monomial reduction

(5.1)

= −x0x1x2 − x0x1x3 − x0x2x3 − x1x2x3
︸ ︷︷ ︸

Theorem 2.2

+2x0x2x3 + 2x1x2x3
︸ ︷︷ ︸

monomial reduction

(5.2)
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Since there are the same numbers of +1 and −1 coefficients, we can take either

Equation (5.1) or (5.2). In the actual implementation of the algorithm, we took a

random choice of a between candidates when this kind of situation happened.

Now, we present the efficiency of the symmetric reduction method. We tested

SymmRed on the objective function QG in Equation (1.3) for random p-graphs

G, where p is the probability of the existence of an edge between each pair of two

vertices in G. We varied the number v of vertices v = 3, 4, 5, 6, 7, 8 and p = 0.75,

0.80, 0.85, 0.90, 0.95. The number of colors are set to be the minimum number of

the form 2m satisfying v ≤ 2m. Thus m = ⌊log2(v − 1)⌋+ 1 number of binary digits

are used for the binary representation of colors, and n = mv binary variables are

used in the objective function. We generated 104 random graphs and their objective

functions for each p and v. We applied the symmetric and the monomial reduction

methods, and counted the numbers of total variables and monomials in the reduced

quadratic polynomials.

p v n
Symmetric reduction Monomial reduction r1 − n

r2 − n
N1/N2r1 N1 r2 N2

0.75

3 6 10.31 41.72 17.20 66.97 40.00% 62.29%
4 8 16.90 75.88 30.41 125.41 40.00% 60.50%
5 15 145.12 795.16 327.76 1597.50 41.61% 49.78%
6 18 212.62 1182.61 486.06 2382.62 41.58% 49.63%
7 21 291.53 1636.67 673.41 3313.83 41.47% 49.39%
8 24 384.38 2174.45 894.23 4413.20 41.41% 49.27%

0.80

3 6 10.63 43.49 17.87 70.04 40.00% 62.10%
4 8 17.52 79.96 31.89 132.63 40.00% 60.28%
5 15 153.63 845.02 348.57 1701.93 41.56% 49.65%
6 18 224.47 1253.53 515.08 2528.39 41.54% 49.58%
7 21 309.64 1743.23 717.00 3532.79 41.47% 49.34%
8 24 407.97 2315.10 951.84 4702.65 41.38% 49.23%

0.85

3 6 10.98 45.53 18.64 73.59 40.00% 61.87%
4 8 18.20 84.52 33.53 140.75 40.00% 60.05%
5 15 162.28 895.16 369.25 1805.79 41.58% 49.57%
6 18 237.42 1331.70 546.97 2688.59 41.48% 49.53%
7 21 326.47 1841.98 758.43 3740.97 41.42% 49.24%
8 24 431.16 2453.30 1007.69 4983.24 41.39% 49.23%

0.90

3 6 11.35 47.78 19.47 77.54 40.00% 61.62%
4 8 18.82 88.81 35.07 148.39 40.00% 59.85%
5 15 170.38 942.11 389.19 1905.94 41.52% 49.43%
6 18 249.12 1404.09 577.36 2841.28 41.32% 49.42%
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7 21 344.49 1946.97 803.22 3966.03 41.36% 49.09%
8 24 454.33 2594.31 1065.11 5271.75 41.33% 49.21%

0.95

3 6 11.69 49.87 20.23 81.22 40.00% 61.41%
4 8 19.40 92.83 36.51 155.55 40.00% 59.68%
5 15 178.64 989.51 409.39 2007.44 41.49% 49.29%
6 18 259.17 1470.89 608.56 2998.07 40.84% 49.06%
7 21 360.95 2041.47 844.74 4174.64 41.27% 48.90%
8 24 474.11 2722.52 1121.66 5555.88 41.01% 49.00%

1.00

3 6 12 52 21 85 40.00% 61.18%
4 8 20 97 38 163 40.00% 59.51%
5 15 187 1037 430 2111 41.45% 49.12%
6 18 264 1516 639 3151 39.61% 48.11%
7 21 378 2137 889 4397 41.13% 48.60%
8 24 480 2797 1180 5849 39.45% 47.82%

Table 3. The average numbers of total variables ri and monomials
Ni in the quadratic polynomials reduced from the objective function
of the graph coloring problem on the random p-graphs, obtained by
the symmetric reduction method (i = 1) and the monomial reduction
methods (i = 2). The v is the number of vertices in the random graph
and n is the number of variables in the objective function. The last
two columns are ratios between averages on numbers of auxiliary
variables ((r1 − n)/(r2 − n)) and the total numbers of monomials
N1/N2.

Table 3 shows the summarized results. The r1 and r2 on the fourth and sixth

columns of the table are the average numbers of all variables in the reduced quadratic

polynomials obtained by applying the symmetric and monomial reduction methods

respectively. The N1 and N2 on the fifth and seventh column of the table are the

average numbers of all monomials in the reduced quadratic polynomials obtained

by the symmetric and monomial reduction methods respectively. We take the ratio

between average numbers of auxiliary variables in the reduced quadratic polynomial

obtained by the symmetric and monomial reduction methods. The last rows of Table

3 shows the cases for the complete graphs.
Figure 1 shows the data points for (v, r1) and (v, r2) for each p. The symmet-

ric reduction method produces only 39.45% ∼ 41.61% of auxiliary variables than

the monomial reduction method. The average number of monomials in the re-

duced polynomial obtained by the symmetric reduction method are approximately

47.82% ∼ 62.29% of what produced by the monomial reduction method.
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6. Conclusion

One of the main limitation that the current quantum annealing systems have,

in solving real-world problems, is the number of qubits of the quantum annealing

machines. Thus minimizing the number of variables in a QUBO formulation is essen-

tial. We showed that the symmetric reduction method can produces substantially

less number of auxiliary variables than the conventional methods for the QUBO

formulation of the graph coloring problem.

(a) p = 0.75 (b) p = 0.80 (c) p = 0.85

(d) p = 0.90 (e) p = 0.95 (f) p = 1.00

Figure 1. Plots on the average numbers of auxiliary variables in the
quadratic polynomial reduced from the objective functions of the
graph coloring problems on random p-graphs by the symmetric re-
duction method (circle-dot) and the monomial reductions (square-
dots). The number of colors are set to be the number of vertices of
the graph. The horizontal axis represents the number of vertices and
the vertical axis represents the average numbers of auxiliary variable.
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