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Electrode Placement Optimization for Electrical Impedance

Tomography Using Active Learning

Junhyeong Lee, Kyungseo Park, Kundo Park, Yongtae Kim, Jung Kim,*

and Seunghwa Ryu*

Electrical impedance tomography (EIT) offers a versatile imaging modality
with a multitude of applications, although it encounters accuracy limitations.
Herein, a novel systematic framework is presented that integrates a neural
network (NN), active learning, and transfer learning to optimize electrode
placement, improving image reconstruction performance based on user-
defined metrics. Given the many-to-one mapping between electrode configu-
ration and the performance metric, the approach utilizes a NN that predicts
performance metrics from electrode placement input. To maintain NN’s
prediction accuracy for unseen electrode configurations, performance metrics
are maximized while iteratively updating the NN via active learning during the
optimization process. Transfer learning is employed to expedite optimization of
electrode placements for time-consuming iterative reconstruction techniques
by fine-tuning a NN initially trained on one-step reconstruction data. The
method is validated using two representative reconstruction methods: one-step
reconstruction with Newton’s one-step error reconstructor prior and the
iterative total variation method. This research underscores the potential of the
proposed framework in addressing EIT’s inherent limitations and augmenting
its performance across diverse applications and reconstruction methods. The
framework could potentially contribute to the advancement of noninvasive

1. Introduction

Electrical impedance tomography (EIT) is a
method for determining the conductivity
distribution within a specific area by using
voltage measurements from a limited num-
ber of electrodes. EIT was initially developed
for medical imaging purposes, with the aim
of monitoring the health of the human
body’s organ system, owing to its noninva-
sive, safe, durable characteristics.* These
features of EIT have enabled its application
to various fields beyond its original applica-
tion such as structural health monitoring,!
strain sensing,* and robotics.”* Particularly,
there has been a noticeable increase in the use
of conductive composite materials for the
monitoring and prediction of structural dam-
age in building materials.” % Additionally,
with the emergence of 3D printing capabili-
ties for such materials, there are anticipations
of significant expansion in the application of
this technology.'>'* Despite its usefulness,

medical imaging, structural health monitoring, strain sensing, robotics, and

other fields that depend on EIT.
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EIT has intrinsic limits in producing high-
accuracy conductivity images due to its
diffusive nature and a constrained dimen-
sion of voltage measurements. To address
this challenge, researchers have explored var-
ious approaches, such as upgrading image reconstruction methods
through the incorporation of more prior knowledge or making bet-
ter use of the given voltage data.>*'! Additionally, some studies
have focused on finding better current stimulation and voltage mea-
surement patterns to improve the reconstruction ability of EIT.**~#!

Another promising approach is adjusting the electrode place-
ment to enhance image accuracy, especially when utilizing addi-
tional electrodes is not feasible due to the restricted number of
available electrodes. Recent advancements in machine learning
have facilitated the development of systematic approaches for opti-
mizing electrode placement in EIT.**21 For instance, Park et al.
applied a neural gas algorithm, an unsupervised learning method
typically used for clustering and pattern recognition, to minimize
the portion of the blind spot where the current from electrodes
cannot reach."”! While this method can offer optimal electrode
placements for general EIT applications, it may not be suitable
for identifying optimal placements under specific conditions, such
as image reconstruction objectives, reconstruction methods, and
driving patterns. The objective of reconstruction can vary, encom-
passing position description,?>?¥ size description,****! and shape
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description,***”! while the choice of reconstruction method may
depend on the specific application context.”®! Consequently, opti-
mizing electrode placement to align with particular objectives and
circumstances is important for enhancing EIT’s reconstruction
accuracy. Smyl and Liu®” introduced an alternative approach that
employs a neural network (NN) to predict electrode placement
based on metrics evaluating the performance of the configuration.
The NN-based prediction model offers the advantage of determin-
ing optimal electrode placement for any user-defined metric and
context, provided the network is trainable. Despite this, the study’s
implementation of an inverse modeling network, which utilizes
reconstruction performance metrics as input to predict design
(specifically, electrode placement), proves challenging to train
for intricate problems involving electrode placements on a 2D
plane. This is due to the one-to-many mapping between the design
and performance metric, wherein various combinations of elec-
trode placements can yield an equivalent metric.*”

The aim of this research is to introduce a systematic framework
that employs a NN and an active learning-based optimization algo-
rithm to optimize electrode placement for maximizing reconstruc-
tion performance concerning user-defined objectives.*” The
proposed framework uses a surrogate model in the form of a for-
ward modeling network that predicts performance metrics from
electrode placement and subsequently performs optimization
based on the surrogate model’s predictions. This approach circum-
vents the challenges associated with inverse modeling networks
that fail when multiple designs yield identical performance.
Nevertheless, the proposed data-driven optimization has efficiency
limitations when data gathering is time-consuming. In particular,
the optimization of electrode placement for iterative reconstruction
methods may be hindered by extended data collection periods. To
overcome this issue, we propose the utilization of transfer learning
to update the prediction model based on the NN. The model is
initially trained using one-step reconstruction data, which requires
a relatively shorter data collection time. Subsequently, the transfer-
learned model is utilized for the purpose of optimizing electrode
placement for iterative reconstruction.

The article is structured as follows. The Experimental Section
outlines the electrode placement optimization problems using
two different reconstruction methods: the one-step reconstruc-
tion with Newton’s one-step error reconstructor (NOSER) prior®"]
and the iterative total variation (TV) method.*” The NOSER prior
represents a linear methodology employed for expeditious image
acquisition, whereas the iterative TV approach is employed in sit-
uations where additional time can be allocated to procure a sharp
and precise image. For each reconstruction approach, three image-
based objective functions are defined and the optimal placements
for each function are to be found. The study discusses how the
aforementioned optimization problems can be effectively solved
using active learning and transfer learning while comparing opti-
mized results across different objectives and reconstruction meth-
ods. The outcomes of the problems are presented in Section 3, and
the study’s significance and limitations are discussed in Section 4.

2. Experimental Section
Optimization involves the task of selecting the optimal set of

design variables to maximize or minimize objective functions
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while conforming to specified constraints.** In this study, con-

sidering the electrode placements as design variables, we must
establish user-defined metrics as objective functions to quantify
image reconstruction performances and take into account neces-
sary constraints. This study seeks to determine optimized elec-
trode placements for user-defined metrics related to position,
size, and aspect ratio in image reconstruction, concerning two
distinct reconstruction methods: one-step NOSER and iterative
TV. Consequently, the Experimental Section delineates the fol-
lowing steps: 1) definition of the optimization problems; 2) opti-
mization for one-step reconstruction; and 3) optimization for
iterative reconstruction.

2.1. Definition of Optimization Problems

EIT is a technique used to estimate the conductivity distribution
within a specific region through controlled current injection and
voltage measurements from a limited number of electrodes. To
achieve the conductivity reconstruction using EIT, both forward
and inverse problems should be solved. The forward problem
entails the measurement of voltages at electrodes for a given con-
ductivity distribution, while the inverse problem involves recon-
structing the conductivity field within the sensing domain based
on the acquired voltage data.

To be specific, the objective of the forward problem is to com-
pute the voltage field u on the boundary 9%, satisfying Equation (1),
given a conductivity field ¢ within the domain Q c R3

V- (e(x)Vu(x)) =0 x€Q

X € 0Q (1)

o(x)Vu(x) -n=j

In Equation (1), j represents the current density, and n is the
unit normal vector on 0Q. The partial differential equation,
derived from the Maxwell equation, is solvable through the finite
element method (FEM).?* The FEM resolves the equation based
on specified parameters such as the number of electrodes,
domain geometry, meshing method, injection and measurement
patterns, and so on. Consequently, the voltage measured on the
electrodes, denoted as Av,, € RPM, can be calculated for a per-
turbed conductivity field As, € RNe*1, where L is the number of
electrodes, M is the number of measurement, and Ny is the
number of elements in the finite element model, as expressed
in Equation (2)

Av,, = F(Aoy; +) ()

Here, F represents the forward model, which is composed of
the FEM simulation. For this study, we examined a scenario
where electrodes are positioned on a single surface of the 3D thin
plate domain. Each square element represents the values within
a thin voxel. It is important to distinguish our case from conduc-
tivity imaging employing internal electrodes on a 2D surface. In
the conductivity imaging, the formulation of the forward model F
requires modification, diverging from that of EIT.*>*! However,
our study focuses on the 3D thin plate domain, where the model
for solving the EIT forward problem remains applicable.

The inverse problem finds the reconstructed conductivity
distribution Ac, € RNX!  that minimizes the difference
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between the measured voltage data Av,, and estimated voltage
Av = F(Ao,;) calculated from the defined forward model F.
This is the difference of imaging methods, reconstructing the
only As, from the 6, = 64 + Aoc,, where the o is the reference
conductivity field (uniform in this research), and o, is the total
reconstructed conductivity field. The inverse problem can be for-
mulated as follows

Ao() = angmiHHIAVm(AUp; ) = F(Ag; )| +a [G(ao)]]  (3)

Here, || - || represents a predefined norm. G is the regularization
term designed to compensate for the ill-posed nature of the
inverse problem, and a is the weighting factor for the regulari-
zation term. The design of G aligns with the specific objectives;
however, various conventional forms, including Tikhonov,”!
NOSER,PY Laplac,** and TV,** have been proposed.

In this study, we specifically investigate the impact of electrode
placement X, € R as a design variable

Av = F(Ac, X,; ") (4)

The formulation of the inverse problem involves finding the
Ao that corresponds to a measured voltage difference Av,,, as
expressed in Equation (5)

Aoy (Xe; ) = argAminHIAvm(Aﬂp,Xe; ) — F(Ao, Xe;)||
c

©)
+a[|G(a)]]

Error metrics and corresponding objective functions are nec-
essary to quantify the discrepancy between the true conductivity
field As, caused by a perturbation and the reconstructed conduc-
tivity field Ao;,.

When using EIT to reconstruct the conductivity drop of a single
element, the resultant reconstructed image may exhibit deviations
from the original one, as illustrated in Figure 1. To evaluate the
fidelity of the reconstructed conductivity image, we created three
image-based error measures: position error (PE), size error (SE),
and aspect ratio error (ARE), drawing inspiration from previous
research that developed image-based metrics for assessing the effi-
cacy of the provided EIT system.["®*#3? While conventional met-
rics like peak-signal-to-noise ratio and structural similarity index
measure exist for assessing reconstruction quality,*” our aim
was to devise metrics designed for specific engineering applica-
tions of EIT, such as crack detection and robotic skin, where an
accurate description of position, size, and shape is crucial.
Moreover, by formulating objective functions using metrics
designed for engineering purposes, we identified that the proposed
deep learning-based optimization framework can find the opti-
mized configuration even for newly defined metrics by the user.

Defined metrics quantify the discrepancies between the recon-
structed conductivity image and the originally perturbed element
in terms of position, size, and aspect ratio. To ensure that calcu-
lations are based on positive values and to reduce the impact of
excessive fluctuations far from the perturbation point, the errors
are computed using the square of the reconstructed conductivity

distribution. The normalized squared conductivity (A;E/i)z for

ith element, when perturbation occurred at the pth element, used
in the error estimation, was computed using Equation (6)
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— (ac?,)’ — min (acf,)?
act )’ = : ’ 6
( Or i max (Ao};)* — min (Aot )? ©

Here, Aa?i represents the reconstructed conductivity value for
the ith element, while max (Aoii)z and min <A0Ei)2, respec-
tively, indicate the maximum and minimum values of
(Aafi)Z across all elements.

To be specific, first, the PE quantifies the distance between the
exact perturbation point (represented by a white “o” in Figure 1)
and the center position of the reconstructed image derived from
the squared conductivity values (indicated by a red “x” in
Figure 1). The PE is defined as the magnitude of the vector con-
necting the center position of the reconstructed image (1), and
the center position of the perturbed element (T,). The equation
for PE is given by

> (e )
—— 7)

=
’ Z(A"E i)z
i

where T; indicates the center position of the ith element. This
concept is illustrated by the yellow vector connecting the red
“x” and white “0”, as described in Figure 1.

Second, SE characterizes the extent to which the reconstructed
conductivity image diverges from the center. Drawing upon the
intuitive notion derived from calculating the principal inertia
moments of the mass distribution, we devised a method to quan-
tify the deviation of the conductivity distribution from the center
position. Using the centroid of the image as the origin, the inertia
matrix for the conductivity distribution can be computed as out-
lined in Equation (8)

P P

. {IW Ix,}/} B

o2 1% P -
Ix,y, IW

PE(p, Xei )= |y — %, =

2

So(ach ) v >(ack ) <
S (a0 ) iy S (a0 ) w2

1

®)

«x; and y, represent the coordinates of the ith element along the
x'-axis and y’-axis in Figure 1, respectively. The principal axes and
inertia moments for the conductivity distribution can be obtained
by solving an eigenvalue problem as illustrated in Equation (9)

[IE,X, IE/Y,} : I | [ P. 0 } o)
QG /=9 R
L, L, o .

Each of q; and q, represents the unit vector in the direction of
the largest and smallest inertia moments, corresponding to the
directions with the smallest and largest variance. Subsequently,
P .. and Ih.x quantify how much the conductivity data spread
along the vectors q; and q,, respectively. The coordinate system
spanned by q, and q, is denoted as X’ and Y’, and its correspond-
ing eigenvalues Ih and IP; are depicted in Figure 1. The geo-
metric mean of the Ih and IP . is determined as the factor
describing the deviation from the image centroid with respect

to size, as outlined in Equation (10)
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Figure 1. EIT-based image reconstruction with one-step NOSER regularization and the squared conductivity distribution for a single-element perturba-

tion. The red “x” designates the center of the squared image, and the white

“g"

indicates the position of the perturbed element. The yellow vector

illustrates the difference between the perturbation point and the reconstructed center. The blue ellipse visually represents the spread and aspect ratio
distortion of the reconstructed image, with the major axis length denoted as /. and the minor axis length as /.

SE(p, Xe3+) =/ Tmax X Iy (10)

The SE is related to the area of the blue ellipse in Figure 1.
Finally, ARE calculates the degree of asymmetricity by using
the ratio of Iha and I'. as defined in Equation (11)

min

IP
o (1)

min

ARE(p, Xe; +) =

The ARE is represented by the ratio between the major and
minor axes of the blue ellipse in Figure 1. In other words,
ARE quantifies the ratio of conductivity distribution variance
between the two principal axes. It should be noted that the values
of the three error measures are subject to change with the con-
ductivity perturbation position and electrode placement.

The reconstruction performance of each electrode placement
was quantified using three objective functions derived from the
previously defined error metrics. These functions served as a
metric for the optimization algorithm to determine the optimal
electrode arrangements. To provide scalar values representing
the reconstruction capability of each electrode placement, the

Adv. Eng. Mater. 2024, 26, 2301865 2301865 (4 of 14)

errors were assessed for all single-element perturbations and
their average was computed. The average errors were modified
to have values between [0 o0) to yield higher values for better per-
formance, which is characterized by precise center position, a
sharp image like the original perturbation, and shape preserva-
tion. Table 1 summarizes the defined objective functions for the
electrode configuration optimization.

To isolate the effect of the electrode placement on objective
functions, other variables that could affect reconstruction quality,
including the finite element model, reconstruction method,
number of electrodes, and measurement pattern, were fixed.
A 25 x 25 square grid model was used, and 16-point electrodes
were placed on its nodes. First, the framework was applied to the
one-step reconstruction method, the NOSER prior. While the
one-step reconstruction method has lower accuracy than the iter-
ative method, it was suitable for data-driven optimization
because of its fast image restoration. In reconstruction calcula-
tions, the adjacent measurement pattern was used, and the reg-
ularization coefficient was set to 0.3. Additionally, based on the
intuition that the optimal electrode placement exhibits symme-
try, four electrodes are placed on a quarter of the plane, and the
positions of the others are determined using axis symmetries. By
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Table 1. Three objective functions to assess the reconstruction
performance of a given electrode placement (Ng =the number of elements).

Mean of error Objective function

Position objective 1 Qe 1
PE — . POF(X; ©) ==
function (POF) PE = ,\TEZ:PE(P, Xei ) e ) =3¢
=
Size objective function 1 Qe 1
SE_ . SOF(Xe; ) = —
(SOF) SE = I\Tgp:] SE(p, Xe; ) ( ) SE
Aspect ratio objective 7 Qe 1
ARE — . AOF(Xe; ) = =——
function (AOF) ARE = ,\TEZARE(FL Xei®) Xei) = SRE—T
=

imposing symmetries on the example problem, we reduced
the data generation time by perturbing only a quarter of the
elements.

2.2. Optimization for One-Step Reconstruction

In this study, an initial training dataset of 5000 instances was
generated using the NOSER-based reconstruction method imple-
mented in EIDORS.’Y For each dataset, four electrode nodes
were randomly selected within the lower-left quadrant of the
finite element model, specifically within the region identified
as the design space in Figure 2a. The symmetry principle was
then applied to fill the remaining quadrants. After selecting

www.aem-]ournal.com

the electrode placements, individual elements within the design
space underwent perturbation to assess errors. The resulting val-
ues were subsequently averaged over the number of elements
within the design space to compute the objective functions as
defined in the previous section. Consequently, each data pair
consists of the positions of the four basis electrodes as input
and the corresponding output values representing the objective
functions. To incorporate the positional relationship between
electrodes, the electrode placement information was transformed
into a binary image format and fed into a convolutional NN.
Specifically, the electrode placement information was embedded
into a 12 by 12 binary image, where the nodes containing electro-
des were represented by “1” and all other nodes by “0”. Three
separate networks were trained to predict each objective function
value. The architecture of the NN and the input feature format
are illustrated in Figure 2. The Adams optimizer was used to
train the NN for 200 epochs with a minibatch size of 100. The
learning rate was initially set to 107> and decreased by a factor
of 10 every 20 epochs.

Deep NNs have limited accuracy when extrapolating beyond
the initial training set, but they can still provide some perfor-
mance ranking predictions for data near the training set.*®***2
To leverage this feature, we introduced a genetic algorithm that
combines NN predictions and active learning to optimize elec-
trode placement for each objective function. The initial dataset
was sorted according to a performance metric, and the top 30
samples were selected as the parent generation. Crossover and
mutation were applied to the parent generation to generate

(a) ° ° ° ° . . .
- o o o
° L rite .,
SRR Objective
EEEEEEE] . . . function
& ol  Piaiiimd | value
T - [l Electrode [:l . . .
2 RRRRRE R RRERRE [ Vacant
[[] Design space @ @ .
[] Determined by symmetry | ]\ |
Convolution layers Fully connected layers
(b) Image input —l
2D CNN (3x3, 240) 2D CNN (3x3, 240) FCNN (144)
BatchNormalization BatchNormalization BatchNormalization
LeakyReLU (0.1) LeakyReLU (0.1) LeakyReLU (0.1)
2D CNN (3x3, 240) + 2D CNN (3x3, 240) FCNN (144)
BatchNormalization BatchNormalization BatchNormalization
LeakyReLU (0.1) LeakyReLU (0.1) LeakyRelLU (0.1)
2D CNN (3x3, 240) 2D CNN (3x3, 240) FCNN (144)
BatchNormalization BatchNormalization BatchNormalization
LeakyReLU (0.1) / LeakyReLU (0.1) LeakyReLU (0.1)
+ 2D CNN (3x3, 240) FCNN (144) FCNN (144)
BatchNormalization BatchNormalization BatchNormalization
LeakyRelLU (0.1) LeakyReLU (0.1) LeakyRelLU (0.1)
I— FCNN (1)

Figure 2. a) Brief schematic of input data formatting and NN architecture. b) The detailed architecture of the NN. Each blue arrow indicates a skip

connection.
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= T T "_________________j
| Data Generation
| (EIDORS) |
| Initial training |
| data |
| Data augmentation I
Train NN & |
: Setting for NN update |
| High-rank :
data
- |
Yes
Mutation & Crossover Converge? Terminate ||
I
Transformed I
High-rank data |
I
Yes| Evaluation of Candidates
At -
NN Prediction HIgRranR it Converged? by simulation (EIDORS) |
(NN predicted) |
_______________ -

Overall optimization loop using active learning

Genetic algorithm based on NN prediction (NN-aided genetic algorithm)

Figure 3. Schematic of the optimization procedure based on active learning.

approximately 10 000 new deformed samples in the offspring
generation. The offspring group’s objective function values were
predicted using NN and sorted in descending order to select the
top 30 placements as the next parental generation. The red loop
in Figure 3 illustrates the NN-aided genetic algorithm process
described above. The genetic algorithm had a population size
of 200, with each individual consisting of 4 integers to represent
electrode placement. The schematic of mutation and crossover
utilized in this study is presented in the Supporting Information
(see Supporting Notes 2). The mutation probability and
crossover probability were set high, nearly 0.9 and 1.0, respec-
tively, to explore various design candidates with the rapid pre-
diction of the NN. The process continued until convergence,
defined as no longer changing in the highest value for three
generations.

The selected electrode placements were utilized to update
the NN, resulting in enhanced prediction accuracy for high-per-
formance placements, which were then used to predict the next
iteration in the active learning-based algorithm. To be specific,
the true objective function values of the converged parental gen-
erations were evaluated using EIDORS, and the resulting data
pairs were added to the initial training set to augment the dataset
and update the NN. The entire process, from the NN-aided
genetic algorithm to the NN update, was repeated until no
improvement was observed for four iterations, in a process
known as active learning-based optimization (the blue loop in
Figure 3). It is known that the algorithm’s ability to rapidly eval-
uate input features through NNs allows it to outperform tradi-
tional genetic algorithms.!**!

Adv. Eng. Mater. 2024, 26, 2301865 2301865 (6 of 14)

2.3. Optimization for Iterative Reconstruction

The optimization methodology used for one-step reconstruction
can be applied to an iterative reconstruction, TV-based datasets.
However, we encountered a challenge in training NNs with a
large dataset due to the time-consuming computation required
for iterative reconstruction. While the superiority of TV in terms
of both POF and SOF was noted, the proposed algorithm was not
feasible due to these computational limitations. To address this
issue, we employed a transfer learning approach by updating pre-
trained NOSER data-based NNs with a small number of iterative
TV-based data to construct a predictive model for iterative recon-
struction. This approach allowed us to reduce the time required
to train the model while maintaining its accuracy. For instance,
generating 5000 data using iterative TV can take up to 2 weeks,
while the same amount of data using one-step NOSER can be
generated in 7h (Table 2). The calculations were performed

Table 2. Comparison of computing time and objective function values
between two reconstruction methods: one-step NOSER and iterative TV.

One-step NOSER  Iterative TV

Computing time for 1 data (s) 5 250

Average of 100 electrode placements’ POF value 11.0570 30.8530
Average of 100 electrode placements’ SOF value 0.9202 6.1107
Average of 100 electrode placements’ AOF value 1.6734 0.4516
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using MATLAB R2022a running on a desktop computer with an
Intel Core i7-10700 K processor and 128 GB of DDR4 RAM.

To implement the transfer learning-based approach, we gen-
erated a set of 300 TV-based data samples, which were used to
update the pretrained NN with the NOSER-based dataset. We
used the EIDORS to implement the iterative TV-based EIT cal-
culation, using the same finite element model as the NOSER sec-
tion, with a regularization coefficient of 1075, In the transfer
learning phase, we made minor modifications to the hidden layer
weights, with an initial learning rate and epoch of 1072 and 50,
respectively. The learning rate was reduced by a factor of 10 every
10 epochs, and the minibatch size was 5. The NN architecture
was identical to the one described in the NOSER section, as illus-
trated in Figure 2b. Other training options were maintained from
the previous problem for one-step reconstruction. To monitor the
training progress of transfer learning, refer to the loss curve
in the Supporting Information (see Supporting Notes 1). The
transfer-learned NN was then employed to optimize electrode
placements using a genetic algorithm, following a similar
approach to the previous section. The optimization process was
stopped when there was no improvement for four iterations, con-
sistent with the previous section’s criteria.

3. Results and Discussion

The proposed active learning-based optimization approach relies
on the NNs’ ability to extrapolate beyond the training domain.
The trained NNs using a lower 90% rank dataset were tested
on the top 10% highest rank dataset to evaluate their predictive
capacity beyond the training data, as shown in Figure 4a. The
predicted values for the POF and SOF outcomes closely approxi-
mate the actual data trend. However, for the AOF, its accuracy is
comparatively lower than the other two functions. Nevertheless,
the overall performance of the three trained NNs is adequate to
distinguish whether an electrode placement is superior to the
training data samples.

The electrode configurations with high objective function val-
ues were updated following the proposed design progress, which
included the NN-aided genetic algorithm and NN update using
superior data samples. Figure 4b shows the distribution of the
top 30 datasets selected by the genetic algorithm and evaluated
by EIDORS at each iteration. As the number of iterations
increased, the NN was gradually updated with the superior sam-
ples, leading to an improvement in the prediction accuracy for
the upper ranks. For the one-step reconstruction, the NNs were
not updated several times because they already exhibited suffi-
cient extrapolation accuracy to replace the simulation. The per-
centage of the improvement (PI) estimated by Equation (4)
was 6.19%, 13.15%, and 14.48% for each objective function.
The improvement for each iteration can be found in the
Supporting Information (see Supporting Notes 3).

__ Initial best value — Optimized value

PI
Initial best value

x 100(%) (12)

Figure 4c depicts the optimal electrode placements for the
three objective functions, indicating that uniformly distributed
electrodes across all domains resulted in improved image recon-
struction accuracy. However, it is noteworthy that the optimal
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placements slightly vary for different objective functions, which
depends on the primary focus of the EIT application. These
results show the significance of considering a user-defined spe-
cific objective while determining the electrode placement.

To implement the optimization for the iterative reconstruc-
tion, transfer learning was carried out by using 300 iterative
TV data to update NNs previously trained with 5000 one-step
NOSER data to make predictions for iterative TV. To check the
extrapolation capacity of the transfer-learned NN, the 300 data
were split into a 95% training set and a 5% test set, and the test
results are presented in Figure 5a. The NN for the AOF tended to
underestimate the test set, while the NNs for the POF and SOF
provided better predictions, although not perfect. These results
confirm that the POF and SOF are less sensitive to the change in
the reconstruction method.

Following the active learning-based optimization strategy, the
electrode arrangement design was gradually improved (Figure 5b).
As the number of iterations increases, the NN was updated, result-
ing in an improvement in the predictive ability for higher-ranked
data. Notably, for the AOF, whose extrapolation capability was
initially inadequate, there was a significant enhancement in the
NN’s predictive power for the dataset outside the initial region.
Conversely, the NNs for the PDF and SOF showed less improve-
ment than AOF, as they initially had better extrapolation
performance.

The optimization algorithm was executed for 18, 6, and 18 iter-
ations for each objective function. Unlike optimization in the
one-step NOSER, the highest value drops in the middle of the
optimization process (see Supporting Notes 3). This is a case
where the actual performance calculated by EIDORS was not that
outstanding even though they are recommended as the superior
placements based on the NN-aided genetic algorithm. This
occurred because the extrapolation power of iterative reconstruc-
tion is lower than that of one-step reconstruction. Nevertheless,
the proposed optimization eventually converged to a certain value
and identified placements with superior performance compared
to the initial best. The percentage improvement for each objective
function was 20.13%, 1.39%, and 16.12%.

The optimal electrode arrangements are presented in
Figure 5c. It was observed that a uniform distribution of electro-
des throughout the domain was optimal for the SOF. Conversely,
for the POF, the optimal electrode placement was found to be
toward the boundary of the domain. In the case of AOF, the
optimal one was difficult to infer intuitively. We discovered that
finding the optimal electrode placement could be challenging in
some instances and necessitate a data-driven optimization
approach. In addition, for all three objective functions, the
optimization results differed from the optimum obtained in
the one-step reconstruction depicted in Figure 4c. Therefore,
it was confirmed that optimal electrode arrangement can vary
not only depending on the objective function but also on the cho-
sen reconstruction methodology.

To validate the enhanced accuracy of optimized electrode
placements (referred to as “opt”) in comparison with conven-
tional electrode arrangements, we established two reference elec-
trode configurations for comparison. These included a commonly
employed uniform arrangement (referred to as “uni”) and an
arrangement with electrodes uniformly distributed along the
boundary (referred to as “bnd”), as depicted in Figure 6a. We
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Figure 4. a) The extrapolation capability of the NN trained by one-step NOSER-based data for each objective function (blue: 90% low-rank training data,
red: 10% high-rank test data). b) Predicted and target values of objective functions of the top 30 placements selected by NN-aided genetic algorithm for
each iteration (one-step NOSER). c) Optimal electrode placements for defined objective functions (one-step NOSER).

computed the PE, SE, and ARE for a total of 576 elements for both
“uni” and “bnd,” using both the one-step and iterative reconstruc-
tion methods. These calculations were then compared with the
element-wise errors for the corresponding optimized electrode
placements. The distribution of calculated errors for each elec-
trode placement is visualized as histograms in Figure 6b. The

Adv. Eng. Mater. 2024, 26, 2301865 2301865 (8 of 14)

results consistently demonstrated a trend in which the gray distri-
bution representing errors for the optimized placements in each
case shifted toward lower values. This shift is further highlighted
by bold vertical lines representing the mean of each distribution,
and in all cases, these means moved toward lower error values.
These findings indicate that electrode placements optimized based
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Figure 5. a) The extrapolation capability of the NN trained by iterative TV-based data for each objective function (blue: 95% low-rank training data, red: 5%
high-rank test data). b) Predicted and target values of objective functions of the top 30 placements selected by NN-aided genetic algorithm for each
iteration (iterative TV). c) Optimal electrode placements for defined objective functions (iterative TV).

on the active learning-based framework exhibited higher accuracy
compared to common electrode placements.

Furthermore, we observed variations in reconstructed images
and their associated error values in response to changes in elec-
trode placement. To intuitively grasp the relationship between
error and the reconstructed image, we began by selecting a single

Adv. Eng. Mater. 2024, 26, 2301865 2301865 (9 of 14)

element that effectively shows the changes in image reconstruc-
tion with respect to defined errors and applied a conductivity per-
turbation. Subsequently, we compared the differences in the
restored conductivity images and their error values for various
electrode placements, including uniform placement, boundary
placement, and electrode placements optimized for each
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Figure 6. a) Comparison of uniform and boundary electrode placements for assessing accuracy against optimized electrode placements. b) Error dis-
tribution for the uniform electrode placement (uni), the boundary electrode placement (bnd), and the optimized electrode placement for each objective
function (opt). Vertical lines represent the mean estimated errors for all elements in the domain associated with each electrode placement.

objective function. The two image reconstruction methods used
in this study, one-step NOSER and iterative TV, were employed
for each electrode placement, and the reconstruction outcomes
for each scenario are illustrated in Figure 7.

In general, it was evident that, despite applying perturbations
to elements at the same location, the error values vary depending
on the electrode placement. Specifically, when examining the PE,
the distance between the white “0”, representing the position of
the single-element perturbation, and the center of the restored
image indicated by the red “x” increases with the corresponding
increase in PE. Regarding the SE, as the reconstructed image
deviates from the center of the image, the SE value increases.
Comparing the response from perturbing the element located
at the center of the domain, it is observed that the SE is higher
when electrodes are present only at the boundary. In the opti-
mized electrode placement, superior reconstruction perfor-
mance is achieved for the element positioned at the center
compared to uniform placement. The ARE decreases as the
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reconstructed image for the element located at the edge becomes
more circular. Assuming the original single-element perturba-
tion is square-shaped, a higher ARE suggests a more significant
shape distortion in the reconstructed image.

However, the optimization in this study did not target the
enhancement of the reconstruction accuracy for a specific indi-
vidual element perturbation. Instead, it focused on optimizing
the overall single-element perturbation errors across all ele-
ments. Consequently, it was essential to visualize the error values
corresponding to single-element perturbations for all elements
and confirm whether the optimization had indeed improved
the overall distribution of these errors. The distribution of each
error value, encompassing PE, SE, and ARE, for uniform, bound-
ary, and optimized electrode placements for each objective func-
tion is depicted in Figure 8. This enables a more in-depth
analysis compared to the histogram presented in Figure 6.

Overall, following optimization for each objective function, the
optimized electrode configurations exhibit a smaller average
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Figure 7. Single-element conductivity perturbations and their respective reconstructed conductivity images are displayed for each electrode placement
(uniform, boundary, and optimized). The positions of electrodes are indicated by a green “0”, the original perturbation point is marked as a white “o0”, and
the center of the reconstructed image is represented by a red “x”. Corresponding error values for each reconstructed image are presented below the
images: a) one-step NOSER, and b) iterative TV.
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Figure 8. Single-element conductivity perturbations for all elements and their respective errors are displayed for each electrode placement (uniform,
boundary, and optimized). Corresponding average error values for each electrode placement are provided beneath the images: a) one-step NOSER, and
b) iterative TV.

error compared to the uniform and boundary placements. For  generally evened out errors across the entire map for the bound-
POF, it was observed that the optimization reduced errors ary placement. Regarding SOF, there was notable improvement
appearing in the corners for the uniform placement and in errors located at the domain center compared to the boundary
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placement, and enhancement was evident for elements with
errors in the uniform placement. Similarly, for AOF, errors near
corners and edges were noticeably reduced with optimization.
Particularly, for iterative TV, it was effective in significantly low-
ering errors occurring at the edges. In conclusion, the proposed
deep learning-based optimization framework demonstrates
effective optimization for image reconstruction corresponding
to single-element perturbation across all elements.

4, Conclusion

This study proposes an optimization framework for electrode
placement in the EIT using active learning, data augmentation,
and transfer learning. The proposed framework optimizes elec-
trode placements on 2D planes by leveraging an NN-based algo-
rithm to approach optimal designs for user-defined objective
functions and specified reconstruction setups.

For the one-step NOSER reconstruction, this study identified
optimal electrode placements to accurately restore perturbation
position, size, and aspect ratio. NNs were trained to predict three
objective function values that quantify the imaging accuracy of
electrode placements, demonstrating sufficient extrapolation
ability beyond the training domain. Active learning-based optimi-
zation improved image quality by 6.19%, 13.15%, and 14.48%
from the initial best placement performance, with optimal elec-
trode placements evenly distributed throughout the target
domain.

Furthermore, a transfer learning approach was employed to
address the time-consuming data collection process for con-
structing a prediction model for the iterative TV dataset.
Although the accuracy of NN predictions beyond the initial train-
ing range was lower than that of one-step reconstruction, it was
still sufficient for the proposed optimization strategy to be
applied. The study successfully identified optimal electrode
placements for each defined objective function, resulting in an
improvement in imaging performance by 20.13%, 1.39%, and
16.12% from the initial best design. The study successfully deter-
mined optimal electrode placements for each defined objective
function, resulting in imaging performance improvements of
20.13%, 1.39%, and 16.12% from the initial best design.
Optimal electrode placements were toward the boundary for
the POF and evenly distributed for the SOF. However, for the
AOF, optimal placement was difficult to predict and could only
be obtained through data-driven optimization.

However, the improvement in EIT performance through elec-
trode placement optimization was not as substantial compared to
the impact of altering other factors, such as reconstruction meth-
ods and the number of electrodes. Therefore, electrode place-
ment optimization can be viewed as a fine-tuning process
after appropriately selecting and optimizing other factors.
Moreover, as the optimization results relied solely on simulation
data under ideal conditions, actual situations with error factors
may produce disparities. Future research should consider devel-
oping electrode placement design methodologies that account for
differences between simulation and experimental data.

Nonetheless, the proposed optimization framework offers
benefits for engineers seeking to optimize EIT performance in
specific environments. As this study identifies optimal electrode

Adv. Eng. Mater. 2024, 26, 2301865 2301865 (13 of 14)

www.aem-journal.com

placements using NN, it can be extended to other optimization
problems with various problem settings, such as geometry,
meshing, measurement pattern, reconstruction method, and
type of electrodes, provided that data are available and NNs
are trainable. Additionally, the study demonstrates the potential
of transfer learning to accelerate the optimization process for dif-
ferent options once one of them has been solved.
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