
NDPipe: Exploiting Near-data Processing for
Scalable Inference and Continuous Training in Photo

Storage
Jungwoo Kim

∗

jungwoo@dgist.ac.kr
DGIST

South Korea

Seonggyun Oh
∗

sungkyun123@dgist.ac.kr
DGIST

South Korea

Jaeha Kung

jhkung@korea.ac.kr
Korea University

South Korea

Yeseong Kim

yeseongkim@dgist.ac.kr
DGIST

South Korea

Sungjin Lee

sungjin.lee@dgist.ac.kr
DGIST

South Korea

Abstract

This paper proposes a novel photo storage system called

NDPipe, which accelerates the performance of training and

inference for image data by leveraging near-data processing

in photo storage servers. NDPipe distributes storage servers

with inexpensive commodity GPUs in a data center and uses

their collective intelligence to perform inference and train-

ing near image data. By efficiently partitioning deep neural

network (DNN) models and exploiting the data parallelism

of many storage servers, NDPipe can achieve high training

throughput with low synchronization costs. NDPipe opti-

mizes the near-data processing engine to maximally utilize

system components in each storage server. Our results show

that, given the same energy budget, NDPipe exhibits 1.39×
higher inference throughput and 2.64× faster training speed

than typical photo storage systems.

CCS Concepts: • Information systems→ Distributed stor-
age; • Computing methodologies→ Neural networks.

Keywords: Systems for AI, near-data processing, and photo

storage systems

ACM Reference Format:
JungwooKim, SeonggyunOh, Jaeha Kung, YeseongKim, and Sungjin

Lee. 2024. NDPipe: Exploiting Near-data Processing for Scalable

Inference and Continuous Training in Photo Storage. In 29th ACM
International Conference on Architectural Support for Programming

∗
These authors equally contributed to this work.

This work is licensed under a Creative Commons Attribution International
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04
https://doi.org/10.1145/3620666.3651345

Languages and Operating Systems, Volume 3 (ASPLOS ’24), April 27-
May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 19 pages.

https://doi.org/10.1145/3620666.3651345

1 Introduction
The demand for storing and retrieving voluminous image

data has seen an unprecedented rise in the contemporary dig-

ital ecosystem. Daily, approximately 400 million photos are

uploaded across social media including Facebook and Insta-

gram [47, 48]. Concurrently, 1.2 billion photos are archived

in online repositories such as Google Photos every day [2].

In response to this surging demand, substantial infrastruc-

ture resources are dedicated to photo services, e.g., Facebook

allocates about 28% of its data center capacity [1].

Modern photo storage platforms integrate deep learning

(DL) to enhance user experience, notably outperforming tra-

ditional algorithms [23, 87] in feature extraction [54], image

categorization [104] , and recommendation delivery [41, 93].

However, incorporating DL into storage platforms incurs sig-

nificant computation and I/O costs. Developing Deep Neural

Network (DNN) necessitates extensive computing capac-

ity and frequent data transfers for large datasets, extending

training periods to weeks [17, 70]. Moreover, the growing vol-

ume of images [73] requires more intensive image inference,

placing pressure on computational and I/O resources [42].

The integration of DL into storage systems manifests two

primary concerns. The first is the outdated model problem,

where trained DNN models gradually lose accuracy over

time due to data evolution or drift [34, 69, 71]. Strategies
such as regular retraining [42, 72] or initiating training upon

significant accuracy drops [15, 33] have been explored to

mitigate this issue. However, these methods come with high

computing and IO costs as they usually involve full retrain-

ing from scratch. Fine-tuning [46, 49, 97], which updates

specific model parts, offers a more efficient alternative, yet

still demands substantial data traffic to feed training datasets,

hindering timely adaptation to changing data [17, 70, 100].

The second concern, the outdated label problem, arises when

689

https://doi.org/10.1145/3620666.3651345
https://doi.org/10.1145/3620666.3651345
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3620666.3651345&domain=pdf&date_stamp=2024-04-27

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, and Sungjin Lee

new models render older labels obsolete [99]. In photo stor-

age systems, image labels are indexed in databases for user

queries [32, 36, 77], thus demanding updates through of-
fline inference with model changes. It leads to considerable

I/O costs to process historical images. Consequently, typical

photo storage systems either selectively apply offline infer-

ence or turn to alternative labeling strategies [20, 66, 67].

In this paper, we propose a novel photo storage system,

NDPipe, which enables fine-tuning and offline inference by

leveraging near-data processing (NDP) to address the out-

dated model and label problems. The main idea of NDPipe

stems from the insight that the computing demands for fine-

tuning and offline inference are not excessively high, and

can be effectively managed by low-end GPUs. This approach

shifts the focus from computational power to the challenge of

data communication; the main bottleneck is not the process-

ing capability, but rather the extensive data transfer between

storage and compute servers. In NDPipe, we thereby incor-

porate cost-effective and energy-efficient commodity GPUs

into storage servers to perform fine-tuning and offline infer-

ence locally, significantly reducing the data transfer. NDPipe

also enhances these processes by utilizing high aggregate

throughputs of many storage servers operating in parallel.

The potential of NDP has been explored previously with

various initiatives seeking to enhance DL algorithms [56,

66, 94]. However, its direct application within the context of

photo storage introduces unique challenges. The following

are the three key components of NDPipe, each addressing a

targeted challenge of photo storage systems:

1. Parallel Training Strategy Across Storage Servers.
The primary challenge is how to efficiently perform fine-

tuning-based training tasks across numerous storage servers.

We found that merely offloading entire fine-tuning tasks to

storage servers does not yield optimal performance, primar-

ily due to the significant weight synchronization costs across
the network. NDPipe tackles this with a new training strat-

egy, fine-tuning-based data and model parallelism (FT-DMP).

It segments a DNN model into two parts: one for storage

servers with weight-freeze layers and the other one for a

training server with layers needing updates. Since it makes

weight updates happen locally, i.e., only in the training server,

we can reduce the synchronization overhead significantly.

2. Load Balancing with Model Partitioning. Another
challenge is achieving a load balance between the training

server and storage servers, requiring careful choices like the

number of storage servers for training and effective DNN

model partitioning. These decisions depend on specificmodel

types and hardware performance, including GPUs and net-

work bandwidth. A critical consideration here is the risk

of resource underutilization: deploying too many storage

servers might lead to marginal performance gains but in-

crease energy inefficiency. To navigate this complexity, we

developed the Automated model Partitioning and Organiza-
tion (APO) tool. It is designed to identify the most suitable

partitioning points for DNN models and ascertain the suit-

able number of storage servers for training.

3. Advanced Scheduling and Optimization for End-to-
EndDL Pipeline. In developing NDPipe, we recognized that
optimizing each subprocedure in the end-to-end DL pipeline

of photo storage applications is key to achieving maximized

efficiency and performance. This encompasses not just com-

putation parts of DL inference/training but also preprocess-

ing stages and data communications needed for fine-tuning.

For example, we observed a notable bottleneck in the pro-

cess of reading and preprocessing image data to supply the

necessary intermediate data for training and inference. Our

approach thus led to the development of a comprehensive

optimization software framework called near-data processing
engine (NPE). It collectively enhances data handling, reduces
bottlenecks, and ensures optimal GPU utilization across the

system, addressing challenges in the full spectrum of DL

operations, from data ingestion to model updating.

We have implemented a proof-of-concept prototype of

NDPipe with two main components: PipeStore and Tuner.

PipeStore is a storage server equipped with a low-end GPU

or an inference accelerator for near-data training and infer-

ence. Tuner is a training server that manages distributed

PipeStores. It is also responsible for a part of training using

a more powerful GPU.

To evaluate NDPipe, we conduct a case study with an im-

age classification system that employs five popular DNN

models. Our evaluation using CIFAR100 [62], ImageNet-

1K [91], and ImageNet-21K [25] shows the following key re-

sults. First, NDPipe provides scalable inference performance

without being bottlenecked by data transfers, fully utiliz-

ing GPUs distributed over storage servers. When using 4–7

PipeStores, we achieve the same level of inference through-

put as a typical centralized inference system using two V100

GPUs. In this configuration, NDPipe shows 1.39× higher

energy efficiency. Second, ten PipeStores and one Tuner pro-

vide 1.64× faster training speed and 2.02× higher energy

efficiency than a centralized training server that performs

training using two Tesla V100 GPUs. Third, compared to

the outdated model, NDPipe exhibits 1.7% and 2.4% higher

top-1 and top-5 accuracy, on average, respectively. When

compared to the model created from scratch, NDPipe suffers

from 2.3% and 1.5% accuracy drops at top-1 and top-5, on

average, but provides over 300× faster training time, which

facilitates continuous model updates.

This paper is organized as follows: We give background

in §2 and analyze the impacts of the outdated model and

label problems in §3. Then, we discuss the technical issues
of adopting NDP to photo storage systems in §4. In §5, we
present the design of NDPipe. After showing experimental

results in §6 and discussing NDPipe in §7, we review prior

work in §8 and conclude in §9.

690

NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Weight-freeze TrainableBackwardForward

ErrorFull trainingA

ErrorFine-tuningB

OutputInferenceC

Error

Error

Output

Fig. 1. Deep learning training and inference process

2 Background
2.1 Training Strategy for DNN
Fine Tuning. Fine-tuning is a strategy used to enhance

a pre-trained model on a new or related task [46, 49, 68,

97]. Training a model from scratch is time-consuming as it

requires updating all weights in every layer through forward

and backward passes on a large general dataset (A in Fig. 1).

Fine-tuning adjusts only a few weights of the original model

to adapt it to specific tasks or new datasets. This approach

not only improves the model’s accuracy but requires shorter

training time. Throughout the paper, training from scratch is

referred to as full training to differentiate it from fine-tuning.

A commonly used fine-tuning strategy is to train a pre-

trained model’s last few Multi-Layer Perceptron (MLP) lay-

ers [97, 105]. Specifically, for Convolutional Neural Network

(CNN)-based models, these MLP layers are often termed the

classifier; for transformer-based models, they are known as

the task module. This approach entails freezing the initial

layers of the pre-trained model, focusing only on updating

the weights of the subsequent layers during the backward

pass, as illustrated in B . The layers with frozen weights are

referred to as weight-freeze layers, while the ones being up-
dated are the trainable layers. In this process, input batches

are processed by the weight-freeze layers, which extract rele-

vant features. These features are then utilized in training the

model’s trainable layers. Notably, the fine-tuning procedure

for weight-freeze layers is identical to the inference process (

C), thus making it more resource-efficient than full training.

Distributed Training.Distributed training is a technique
to speed up training neural networks in a distributed manner.

Two common approaches exist: data parallelism (DP) and

model parallelism (MP). DP distributes batches over multiple

servers (workers), each of which has a replica of a DNN

model and processes assigned batches in parallel with other

servers (see Fig. 2(a)) [64, 65, 92]. DP can reduce training time

by utilizing the parallelism of multiple workers, but it suffers

from high synchronization penalties to update the trained

model across workers [89, 108]. While various approaches

are proposed [64, 86], synchronization still causes non-trivial

communication overheads, limiting scalability [85].

MP is used for training large DNN models that cannot

fit into the memory of a single system. It involves parti-

tioning the model into multiple parts and distributing them

across different machines to be processed in a pipelined man-

ner (see Fig. 2(b)) [79, 85]. However, high synchronization

Dataset

Worker1 Worker2 Worker3

Weight synchronization

(a) Data parallelism
Dataset

Worker1

Worker2

Worker3

P
ip

el
in

in
g

S
y
n
ch

ro
n

izatio
n

(b)Model parallelism

Fig. 2. Distributed training technique

costs can negatively impact the training process, as each

machine must keep the resulting weights in memory until

the backward pass of the same batch. This often results in

low utilization of multiple machines because only one or a

few can be active [24, 50].

2.2 Drift Problem and Its Mitigation
A trained model provides high accuracy immediately after it

is created, but the accuracy may drop as data changes over

time. This phenomenon is called drift. Drift occurs when the

relationship between inputs and outputs changes and/or the

model’s input distribution changes.

In order to mitigate the drift problem, many approaches

have been proposed. Online learning (or incremental learn-

ing) updates the model on the fly as it processes one sample

at a time. Online learning enables learning from data streams

and seamlessly adapting to changing data. A critical chal-

lenge is that it is likely to forget past knowledge. The use of

online learning is thus limited to specific streaming applica-

tions (e.g., weather forecasts and stock predictions), where

historical data is less important in making decisions.

Another approach is to reflect historical and recent data

through full training. The full training can be triggered when

drift is detected or is performed regularly. The detection-

based training may degrade the prediction quality as the

training starts after sufficient drift is observed. Detecting

drift is also challenging due to the presence of hidden fac-

tors. On the other hand, regular full training addresses these

limitations by creating new models regularly. However, it

consumes excessive computing and I/O resources, resulting

in higher power consumption and the need for more servers

and infrastructure. The long training time, which can reach

2 to 4 weeks, also impedes timely model updates.

3 Outdated Model and Label Problems
Processing complex data types, such as images, and devel-

oping applications that utilize these data requires advanced

methods, not traditional analysis techniques. In this context,

modern photo storage systems are increasingly integrating

DL algorithms to enhance user experiences [12, 37, 76]. These

systems employ DNN models to extract valuable informa-

tion from images, facilitating applications such as content

691

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, and Sungjin Lee

Fig. 3. Training and inference in photo storage systems

recommendation, categorization, and retrieval [40, 93, 104].

However, despite the many benefits of DNN integration, it

also gives rise to specific challenges, i.e., (i) outdated models

due to the ‘drift’ and (ii) outdated labels resulting from in-

ferences made by now obsolete models. In this section, we

discuss our empirical investigation that quantifies the effects

of these outdated model and label problems on accuracy and

the potential bottlenecks to address these challenges.

3.1 System Organization
Fig. 3 illustrates our target photo storage system, which is

modeled after the production systems of Google Photos [36–

38] and Amazon Photos [5, 12]. The system comprises four

components: a training server, an inference server, a data-

base, and storage servers. Using training datasets in storage

servers (1 in Fig. 3), the training server trains DNN models

regularly (2). The trained model is then delivered to the in-

ference server (3). When a new image comes, the inference

server extracts its label using the model, which we call online

inference (1). The image is stored in the storage server (2

), and its label and location are indexed in the database to

serve image search requests (3). If necessary, the system

performs offline inference to refresh outdated labels of pre-

viously stored images. This process involves reading images

from storage servers (1), extracting labels from a newmodel

(2), and updating the database (3). For experiments, we

use ResNet50 [43], which is widely deployed in production

systems. As a benchmark, we use ImageNet-1K [91].

3.2 Impact of Outdated Model on Accuracy
To understand the impacts of drift on accuracy, we conduct

experiments in which new images with new categories are

added to the storage server. Following the approach shown

in [70], the training server creates an up-to-date model bi-

weekly and transfers it to the inference server. Based on

the growth rate of data [73], we assume that the number of

images stored increases by 1.78% daily, with 5.3% of newly

added images belonging to new categories.

Fig. 4(a) shows the top-1 accuracy of the model over two

weeks (a similar trend to this result is also observed in the

top-5 accuracy (see Table 2)). We create an initial model

Base +2d +4d +6d +8d +10d+12d

70

72

74

76

T
o

p
-1

 a
cc

u
ra

cy
 (

%
)

Outdated model
Full training

Fine-tuning

(a) Outdated model problem (d: day)

0K 400K 800K 1.2M

69

70

71

72

T
o
p
-1

 a
cc

u
ra

cy
 (

%
)

(b) Impact of dataset size on accu-

racy of fine-tuning

Fig. 4. Challenges in DL integrated photo storage system

using a training dataset with 937K images. The accuracy,

measured using a test dataset with 50K images, is 73.8%. As

new images are continuously added to the server over time,

we evaluate the model accuracy every other day using new

test datasets that reflect changes in the stored images. The

accuracy gradually drops from 73.8% to 68.9%. It shows that

the trained model becomes stale and fails to reflect recent

changes. Performing full training more frequently may pre-

vent the accuracy drop. Fig. 4(a) shows the model’s accuracy

in training it using the latest images every other day. The

retrained model operates fairly well, offering the equivalent

accuracy. However, it is infeasible to use in practice by the

long training time.

Fine-tuning that adjusts the last few layers is a viable alter-

native to mitigate the burden of full training. We can prevent

accuracy degradation by fine-tuning before its major update

by full training. Fig. 4(a) depicts how much accuracy drops

can be prevented by fine-tuning. We observe only an accu-

racy drop of 1.95% compared to the initial model. Fine-tuning

cannot achieve the same accuracy as regular full training,

but it still maintains a high enough accuracy. Unfortunately,

even though fine-tuning is known to be less expensive than

full training, it still involves many I/Os to feed a sufficient

dataset to DNN models for higher accuracy [57]. As shown

in Fig. 4(b), to provide noticeable accuracy improvement

through fine-tuning, a large training dataset (e.g., more than

500K images) must be fed to the model.

3.3 Impact of Outdated Label on Accuracy
Image labels in a database become outdated as the model

gets updated to reflect new relationships between inputs and

outputs and to classify wider categories.

To understand the extent to which image labels become

outdated labels as the model gets updated, we carry out ex-

periments under the same setup in §3.1. We create the initial

model, 𝑀0, and assign labels to a set of 50K images using

the model. As previously described in §3.2, we add new im-

ages to the storage server and perform full training biweekly

to create up-to-date models, 𝑀1, ..., 𝑀4. We then use these

new models to re-perform inference on the same 50K im-

ages, assigning more accurate labels. Finally, we evaluate

692

NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. % of labels fixed by new models

𝑀0 𝑀1 𝑀2 𝑀3 𝑀4

% of fixed labels 0% 6.67% 7.29% 7.96% 8.98%

how many images incorrectly labeled by 𝑀0 are fixed by

𝑀1, ..., 𝑀4. Table 1 shows the percentages of labels corrected

by the new ones. 6.67% of the images have incorrect labels

and are corrected by𝑀1. With the latest model,𝑀4, this num-

ber increases to 8.98%. It implies that the database contains

a significant number of outdated and incorrect labels that

should be updated.

The most fundamental way to reflect the enhancement of

the newer DNN model is to perform offline inference again

on previously stored images. Offline inference, however, in-

volves significant data traffic because it requires fetching

images from storage and performing inference on them.

3.4 Bottleneck Analysis
As outlined in §3.1, NDPipe employs fine-tuning and offline

inference as strategic solutions to the challenges of outdated

models and labels, respectively. While these tasks are not

computationally intensive, they entail significant data trans-

fers, potentially creating a major bottleneck. To evaluate the

extent of this bottleneck, we conducted comparative experi-

ments between two system setups: Typical and Ideal.
Typical: This configuration represents a standard setup

where a host server is networked with storage servers. For

our experiments, we utilized a p3.8xlarge instance from

Amazon Web Services (AWS) as the host system. This in-

stance is equipped with four V100 GPUs and 32 vCPUs oper-

ating at 2.7GHz where we employed two of the V100 GPUs

for the experiments. The host server was paired with four

g4dn.4xlarge storage server instances, each originally fea-

turing 16 vCPUs at 2.5GHz and a T4 GPU; but we disabled

the GPUs for the experiments. The storage servers were con-

figured with st1 storage volumes, consisting of 16x HDDs

organized in a RAID-5 array. The host and storage servers

are communicated via a 10Gbps network.

Ideal:The Ideal systemmirrors the Typical setup in terms

of host server specifications but loads images directly from

local memory, thus eliminating network traffic. This ideal-

ized scenario allows for the complete avoidance of network-

related delays. Training in both systems utilizes a specifically

curated set of images, separate from preprocessing steps, to

align the input data with the DNN model. For fine-tuning

purposes, we used the preprocessed ImageNet-1K dataset,

averaging 0.59MB per image. The offline inference tests were

conducted using 1,000 images, each a typical 2.7MB JPEG file,

to represent common photo storage system formats [51, 61].

Fig. 5 shows how the fine-tuning and offline inference

procedures behave differently on the two setups. During the

fine-tuning phase, the Typical system faces significant net-

work overheads, leading to substantially extended training

0 5 10 15 20
Training time (min)

Ideal

Typical

(a) Fine-tuning

0 50 100
Throughput (IPS)

Ideal

Typical

(b) Offline inference

Fig. 5. Impact of network bottleneck

durations as shown in Fig. 5(a). For example, the training

throughput in this configuration is 3.7× slower compared to

the Ideal system, despite both setups employing identical

GPUs. A similar trend is observed in the offline inference

process as illustrated in Fig. 5(b). The Typical system pro-

cesses only 94 images per second (IPS), which is considerably

lower than the 123 IPS managed by the Ideal system.

It is important to note that these results also account for

the impact of image preprocessing, a substantial contributing

factor to the overall overhead, which will be explored in

greater detail in §4. From these observations, we find the two

following key insights: (i) network limitations are a decisive

factor in hindering the efficiency of fine-tuning and offline

inference in the typical systems, and (ii) merely utilizing

additional GPUs for the host server does not correspondingly

increase training or inference throughput.

4 Challenges with NDP for Photo Storage
As identified in our bottleneck analysis in §3.4, data transfer
is the main limiting factor in photo storage systems. In this

context, NDP could be a potentially attractive solution to al-

leviate network bottlenecks and increase aggregate through-

put by decentralizing computational capabilities and posi-

tioning them closer to data storage [18, 103]. However, we

found that integrating NDP into photo storage systems is not

straightforward, rather presenting unique challenges partic-

ularly when applied to fine-tuning and offline inference.

To illustrate our findings, we present our comparative

analysis for the fine-tuning and offline inference procedures

under two system configurations: Typical and NDP. The
Typical system, as outlined in §3.4, consists of a host server
connected to storage servers via a 10Gbps network. For the

NDP system, we enabled GPUs in the storage servers, consist-

ing of four g4dn.4xlarge instances, and processed images

within these servers, bypassing the host server. This config-

uration allows direct data processing at the storage site, cir-

cumventing the network bottleneck. For these experiments,

we utilize the same workloads as those used in §3.4.

4.1 Fine-tuning with NDP
In our exploration of fine-tuning with NDP, we break down

the execution time of the process within a Typical setup, fo-
cusing on several key phases: (i) reading images from storage

(Read), (ii) transferring them via a network (Data Trans.),
(iii) executing DNN operations, including feature extraction

693

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, and Sungjin Lee

60

70 Typical NDP

Read Data
Trans.

FE&CT Weight
Sync.

0

1

2

N
o

rm
.

ex
ec

u
ti

o
n

 t
im

e

x

(a) Fine-tuning

Read Data
Trans.

Preproc. FE&Cl
0

1

2

3

x

Typical NDP

(b) Offline inference

Fig. 6. Execution times of DL tasks normalized to Typical.
(The numbers above the bars are the actual times when con-

ducted in a Typical setup: (a) in minutes and (b) in seconds.)

and classifier training on the training server (FE&CT), and
(iv) performing weight synchronization (Weight Sync.).

Fig. 6(a) presents our experimental findings, with the exe-

cution time for each subprocess in NDP normalized against

that of Typical. The results highlight that NDP successfully

bypasses the need for network-based data transfer. Addition-

ally, we observed that DNN operations within the NDP system
can be efficiently executed using low-end GPUs thanks to (i)

the less demanding nature of fine-tuning compared to full

training and (ii) the utilization of aggregated computational

power from multiple storage servers. In FE&CT, only a 36%

increase in execution time is observed with low-end GPUs.

However, we observe another challenge in using NDP for
fine-tuning: the requirement for weight synchronization

across the GPUs in multiple storage servers. This process

incurs considerable overhead, forming a new bottleneck. A

critical aspect exacerbating this challenge is the linear in-

crease in synchronization costs as more storage servers are

incorporated into fine-tuning. This finding indicates a scal-

ing limitation within NDP: merely adding more NDP devices

does not linearly enhance the fine-tuning performance.

4.2 Offline Inference with NDP
Our analysis of offline inference within the NDP framework

involves a detailed timing study of each component during

the processing of 1,000 images. We categorize the offline in-

ference process into four stages, typically observed in most

systems: (i) reading the raw image from disk (Read), (ii) trans-
ferring the image over a network to the host server (Data
Trans), (iii) preprocessing the image for compatibility with

the DNN model (Preproc.), and (iv) extracting the feature

and then classifying the image using a DNN model (FE&Cl).
In the NDP setup, we allocated a single CPU core for prepro-

cessing tasks in each storage server, contrasting with the

Typical system that uses eight cores for these tasks.

Fig. 6(b) illustrates the performance differences of each

subprocess in NDP compared to Typical. Consistent with
our findings from the fine-tuning analysis, the NDP system
centralizes all subprocesses within the storage server, elimi-

nating the data transfer overhead. NDP also takes advantage

Database

Offline
inference

Model
distribution

1

2

Tuner
(in training server)

Inference

server

3

GPU
3

1

1

7

4
5

3

GPU Model

PipeStores

Search

Request

Update Update
cat

Network

Online inference1

Store2

2 Intermediate data

Fine
tuning

Model distribution

GPUCPU

«

GPUCPU

«

GPUCPU

«

1 Request

«

Fig. 7. Overall architecture and operations of NDPipe

of the aggregate computational power of multiple GPUs

within the storage servers, resulting in computation times

that are only 1.33× longer than those of the Typical system.

Yet, NDP introduces a new challenge in preprocessing due

to the limited CPU resources in the storage servers, which

significantly impacts the overall inference speed. Allocating

additional CPU resources for preprocessing in common stor-

age servers is impractical, as it may adversely affect the fun-

damental operations of the storage services, such as handling

read/write requests. This situation necessitates a systematic

approach to address the preprocessing bottleneck without

compromising the core functions of the storage servers.

5 Design and Implementation of NDPipe
In addressing the identified challenges in NDP within photo

storage systems, we propose NDPipe, a system designed to ef-

fectivelymanage the outdatedmodel and label problemswith

minimal overhead. NDPipe harnesses the potential of NDP

in storage servers to enhance system performance. Also, ND-

Pipe utilizes the same computational devices and software

engines between near-data processing tasks (i.e., fine-tuning

and offline inference).

Fig. 7 shows the architecture of NDPipe with two main

components: a computational storage server (PipeStore) and
a fine-tuning server (Tuner). PipeStore operates as a stan-
dard storage server but is equipped with a commodity GPU,

enabling it to perform the fine-tuning and offline inference

tasks near the data. This design choice is practically fea-

sible, given existing storage servers capable of GPU inte-

gration [95]. Tuner manages many PipeStores and triggers

fine-tuning and offline inference. It also performs part of the

fine-tuning by utilizing a host-side GPU. We may run Tuner

on the existing training server or a dedicated machine.

NDPipe uses fine-tuning that is expensive to run entirely

on a storage server. To address the issue, NDPipe splits the

model into two partitions, assigning a data-intensive one

to a group of PipeStores and a computing-intensive one to

Tuner. When training a model, Tuner sends training requests

to multiple PipeStores (1 in Fig. 7). PipeStores then extract

intermediate data from local images, sending them to Tuner

694

NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

(2). Using the data received from PipeStores, Tuner tunes

the model and generates an up-to-date model (3). Since the

intermediate data are much smaller than the original images,

NDPipe can drastically reduce network traffic.

Once the model is updated, it is redistributed to each

PipeStore, ensuring they possess the most current versions

(as indicated by the purple lines in Fig. 7). To mitigate the

overheads associated with distributing the entire model,

we implement the Check-N-Run approach [29], which only

transfers the compressed deltas (or differences) betweenmod-

els rather than the entire models themselves. Since changes

in the fine-tuned model are confined to the last few layers,

this method significantly reduces network traffic, achieving

up to a 427.4× data traffic reduction.

With the fine-tuned models, NDPipe performs inference

procedure in two contexts: online inference for newly up-

loaded images and offline inference to update labels for

stored images based on the newly updated models. While the

online inference happens in the typical DL system (1 ∼ 2 in

Fig. 7), offline inference is entirely performed in PipeStores

without expensive external I/Os (1∼ 3). For offline inference,

Tuner sends inference requests to PipeStores that have tar-

get images. PipeStores perform offline inference locally and

return extracted labels. Since only small labels are delivered,

NDPipe eliminates the significant network traffic.

In designing NDPipe, we have addressed several technical

issues existing in current photo storage systems. First, we

have developed an FT-DMP mechanism designed to perform

fine-tuning effectively with minimal overhead. FT-DMP en-

hances the parallelism of multiple PipeStores while reducing

synchronization costs for separately running partitioned

models (see §5.1). Second, we propose a pipelining strategy

for FT-DMP, aimed at optimizing resource utilization and

enhancing training performance, complete with a formal

analysis of its feasibility (see §5.2). Third, we propose an au-

tomation tool called APO, enabling easy deployment of ND-

Pipe and ensuring high performance and energy efficiency

in fine-tuning. It identifies the optimal model partitioning

points for FT-DMP and determines the number of storage

servers that participate in training (see §5.3). Lastly, we have
developed an NPE, specifically optimized for storage server

environments, to facilitate fast training and inference in

PipeStore with a storage-side accelerator (see §5.4).

5.1 Data and Model Parallelism in NDPipe
There have been previous attempts to partition DNN models

to exploit data and model parallelism [56, 63, 90]. These

studies have focused on accelerating only full training [90]

or inference [56, 59, 63]. Fine-tuning, however, has unique

architectures, which require us to take a different approach

to partition models and execute tasks in parallel.

Data & Model Parallelism for Fine-tuning. Fig. 8 shows
how FT-DMP partitions and distributes the model across

GPU

«

«

Trainable layers

Weight-freeze layers

M
o
d

el p
a

ra
llelism

Data parallelism

Tuner

Dataset

«

PipeStores

Fig. 8. Data and model parallelism of FT-DMP

PipeStores. NDPipe exploits the unique property of fine-

tuning where the model’s layers are split into weight-freeze

and trainable layers. NDPipe assigns a replica of some or all

of the weight-freeze layers to PipeStores, executing multiple

workers. The rest of the layers, including trainable layers, are

assigned to Tuner and processed by a single worker on Tuner.

The individual PipeStores extract features for local batches

and deliver them to Tuner, which processes the trainable

layers. This design offers three benefits.

First, it is lightweight to run in a commodity GPU. The

weight-freeze layers only require processing the forward

pass of the network, similar to the inference process. Since

low-end GPUs and accelerators are well suited for infer-

ence [14, 84], PipeStore can offer enough computing and

memory capabilities for local training. Second, synchroniza-

tion across PipeStores is unnecessary. No weight updates for

weight-freeze layers exist, so workers need not synchronize

weights. This property allows multiple workers across many

PipeStores to execute in parallel without interfering with

each other. As a result, NDPipe’s performance scales linearly

by addingmore PipeStores. Trainable layers that needweight

synchronization run locally on Tuner and thus produce up-

to-date models without any network traffic. Third, it reduces

network traffic. Instead of sending images to train, NDPipe

transfers only the outputs from the last weight-freeze layer

to Tuner. The output size of a layer typically decreases as

the layer is located deeper into the model since it assimilates

only fewer meaningful features and passes to the next layer.

Impact of Partitioning. To maximize FT-DMP’s benefits,

we need tomake careful decisions about the number of layers

offloaded to PipeStores. This choice affects both training time

and network traffic. Offloading too many layers to PipeStores

may overload them, so finding the right balance is crucial.

To gain insights, we conduct experiments with ResNet50,

which comprises 50 layers grouped into five convolution

layers (Conv1 to Conv5) and a fully-connected layer (FC)

that serves as a classifier. We apply fine-tuning that only

updates the weights of the FC layer. We use the optimized

PipeStore (as explained in §5.4) with one Tesla T4 GPU. We

connect a group of four PipeStores to Tuner with one V100

GPU using 10Gb Ethernet. Throughout the experiments, we

695

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, and Sungjin Lee

None + Conv1 + Conv2 + Conv3 + Conv4 + Conv5 + FC
0

2

4

D
at

a
tr

af
fi

c
(T

B
)

9.16GB

Data Trans. Weight Sync.

None + Conv1 + Conv2 + Conv3 + Conv4 + Conv5 + FC
0

2K

4K

T
ra

in
in

g
 t

im
e

(s
)

PipeStore Data Trans. Weight Sync. Tuner

Fig. 9. Impact of layer offloading and data traffic

measure the training time and the amount of data transferred

over the network. For detailed experimental setups, see §6.1.
Fig. 9 shows the experimental results. None means that no

layers are offloaded. PipeStore forwards raw images to Tuner,

and the entire training is done by Tuner. +Conv1 offloads the

Conv1 layers onto PipeStores, and Tuner handles the rest.

+FC is an extreme case where PipeStore runs all the layers.

As mentioned earlier, the network traffic to send extracted

features to Tuner gradually decreases as more layers are of-

floaded to PipeStore. However, traffic surges after offloading

the FC layer (+FC) due to high weight synchronization costs.

As a result, for ResNet50, NDPipe achieves the shortest train-

ing time after offloading +Conv5. We discuss how the model

partitioning can be automatized in §5.3.

5.2 Pipelined Training of Partitioned Model
In NDPipe, all the batches are distributed across multiple

PipeStores. Each PipeStore trains independently using its lo-

cal batches and then transfers intermediate results to Tuner.

Tuner gathers and stores the results in its local storage tem-

porarily before starting the training epoch. Following the

DNN training procedure that requires the entire training

data [58, 78], we may wait for the intermediate results corre-

sponding to all data samples from the participated PipeStores.

This results in the serial execution of PipeStores (Store-stage)

and Tuner (Tuner-stage), as shown in Fig. 10(a).

Inspired by pipelined model parallelism [50, 79, 85] that

executes split partitions concurrently, we propose a pipelined

training strategy for FT-DMP. As shown in Fig. 10(b), the

pipelined FT-DMP executes multiple runs simultaneously

over separate sub-datasets. We denote the number of runs

by 𝑁𝑟𝑢𝑛 . The pipelined FT-DMP starts the training in Tuner

for the current run, while PipeStores are processing local

batches for the next run. The training throughput improves

as more PipeStores participate. However, assigning too many

PipeStores wouldn’t be beneficial as the bottleneck moves to

Tuner, making PipeStores idle and thus wasting energy. It is

best practice to balance the pipeline stages (Store- and Tuner-

stages) to achieve high throughput and energy efficiency at

a low HW cost. To this end, we have devised an automated

tool that identifies the best number of PipeStores for a given

(b) Pipelined (Nrun = 3)

Store-stage (in PipeStores)

Data transmission
An iteration1 epoch

Tuner-stage (in Tuner)

(a) Unpipelined

...

Input

dataset
Time

Run
Run 1

Run 2

Run 3

Fig. 10. Unpipelined (a) and pipelined (b) FT-DMP

model and hardware specifications for PipeStore and Tuner.

We will explain the details in §5.3.
A potential concern with the pipelined training strategy

is the impact on the learned model quality compared to the

vanilla model trained without pipelining. In fine-tuning, it

is a common issue known as catastrophic forgetting [21,

60], where knowledge obtained from previous training is

forgotten while updating the model with newly observed

data. However, our theoretical analysis confirms that the

pipelined FT-DMP can still guarantee the convergence of

training and not seriously affect the final model quality with

a reasonable number of pipeline runs, 𝑁𝑟𝑢𝑛 .

Converge Analysis. Before the proof, we assume the

following conditions are satisfied: (i) the weights of the pre-

trained model are well-trained, (ii) the unpipelined training

process (i.e., 𝑁𝑟𝑢𝑛 = 1) converges if performed, and (iii) sub-

datasets used over different runs have similar distributions.

Let us consider a vanilla neural network having 𝑁 fully-

connected layers, with𝑊1, ...,𝑊𝑁 where𝑊𝑗 ∈ R𝑑 𝑗×𝑑 𝑗−1
. The

analysis in [13] showed that a vanilla network converges

under the following assumptions. (A) The dimensions of

hidden layers are at least the minimum of the input and

output dimensions (i.e., 𝑑𝑖 ≤ min{𝑑0, 𝑑𝑁 } where 1 ≤ 𝑖 ≤ 𝑁 −
1). (B) The training starts with the approximately balanced

weights with a parameter of 𝛿 , called 𝛿-balanced and defined

by ∥𝑊 ⊤𝑖+1𝑊𝑖+1 −𝑊𝑖𝑊
⊤
𝑖 ∥𝐹 ≤ 𝛿 and ∥𝐴∥𝐹 is the Frobenius

norm of a matrix 𝐴. (C) The initial loss is bounded by the

loss of the rank-deficient solution, denoted by 𝜖 .

In our case of pipelined training, baseline assumptions (A)

and (B) are intuitively met. The classifier with hidden layers

larger than the input/outputs satisfies (A). Also, (B) holds

by our condition (i) for the FT-DMP convergence, which is

aforementioned as the well-trained model in §5.2. We define

that a model is well-trained if it is 𝛿-balanced. The work

in [13] shows that the weights remain balanced during gra-

dient descent if they start 𝛿-balanced, ensuring approximate

balance at the start of each pipelined training run.

In the rest of this section, we detail the proof for the last

baseline assumption (C). By condition (ii), we assume con-

vergence with an initial loss of 𝜖 for unpipelined training.

For the pipelined training, the first run will also converge

since it satisfies the baseline assumptions (A) and (B) and

696

NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

starts with the same initial loss of 𝜖 . We denote by 𝑙1 (𝑇1)
the loss converged at iteration 𝑇1 during the first run, and

𝑙1 (𝑇1) < 𝜖1 (= 𝜖). With the conditions above, we claim that

the second run starting with initial loss 𝑙1 (𝑇) also converges:
Theorem 5.1. Assume that the gradient descent is initialized
such that the weights have a deficiency margin [13], 𝑐 > 0

and are 𝛿-balanced. Also, suppose that the second run starts
with the weights converging in the first run by 𝑙1 (𝑇1) and the
inter-run loss difference, Δ. Then, with the minimum learning
rate requirement for 𝜂 in Eq. 7 of [13], ∀𝜖2 > 0 and

𝑇2 ≥
1

𝜂 · 𝑐2(𝑁−1)/𝑁
· log(𝑙

1 (𝑇1) + Δ
𝜖2

), (1)

the loss at iteration𝑇2 is no greater than 𝜖2. In other words, the
second run is guaranteed to converge with the loss of 𝜖2.

Theorem 5.1 applies to both the first and second runs,

simplifying the explanation, but it also ensures convergence

for all other runs through its inductive step. That is, as long

as a 𝑝-th run converges at 𝑇𝑝 with the final loss 𝑙𝑝 (𝑇𝑝), any
(𝑝 + 1)-th run starting with the weights trained in the previ-

ous run will also converge. Generalizing Theorem 5.1 with

𝑙1 (𝑇1) = 𝑙𝑝 (𝑇𝑝) and 𝑙2 (𝑇2) = 𝑙𝑝+1 (𝑇𝑝+1) accomplishes the in-

duction, and this completes the proof of the convergence of

our pipelined training. To establish the claim, we describe

the inter-run loss difference Δ in the following lemma.

Lemma 5.2. For a given confidence level 𝜃 ,
𝑙2 (0) ≤ 𝑙1 (𝑇1) + Δ

where Δ =

√︃
1

2𝑚
𝑙𝑜𝑔(2𝑃

𝜃
), 𝑃 is the number of total weights in

the model, and𝑚 is the number of training dataset samples.

Proof of Lemma 5.2. By Hoeffding’s inequality [45], the

final loss of the first run and the initial loss of the second run

satisfy the following relationship with a probability bound 𝜀:

P(|𝑙2 (0) − 𝑙1 (𝑇1) | ≥ 𝜀) ≤ 2exp(−2𝑚𝜀2). (2)

We can write the union bound of the right side of Eq. 2 to

generalize over all the potential weights in the model, 𝑃 :

2𝑃 · exp(−2𝑚𝜀2) ≤ 𝜃 ⇒
√︂

1

2𝑚
log(2𝑃

𝜃
) ≤ 𝜀. (3)

where 𝜃 is the confidence of the union bound, which we

earlier denoted in Lemma 5.2. Finally, if we incorporate Eq. 3

into Eq. 2, this completes the proof of Lemma 5.2. □
Proof of Theorem 5.1. By substituting Lemma 5.2 and

Eq. 13 in [13] into Eq. 1, we then get that

𝜖2 ≥ (𝑙1 (𝑇1) + Δ) · exp(−𝜂 · 𝑐
2(𝑁 −1)

𝑁 ·𝑇2)

≥ 𝑙2 (0) · exp(−𝜂 · 𝑐
2(𝑁 −1)

𝑁 ·𝑇2)
≥ 𝑙2 (𝑇2) (4)

By Equation 4, we can ascertain that the 𝑙2 can be bounded

by an iteration 𝑇2, thereby concluding our proof. □
Note that the actual loss difference, Δ, largely corresponds

to the difference between the two sub-datasets used in the

Algorithm 1 Find the best number of PipeStores

Input: DNN model architecture (𝑀), FLOPS of PipeStore and

Tuner (𝐹𝑃 and 𝐹𝑇), network bandwidth (𝐵𝑊), the maximum

number of PipeStores (𝑁𝑚𝑎𝑥
𝑝𝑠)

Output: the best number of PipeStores (𝑁𝑏𝑒𝑠𝑡
𝑝𝑠)

1: 𝑁𝑏𝑒𝑠𝑡
𝑝𝑠 ← 0; 𝑇𝑚𝑖𝑛 ←∞

2: for 𝑁𝑝𝑠 ← 1 to 𝑁𝑚𝑎𝑥
𝑝𝑠 do

3: 𝑝,𝑇𝑝𝑠 ,𝑇𝑡𝑢𝑛𝑒𝑟 ← FindBestPoint(𝑀, 𝐹, 𝑁𝑝𝑠 , 𝐵𝑊)
4: 𝑇𝑑𝑖 𝑓 𝑓 ←

��𝑇𝑝𝑠 −𝑇𝑡𝑢𝑛𝑒𝑟 ��
5: if 𝑇𝑑𝑖 𝑓 𝑓 < 𝑇𝑚𝑖𝑛 then
6: 𝑇𝑚𝑖𝑛 ← 𝑇𝑑𝑖 𝑓 𝑓 ; 𝑁

𝑏𝑒𝑠𝑡
𝑝𝑠 ← 𝑁𝑝𝑠

7: end if
8: end for
9: return 𝑁𝑏𝑒𝑠𝑡

𝑝𝑠

first and second runs. For example, when the sub-datasets

have very similar distributions, we will have a small Δ. Thus,
our condition (iii) is necessary to make Δ small enough,

resulting in a small initial loss for each run and eventu-

ally achieving high training accuracy comparable to the

unpipelined training. In §6.3, we will also empirically show

that the pipelined FT-DMP provides fairly high accuracy.

5.3 Identifying Best Organization for NDPipe
Deploying NDPipe efficiently necessitates a strategic combi-

nation of methodologies discussed in §5.1 and §5.2, particu-
larly in structuring its core components to optimize training

throughput and energy efficiency. In pursuit of this balance,

we developed the Automated model Partitioning and Or-

ganization (APO) tool. The primary objective of APO is to

determine the best model partitioning point and the most

suitable number of PipeStores required for use. This ensures

that both PipeStores and Tuner operate efficiently with min-

imal pipeline bubbles, factoring in specific DNN models and

respective hardware specifications of PipeStore and Tuner.

The operational flow of APO is detailed in Algorithm 1.

APO begins by setting 𝑁𝑏𝑒𝑠𝑡
𝑝𝑠 to zero and 𝑇𝑚𝑖𝑛 to infinity,

then iteratively considers various PipeStore numbers (Lines

1–2). In each iteration, it calls FindBestPoint() (Line 3),

which determines the best partitioning point by evaluat-

ing four key input parameters: the DNN model’s architec-

ture (𝑀), the FLOPS of the PipeStore-side accelerator (𝐹𝑃)

and Tuner-side GPU (𝐹𝑇), the network bandwidth between

PipeStore and Tuner (𝐵𝑊), and the number of PipeStores

engaged in fine-tuning (𝑁𝑝𝑠).

FindBestPoint(), inspired by prior model partitioning

studies for inference [56] or full training [53], is uniquely

tailored for the fine-tuning process in NDPipe to identify

the best suitable partitioning segments for the given inputs.

It identifies partitionable points in the model, which do not

include areas with residual blocks and skip connections [43].

697

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, and Sungjin Lee

1 10 20
of PipeStores

0

200

400

T
im

e
(s

)
Training time Tdiff

(a) Training time

1 10 20
of PipeStores

0

40

80

IP
S

/k
J

(b) Energy efficiency

Fig. 11. Training and energy efficiency by # of PipeStores

APO calculates FLOPs at each partition point to estimate ex-

ecution times for the partitioned segments on the PipeStore-

side and Tuner-side using their respective FLOPS parameters.

It also measures the output data size for each model layer.

For each candidate, we predict the training time, factoring

in data transfer times over the network based on the as-

sessed output data sizes. This estimation includes the impact

of the pipelining strategy detailed in §5.2, where a group

of PipeStores and Tuner operate in a pipelined fashion. To

prevent weight synchronization among the PipeStores, the

trainable layer is assigned to be in the Tuner. The optimal

partitioning point is then determined as the one that results

in the shortest training time.

FindBestPoint() then returns the best partitioning point
𝑝 , and the execution times 𝑇𝑝𝑠 for PipeStores and 𝑇𝑡𝑢𝑛𝑒𝑟 for

Tuner. APO updates 𝑇𝑚𝑖𝑛 and sets 𝑁𝑏𝑒𝑠𝑡
𝑝𝑠 to the current it-

eration value if the difference in execution times, 𝑇𝑑𝑖 𝑓 𝑓 , is

smaller than the current 𝑇𝑚𝑖𝑛 (Lines 4–7). This process is

repeated until 𝑁𝑝𝑠 equals 𝑁
𝑚𝑎𝑥
𝑝𝑠 , the maximum number of

PipeStores. Finally, APO outputs the most effective number

of PipeStores, 𝑁𝑏𝑒𝑠𝑡
𝑝𝑠 , that ensures optimized performance.

To explain how APO determines the best organization, as

an example study, Fig. 11 shows the training time and energy

efficiency of NDPipe with varying number of PipeStores for

ResNet50. The results present that when employing a few

PipeStores, NDPipe suffers from prolonged training time due

to the limited data supplied by PipeStores, leading to under-

utilization of Tuner. When the number of PipeStores is 8,

which is chosen by APO, 𝑇𝑚𝑖𝑛 approaches zero, significantly

reducing the training time. Adding more PipeStores beyond

this number is redundant as the training time remains con-

stant since Tuner becomes a bottleneck. Consequently, the

energy efficiency, measured as training throughput-per-joule

(IPS/J), decreases as more PipeStores are underutilized.

5.4 Optimization of Near-data Processing Engine
PipeStore is a crucial component for the system efficiency

since it handles fine-tuning and offline inference on the same

hardware. To optimize the PipeStore’s performance, we ana-

lyzed the execution times of its major tasks with a compari-

son study to the results reported in Fig. 6.

Fig. 12 shows our findings. Naive represents the average
execution time of each task on one PipeStore, without any

40

80

Read Decomp. FERead Decomp. FE

Naive +Offload +Comp +Batch
0

1

2

E
x
ec

.
ti

m
e

(m
s)

(a) Fine-tuning

Read Preproc. Decomp. FE&ClRead Preproc. Decomp. FE&Cl

Naive +Offload +Comp +Batch

(b) Offline inference

Fig. 12. Elapsed time for each task on a PipeStore

optimizations. For fine-tuning, the FE task becomes the main

bottleneck, as weight synchronization, which is the major

bottleneck in the naive NDP as discussed in §4.1, is now
migrated to Tuner. In contrast, offline inference, which pro-

cesses large raw images, experiences longer I/O time and

needs more CPU resources for preprocessing. As a result,

image loading and preprocessing tasks occupy a substantial

portion of the total inference time. Based on these observa-

tions, we design the NPE with the following techniques.

3-stage Pipelining. Pipelining is a straightforward yet highly
effective method to improve the throughput of NDPipe. We

divide the fine-tuning and offline inference process into three

stages: data loading (in SSD or HDD), preprocessing (in

CPU; only needed for offline inference), and FE&Cl (in GPU),

which can run in parallel across different HW components.

The execution of each stage is organized in a pipeline format

for batches of input data. That is, while the data-loading

stage is reading data for 𝑏𝑎𝑡𝑐ℎ𝑛+2, the preprocessing stage

simultaneously processes 𝑏𝑎𝑡𝑐ℎ𝑛+1, delivering the intermedi-

ate data to the FE&Cl stage processing with 𝑏𝑎𝑡𝑐ℎ𝑛 . Such a

pipelined execution maximizes the utilization of each system

unit and, as a result, improves the throughput of NDP.

Offloading Preprocessing to the Host. To alleviate the

preprocessing bottleneck in PipeStore, we have implemented

a strategy of offloading these tasks to an inference server.

When new images arrive, the inference server performs on-

line inference, applying the preprocessing step. We modify

the inference server to deliver the preprocessed data and its

raw image originally stored in storage servers. This approach

removes the preprocessing overhead on the PipeStore side

(see +Offload of Fig. 12). Nevertheless, it comes at the cost

of storage overheads due to the preprocessed binaries stored

additionally. In our analysis, preprocessed binaries account

for 17.5% of the total storage space when the average image

size is 2.7MB. To mitigate the storage waste, we instead store

compressed data in PipeStore using a deflate algorithm [26].

Note that this compression also contributes to a reduction

in I/O time for both the fine-tuning and inference processes.

While data compression benefits storage efficiency, it in-

troduces computational demands for decompression within

PipeStore. However, in our observation, dedicating a modest

amount of computing resources to this task, i.e., allocating a

698

NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

maximum of two CPU cores for decompression, can mitigate

these demands since FE&Cl hides the overhead.

Enlarging Batch Size. The use of offloading techniques

shifts the primary bottleneck to FE&Cl on the GPU (see

+Comp of Fig. 12). We shorten the execution time of FE&Cl

by enlarging a batch size to enhance the throughput of the

FE&Cl process. For instance, with ResNet50, we set the batch

size to 128 to balance each stage’s duration (See +Batch). In
PipeStore, where only weight-freeze layers are processed,

there is flexibility in selecting the batch size. However, choos-

ing a reasonable batch size is important as larger batch sizes

require more memory space. We will explore the implication

of various batch sizes on the system performance in §6.4.

6 Evaluation
6.1 Experimental Setup
We implement NDPipe onAmazon EC2 [6]. For PipeStore, we

utilize the g4dn.4xlarge instance with a Tesla T4 GPU [82].

st1 with 16× HDDs is used for a storage volume. A T4 GPU

is chosen as it is the most cost-effective option available on

EC2 for GPU. Lightweight inference accelerators could be a

viable option for PipeStore. To prove this, we also implement

PipeStore on the AWS Inferentia [8] and evaluate its perfor-

mance (see §6.4). The AWS Inferentia has a similar hardware

specification as g4dn.4xlarge but with an inference accel-

erator, NeuronCoreV1 [10], instead of T4 GPU.

For Tuner, we use the p3.2xlarge instance with one

Tesla V100 GPU [81]. We use at most 20 PipeStores and

one Tuner. We set the network bandwidth to 10Gbps by re-

ferring to commercial cloud systems [7, 98] that provide net-

work bandwidth of 1–16Gbps. We also carry out experiments

while varying the network bandwidth from 1Gbps to 40Gbps

(see §6.4). The inference and fine-tuning engines of PipeStore
are TensorRT 7.1.3 [83] for T4 and PyTorch-Neuron [11] for

NeuronCoreV1. For Tuner, we use TensorFlow 2.6.0 [3] to

implement the host-side fine-tuning engine. The batch size

is set to 128 and 512 for inference and training, respectively.

We set up a typical host server system (denoted by SRV)

that performs both inference and fine-tuning on the host

side. We use the p3.8xlarge with two V100 GPUs. This

computing capability is 2× higher than Tuner. For a fair

comparison, we apply the same optimizations from §5.4 to
the inference and fine-tuning engine. The storage server for

SRV uses g4dn.4xlarge and st1 with the same specifica-

tions as StorePipe. The GPU of the storage server is disabled.

Benchmarks.Weuse ImageNet-1K [91] as a default dataset.

For a more comprehensive analysis of accuracy, we also

use the ImageNet-21K [25] and CIFAR100 [62] datasets. Our

experiments are conducted using five image classification

models (ShuffleNetV2 [107], InceptionV3 [96], ResNet50 [43],

ResNeXt101 [101], and ViT [28]). The limited space does not

permit us to present all results; instead, we present results

from InceptionV3, ResNet50, ResNeXt101, and ViT, which

1 10 20
of PipeStores

0

5

10

15

T
h

ro
u

g
h

p
u

t
(K

IP
S

) ResNet50

1 10 20
of PipeStores

0

5

10

15

InceptionV3

1 10 20
of PipeStores

0

2

4

ResNeXt101

1 10 20
of PipeStores

0

1

2

3

ViT
SRV-I SRV-P SRV-C NDPipe

Fig. 13. Comparison of inference throughput

P1 P2 P3
0

200

400

600

P
o

w
er

 (
W

)

ResNet50

SRV-I SRV-P SRV-C NDPipeSRV-I SRV-P SRV-C NDPipe

P1 P2 P3

InceptionV3

GPU

CPU

OthersGPU

CPU

Others

P1 P2 P3

ResNeXt101

P1 P2 P3

ViT

Fig. 14. Comparison of inference power consumption

represent small-, middle-, large-scale CNN-based models,

and large-scale transformer-based model, respectively.

6.2 Inference Performance Analysis
We evaluate the inference throughput of NDPipe, focusing

on scalability and energy efficiency. Tuner was not activated

as offline inference is entirely made by PipeStores.

We compare NDPipe with three configurations of the typ-

ical DL system: SRV-I, SRV-P, and SRV-C. First, SRV-I, an
ideal system, keeps all preprocessed image binaries locally

to infer in the host storage. SRV-I thus does not need to load
binaries from the network. SRV-I is not a practical setup,

but we include it for comparison. Second, SRV-P loads pre-
processed binaries from the storage server over the network.

Third, SRV-C is similar to SRV-P but uses compressed binaries

to reduce network traffic. Thus, inputs need to be decom-

pressed before being fed to GPUs. We assign eight cores to

the host server for decompression. We evaluate the systems’

throughputs (Images Per Second), varying the number of

PipeStores or typical storage servers from 1 to 20.

Fig. 13 shows our results. SRV-I exhibits higher through-

put compared to the other systems. This is because SRV-I
can fully exploit the available GPU throughput without being

limited by the network. SRV-C has higher throughput than
SRV-P by reducing network traffic through compression.

The performance of NDPipe scales linearly with more

PipeStores used. Each PipeStore offers 2,129, 2,439, 449, and

277 IPS for ResNet50, InceptionV3, ResNeXt101, and ViT,

respectively. At point P1, NDPipe with 1–7 PipeStores sur-

passes SRV-P by sending only small-sized labels, mitigat-

ing network overhead. At P2, where 4–7 PipeStores are de-
ployed, NDPipe outperforms SRV-C. NDPipe shows even

higher throughput than SRV-I with 5–7 PipeStores. This in-

dicates that the aggregate throughput of PipeStores exceeds

that of two V100 GPUs. ResNeXt101 and ViT have different

trends from ResNet50 and InceptionV3. ResNeXt101 and ViT

699

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, and Sungjin Lee

1 10 20
of PipeStores

0

2

4

6

T
ra

in
in

g
 t

im
e

(m
in

) ResNet50

1 10 20
of PipeStores

0

2

4

6

InceptionV3

1 10 20
of PipeStores

0

4

8

12

ResNeXt101

1 10 20
of PipeStores

0

5

10

15

ViT

SRV-C NDPipe

Fig. 15. Comparison of training time

P1 BEST
0

40

80

IP
S
/k
J

ResNet50

P1 BEST

InceptionV3

P1 BEST

ResNeXt101

P1 BEST

ViT

SRV-C NDPipe

Fig. 16. Comparison of energy efficiency

are huge models requiring high computing power to process

their layers. Two V100 GPUs are insufficient to process data

supplied from storage servers, so the GPUs become a bot-

tleneck. This is why SRV-I, SRV-C, and SRV-P show similar

throughputs.

We now analyze the energy efficiency of NDPipe over

the typical systems. We measure the power consumption of

CPUs, GPUs, and other components (e.g., power supply, SoC,

I/O, and so on) while executing inference tasks. To measure

the power consumption of GPUs, we use gpustat. AWS does

not permit us to measure the power consumption of CPUs

and other components. We thus set up local server machines

that have specifications similar to our AWS instances and

then measure the power consumption of CPUs and other

components using powerstat and ipmitool.
Fig. 14 compares the average power consumption of the

systems at P1, P2, and P3, where NDPipe exhibits similar per-

formance as SRV-P, SRV-C, and SRV-I, respectively. Fig. 14
shows the portions of three major components. NDPipe

shows 1.83× and 1.39× higher power efficiency, on aver-

age, than SRV-P and SRV-C, respectively. SRV-P and SRV-C
are often bottlenecked by the network and thus fail to fully

utilize GPU and CPU resources, leaving them idle, which

causes a waste of power. Even compared to SRV-I where the
network is not a bottleneck, NDPipe exhibits higher power

efficiency due to the power efficiency of commodity GPUs.

6.3 Training Performance Analysis
We next analyze the training throughput of NDPipe. For

all the models, we used fine-tuning that trains the classifier.

To complete the evaluation in a reasonable time, we use a

relatively small training dataset, 1.2M images from ImageNet-

1K. We compare NDPipe with SRV-C, which has the most

realistic setup among the comparative systems. NDPipe uses

Tuner to perform training, and 𝑁𝑟𝑢𝑛 is set to 3.

0 100 200 300 400

69
71 Feature extraction

0 100 200 300 400

69
71 23%

0 100 200 300 400
Time (s)

69
71 32%T

o
p

-1
 a

cc
u

ra
cy

 (
%

)

Nrun =1 Nrun =2 Nrun =3

Fig. 17. Accuracy of pipelined FT-DMP

Fig. 15 shows the results. As we add more PipeStores

to the system, NDPipe begins to outperform SRV-C (P1 in

Fig. 15). For ResNet50 and InceptionV3, NDPipe exhibits

faster training speed with three PipeStores. NDPipe outper-

forms ResNeXt101 when it has six PipeStores. Compared to

ResNet50 and InceptionV3, ResNeXt101 has very deep fea-

ture extraction layers, requiring high computing capability.

By adding more PipeStores, NDPipe can reduce the training

time further. BEST in Fig. 15 represents a point where NDPipe
offers the maximum training throughput-per-joule (IPS/J).

The reduction in the training time becomes marginal be-

yond a certain number. This is expected because a bottleneck

moves to Tuner due to the unbalanced lengths of pipeline

stages, as discussed in §5.2. Instead, NDPipe consumes more

energy because it has to maintain more PipeStores.

Fig. 16 plots the energy efficiency of the different systems

whenNDPipe shows a similar training time as SRV-C (P1) and
the best throughput-per-joule BEST). Note that, for NDPipe,
we also include the energy consumption of Tuner. Compared

to SRV-C, NDPipe exhibits on average 1.44× and 2.64× higher
energy efficiency at P1 and BEST, respectively.

Impact of Pipelined Training. We evaluate the impact

of the pipelined FT-DMP on the accuracy, varying 𝑁𝑟𝑢𝑛 from

1 to 3. We stop the training when more than 0.01% accuracy

improvement is not observed over three consecutive epochs.

We evaluate ResNet50 with four PipeStores.

Fig. 17 shows the training time depending on 𝑁𝑟𝑢𝑛 . If 𝑁𝑟𝑢𝑛

is 1, the training is the same as the original FT-DMP. With

pipelined FT-DMP, NDPipe can reduce the training time by

up to 32% with negligible accuracy loss. The accuracy of

the original FT-DMP is 71.61%; when the training phase is

divided into two and three runs, the accuracy ismaintained at

71.55% and 71.52%, respectively. However, when the training

phase is split into four runs, the accuracy significantly drops

to 70.36%. As we divide the training phase more, the number

of images supplied to each run gets smaller, which makes

the impact of catastrophic forgetting more serious.

Accuracy. To understand how NDPipe keeps its model

accuracy against drift, we conduct experiments under the

same setup in §3.2. We simulate a scenario where data accu-

mulates by 1.78% daily over two weeks. To simulate this, our

initial model trains with only 78% of the total dataset, and the

700

NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 2. Comparison of model accuracy (%)

Dataset

ShuffleNet

V2

ResNet

50

Inception

V3

ResNeXt

101
ViT

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

CIFAR100

Base 67.39 89.43 77.15 94.08 77.21 94.10 78.27 94.56 86.41 96.12

Outdated 64.12 87.35 74.73 91.73 74.93 92.29 73.65 92.82 81.73 94.77

NDPipe 65.07 88.79 75.2 93.11 76.82 93.50 76.9 94.23 84.46 95.69

Full 69.51 90.64 77.39 93.96 79.00 94.55 77.78 95.01 87.60 96.47

ImageNet

1K

Base 65.32 84.62 73.75 91.38 73.71 91.18 75.15 92.23 80.45 93.43

Outdated 62.25 79.52 68.89 85.35 68.88 85.18 70.11 86.10 77.36 89.17

NDPipe 63.12 80.45 71.80 90.44 71.82 89.92 72.86 90.81 79.37 93.88

Full 66.90 86.08 73.68 91.42 75.38 92.56 78.74 94.02 81.61 94.46

ImageNet

21K

Base 22.12 45.71 36.24 66.77 36.49 66.79 38.38 69.7 46.11 75.72

Outdated 20.72 44.10 34.31 63.76 34.63 63.24 38.07 65.31 36.59 70.14

NDPipe 21.25 44.98 35.97 66.51 35.57 66.2 38.24 66.82 44.52 74.26

Full 22.07 45.60 36.78 66.96 36.02 66.55 38.79 68.67 - -

subsequent model training after two weeks with the whole

dataset. Table 2 compares the top-1 and -5 accuracies of ND-

Pipe with three cases: (i) the initial accuracy that is measured

when the model is just created (Base), (ii) the accuracy after

two weeks without any model updates (Outdated), and (iii)

the accuracy after two weeks with full training (Full). Full
is impractical due to its long training time. The results of

Full for ViT on ImageNet-21k are not included because of

its long training time over large datasets. The results suggest

that NDPipe provides fairly good accuracy, outperforming

Outdated on every dataset. NDPipe also provides similar or

slightly lower accuracy than Full. This implies that NDPipe

solves the outdated model problems cost-effectively.

6.4 Impact of System Parameters
NetworkBandwidth. Fig. 18 compares the inference throug-

hput-per-watt (IPS/W) of NDPipe with SRV-C while increas-

ing the network bandwidth (BW) from 1 to 40Gbps (we ex-

clude InceptionV3 and ViT because it shows similar results

as ResNet50 and ResNeXt101). SRV-C suffers from a serious

network bottleneck when its bandwidth is limited to 1Gbps.

As the network bandwidth increases, the performance of

SRV-C gets improved. However, beyond 20Gbps, SRV-C can-

not show any performance improvement. This is owing to

high decompression overhead. Eight CPU cores (dedicated

to decompression) are not able to provide sufficient through-

put to process large amounts of input data fed via the fast

network. The simplest solution is assigning more CPU cores

for decompression, but it is costly and causes more power

consumption. NDPipe is freed from network bottlenecks as

small-sized labels or features are transmitted. As a result, it

provides fairly good throughput, achieving 3.7× and 1.3×
higher performance at 1Gbps and 40Gbps, respectively.

Batch Size. Fig. 19 shows the inference throughput of

NDPipe with varying batch size (BS) from 1 to 512. With

the batch size of 1, NDPipe shows poor performance as the

GPUs in PipeStores are not fully utilized. As the batch size

grows, the inference throughput gradually improves. How-

ever, beyond a certain batch size, the improvement becomes

1G
b

10
G
b

20
G
b

40
G
b

0

10

20

30

IP
S
/W

ResNet50

1G
b

10
G
b

20
G
b

40
G
b

0

5

10
ResNeXt101

SRV-C

NDPipe

Fig. 18. Impact of BW

ResNet50

InceptionV3

ResNeXt101 ViT
0

1

2

3

T
h
ro

u
g
h
p
u
t

(K
IP

S
)

Decomp. bottleneck

1 8 32 128 256 512

x

Fig. 19. Impact of BS

1 10 20
of PipeStores

0

5

10

15

T
h
ro

u
g
h
p
u
t

(K
IP

S
) ResNet50

1 10 20
of PipeStores

0

2

4

ResNeXt101

SRV-C NDPipe-Inf1

(a) Offline inference

1 10 20
of PipeStores

0

2

4

6

T
ra

in
in

g
 t

im
e

(m
in

) ResNet50

1 10 20
of PipeStores

0

4

8

12

ResNeXt101

SRV-C NDPipe-Inf1

(b) Fine-tuning

Fig. 20. Performance of NDPipe implemented on Inferentia

marginal. For InceptionV3, when the batch sizes are over 128,

no performance improvement is observed as decompressing

images by CPU becomes a bottleneck in the 3-stage pipelin-

ing (see §5.4). For ViT (a large model), PipeStore encounters

Out-of-Memory (OOM) errors with large batch sizes. This

issue arises not only due to the large batch size but also be-

cause of the high memory requirements of the model itself.

Impact of Accelerator.We implement NDPipe with Neu-

ronCoreV1, a low-end but cost-effective AI accelerator in

AWS Inferentia instances (Inf1.2xlarge). We evaluate the

performance and power or energy efficiency of NDPipe with

NeuronCoreV1 (denoted by NDPipe-Inf1) for offline infer-

ence and fine-tuning. The AWS Inferentia does not provide a

way of measuring the power consumption of NeuronCoreV1.

We thus estimate its power usage by referring to [52].

Fig. 20 shows the results. The NeuronCoreV1 has lower

computation capabilities than T4. To achieve the same level

of performance as SRV-C, NDPipe needsmore PipeStores: 11–

16 and 8–13 PipeStores for offline inference and fine-tuning,

respectively. However, thanks to the energy-efficient design

of NeuronCoreV1, NDPipe-Inf1 still provides 1.17× and 1.5×
higher power and energy efficiency for offline inference and

fine-tuning than SRV-C, respectively, on average.

7 Discussion
7.1 Extension of NDPipe to Other Systems
In this paper, we have focused on enhancing user experience

in photo storage systems through efficient inference and fine-

tuning. However, the concept of NDPipe can be extended to

various media formats such as video, audio, and document.

Video content. One issue with utilizing DL applications

for video formats is that they require more resources than

images due to larger content sizes. One of the solutions to

701

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, and Sungjin Lee

1 10 20
of PipeStores

0.0

0.2

0.4

0.6

C
o
st

 (
$
)

NDPipe

SRV-C

NDPipe-Inf1

(a) Fine-tuning cost

10
−1

10
0

10
1

10
2

Cost ($)

70.0

72.5

75.0

A
cc

u
ra

cy
 (

%
)

NDPipe
SRV-C

NDPipe-Inf1

Full

(b) Cost versus accuracy

Fig. 21. Operational cost analysis of NDPipe

address the issue is frame extraction, which extracts key

frames from videos for analysis [39]. These key frames are

analyzed using a CNNmodel to label content, creating a sum-

mary vector for further video analysis. NDPipe can adapt

to video by preprocessing with frame extraction and pro-

cessing frames as NDPipe does for photos. This extension

enhances the search for videos in online archives [31, 37]

and recommendations on streaming platforms [80, 106].

Audio content. NDPipe can be adapted for audio formats

through audio spectrogram transformation (AST) [19, 35],

converting audio frequency data into visual representations.

This process enables the use of image-based CNNs or trans-

former models for audio applications such as genre classi-

fication [88], mood detection [102], and speaker identifica-

tion [55] by transforming audio into spectrograms.

Document content. For documents, NDPipe uses NLP

techniques for enhanced document storage, converting text

into analyzable embedding vectors via recent transformer-

basedmodels [16, 27]. These embeddings then serve as inputs

for various downstream tasks, such as document classifica-

tion [4] and sentiment analysis [75], conducted by Tuner.

This approach can reduce data transfer costs by converting

large documents into small embedding vectors.

7.2 Cost Analysis of NDPipe
To assess the cost-effectiveness of NDPipe, we have estimated

the operational costs of NDPipe (including NDPipe-Inf1) and

SRV-C using the AWS pricing tool [9]. Fig. 21(a) shows the

cost of running fine-tuning for ResNet50. For NDPipe, we

add up the costs of Tuner and PipeStores, and for SRV-C, the

costs of the training and storage servers are included. When

the number of PipeStores is too small, the NDPipe’s cost

is higher than SRV-C owing to the long training time with

limited PipeStores. As the number of PipeStores increases,

the cost decreases with the reduced time for fine-tuning.

Fig. 21(b) illustrates the cost versus accuracy for ResNet50.

We compare two training strategies: fine-tuning and full

training. Full training is conducted under the SRV-C setup.

We run 90 epochs with the batch size of 128. Full training

shows the highest accuracy but is achieved by a long training

time. NDPipe and SRV-C, which employ fine-tuning, show

slightly lower accuracies but greatly reduce training costs.

Compared to SRV-C, NDPipe and NDPipe-Inf1 exhibit 1.5×
and 2.5× lower costs, respectively, by shorter training times.

8 Related Work
Near-data processing approaches for optimizing DL perfor-

mance have been studied by many researchers. Neurosur-

geon [56] automatically identifies the model partition points

and orchestrates the distribution of computation between the

mobile device and the data center to optimize the inference

performance. However, it considers neither multi-device sce-

narios nor fine-tuning for model training. Deep partitioned

training [53] leverages NDP and feeds only small features to

NPUs to enhance full training performance, yet it has limited

scalability due to the high synchronization costs.

In the context of the DL pipelining, NVIDIA Triton [74]

pipelines the preprocessing, model execution, and postpro-

cessing for higher throughput. However, all the computa-

tion is performed in GPU and does not consider a resource-

constrained system. ZeRO-Offload [90] offloads the memory-

intensive DL process to CPUs and pipelines the training

process over CPU and GPU. However, it does not consider

balancing pipeline stages executed by different hardware.

There have been lots of attempts to reduce synchroniza-

tion overhead for data and model parallelism. Most studies

tried to increase synchronization periods while minimizing

accuracy drops [22, 44, 89] and to pipeline batch processing

to fully utilize computing resources [30, 50, 85]. All these

studies have only considered synchronization overhead in a

PCIe environment and did not consider large-scale systems

like photo storage built over networked environments.

9 Conclusion
In this paper, we proposed a photo storage system, NDPipe,

which accelerated training and inference to address the out-

dated model and label problems. To ensure timely DNN

creation and image relabeling, NDPipe distributed storage

servers with inexpensive commodity GPUs and used their

collective intelligence to train and infer near image data.

According to our results, given the same energy budget, ND-

Pipe exhibits 1.39× higher inference throughput and 2.64×
shorter training time than typical photo storage systems.

Acknowledgments
We thank our shepherd, Dr. Swami Sundararaman, and the

anonymous reviewers for all their helpful comments. This

work was supported by the National Research Foundation

of Korea (NRF-2018R1A5A1060031), the MOTIE (Ministry

of Trade, Industry & Energy) (1415181081), and KSRC (Ko-

rea Semiconductor Research Consortium) (20019402). This

study was also supported by the Samsung Research Fund-

ing Incubation Center of Samsung Electronics under Grant

SRFCIT1902-03. (Corresponding author: Sungjin Lee)

702

NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

A Artifact Appendix
A.1 Abstract
NDPipe is a deep learning system designed to enhance both

training and inference performance by embracing the con-

cept of near-data processing within storage servers. At its

core, NDPipe utilizes an innovative architecture that dis-

tributes storage servers equipped with cost-effective com-

modity GPUs across a data center. NDPipe is composed of

two main elements: PipeStore (storage server equipped with

a low-end GPU for near-data training and inference) and

Tuner (training server that manages distributed PipeStores).

This artifact appendix provides a way to emulate NDPipe

and the source code and scripts for a better understanding

of the evaluation in our paper. Please refer to the README

file at https://github.com/dgist-datalab/NDPipe.

A.2 Artifact check-list (meta-information)
• Model: ResNet50.
• Data set: CIFAR-100.
• Hardware: CUDA-enabled GPU.

• Run-time environment: Linux Ubuntu 20.04, Tensorflow

2.13, TensorRT 7.1.3, and so on (pip requirements are in-

cluded in our GitHub).

• Execution: In the case of fine-tuning, the evaluation needs

two or more machines.

• Metrics: Fine-tuning execution time and inference through-

put (Image/sec).

• Output: Fine-tuning execution time and inference through-

put (Image/sec) table in the console.

• Experiments: Manual steps by user.

• Howmuch disk space required (approximately)?: 60GB.
• How much time is needed to prepare workflow (ap-
proximately)?: 1 hour.
• How much time is needed to complete experiments
(approximately)?: 10 mins.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: Apache License
v2.0.

• Data licenses (if publicly available)?: MIT License.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo
.10796943

A.3 Description

A.3.1 How to access. We provide the public GitHub URL

(https://github.com/dgist-datalab/NDPipe) and Zenodo

archive (https://doi.org/10.5281/zenodo.10796943). We

also provide the Zenodo URI of the dataset for inference

evaluation (https://doi.org/10.5281/zenodo.10796922).

A.3.2 Hardware dependencies. Two or more machines

are needed for the experiment. One machine is for the Tuner,

and the other machines are for the PipeStores (You only

need two machines for functionality). All machines require

a CUDA-enabled NVIDIA GPU, and PipeStore requires ap-

proximately 60GB or more of free storage space to conduct

experiments.

A.3.3 Software dependencies. Our experiments are con-

ducted using Python 3.9 on Ubuntu 20.04 LTS. The required

Python packages can be found in requirements.txt in our

GitHub repository.

A.4 Installation
Refer to the README file in our GitHub repository. Briefly,

you first need to clone the required repository (NDPipe)

onto multiple machines (Tuner and several PipeStores). Af-

terward, install the necessary Python packages from re-

quirements.txt located in each directory (Fine_tuning and

Offline_inference).

A.5 Experiment workflow
After completing the required installations, we first initi-

ate Tuner by executing the script with optional parameters:

the number of runs for pipelined fine-tuning, the number

of PipeStores, and the port number. Then, we begin to run

PipeStores by matching the port number on the Tuner side.

Once the connection between Tuner and PipeStores is suc-

cessfully established, Tuner allocates the tasks of fine-tuning

or offline inference to the involved PipeStores.

For details, refer to the README in our GitHub repository.

A.6 Evaluation and expected results
The specific execution time and throughput differ on differ-

ent platforms. The expected results are as follows:

• Fine-tuning

Feature extraction time (sec): 31.36
Feature extraction throughput (image/sec): 1913.26
Overall fine-tuning time (sec): 75.19

• Offline inference

[NDPipe] inference time: 14.78sec
[NDPipe] inference throughput: 2417.53IPS

References
[1] 42 Facebook Statistics Marketers Need to Know in 2023. Christina

Newberry. https://blog.hootsuite.com/facebook-statistics/, 2023.
[2] 500 million people using Google Photos, and three new ways to share.

Anil Sabharwal. https://blog.google/products/photos/google-photos-
500-million-new-sharing/, 2017.

[3] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,

Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat

Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,

703

https://github.com/dgist-datalab/NDPipe
https://doi.org/10.5281/zenodo.10796943
https://doi.org/10.5281/zenodo.10796943
https://github.com/dgist-datalab/NDPipe
https://doi.org/10.5281/zenodo.10796943
https://doi.org/10.5281/zenodo.10796922
https://blog.hootsuite.com/facebook-statistics/
https://blog.google/products/photos/google-photos-500-million-new-sharing/
https://blog.google/products/photos/google-photos-500-million-new-sharing/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, and Sungjin Lee

and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems. https://www.tensorflow.org/, 2015.
[4] Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and Jimmy

Lin. Docbert: Bert for document classification. arXiv preprint
arXiv:1904.08398, 2019.

[5] AmazonWeb Services Inc. Amazon S3: Object storage built to retrieve

any amount of data from anywhere. https://aws.amazon.com/s3/?n
c1=h_ls, 2022.

[6] Amazon Web Services Inc. Amazon EC2. https://aws.amazon.com/e
c2/, 2023.

[7] AmazonWeb Services Inc. Amazon EC2 instance network bandwidth.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-
instance-network-bandwidth.html, 2023.

[8] Amazon Web Services Inc. AWS Inferentia. https://aws.amazon.com
/machine-learning/inferentia/, 2023.

[9] Amazon Web Services Inc. AWS Pricing Calculator. https://calculat
or.aws/, 2023.

[10] Amazon Web Services Inc. NeuronCore-v1 Architecture. https:
//awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/
neuron-hardware/neuron-core-v1.html, 2023.

[11] Amazon Web Services Inc. PyTorch Neuron. https://awsdocs-neuron
.readthedocs-hosted.com/en/latest/frameworks/torch/index.html,
2023.

[12] Amazon Web Services Inc. Unlimited photo storage. https://www.
amazon.com/Amazon-Photos/b?ie=UTF8&node=13234696011, 2024.

[13] Sanjeev Arora, Nadav Cohen, Noah Golowich, andWei Hu. A Conver-

gence Analysis of Gradient Descent for Deep Linear Neural Networks.

In Proceedings of the International Conference on Learning Representa-
tions, 2019.

[14] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hak-

beom Jang, Tae Jun Ham, and Jae W. Lee. FlashNeuron: SSD-Enabled

Large-Batch Training of Very Deep Neural Networks. In Proceed-
ings of the USENIX Conference on File and Storage Technologies, pages
387–401, 2021.

[15] Manuel Baena-Garcıa, José del Campo-Ávila, Raúl Fidalgo, Albert

Bifet, R Gavalda, and Rafael Morales-Bueno. Early drift detection

method. In Proceedings of International Workshop on Knowledge Dis-
covery from Data Streams, volume 6, pages 77–86, 2006.

[16] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,

Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot learners. Advances
in Neural Information Processing Systems, 33:1877–1901, 2020.

[17] Yi Cai, Yujun Lin, Lixue Xia, Xiaoming Chen, Song Han, YuWang, and

Huazhong Yang. Long Live TIME: Improving Lifetime for Training-

in-Memory Engines by Structured Gradient Sparsification. In Pro-
ceedings of ACM/ESDA/IEEE Design Automation Conference, pages
1–6, 2018.

[18] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie

Wu, Linqiang Ouyang, Peng Wang, Yijing Wang, Ray Kuan, et al.

{POLARDB} meets computational storage: Efficiently support ana-

lytical workloads in {Cloud-Native} relational database. In Proceed-
ings of the USENIX Conference on File and Storage Technologies, pages
29–41, 2020.

[19] Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick,

and Shlomo Dubnov. Hts-at: A hierarchical token-semantic audio

transformer for sound classification and detection. In ICASSP 2022-
2022 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 646–650, 2022.

[20] Minmin Chen, Alice Zheng, and Kilian Weinberger. Fast image tag-

ging. In Proceedings of International Conference on Machine Learning,
pages 1274–1282, 2013.

[21] Xinyang Chen, Sinan Wang, Bo Fu, Mingsheng Long, and Jianmin

Wang. Catastrophic forgetting meets negative transfer: Batch spectral

shrinkage for safe transfer learning. Advances in Neural Information
Processing Systems, 2019.

[22] Yangrui Chen, Cong Xie, Meng Ma, Juncheng Gu, Yanghua Peng,

Haibin Lin, Chuan Wu, and Yibo Zhu. SAPipe: Staleness-Aware

Pipeline for Data Parallel DNN Training. Advances in Neural Infor-
mation Processing Systems, 35:17981–17993, 2022.

[23] Yixin Chen and James Z Wang. Image categorization by learning and

reasoning with regions. The Journal of Machine Learning Research,
5:913–939, 2004.

[24] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu

Devin, Mark Mao, Marc’aurelio Ranzato, Andrew Senior, Paul Tucker,

Ke Yang, et al. Large scale distributed deep networks. Advances in
Neural Information Processing Systems, 25, 2012.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

ImageNet: A large-scale hierarchical image database. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

[26] L. Peter Deutsch. DEFLATE compressed data format specification

version 1.3. https://www.w3.org/Graphics/PNG/RFC-1951, 1996.
[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.
[28] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-

senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,

and Neil Houlsby. An Image is Worth 16x16 Words: Transformers

for Image Recognition at Scale. In Proceedings of the International
Conference on Learning Representations, 2021.

[29] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa

Mudigere, Raghuraman Krishnamoorthi, Krishnakumar Nair, Misha

Smelyanskiy, and Murali Annavaram. Check-n-run: a checkpointing

system for training deep learning recommendation models. In Pro-
ceedings of the USENIX Symposium on Networked Systems Design and
Implementation, pages 929–943, 2022.

[30] Saar Eliad, Ido Hakimi, Alon De Jagger, Mark Silberstein, and Assaf

Schuster. Fine-tuning giant neural networks on commodity hardware

with automatic pipeline model parallelism. In Proceedings of the
USENIX Annual Technical Conference, pages 381–396, 2021.

[31] Flickr. About Flickr. https://www.flickr.com/about, 2024.
[32] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approx-

imate nearest neighbor search with the navigating spreading-out

graph. arXiv preprint arXiv:1707.00143, 2017.
[33] JoaoGama, PedroMedas, Gladys Castillo, and Pedro Rodrigues. Learn-

ing with drift detection. In Brazilian Symposium on Artificial Intelli-
gence, pages 286–295, 2004.

[34] Joao Gama, Indrundefined Zliobaitundefined, Albert Bifet, Mykola

Pechenizkiy, and Abdelhamid Bouchachia. A survey on concept drift

adaptation. ACM computing surveys, 46(4), 2014.
[35] Yuan Gong, Sameer Khurana, Andrew Rouditchenko, and James Glass.

Cmkd: Cnn/transformer-based cross-model knowledge distillation

for audio classification. arXiv preprint arXiv:2203.06760, 2022.
[36] Google Inc. Vision AI. https://cloud.google.com/vision, 2022.
[37] Google Inc. Google Photos. https://www.google.com/intl/en_uk/ph

otos/about/, 2024.
[38] Google Inc. What is Object storage? https://cloud.google.com/learn

/what-is-object-storage, 2024.
[39] Shreyank N Gowda, Marcus Rohrbach, and Laura Sevilla-Lara. Smart

frame selection for action recognition. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 1451–1459, 2021.

704

https://www.tensorflow.org/
https://aws.amazon.com/s3/?nc1=h_ls
https://aws.amazon.com/s3/?nc1=h_ls
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://calculator.aws/
https://calculator.aws/
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-hardware/neuron-core-v1.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-hardware/neuron-core-v1.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/arch/neuron-hardware/neuron-core-v1.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/index.html
https://awsdocs-neuron.readthedocs-hosted.com/en/latest/frameworks/torch/index.html
https://www.amazon.com/Amazon-Photos/b?ie=UTF8&node=13234696011
https://www.amazon.com/Amazon-Photos/b?ie=UTF8&node=13234696011
https://www.w3.org/Graphics/PNG/RFC-1951
https://www.flickr.com/about
https://cloud.google.com/vision
https://www.google.com/intl/en_uk/photos/about/
https://www.google.com/intl/en_uk/photos/about/
https://cloud.google.com/learn/what-is-object-storage
https://cloud.google.com/learn/what-is-object-storage

NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[40] Guillermo Krovblit. Organize your Google Photos library with these

two updates. https://blog.google/products/photos/google-photos-
organization-updates-november-2023/, 2023.

[41] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Bran-

don Reagen, David Brooks, Bradford Cottel, Kim Hazelwood, Mark

Hempstead, Bill Jia, et al. The architectural implications of facebook’s

dnn-based personalized recommendation. In Proceedings of the IEEE
International Symposium on High Performance Computer Architecture,
pages 488–501, 2020.

[42] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku

Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,

Aditya Kalro, et al. Applied machine learning at Facebook: A datacen-

ter infrastructure perspective. In Proceedings of the IEEE International
Symposium on High Performance Computer Architecture, pages 620–
629, 2018.

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 770–
778, 2016.

[44] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,

Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.

More effective distributed ml via a stale synchronous parallel param-

eter server. Advances in Neural Information Processing Systems, 26,
2013.

[45] Wassily Hoeffding. Probability inequalities for sums of bounded

random variables. Journal of the American Statistical Association,
58(301):13–30, 1963.

[46] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone,

Quentin De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and

Sylvain Gelly. Parameter-efficient transfer learning for NLP. In

Proceedings of International Conference on Machine Learning, pages
2790–2799, 2019.

[47] How many pictures are there (2023): Statistics, trends, and forecasts.

Matic Broz. https://photutorial.com/photos-statistics/, 2023.
[48] How Much Data Do We Create Every Day? The Mind-Blowing Stats

Everyone Should Read. Bernard Marr. https://bernardmarr.com/how-
much-data-do-we-create-every-day-the-mind-blowing-stats-
everyone-should-read/, 2021.

[49] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi

Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adap-

tation of large language models. arXiv preprint arXiv:2106.09685,
2021.

[50] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao

Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui

Wu, et al. Gpipe: Efficient training of giant neural networks using

pipeline parallelism. Advances in Neural Information Processing Sys-
tems, 32:103–112, 2019.

[51] Andrey Ignatov, Luc Van Gool, and Radu Timofte. Replacing Mobile

Camera ISP With a Single Deep Learning Model. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 536–537, 2020.

[52] Amazon Web Services Inc.

[53] Yongjoo Jang, Sejin Kim, Daehoon Kim, Sungjin Lee, and Jaeha Kung.

Deep Partitioned Training From Near-Storage Computing to DNN

Accelerators. IEEE Computer Architecture Letters, 2021.
[54] Manjunath Jogin, MSMadhulika, GD Divya, RKMeghana, S Apoorva,

et al. Feature extraction using convolution neural networks (cnn) and

deep learning. In Proceedings of the IEEE International Conference on
Recent Trends in Electronics, information &Communication Technology,
pages 2319–2323, 2018.

[55] Shirali Kadyrov, Cemil Turan, Altynbek Amirzhanov, and Cemal

Ozdemir. Speaker recognition from spectrogram images. In IEEE In-
ternational Conference on Smart Information Systems and Technologies,
pages 1–4, 2021.

[56] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor

Mudge, Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative

Intelligence Between the Cloud and Mobile Edge. In Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating Systems, page 615–629, 2017.

[57] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-

jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu,

and Dario Amodei. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020.

[58] Redwan Ibne Seraj Khan, Ahmad Hossein Yazdani, Yuqi Fu, Arnab K

Paul, Bo Ji, Xun Jian, Yue Cheng, and Ali R Butt. SHADE: Enable

Fundamental Cacheability for Distributed Deep Learning Training. In

Proceedings of the USENIX Conference on File and Storage Technologies,
pages 135–152, 2023.

[59] Minsub Kim, Jaeha Kung, and Sungjin Lee. Towards scalable analytics

with inference-enabled solid-state drives. IEEE Computer Architecture
Letters, 2020.

[60] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,

Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan,

Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming

Catastrophic Forgetting in Neural Networks. In Proceedings of the
National Academy of Sciences, pages 3521–3526, 2017.

[61] John S Koh, Jason Nieh, and Steven M Bellovin. Encrypted cloud

photo storage using google photos. In Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services,
pages 136–149, 2021.

[62] Alex Krizhevsky. Learning multiple layers of features from tiny

images. https://www.cs.toronto.edu/~kriz/learning-features-2009-
TR.pdf, 2009.

[63] Jooyeon Lee, Junsang Park, Seunghyun Lee, and Jaeha Kung. Implica-

tion of Optimizing NPU Dataflows on Neural Architecture Search for

Mobile Devices. ACM Transactions on Design Automation of Electronic
Systems, 27(5), 2022.

[64] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr

Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-

Yiing Su. Scaling Distributed Machine Learning with the Parameter

Server. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation, page 583–598, 2014.

[65] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung

Kim, and Alexander Schwing. Pipe-SGD: A decentralized pipelined

SGD framework for distributed deep net training. Advances in Neural
Information Processing Systems, 31, 2018.

[66] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang, Huawei Li, and

Xiaowei Li. Cognitive SSD: A Deep Learning Engine for In-Storage

Data Retrieval. In Proceedings of the USENIX Annual Technical Con-
ference, pages 395–410, 2019.

[67] Dong Liu, Shuicheng Yan, Xian-Sheng Hua, and Hong-Jiang Zhang.

Image retagging using collaborative tag propagation. IEEE Transac-
tions on Multimedia, 13(4):702–712, 2011.

[68] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Teng-

hao Huang, Mohit Bansal, and Colin A Raffel. Few-shot parameter-

efficient fine-tuning is better and cheaper than in-context learning.

Advances in Neural Information Processing Systems, 35, 2022.
[69] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan

Zhang. Learning under concept drift: A review. IEEE Transactions on
Knowledge and Data Engineering, 31(12):2346–2363, 2018.

[70] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Manohar

Paluri, and Laurens Maaten van der. Advancing state-of-the-art

image recognition with deep learning on hashtags. https://ai.faceboo
k.com/blog/advancing-state-of-the-art-image-recognition-with-
deep-learning-on-hashtags/, 2018.

[71] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri Joshi. Match-

maker: Data drift mitigation in machine learning for large-scale sys-

tems. Proceedings of Machine Learning and Systems, 4:77–94, 2022.

705

https://blog.google/products/photos/google-photos-organization-updates-november-2023/
https://blog.google/products/photos/google-photos-organization-updates-november-2023/
https://photutorial.com/photos-statistics/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://ai.facebook.com/blog/advancing-state-of-the-art-image-recognition-with-deep-learning-on-hashtags/
https://ai.facebook.com/blog/advancing-state-of-the-art-image-recognition-with-deep-learning-on-hashtags/
https://ai.facebook.com/blog/advancing-state-of-the-art-image-recognition-with-deep-learning-on-hashtags/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jungwoo Kim, Seonggyun Oh, Jaeha Kung, Yeseong Kim, and Sungjin Lee

[72] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri Joshi. Match-

maker: Data drift mitigation in machine learning for large-scale sys-

tems. Proceedings of Machine Learning and Systems, 4:77–94, 2022.
[73] Bernard Marr. How Much Data Do We Create Every Day? https:

//bernardmarr.com/how-much-data-do-we-create-every-day-the-
mind-blowing-stats-everyone-should-read/, 2021.

[74] Matthew Radzihovsky and Farzan Memarian and Ethem Can and

Burak Yoldemir. Serving ML Model Pipelines on NVIDIA Triton

Inference Server with Ensemble Models. https://www.tensorflow.org
/lite/guide, 2023.

[75] Walaa Medhat, Ahmed Hassan, and Hoda Korashy. Sentiment anal-

ysis algorithms and applications: A survey. Ain Shams engineering
journal, 5(4):1093–1113, 2014.

[76] Meta. How Facebook is using AI to improve photo descriptions for

people who are blind or visually impaired. https://tech.faceboo
k.com/artificial-intelligence/2021/1/how-facebook-is-using-ai-
to-improve-photo-descriptions-for-people-who-are-blind-or-
visually-impaired/, 2021.

[77] Microsoft Inc. Suggest content tags with NLP using deep learning.

https://learn.microsoft.com/en-us/azure/architecture/solution-id
eas/articles/website-content-tag-suggestion-with-deep-learning-
and-nlp, 2022.

[78] Jayashree Mohan, Amar Phanishayee, and Vijay Chidambaram.

CheckFreq: Frequent, Fine-grained DNN Checkpointing. In 19th
USENIX Conference on File and Storage Technologies, pages 203–216,
2021.

[79] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Se-

shadri, Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and

Matei Zaharia. PipeDream: generalized pipeline parallelism for DNN

training. In Proceedings of the ACM Symposium on Operating Systems
Principles, pages 1–15, 2019.

[80] Netflix Inc. The Story of Netflix. https://about.netflix.com/en, 2024.
[81] NVIDIA. NVIDIA Tesla V100. https://www.nvidia.com/en-gb/data-

center/tesla-v100/, 2017.
[82] NVIDIA. NVIDIA T4 Tensor Core GPUs for Accelerating Inference.

https://www.nvidia.com/en-us/data-center/tesla-t4/, 2018.
[83] NVIDIA Developer. NVIDIA TensorRT. https://developer.nvidia.c

om/tensorrt, 2021.
[84] Mathias Parger, Chengcheng Tang, Christopher D Twigg, CemKeskin,

Robert Wang, and Markus Steinberger. DeltaCNN: End-to-end CNN

inference of sparse frame differences in videos. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12497–12506, 2022.

[85] Jay H Park, Gyeongchan Yun, M Yi Chang, Nguyen T Nguyen, Se-

ungmin Lee, Jaesik Choi, Sam H Noh, and Young ri Choi. Hetpipe:

Enabling large DNN training on (whimpy) heterogeneous GPU clus-

ters through integration of pipelined model parallelism and data

parallelism. In Proceedings of the USENIX Annual Technical Confer-
ence, pages 307–321, 2020.

[86] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algo-

rithms for clusters of workstations. Journal of Parallel and Distributed
Computing, 69(2):117–124, 2009.

[87] Dong ping Tian. A review on image feature extraction and represen-

tation techniques. International journal of multimedia and ubiquitous
engineering, 8:385–396, 2013.

[88] Arjun Raj Rajanna, Kamelia Aryafar, Ali Shokoufandeh, and Ray-

mond Ptucha. Deep neural networks: A case study for music genre

classification. In IEEE International Conference on Machine Learning
and Applications, pages 655–660, 2015.

[89] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu.

Hogwild!: A lock-free approach to parallelizing stochastic gradient

descent. Advances in Neural Information Processing Systems, 24, 2011.
[90] Jie Ren, Samyam Rajbhandari, Yazdani Reza Aminabadi, Olatunji

Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.

ZeRO-Offload: Democratizing Billion-Scale Model Training. In Pro-
ceedings of the USENIX Annual Technical Conference, pages 551–564,
2021.

[91] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet

Large Scale Visual Recognition Challenge. International Journal of
Computer Vision, 115(3):211–252, 2015.

[92] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy dis-

tributed deep learning in TensorFlow. arXiv preprint arXiv:1802.05799,
2018.

[93] Devashish Shankar, Sujay Narumanchi, H A Ananya, Pramod Kom-

palli, and Krishnendu Chaudhury. Deep Learning based Large Scale

Visual Recommendation and Search for E-Commerce, 2017.

[94] Xuan Sun, Hu Wan, Qiao Li, Chia-Lin Yang, Tei-Wei Kuo, and Chun

Xue. RM-SSD: In-Storage Computing for Large-Scale Recommenda-

tion Inference. In Proceedings of IEEE International Symposium on
High-Performance Computer Architecture, pages 1056–1070, 2022.

[95] SuperMicro Computer Inc. . Storage SuperServer SSG-121E-NES24R.

https://www.supermicro.com/en/products/system/storage/1u/ssg-
121e-nes24r, 2024.

[96] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and

ZbigniewWojna. Rethinking the inception architecture for computer

vision. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2818–2826, 2016.

[97] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of re-
search on machine learning applications and trends: algorithms, meth-
ods, and techniques, pages 242–264. 2010.

[98] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin, Ivo Jimenez,

Jan Rellermeyer, Carlos Maltzahn, Robert Ricci, and Alexandru Iosup.

Is big data performance reproducible in modern cloud networks? In

Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation, pages 513–527, 2020.

[99] Yuchen Wei, Son Tran, Shuxiang Xu, Byeong Kang, and Matthew

Springer. Deep learning for retail product recognition: Challenges

and techniques. Computational intelligence and neuroscience, 2020,
2020.

[100] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran

Chen, and Hai Li. TernGrad: Ternary Gradients to Reduce Communi-

cation in Distributed Deep Learning. Advances in Neural Information
Processing Systems, 30, 2017.

[101] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming

He. Aggregated residual transformations for deep neural networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1492–1500, 2017.

[102] Pei-Tse Yang, Shih-Ming Kuang, Chia-Chun Wu, and Jia-Lien Hsu.

Predicting music emotion by using convolutional neural network.

In International Conference on Human-Computer Interaction, pages
266–275, 2020.

[103] Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu,

Marco Serafini, Ashraf Aboulnaga, and Michael Stonebraker. Flex-

pushdowndb: Hybrid pushdown and caching in a cloud dbms. Pro-
ceedings of the VLDB Endowment, 14(11), 2021.

[104] Liang Ye, Zhiguo Cao, and Yang Xiao. Deepcloud: Ground-based

cloud image categorization using deep convolutional features. IEEE
Transactions on Geoscience and Remote Sensing, 55(10):5729–5740,
2017.

[105] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How

transferable are features in deep neural networks? Advances in Neural
Information Processing Systems, 27, 2014.

[106] Youtube. Ever wonder how YouTube works? https://www.youtube.
com/intl/en_us/howyoutubeworks/, 2024.

706

https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://bernardmarr.com/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://tech.facebook.com/artificial-intelligence/2021/1/how-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-blind-or-visually-impaired/
https://tech.facebook.com/artificial-intelligence/2021/1/how-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-blind-or-visually-impaired/
https://tech.facebook.com/artificial-intelligence/2021/1/how-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-blind-or-visually-impaired/
https://tech.facebook.com/artificial-intelligence/2021/1/how-facebook-is-using-ai-to-improve-photo-descriptions-for-people-who-are-blind-or-visually-impaired/
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/website-content-tag-suggestion-with-deep-learning-and-nlp
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/website-content-tag-suggestion-with-deep-learning-and-nlp
https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/website-content-tag-suggestion-with-deep-learning-and-nlp
https://about.netflix.com/en
https://www.nvidia.com/en-gb/data-center/tesla-v100/
https://www.nvidia.com/en-gb/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://www.supermicro.com/en/products/system/storage/1u/ssg-121e-nes24r
https://www.supermicro.com/en/products/system/storage/1u/ssg-121e-nes24r
https://www.youtube.com/intl/en_us/howyoutubeworks/
https://www.youtube.com/intl/en_us/howyoutubeworks/

NDPipe: Exploiting Near-data Processing for Scalable Inference and Continuous Training ... ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[107] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet:

An extremely efficient convolutional neural network for mobile de-

vices. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6848–6856, 2018.

[108] Shen-Yi Zhao and Wu-Jun Li. Fast asynchronous parallel stochastic

gradient descent: A lock-free approach with convergence guarantee.

In Proceedings of the AAAI Conference on Artificial Intelligence, pages
2379–2385, 2016.

707

