
Citation: Son, G.-J.; Jung, H.-C.; Kim,

Y.-D. Temporal-Quality Ensemble

Technique for Handling Image Blur in

Packaging Defect Inspection. Sensors

2024, 24, 4438. https://doi.org/

10.3390/s24144438

Academic Editor: Andrea Cataldo

Received: 24 May 2024

Revised: 18 June 2024

Accepted: 6 July 2024

Published: 9 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Temporal-Quality Ensemble Technique for Handling Image Blur
in Packaging Defect Inspection
Guk-Jin Son 1,2 , Hee-Chul Jung 2 and Young-Duk Kim 1,*

1 ICT Research Institute, Daegu Gyeongbuk Institute of Science and Technology,
Daegu 42988, Republic of Korea; sudopop@dgist.ac.kr

2 Department of Artificial Intelligence, Kyungpook National University, Daegu 41566, Republic of Korea;
heechul@knu.ac.kr

* Correspondence: ydkim@dgist.ac.kr; Tel.: +82-53-785-4641

Abstract: Despite achieving numerous successes with surface defect inspection based on deep
learning, the industry still faces challenges in conducting packaging defect inspections that include
critical information such as ingredient lists. In particular, while previous achievements primarily
focus on defect inspection in high-quality images, they do not consider defect inspection in low-
quality images such as those containing image blur. To address this issue, we proposed a noble
inference technique named temporal-quality ensemble (TQE), which combines temporal and quality
weights. Temporal weighting assigns weights to input images by considering the timing in relation
to the observed image. Quality weight prioritizes high-quality images to ensure the inference process
emphasizes clear and reliable input images. These two weights improve both the accuracy and
reliability of the inference process of low-quality images. In addition, to experimentally evaluate the
general applicability of TQE, we adopt widely used convolutional neural networks (CNNs) such as
ResNet-34, EfficientNet, ECAEfficientNet, GoogLeNet, and ShuffleNetV2 as the backbone network. In
conclusion, considering cases where at least one low-quality image is included, TQE has an F1-score
approximately 17.64% to 22.41% higher than using single CNN models and about 1.86% to 2.06%
higher than an average voting ensemble.

Keywords: packaging; defect inspection; deep learning; image blur; ensemble; temporal-quality
analysis

1. Introduction

Packaging is widely utilized in logistics and transportation [1] but typically suffers
from diverse surface defects stemming from external forces and repetitive compression.
These defects of packaging cause significant damage or deterioration of the product inside.
Moreover, it is also critical when important information like ingredient lists on packaging
surface labels gets damaged. Traditionally, the defect inspection of packaging surfaces was
usually performed by manual inspection. However, manual inspection is slow, inefficient,
and has a high error rate in finding defects [2] in large volumes of packaging. To replace
manual inspection, several studies were conducted for surface defect inspection using com-
puter vision [3–5]. Nevertheless, these existing methods are not widely used in inspection
industries due to a lack of generalization, robustness, and accuracy.

Recently, deep learning [6] has received a lot of attention for the inspection of surface
defects [7–10]. Deep learning models can identify the unique features of packaging and
their defects by training on datasets. However, when relying solely on convolutional neural
network (CNN)-based architecture, factors such as motion blur [11] occurring in packaging-
related industrial environments cannot be forecasted in advance during the training of the
model. Regarding low-quality images, packaging-related industrial environments often
face two types of low-quality images: motion blur caused by conveyor movement; and
focus blur, known as the out-of-focus phenomenon.

Sensors 2024, 24, 4438. https://doi.org/10.3390/s24144438 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24144438
https://doi.org/10.3390/s24144438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0009-4894-1604
https://orcid.org/0000-0002-3005-2560
https://doi.org/10.3390/s24144438
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24144438?type=check_update&version=2

Sensors 2024, 24, 4438 2 of 20

First, the main causes of motion blur are as follows. Although the conveyor contributes
to the movement of packaging, it often generates significant vibrations when foreign
substances adhere to the packaging or when the exposed surface of the conveyor belt is
worn or damaged. Additionally, roller-based conveyors, which are commonly used in
warehouses, can also cause vibration. This is shown in Figure 1a. This vibration of the
conveyor temporarily increases the moving speed of the packaging product, and relatively
decreases the camera shutter speed, which results in motion blur [12–16]. Second, focus blur
mainly occurs when a camera or lens with an autofocus function changes the brightness
level or loses focus [17,18]. For example, focus blur occurs when packaged products on
a conveyor belt have different brightness levels due to changing lighting or when the
focus moves irregularly from one packaged product to the next one. Figure 1b shows an
example of an out-of-focus problem. These blur problems are not only the main causes of
producing low-quality images but also degrade the performance of CNN models. To this
end, adopting ensemble techniques that refer to images from various timing captured
images can be a solution to mitigate these issues.

Vibration

(a)

Defect

(b)

Figure 1. Challenges in conveyor systems and packaging defect inspection. (a) Vibration with roller
conveyor. (b) Out of focus with machine vision.

Many academics have presented research data over the last decade indicating that
ensemble approaches outperform single classifiers [19,20]. Ensemble learning is a machine
learning technique that combines multiple models to obtain better prediction performance,
typically by aggregating their predictions [21]. Among them, average voting ensemble
(AVE) [22] is a popular ensemble learning strategy [23] which provides the most common
prediction among the models as the final output. However, when there is a mixture of low-
quality (e.g., blur) and high-quality images, AVE suffers from performance degradations
because low-quality images have a negative impact on prediction by allocating equal
weight to all images with different qualities.

To address this challenge, we propose a noble inference technique named temporal-
quality ensemble (TQE) which integrates information from multiple images with different
qualities. For this, it consists of two key components: quality weight and temporal weight.
Quality weight evaluates individual frame quality and then prioritizes high-quality images
in order to ensure the inference process emphasizes reliable information while it depriori-
tizes low-quality images. Temporal weight accounts for the temporal continuity and assigns
weights to images based on their timing and relation to observed images. This approach,
which emphasizes the importance of up-to-date images, has the effect of balancing the
quality weights without simply excluding important low-quality images that may contain
important information about defects.

The main contributions of this paper are summarized as follows.

(1) The proposed inference technique, termed TQE, combined temporal and quality
weight to integrate information from multiple images including blurred images.
By leveraging temporal continuity and prioritizing superior clarity, it finally mitigates
the effects of image blur and improves overall accuracy for identifying defects. To the
best of our knowledge, the proposed approach is the first ensemble technique to
overcome image blur for packaging inspection.

Sensors 2024, 24, 4438 3 of 20

(2) Our new private database provided more realistic results for training and evaluating
deep learning models since it reflected motion blur in images which are acquired by
deploying a real machine vision camera and conveyor belt, etc.

(3) Through comparative experiments with AVE, TQE exhibited effectiveness in terms of
accuracy, precision, recall, and F1-Score for identifying defects.

2. Related Work

Surface defect inspection often uses CNN as the backbone for defect classification.
CNN effectively identifies complex patterns and structures within images. Many surface
defect inspections employ various CNNs, such as ResNet [24], VGG (also VGGNet) [25],
GoogLeNet [26], EfficientNet [27], MobileNet [28], ShuffleNet [29], etc. These models
are pretrained on large datasets of images, allowing them to learn patterns and features
indicative of defects.

Xu et al. [30] proposed the Bilinear-VGG16 model to improve quality problems that
occur during the packaging process, such as packaging damage, packaging side ears
opening, and scratches during the printing process. The Bilinear-VGG16 model is a network
that improves performance by combining the VGG-16 network and Bilinear-CNN and
uses global average pooling and global maximum pooling to extract the fine particle
features of defective packaging images. This allows for robust representation learning
and enhances the model’s ability to distinguish between various types of defects. They
achieved an accuracy rate of the improved model recognition of 96.3%, which is better
than that of the popular network models before. Zhou et al. [31] proposed a method that
combines traditional computer vision (CV) techniques and deep learning models to classify
all 12 types of packaging defects. This method detects some easy-to-detect defects and
position offset defects using the traditional CV method, and uses ResNet-34 to detect the
remaining defects. This method was verified to fulfill the defect recognition requirements
through experiments on 12 types of defects. Sheng et al. [32] propose a method based on the
ECA-EfficientDet to detect multiple classes of defects and solve the model’s generalization
problem caused by the lack of packaging defect samples in the industry. This method
improves fault detection accuracy by designing an ECA-Convblock convolutional block
that can predict channel importance and suppress channels that do not carry information.
Additionally, the mosaic augmentation technique and Mish activation function were used
on sample data to improve the generalization function and the robustness of the model
in complex environments. As a result, this method achieved an accuracy of over 99% for
almost all categories except for a few.

Although these studies achieve good defect inspection results from high-quality
images, none of them address the issue of low-quality images caused by both motion blur
and focus blur. Thus, in this paper, we propose a technique that shows excellent inspection
performance even in environments where high and low-quality (blurred) images are mixed.

3. Our Method

Single CNN models have the disadvantage of degrading performance when processing
low-quality images, such as motion blur, and focus blur. To address this challenge, we
present an inference method designated as TQE. TQE is a combination of temporal weight
and quality weight. This methodology presupposes three aspects. Firstly, we deal with
images that have been observed and memorized. Observed images are up-to-date images.
On the other hand, memorized images are previously seen images in which prediction
has already been performed and has a temporal order. Secondly, we do not process all
acquired images. Generally, packaging moves gradually on the conveyor, resulting in small
changes between consecutive frames. Therefore, instead of using all consecutive images,
we use the small change captured in quantitative units of 2 to 4 images as input images.
Lastly, low-quality images usually reduce inference performance. However, it assumes
that some low-quality images may contain important defect information that high-quality

Sensors 2024, 24, 4438 4 of 20

images do not have. This premise is validated through experiments conducted in Section 4.
The following subsection provides a detailed exposition of our method.

3.1. Overall Architecture

The overall architecture is shown in Figure 2. It can be largely divided into training
and test parts. We aim to ensure that a CNN trained solely on high-quality images performs
even on low-quality images, using TQE; thus, TQE is only used in the test part. The training
part adopts the widely used CNN as the backbone network. CNNs consist of a feature
extractor layer and a classifier layer, and when the probability is output by the classifier,
the loss value is calculated and used to update parameters through backpropagation [33].

.…

Memorized Prediction

Memorized Prediction

Observed image

Memorized image

Memorized image

Input Data

Observed image

Current

(t =1) 𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍 𝑾𝒆𝒊𝒈𝒉𝒕𝟏

Memorized image

𝑾𝟏

𝑾𝟐

𝑾𝟑

𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍 −
𝑸𝒖𝒂𝒍𝒊𝒕𝒚
𝑾𝒆𝒊𝒈𝒉𝒕

Before 1

(t = 2)

Before 2

(t = 3)

Memorized image

𝑾𝟑

𝑾𝟏

𝑾𝟐

Inference Prediction

Weight Assignment

0.7

0.1

0.3

0.1

0.1

0.8

0.7

0.1

0.3

0.35

0.02

0.63

Non-

defect

Edge-

defect

Surface-

defect

𝑾𝟏

𝑾𝟐

𝑾𝟑

: Temporal Quality Weight1

: Temporal Quality Weight2

: Temporal Quality Weight3

S
O

F
T

M
A

X

: Scalar multiplication

: matrix addition

: Edge-defect

: Surface-defect

: Non-defect

Training

.…

0.6

0.3

0.1

1

0

0

High-quality images

Feature extractor

Parameter updating

Classifier

Label

Back propagation

Test

Low-

quality 𝑸𝒖𝒂𝒍𝒊𝒕𝒚𝑾𝒆𝒊𝒈𝒉𝒕𝟏

𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍 𝑾𝒆𝒊𝒈𝒉𝒕𝟐

𝑸𝒖𝒂𝒍𝒊𝒕𝒚𝑾𝒆𝒊𝒈𝒉𝒕𝟐

𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍 𝑾𝒆𝒊𝒈𝒉𝒕𝟑

𝑸𝒖𝒂𝒍𝒊𝒕𝒚𝑾𝒆𝒊𝒈𝒉𝒕𝟑

High-

quality

Low-

quality

Figure 2. The detailed architecture of our method.

The test part performs predictions using single CNN models learned in the training
part and TQE, which combines temporal and quality weights. As the previous premise,
the image from the current moment is captured and used as an observed image, and the
images from the previously captured image are loaded as memorized images. These
images are selected as input data. Input data are then pass through to a pretrained model to
perform inference, and at the same time, the input data are transmitted for weight allocation
of TQE. TQE’s weights are determined based on the relative quality and captured order
between observed and memorized images. These weights determine the final prediction by
differentially applying observed and previously memorized images. These weights help
the final prediction by providing different priorities to observed and previously memorized
images. The following subsection provides a detailed exposition of the temporal and
quality weights, which are the main components of our method.

Sensors 2024, 24, 4438 5 of 20

3.2. Temporal Ensemble

Temporal ensemble (TE) is a method which assigns temporal weights to input images
based on their timing order. This principle is widely used across various fields, where
closely timed images often share similar features [34]. This means that images taken close in
time tend to have similar features, allowing them to complement each other. Expanding on
this idea, we introduce a temporal weighting mechanism where the importance gradually
decreases or increases as the time difference between the observed image and the memorized
image grows. This weighting strategy enhances temporal smoothing and integrates relevant
information from observed and memorized images. Temporal weight is defined as

TWt =
exp(−|t− 1|/τ)

∑K
t=1 exp(−|t− 1|/τ)

(1)

where t is a positive integer timestamp. K represents the total number of images. When
a new image is captured, it becomes the observed image and assigned t = 1. As the
next image is captured, the previously observed image (t = 1) shifts as t = 2 and is
categorized into the memorized images. As t increases up to K, K-th image becomes the
oldest memorized image in the sequence. This cycle repeats with each new image capture.
The absolute value |t− 1| is the sequence difference between the observed and memorized
images. τ is a parameter that adjusts the importance of the temporal weight with positive
rational numbers greater than 0. As τ approaches 0, the influence of the observed image
and recent image on the temporal weight becomes significant, whereas as τ approaches ∞,
the importance of the recent and old images on the temporal weight gradually equalizes.
Thereby, τ also allows for the enabling of higher weighting for recently observed images
and balances the quality weights even if they are with low quality. However, τ requires
user-based optimization, making it difficult to determine arbitrary numbers. Therefore, as a
guideline, we present the binary search algorithm that recommends τ when the desired
range of temporal weights for the observed image is inputted. The guideline for computing
τ using binary search is shown in Algorithm 1.

Algorithm 1 Binary Search for τ

1: Input: Target weight (TW1), range (deviation), minimum tau (minτ), maximum tau

(maxτ), total number of input images (K)

2: Output: τ

3: Initialize t← [−i for i in [0, K]]

4: while true do

5: Compute τ ← (minτ +maxτ)/2

6: Compute wt ← [exp(t/τ)]

7: Compute wsum ← ∑ wt

8: Compute wr ← [(x/wsum) for x in wt]

9: if (TW1 − deviation) ≤ wr[0] and wr[0] ≤ (TW1 + deviation) then

10: break

11: end if

12: if wr[0] < (TW1 − deviation) then

13: maxτ ← τ

14: else

15: minτ ← τ

16: end if

17: end while

18: return τ

Sensors 2024, 24, 4438 6 of 20

3.3. Quality Ensemble

Quality ensemble (QE) is a method that assigns quality weights to input images based
on their sharpness. High-quality images depict sharp high-frequency features such as small
details or sharp edges. In contrast, low-quality images exhibit features with blurred low-
frequency details such as object boundaries or edges [35]. We use the Laplacian operator [36]
to evaluate the quality of observed and previously memorized images. The Laplacian
operator is a mathematical operator used to measure the spatial variation of a scalar field.
It can be expressed as a combination of the gradient and divergence operators, which is
defined as follows.

∇2 f = ∇ ∗ (∇ f) (2)

where ∇ represents the gradient operator, which quantifies the rate of change of a scalar
function in space. ∇ f denotes the divergence operator, measuring the extent to which a
vector field diverges from a specific point. Therefore, the Laplacian operator signifies taking
the gradient first and then calculating the divergence of the outcome. Essentially, the Lapla-
cian operator assesses the spatial variation of the function, aiding in the identification of
areas with significant change or curvature in the scalar field.

We evaluate the relative image quality of the observed image and the previously mem-
orized image using Laplacian variance [37]. Initially, to calculate the Laplacian variance,
we apply a Laplacian filter to transform the observed image and the previously memo-
rized image into Laplacian images. Then, we gather Laplacian values for each pixel of
the Laplacian image and compute the variance to quantify the intensity of high-frequency
components in the image. Higher Laplacian variance indicates a high-quality image with
high-frequency features. It is defined as

L = ∇2 I (3)

where I is the given image, and the result of applying the Laplacian filter to this image is
denoted as L. Here, the variance is computed as the average of the squares of the differences
between each pixel’s value and the mean value. This can be expressed in the following
formula:

Var(L) =
1
n

n

∑
i=1

(Li − µ)2 (4)

where Li is the value of the i-th pixel of the image after applying the Laplacian filter, µ is
the mean value of all pixels L in the image, and n is the total number of pixels in the image.
To calculate the variance ratio for a specific image among observed and memorized images,
we divide the variance of that specific image by the sum of the variances of all images.
Therefore, the variance ratio for a specific image can be calculated as follows:

QWt =
Var(L)t

∑K
j=1 Var(L)j

(5)

where t is a positive integer timestamp. K represents the total number of images, and Var(L)j
denotes the result of applying the Laplacian filter to the j-th image. This is the value ob-
tained by dividing the variance of the t-th image by the total variance, indicating how
much the variance of the t-th image contributes to the overall variance of the entire image.

3.4. Temporal-Quality Ensemble

The proposed TQE weight considers both quality and temporal weight together. This
calculates the average of the weights TWt and QWt, denoted as TQt. It is defined as

TQt =
TWt + QWt

2
(6)

Sensors 2024, 24, 4438 7 of 20

where t is a positive integer timestamp. TWt represents temporal weights for a specific
t-th image, and QWt represents quality weights for the same t-th image. The algorithm for
computing the proposed ensemble learning is shown in Algorithm 2.

Algorithm 2 Temporal-Quality Ensemble Inference

1: Input: Total number of time stamps (K), collection of input images (I), parameter (τ)

2: Output: Weighted outputs from the model (O)

3: // Calculate temporal weights

4: Initialize t← [−i for i in [0, K]]

5: Compute wt ← [exp(t/τ)]

6: Compute wsum ← ∑ wt

7: Compute wr ← [(x/wsum) for x in wt]

8: // Calculate quality weights

9: Initialize v← []

10: Initialize V ← 0

11: for each i in I do

12: Convert gi ← Gray(i)

13: Calculate Laplacian: σi ← Laplacian(gi, 64).var()

14: Append σi to v

15: Accumulate σi to V

16: end for

17: Compute vr ← [vi/V for vi in v]

18: // Calculate ensemble weights considering temporal and quality weights

19: Compute ew ← [(x + y)/2 for x, y in zip(wr, vr)]

20: // Perform model inference

21: O← Model(I)

22: // Apply weighted averaging on outputs

23: O← O ∗ ew

24: return O

4. Experiments and Results
4.1. Datasets

In this section, we present a comprehensive description of our collected dataset.
In general, it is difficult to find an open dataset containing both high-quality and low-
quality packaging images. Therefore, we collected a new dataset by acquiring data through
our proprietary image acquisition system, as shown in Figure 3. The acquisition system
employed a range of illumination angles and positions, along with a machine vision
(BFLY-PGE-31S4C-C, FLIR, Wilsonville, OR, USA) and webcam (Brio, Logitech, Lausanne,
Switzerland) with a frame rate of 10FPS. The machine vision contained a focal-length 16 mm
fixed megapixel lens (LM16JC5M2, KOWA, Nagoya, Japan). The LED line illuminations
were used to adjust the angle independently as bar illuminations mounted in four directions
(LDBQ300, LFINE, Incheon, Republic of Korea). A backlight (LXL300, LFINE, Incheon,
Republic of Korea) is mounted beneath transparent conveyors, utilizing LED mounted at
regular intervals to provide a wide illumination angle and high uniformity.

Sensors 2024, 24, 4438 8 of 20

Figure 3. The image acquisition system has an image acquisition unit, light sources, a backlight,
a transparent conveyor belt, and a chamber.

To intentionally simulate motion blur issues caused by external factors, our image
acquisition system was set up to capture moving packaging on a conveyor belt operating
at 15 cm/s. In addition, in order to reproduce focus blur, we collected data by randomly
changing the camera’s focusing function between automatic and manual modes. This con-
figuration simulates acquiring low-quality and high-quality images, as shown in Figure 4.
And Figure 4 shows the original captured image without manual cropping.

Packaging defects are classified into five categories: label loss, deformation, cracks,
surface damage, and surface dirt. These categories broadly are classified into edge defects
and surface defects [38]. Among them, we focus on the above two types of defects formed
around product labels. This is based on the fact that the label surface of packaging inherently
contains important ingredient lists, which are depicted on the left in Figure 4. For example,
edge defects occur when packaging collides with other objects while traveling on a conveyor
or are torn when they are improperly stacked as depicted in the middle of Figure 4.
Additionally, surface defects are problems caused by ink bleeding or damage adsorbed on
the label surface, as shown on the right of Figure 4.

(a)

(b)

Figure 4. Samples of collected image. The red circles indicate defects. Left: non-defect. Middle: edge
defect. Right: surface defect. (a) High-quality images. (b) Low-quality images.

This experiment utilized a total of 9000 packaging images, resized to 256 × 256 pixels
without cropping, and contained three classes: non-defect (3000), edge defect (3000),
and surface defect (3000). Samples of the dataset are shown in Figure 5. This dataset aims

Sensors 2024, 24, 4438 9 of 20

to verify that CNN models trained solely on high-quality images perform effectively not
only on high-quality images but also on low-quality images. For this purpose, low-quality
images were selected based on having Laplacian variance values of 50% or less compared
to the high-quality images. Low-quality images were collected focusing on two types of
blur: motion blur (1500) and focus blur (1500), for a total of 3000 images. Each type includes
three classes: non-defect (500), edge defect (500), and surface defect (500). The distribution
of images in the dataset for each class is shown in Table 1.

Table 1. The distribution of images by class in the training, validation, and test sets of the packag-
ing dataset.

Quality Class Training Set Validation Set Test Set Total

High-quality images
Non-defect 1000 1000 - 2000
Edge defect 1000 1000 - 2000

Surface defect 1000 1000 - 2000

Low-quality images
Non-defect - - 1000 1000
Edge defect - - 1000 1000

Surface defect - - 1000 1000

Total 3000 3000 3000 9000

(a)

(b)

Figure 5. Samples of datasets. First row: non-defect. Second row: edge defect. Third row: surface de-
fect. (a) High-quality images. (b) Low-quality images.

4.2. Evaluation Metrics

To evaluate the performance of the proposed methods, various evaluation metrics
have been used, and they are as follows:

Precision =
TP

TP + FP
(7)

Sensors 2024, 24, 4438 10 of 20

Recall =
TP

TP + FN
(8)

F1-Score =
2TP

2TP + FP + FN
(9)

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

True positive (TP) are total cases where the prediction is positive, and the actual value
is positive. True negative (TN) are total cases where the prediction is negative and the
actual value is negative. Conversely, False positive (FP) are total cases where the prediction
is positive and the actual value is negative. False negative (FN) are total cases where the
prediction is negative and the actual value is positive. Precision is the ratio of the number
of classified positive to the total number of prediction positive. Recall is the ratio of the
number of prediction positive to the number of actual positive. F1-Score is the balanced
measure of precision and recall. Accuracy measures how often the predictions are true by
comparing the classified cases to all cases.

4.3. Implemental Details

Ensembles based on CNN models can be used as an outstanding feature extractor
for classifying tasks. In particular, CNN models trained on ImageNet [39] necessitate only
minor fine-tuning, saving time and computational cost compared to training models from
scratch on private datasets. Therefore, we considered the CNN models, which are capable
of transfer learning through ImageNet and have proven reliability through many studies,
as the baseline models. As a result, we chose ResNet-34, EfficientNet, ECAEfficientNet [40],
GoogLeNet, and ShuffleNetV2 [41].

All experiments were performed on the ubuntu18.04 OS; the CPU was Intel Core
i9-13900K (32-core) (Santa Clara, CA, USA), and the GPU was NVIDIA GeForce RTX 4080
(16 GB) (Santa Clara, CA, USA). We adjusted the hyperparameters listed in Table 2 through-
out the model training process. We trained the network for 6 epochs. During training, we
utilized the WarmupScheduler to automatically adjust the learning rate. All models were
trained using AdamW, with a learning rate of 1.25 × 10−4 and a weight decay of 0.05.

Table 2. Hyperparameter selection.

Hyperparameter Values

Optimizer AdamW
Loss function Cross-entropy

Epoch 50
Batch Size 100

Learning Rate 1.25 × 10−4

Rate Decay 0.05

4.4. Experimental Results
4.4.1. High vs. Low-Quality Image Performance Using Single CNN Models

In this experiment, the performance of CNN models was evaluated using single
images of either high or low quality, without employing an ensemble. This study aimed to
ascertain whether CNN models could effectively learn from private datasets and evaluate
the performance disparity when using high-quality versus low-quality images as input
data. The loss and accuracy curves obtained during the training of the five CNN models
are shown in Figure 6. In Figure 6, the first row compares the loss convergence rates for the
high-quality images. The loss was steadily decreasing with each epoch, and the validation
loss was also decreasing similarly to the training loss. This showed consistent performance

Sensors 2024, 24, 4438 11 of 20

even on data that CNN models had not seen, indicating that the model was generalizing
not only to training data but also to validation data without overfitting. The second row of
Figure 6 compared the accuracy convergence rates of the CNN model on the test dataset for
high- and low-quality images. In all graphs, the training accuracy consistently increased
as the epochs progressed and reached over 0.9, showing stable performance, and the test
accuracy also showed a similar increasing trend as the training accuracy. On the other hand,
the test accuracy for low-quality images was relatively low in all graphs, but gradually
increased as the epoch progressed, showing that the model was improving its adaptability
even to low-quality images. However, the accuracy of the low-quality images remained at
a significantly lower level than that of the high-quality images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Performance analysis of CNN models on high- and low-quality images. The first row dis-
plays the loss curves for high-quality images (training and validation), while the second row shows ac-
curacy curves for both high- and low-quality images (training, validation, and test). (a) ShuffleNetV2
loss. (b) GoogleNet loss. (c) ResNet-34 loss. (d) EfficientNet loss. (e) ECAEfficientNet loss.
(f) ShuffleNetV2 accuracy. (g) GoogleNet accuracy. (h) ResNet-34 accuracy. (i) EfficientNet ac-
curacy. (j) ECAEfficientNet accuracy.

The class-wise results obtained on the test set of the dataset are shown in Table 3.
Table 3 presents a performance comparison of CNN models on high-quality and low-
quality images across various metrics. The metrics included precision, recall, F1-Score,
and accuracy, with the model being evaluated on different classes: non-defect, edge defect,
surface defect, and estimated total size. Analyzing the experimental results of each model
for high-quality images, GoogleNet showed high precision, recall, and F1-Score in all
classes, and especially recorded the highest F1-Score (0.9975) in the surface defect class.
ResNet-34 also showed consistent performance in all classes, recording an F1-Score of
0.9930 in the surface defect class. ShuffleNetV2 had a precision of 0.8560 in the non-defect
class, which was lower than other models, but it had the smallest model size (68.15 MB),
which had the advantage of fast computation and low memory usage. On the other hand,
EfficientNet and ECAEfficientNet had the largest model size (242.78 MB), showing high
performance, but had the disadvantage of large memory usage. In low-quality images,
the performance of all models deteriorated compared to high-quality images, and recall
tended to decrease more significantly. On low-quality images, the ECAEfficientNet model
showed the highest performance, with an accuracy of 0.8447. ShuffleNetV2 showed poor
performance on low-quality images, especially in the non-defect class, with a recall of
only 0.070, which meant it hardly detected defects in that class. Experimental results on
low-quality images showed that performance on high-quality and low-quality images
improved as the model size increased. In contrast, ResNet-34 maintained a relatively
balanced performance with an accuracy of 0.7670, precision of 0.8079, recall of 0.7670,
and F1-score of 0.7497. Additionally, from the perspective of model size, ResNet-34 had

Sensors 2024, 24, 4438 12 of 20

a balance. Given these attributes, ResNet-34 was selected as the representative model for
other experiments, serving as a benchmark of stable, balanced performance across different
image quality scenarios, and a model size that balanced efficiency with capability.

Table 3. Performance comparison of CNN models on a high-quality and low-quality image.

Models Class
High-Quality Image Low-Quality Image Estimated

Total Size (MB)Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy

ShuffleNetV2

Non-defect 0.8560 0.9930 0.9194

0.9407

0.9090 0.0700 0.1299

0.4537 68.15
Edge defect 0.9942 0.8520 0.9176 0.9040 0.2920 0.4414

Surface defect 0.9940 0.9770 0.9854 0.3842 0.9990 0.4536
Aggregate 0.9480 0.9407 0.9408 0.7324 0.4537 0.3755

GoogleNet

Non-defect 0.9802 0.9890 0.9846

0.9893

0.9685 0.2770 0.4308

0.6487 145.02
Edge defect 0.9919 0.9800 0.9859 0.9295 0.6720 0.7800

Surface defect 0.9960 0.9990 0.9975 0.5008 0.9970 0.6667
Aggregate 0.9894 0.9893 0.9893 0.7996 0.6487 0.6258

ResNet-34

Non-defect 0.9919 0.9830 0.9874

0.9890

0.7525 0.9030 0.8209

0.7670 207.70
Edge defect 0.9880 0.9850 0.9865 0.9599 0.4550 0.6174

Surface defect 0.9872 0.9990 0.9930 0.7112 0.9430 0.8108
Aggregate 0.9890 0.9890 0.9890 0.8079 0.7670 0.7497

EfficientNet

Non-defect 0.9889 0.9810 0.9849

0.9767

0.8774 0.7370 0.8011

0.7913 242.78
Edge defect 0.9460 0.9990 0.9718 0.6882 0.9270 0.7899

Surface defect 0.9979 0.9500 0.9734 0.8733 0.7100 0.7832
Aggregate 0.9776 0.9767 0.9767 0.8130 0.7913 0.7914

ECAEfficientNet

Non-defect 0.9889 0.9780 0.9834

0.9753

0.9209 0.8270 0.8714

0.8447 242.78
Edge defect 0.9407 1.0000 0.9695 0.7663 0.9180 0.8353

Surface defect 1.0000 0.9480 0.9733 0.8728 0.7890 0.8288
Aggregate 0.9765 0.9753 0.9754 0.8533 0.8447 0.8452

4.4.2. Ablation Study on TQE: Fixed τ and Image Quality Scenarios

Table 4 compared three different ensemble techniques, AVE, TE, and QE, using ResNet-34.
TE and QE were separated for TQE’s ablation analysis. In this experiment, τ was fixed to 3,
and K represented the total number of images used in each scenario. Scenarios were focused
on combinations of test images, based on high-quality (H) and low-quality (L). Furthermore,
the sequence of scenarios was composed of observed images from the far left to memorized
images with larger time intervals observed as we moved to the right. For example, in the
HLH scenario, the observed image was of high quality, the nearest memorized image was
of low quality, and the subsequent time frame presented a high-quality image. Similarly,
in the LHH scenario, the observed image was low-quality, the memorized image closest in
time was high-quality, and the subsequent time frame also contained a high-quality image.
Among various combinations, K = 3 is the ideal minimum combination to simultaneously
evaluate the performance of time weight and quality weight. The reasons for choosing three
combinations are as follows. Focusing on a single typed combination works the same as a
single model, which negates the essence of ensembles reliant on multiple inputs. Similarly,
restricting to only two combinations shows challenges in validating both temporal and quality
weights simultaneously. For example, in the HL or LH combination, it is possible to evaluate
temporal weighting since H and L are distinct in time.

However, as the frequencies of H and L are equal, evaluating quality weighting becomes
less significant. Thus, at least three combinations are required to evaluate the performance of
temporal and quality weight at the same time. AVE weighted all inputs with equal importance.
For example, the prediction was inaccurate in scenarios where low-quality images had the same
frequency or more than high-quality images, such as HL, HLL, and HLHL scenarios. On the
other hand, the TE considered the input order according to time and assigned higher weights
as it approached the observed image. This method maintained relatively high performance

Sensors 2024, 24, 4438 13 of 20

even in scenarios with a mixture of high-quality and low-quality images, but performance
tended to deteriorate in scenarios where low-quality images dominated. For example, in the
HL scenario at K = 2, the F1-Score showed the highest performance with 0.9900. The reason
was that since H was an observed image, it was assigned a higher weight than L. Conversely,
in the LH scenario, since the low-quality image was an observed image, H received a relative
penalty. QE demonstrated high performance across various scenarios and provided the most
consistent performance overall. In particular, it maintained good performance not only in
scenarios with many high-quality images but also in scenarios with a mixture of low-quality
images. Interestingly, performance tended to be better in scenarios with a mix of low-quality
images than in scenarios with many high-quality images. For example, the HHL, LHH, HLHH,
and LHHH scenarios showed higher performance than the H-only scenario. This may have been
because it provided broader information by including images of various quality. Although QE
prioritized image quality, if it included low-quality images, detailed defects or patterns that were
difficult to see in high-quality images may have been more evident in the lower-quality images.

Table 4. Comparison of ResNet-34 using AVE, TE, and QE.

Scenarios
AVE TE QE

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

K = 2

HH 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890
HL 0.9820 0.9820 0.9820 0.9900 0.9900 0.9900 0.9854 0.9853 0.9853
LH 0.9820 0.9817 0.9817 0.9438 0.9393 0.9389 0.9854 0.9853 0.9853
LL 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390

Aggregate 0.9535 0.9493 0.9479 0.9460 0.9407 0.9392 0.9552 0.9510 0.9497

K = 3

HHH 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890
HHL 0.9913 0.9913 0.9913 0.9920 0.9920 0.9920 0.9917 0.9917 0.9917
HLH 0.9913 0.9913 0.9913 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917
HLL 0.9195 0.9120 0.9108 0.9541 0.9510 0.9508 0.9652 0.9640 0.9638
LHH 0.9913 0.9913 0.9913 0.9878 0.9877 0.9877 0.9917 0.9917 0.9917
LHL 0.9195 0.9120 0.9108 0.9170 0.9090 0.9076 0.9652 0.9640 0.9638
LLH 0.9195 0.9120 0.9108 0.8984 0.8883 0.8861 0.9652 0.9640 0.9638
LLL 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390

Aggregate 0.9478 0.9429 0.9418 0.9489 0.9441 0.9430 0.9651 0.9626 0.9618

K = 4

HHHH 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890
HHHL 0.9917 0.9917 0.9917 0.9907 0.9907 0.9907 0.9907 0.9907 0.9907
HHLH 0.9917 0.9917 0.9917 0.9910 0.9910 0.9910 0.9907 0.9907 0.9907
HHLL 0.9820 0.9817 0.9817 0.9913 0.9913 0.9913 0.9854 0.9853 0.9853
HLHH 0.9917 0.9917 0.9917 0.9917 0.9917 0.9917 0.9907 0.9907 0.9907
HLHL 0.9820 0.9817 0.9817 0.9900 0.9900 0.9900 0.9854 0.9853 0.9853
HLLH 0.9820 0.9817 0.9817 0.9865 0.9863 0.9863 0.9854 0.9853 0.9853
HLLL 0.9015 0.8917 0.8897 0.9339 0.9280 0.9274 0.9452 0.9420 0.9415
LHHH 0.9917 0.9917 0.9917 0.9907 0.9907 0.9907 0.9907 0.9907 0.9907
LHHL 0.9820 0.9817 0.9817 0.9647 0.9627 0.9626 0.9854 0.9853 0.9853
LHLH 0.9820 0.9817 0.9817 0.9438 0.9393 0.9389 0.9854 0.9853 0.9853
LHLL 0.9015 0.8917 0.8897 0.9071 0.8977 0.8957 0.9452 0.9420 0.9415
LLHH 0.9820 0.9817 0.9817 0.9222 0.9150 0.9139 0.9854 0.9853 0.9853
LLHL 0.9015 0.8917 0.8897 0.8942 0.8840 0.8815 0.9452 0.9420 0.9415
LLLH 0.9015 0.8917 0.8897 0.8816 0.869 0.8656 0.9452 0.9420 0.9415
LLLL 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390

Aggregate 0.9572 0.9536 0.9527 0.9518 0.9475 0.9466 0.9691 0.9672 0.9668

Sensors 2024, 24, 4438 14 of 20

4.4.3. Performance of TQE: Integrating Temporal and Quality Ensembles

Table 5 shows the performance of TQE inference methodology which combined TE
and QE. Our experiment focused on combinations of test images, based on high-quality and
low-quality, and was performed using various values of K and τ. The experimental results
showed that the performance of TQE improved as the K and τ values increased. In detail,
the experimental results were as follows. for K = 2, the aggregate F1-Score at τ = 1 was
0.9448, and the aggregate F1-Score at τ = 3 improved to 0.9500. At τ = 5, the aggregate
F1-Score further improved to 0.9501. This result showed that performance improved as τ
increased. For K = 3, the aggregate F1-Score at τ = 1 was 0.9513, which improved to 0.9537
at τ = 3, and further improved to 0.9540 at τ = 5. This result also showed that performance
improved as τ increased. Finally, for K = 4, the aggregate F1-Score at τ = 1 was 0.9555,
which improved to 0.9594 at τ = 3, and further improved to 0.9597 at τ = 5. From this,
we could conclude that TQE’s performance improved in terms of aggregate performance
as K and τ increased. The reason was that as the value of τ increased, the performance
of TQE approached that of QE. τ is a factor that determines the weight of the TE. As τ
increased, the proportion of QE increased and the proportion of the TE became relatively
small. These results confirmed that as τ increased, the performance of TQE approached that
of the QE. Particularly noteworthy among the experimental results were the LHH, LHLL,
and LHHH scenarios at K = 3. Despite having a low-quality image as the observed image,
these scenarios outperformed the other scenarios. In the LHH scenario, when τ was 3,
precision, recall, and F1-Score all recorded the highest performance of 0.9923. Additionally,
in the LHLL scenario, when τ was 3, precision, recall, and F1-Score were 0.9233, 0.9160,
and 0.9152, respectively, proving the effectiveness of TQE even in scenarios involving
low-quality images. The LHHH scenario also showed the best performance when τ was
3, which showed a higher performance than the QE. These results showed that the TE
considered temporal priority and balanced the TE with a large number of quality images
without alienating a small number of quality images.

Table 5. Comparison of TQE based on ResNet-34 according to K and τ.

Scenarios

TQE

τ = 1 τ = 3 τ = 5

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

K = 2

HH 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890
HL 0.9923 0.9923 0.9923 0.9910 0.9910 0.9910 0.9897 0.9897 0.9897
LH 0.9608 0.9590 0.9588 0.9813 0.9810 0.9810 0.9829 0.9827 0.9826
LL 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390

Aggregate 0.9508 0.9462 0.9448 0.9556 0.9513 0.9500 0.9557 0.9514 0.9501

K = 3

HHH 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9604 0.9597 0.9604
HHL 0.9904 0.9903 0.9903 0.9910 0.9910 0.9910 0.9914 0.9913 0.9913
HLH 0.9917 0.9917 0.9917 0.9920 0.9920 0.9920 0.9920 0.9920 0.9920
HLL 0.9871 0.9870 0.9870 0.9633 0.9617 0.9615 0.9572 0.9550 0.9548
LHH 0.9861 0.9860 0.9860 0.9923 0.9923 0.9923 0.9920 0.9920 0.9920
LHL 0.9331 0.9273 0.9265 0.9442 0.9403 0.9399 0.9454 0.9417 0.9412
LLH 0.9116 0.9030 0.9012 0.9313 0.9253 0.9245 0.9381 0.9333 0.9327
LLL 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390

Aggregate 0.9563 0.9523 0.9513 0.9580 0.9545 0.9537 0.9583 0.9548 0.9540

Sensors 2024, 24, 4438 15 of 20

Table 5. Cont.

Scenarios

TQE

τ = 1 τ = 3 τ = 5

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

K = 4

HHHH 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890 0.9890
HHHL 0.9900 0.9900 0.9900 0.9904 0.9903 0.9903 0.9904 0.9903 0.9903
HHLH 0.9903 0.9903 0.9903 0.9910 0.9910 0.9910 0.9910 0.9910 0.9910
HHLL 0.9910 0.991 0.9909 0.9917 0.9917 0.9917 0.9914 0.9913 0.9913
HLHH 0.9910 0.991 0.9909 0.9913 0.9913 0.9913 0.9913 0.9913 0.9913
HLHL 0.9923 0.992 0.9923 0.9910 0.9910 0.9910 0.9897 0.9897 0.9897
HLLH 0.9920 0.9920 0.9920 0.9877 0.9877 0.9876 0.9868 0.9867 0.9866
HLLL 0.9781 0.9777 0.9776 0.9403 0.936 0.9354 0.9316 0.9257 0.9248
LHHH 0.9904 0.9903 0.9903 0.9920 0.9920 0.9920 0.9917 0.9917 0.9917
LHHL 0.9690 0.9680 0.9679 0.9850 0.9850 0.9850 0.9858 0.9857 0.9856
LHLH 0.9608 0.9590 0.9588 0.9810 0.9810 0.9810 0.9829 0.9827 0.9826
LHLL 0.9182 0.9107 0.9093 0.9233 0.9160 0.9152 0.9228 0.9157 0.9145
LLHH 0.9382 0.9333 0.9327 0.97149 0.97067 0.97055 0.9797 0.9793 0.9793
LLHL 0.9043 0.8947 0.8926 0.91349 0.9050 0.90332 0.9166 0.9087 0.9072
LLLH 0.8979 0.8873 0.8849 0.90757 0.8983 0.89647 0.9119 0.9033 0.9016
LLLL 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390 0.8610 0.8443 0.8390

Aggregate 0.9596 0.9563 0.9555 0.9630 0.9600 0.9594 0.9634 0.9604 0.9597

4.4.4. Performance Comparison of TQE and AVE across CNN Models

To confirm the reliability of TQE, we applied it to five CNN models and compared
them with AVE. Table 6 indicates that TQE outperforms AVE in precision, recall, F1-Score,
and frames per second (FPS) across multiple models, including ShuffleNetV2, GoogleNet,
ResNet-34, EfficientNet, and ECAEfficientNet. For instance, with K = 2, TQE improved
the F1-score of ShuffleNetV2 from 0.6566 to 0.7075 and maintained a similar trend across
other models such as GoogleNet, ResNet-34, and EfficientNet. Moreover, as the value of
K increases, the performance of the models together improves. For example, with K = 3,
ResNet-34’s F1-score increased from 0.9418 to 0.9537, and with K = 4, it increased to 0.9594.
Such enhancements are consistently verified in other models. The precision, recall, and F1-
Score heatmaps in Figure 7 visually detail the performance enhancements, with models
like ResNet-34 and ECAEfficientNet showing particularly strong improvements. However,
a drawback of TQE is the decrease in FPS, when compared with AVE across all scenarios.
For example, for the ShuffleNetV2 model, FPS was 336 at K = 2 but decreased to 230 at
K = 3 and 177 at K = 4. The bar charts shown in Figure 7d visualize this drawback in that
AVE maintains a higher FPS across all models and scenarios.

Table 7 shows the performance differences between TQE and single CNN models
and AVE. This comparison focused on cases with at least one low-quality image, and
was measured by precision, recall, and F1-score. Results showed that TQE demonstrated
significant performance improvement over single CNN models across all models and
scenarios. For example, in the K = 2 scenario for the ShuffleNetV2 model, TQE improved
by 0.0705 in precision, 0.2009 in recall, and 0.2542 in F1-score.

In comparison with AVE, TQE consistently showed better results, but the performance
improvement was relatively smaller than single CNN models. This was because averaging
ensembles already provided a performance boost of their own due to the way they aver-
aged the output of multiple-quality images. TQE showed more significant performance

Sensors 2024, 24, 4438 16 of 20

improvement, especially at high K values. For example, in the ShuffleNetV2 model at
K = 4, recall and F1-Score improved by 0.2961 and 0.3619, respectively.

When comparing TQE and AVE with K = 4, ShuffleNetV2 achieved a higher F1-score
using TQE despite having a lower recall. This meant that ShuffleNetV2-based TQE made
conservative predictions, resulting in low recall and high precision, and was consequently
less effective at identifying all defect cases but was more accurate when it did make
a prediction.

(a) (b)

(c) (d)

Figure 7. Comparison of the performance and processing speed of CNN models with the ensem-
ble applied. (a) Precision heatmaps. (b) Recall heatmaps. (c) F1-Score heatmaps. (d) FPS bar charts.

ECAEfficientNet showed higher performance in AVE than TQE as K increased. This
was because ECAEfficientNet did not show a significant performance difference from TQE
for low-quality images, even with single CNN models. In other words, because ECAEf-
ficientNet itself showed high performance even for low-quality images, as K increased,
the performance of AVE also increased and eventually could outperform TQE. On the
other hand, for other models, single CNN models showed a large performance difference
compared to TQE for low-quality images. As a result, as K increased, the performance of
TQE became significantly better than AVE. This meant that TQE had a greater effect on
networks with poor performance on low-quality images in single CNN models.

Sensors 2024, 24, 4438 17 of 20

Table 6. Test result of five CNN models under AVE and TQE.

Scenarios Models

AVE TQE

Aggregate Aggregate
Precision Recall F1-Score FPS Precision Recall F1-Score FPS

K = 2

ShuffleNetV2 0.8240 0.6783 0.6566 592 0.8392 0.7261 0.7075 336
GoogleNet 0.9328 0.8942 0.8885 494 0.9348 0.8965 0.8908 301
ResNet-34 0.9535 0.9493 0.9479 586 0.9556 0.9513 0.9500 298

EfficientNet 0.9338 0.9275 0.9275 602 0.9355 0.9293 0.9293 303
ECAEfficientNet 0.9444 0.9412 0.9413 603 0.9453 0.9422 0.9424 303

K = 3

ShuffleNetV2 0.8451 0.7169 0.6950 397 0.8564 0.7493 0.7346 230
GoogleNet 0.9163 0.8643 0.8605 356 0.9334 0.9005 0.8980 214
ResNet-34 0.9478 0.9429 0.9418 433 0.9580 0.9545 0.9537 216

EfficientNet 0.9418 0.9376 0.9376 422 0.9499 0.9460 0.9460 217
ECAEfficientNet 0.9614 0.9593 0.9594 433 0.9545 0.9518 0.9520 221

K = 4

ShuffleNetV2 0.7231 0.8236 0.6840 302 0.8594 0.7617 0.7501 177
GoogleNet 0.9330 0.8952 0.8924 281 0.9406 0.9120 0.9104 166
ResNet-34 0.9572 0.9536 0.9527 307 0.9630 0.9600 0.9594 166

EfficientNet 0.9516 0.9486 0.9487 303 0.9571 0.9543 0.9543 170
ECAEfficientNet 0.9679 0.9660 0.9661 306 0.9592 0.9567 0.9568 168

Table 7. The difference between the performance of TQE and other methods, considering cases where
at least one low-quality image is included.

Scenarios Models

Difference (TQE–Single CNN Model) Difference (TQE–AVE)

Aggregate Aggregate
Precision Recall F1-Score Precision Recall F1-Score

K = 2

ShuffleNetV2 0.0705 0.2009 0.2542 0.0203 0.0637 0.0679
GoogleNet 0.1170 0.2169 0.2322 0.0027 0.0031 0.0031
ResNet-34 0.1366 0.1717 0.1873 0.0028 0.0027 0.0028

EfficientNet 0.1085 0.1222 0.1221 0.0023 0.0024 0.0024
ECAEfficientNet 0.0816 0.0865 0.0862 0.0012 0.0013 0.0015

Aggregate 0.1028 0.1596 0.1764 0.0058 0.0146 0.0155

K = 3

ShuffleNetV2 0.1109 0.2683 0.3296 0.0129 0.0370 0.0453
GoogleNet 0.1258 0.2391 0.2592 0.0195 0.0414 0.0429
ResNet-34 0.1457 0.1826 0.1990 0.0117 0.0133 0.0136

EfficientNet 0.1329 0.1503 0.1502 0.0093 0.0096 0.0096
ECAEfficientNet 0.0981 0.1037 0.1035 −0.0079 −0.0086 −0.0085

Aggregate 0.1227 0.1888 0.2083 0.0091 0.0185 0.0206

K = 4

ShuffleNetV2 0.1211 0.2961 0.3619 0.1454 −0.0660 0.0705
GoogleNet 0.1377 0.2581 0.2793 0.0081 0.0179 0.0192
ResNet-34 0.1534 0.1911 0.2077 0.0062 0.0068 0.0071

EfficientNet 0.1427 0.1615 0.1614 0.0059 0.0061 0.0060
ECAEfficientNet 0.1047 0.1108 0.1104 −0.0093 −0.0099 −0.0099

Aggregate 0.1319 0.2035 0.2241 0.0313 -0.0090 0.0186

Sensors 2024, 24, 4438 18 of 20

5. Conclusions

This paper presents TQE for identifying defects in packaging, including image blur.
We conducted experiments to verify the performance of CNN models trained on high-
quality images to identify defects contained in low-quality images. As a result, CNNs
identified more than 94% of defects included in high-quality images, but the accuracy
dropped to about 10% to 50% in low-quality images. Additionally, we conducted exper-
iments to identify defects contained in low-quality images using ensembles. As a result,
we confirmed that both AVE and TQE had better performance than the CNN model alone.
However, when low-quality images comprised more than half of the input images, AVE
significantly decreased the performance of CNN models. In contrast, TQE increases per-
formance by prioritizing image quality and maintaining importance against low-quality
images in temporal timing. As a result, considering cases where at least one low-quality
image is included, TQE had an F1-score approximately 17.64% to 22.41% higher than single
CNN models and about 1.86% to 2.06% higher than AVE. These confirm the efficiency and
improvement of TQE inference, considering both low-quality and high-quality datasets,
by extensively applying CNN models. Additionally, the ensemble technique which in-
cluded a few low-quality images outperformed ensembles consisting solely of high-quality
images only. This suggests the possibility that low-quality images provide useful features
for defect inspection when included in the ensemble.

As future work, we plan to collect and analyze more types of defect patterns to improve
the performance of the proposed ensemble method. In addition, we also plan to expand
the scope of industrial application by redefining not only low-quality conditions caused by
camera blur but also external environmental factors such as pollution and damage.

Author Contributions: Conceptualization, G.-J.S. and Y.-D.K.; methodology, G.-J.S. and H.-C.J.;
software implementation, G.-J.S.; validation, G.-J.S.; formal analysis, G.-J.S.; writing—original draft
preparation, G.-J.S.; writing—review and editing, Y.-D.K. and H.-C.J.; project administration, Y.-D.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by a grant (no. 22193MFDS466) from MFDS of Korea And, this
work was also supported by DGIST research project (24-IT-01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tavasoli, M.; Lee, E.; Mousavi, Y.; Pasandi, H.B.; Fekih, A. Wipe: A novel web-based intelligent packaging evaluation via machine

learning and association mining. IEEE Access 2024, 12, 45936–45947. [CrossRef]
2. Chen, Y.; Ding, Y.; Zhao, F.; Zhang, E.; Wu, Z.; Shao, L. Surface defect detection methods for industrial products: A review.

Appl. Sci. 2021, 11, 7657. [CrossRef]
3. Shankar, N.G.; Ravi, N.; Zhong, Z.W. A real-time print-defect detection system for web offset printing. Measurement 2009, 42,

645–652. [CrossRef]
4. Yang, Z.; Bai, J. Vial bottle mouth defect detection based on machine vision. In Proceedings of the 2015 IEEE International

Conference on Information and Automation, Lijiang, China, 8–10 August 2015; pp. 2638–2642.
5. Yun, J.P.; Kim, D.; Kim, K.; Lee, S.J.; Park, C.H.; Kim, S.W. Vision-based surface defect inspection for thick steel plates. Opt. Eng.

2017, 56, 053108. [CrossRef]
6. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
7. Zhang, G.; Liu, S.; Nie, S.; Yun, L. YOLO-RDP: Lightweight Steel Defect Detection through Improved YOLOv7-Tiny and Model

Pruning. Symmetry 2024, 16, 458. [CrossRef]
8. Yuan, Z.; Ning, H.; Tang, X.; Yang, Z. GDCP-YOLO: Enhancing Steel Surface Defect Detection Using Lightweight Machine

Learning Approach. Electronics 2024, 13, 1388. [CrossRef]
9. Zhu, Y.; Xu, Z.; Lin, Y.; Chen, D.; Ai, Z.; Zhang, H. A Multi-Source Data Fusion Network for Wood Surface Broken Defect

Segmentation. Sensors 2024, 24, 1635. [CrossRef]

http://doi.org/10.1109/ACCESS.2024.3376478
http://dx.doi.org/10.3390/app11167657
http://dx.doi.org/10.1016/j.measurement.2008.10.012
http://dx.doi.org/10.1117/1.OE.56.5.053108
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.3390/sym16040458
http://dx.doi.org/10.3390/electronics13071388
http://dx.doi.org/10.3390/s24051635

Sensors 2024, 24, 4438 19 of 20

10. Tang, J.; Liu, S.; Zhao, D.; Tang, L.; Zou, W.; Zheng, B. PCB-YOLO: An improved detection algorithm of PCB surface defects
based on YOLOv5. Sustainability 2023, 15, 5963. [CrossRef]

11. Pang, Y.; Zhu, H.; Li, X.; Pan, J. Motion blur detection with an indicator function for surveillance machines. IEEE Trans.
Ind. Electron. 2016, 63, 5592–5601. [CrossRef]

12. Hao, N.; Sun, X.; Zhang, M.; Zhang, Y.; Wang, X.; Yi, X. Vibration and Noise Analysis and Experimental Study of Rail Conveyor.
Sensors 2023, 23, 4867. [CrossRef] [PubMed]

13. Bortnowski, P.; Król, R.; Ozdoba, M. Modelling of transverse vibration of conveyor belt in aspect of the trough angle. Sci. Rep.
2023, 13, 19897. [CrossRef]

14. Guo, X.; Liu, X.; Królczyk, G.; Sulowicz, M.; Glowacz, A.; Gardoni, P.; Li, Z. Damage detection for conveyor belt surface based on
conditional cycle generative adversarial network. Sensors 2022, 22, 3485. [CrossRef]

15. Zhang, M.; Zhang, Y.; Zhou, M.; Jiang, K.; Shi, H.; Yu, Y.; Hao, N. Application of lightweight convolutional neural network for
damage detection of conveyor belt. Appl. Sci. 2021, 11, 7282. [CrossRef]

16. Inoue, M.; Raut, S.; Takaki, T.; Ishii, I.; Tajima, K. Motion-blur-free high-frame-rate vision system with frame-by-frame visual-
feedback control for a resonant mirror. In Proceedings of the 2020 3rd International Conference on Intelligent Autonomous
Systems (ICoIAS), Singapore, 26–29 February 2020; pp. 35–40.

17. Chen, J.; Yu, H.; Xu, G.; Zhang, J.; Liang, B.; Yang, D. Airborne SAR autofocus based on blurry imagery classification. Remote Sens.
2021, 13, 3872. [CrossRef]

18. Tsomko, E.; Kim, H.J. Efficient method of detecting globally blurry or sharp images. In Proceedings of the 2008 Ninth International
Workshop on Image Analysis for Multimedia Interactive Services, Klagenfurt, Austria, 7–9 May 2008; pp. 171–174.

19. Li, K.; Liu, W.; Zhao, K.; Zhang, W.; Liu, L. A novel dynamic weight neural network ensemble model. Int. J. Distrib. Sens. Netw.
2015, 11, 862056. [CrossRef]

20. Praveen, K.; Pandey, A.; Kumar, D.; Rath, S.P.; Bapat, S.S. Dynamically weighted ensemble models for automatic speech
recognition. In Proceedings of the 2021 IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China, 19–22 January
2021; pp. 111–116.

21. Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022,
115, 105151. [CrossRef]

22. Dietterich, T.G. Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 1–15.

23. Zhou, Y.; Wu, W.; Zou, J.; Qiao, J.; Cheng, J. Weighted ensemble networks for multiview based tiny object quality assessment.
Concurr. Comput. Pract. Exp. 2021, 33, E5995. [CrossRef]

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

25. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014, arXiv:1409.1556.
26. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

27. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

28. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv, 2017, arXiv:1704.04861.

29. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6848–6856.

30. Xu, Z.; Guo, S.; Li, Y.; Wang, J.; Ma, Y.; Henna, L. Cigarette Packaging Quality Inspection Based on Convolutional Neural
Network. In International Conference on Adaptive and Intelligent Systems; Springer International Publishing: Cham, Switzerland,
2022; pp. 614–626.

31. Zhou, W.; Li, R.; Guo, J.; Li, Z.; Zhou, R.; Zhu, H.; Jian, Z.; Lai, Y. Machine Vision-Based Defect Classification Algorithm for Rolled
Packages. In International Conference on Applied Intelligence; Springer Nature Singapore: Singapore, 2023; pp. 302–313.

32. Sheng, Z.; Wang, G. Fast Method of Detecting Packaging Bottle Defects Based on ECA-EfficientDet. J. Sens. 2022, 2022, 9518910.
[CrossRef]

33. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

34. Park, N.; Lee, T.; Kim, S. Vector quantized bayesian neural network inference for data streams. Proc. AAAI Conf. Artif. Intell. 2021,
35, 9322–9330. [CrossRef]

35. Qu, D.; Li, L.; Yao, R. Frequency-Separated Attention Network for Image Super-Resolution. Appl. Sci. 2024, 14, 4238. [CrossRef]
36. Jain, R.; Kasturi, R.; Schunck, B.G. Machine Vision; McGraw-Hill: New York, NY, USA, 1995.
37. Bansal, R.; Raj, G.; Choudhury, T. Blur image detection using Laplacian operator and OpenCV. In Proceedings of the 2016

International Conference System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 25–27 November
2016; pp. 63–67.

http://dx.doi.org/10.3390/su15075963
http://dx.doi.org/10.1109/TIE.2016.2564938
http://dx.doi.org/10.3390/s23104867
http://www.ncbi.nlm.nih.gov/pubmed/37430783
http://dx.doi.org/10.1038/s41598-023-46534-w
http://dx.doi.org/10.3390/s22093485
http://dx.doi.org/10.3390/app11167282
http://dx.doi.org/10.3390/rs13193872
http://dx.doi.org/10.1155/2015/862056
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://dx.doi.org/10.1002/cpe.5995
http://dx.doi.org/10.1155/2022/9518910
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1609/aaai.v35i10.17124
http://dx.doi.org/10.3390/app14104238

Sensors 2024, 24, 4438 20 of 20

38. Yang, X.; Han, M.; Tang, H.; Li, Q.; Luo, X. Detecting defects with support vector machine in logistics packaging boxes for edge
computing. IEEE Access 2020, 8, 64002–64010. [CrossRef]

39. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

40. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 11534–11542.

41. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient CNN architecture design. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.2984539

	Introduction
	Related Work
	Our Method
	Overall Architecture
	Temporal Ensemble
	Quality Ensemble
	Temporal-Quality Ensemble

	Experiments and Results
	Datasets
	Evaluation Metrics
	Implemental Details
	Experimental Results
	High vs. Low-Quality Image Performance Using Single CNN Models
	Ablation Study on TQE: Fixed and Image Quality Scenarios
	Performance of TQE: Integrating Temporal and Quality Ensembles
	Performance Comparison of TQE and AVE across CNN Models

	Conclusions
	References

