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Purpose: The purpose of this studywas to develop a deep learningmodel for predicting
the axial length (AL) of eyes using optical coherence tomography (OCT) images.

Methods:We retrospectively included patients with ALmeasurements andOCT images
taken within 3 months. We utilized a 5-fold cross-validation with the ResNet-152
architecture, incorporating horizontal OCT images, vertical OCT images, and dual-input
images. The mean absolute error (MAE), R-squared (R2), and the percentages of eyes
within error ranges of ±1.0, ±2.0, and ±3.0 mmwere calculated.

Results: A total of 9064 eyes of 5349 patients (total image number of 18,128) were
included. The average AL of the eyes was 24.35 ± 2.03 (range = 20.53–37.07).
Utilizing horizontal and vertical OCT images as dual inputs, deep learning models
predicted AL with MAE and R2 of 0.592 mm and 0.847 mm, respectively, in the internal
test set (1824 eyes of 1070 patients). In the external test set (171 eyes of 123 patients),
the deep learning models predicted AL with MAE and R2 of 0.556 mm and 0.663 mm,
respectively. Regarding error margins of ±1.0, ±2.0, and ±3.0 mm, the dual-input
models showed accuracies of 83.50%, 98.14%, and 99.45%, respectively, in the internal
test set, and 85.38%, 99.42%, and 100.00%, respectively, in the external test set.

Conclusions: A deep learning-based model accurately predicts AL from OCT images.
The dual-input model showed the best performance, demonstrating the potential of
macular OCT images in AL prediction.

Translational Relevance: The study provides new insights into the relationship
between retinal and choroidal structures and AL elongation using artificial intelligence
models.

Introduction

Long axial length (AL) is important in the patho-
genesis of various diseases, such as myopic degener-
ation, glaucoma, or retinal detachment.1–3 With the
increasing prevalence of myopia in recent decades,
the incidence and severity of myopia-related diseases
is also expected to rise.4 The primary underlying
mechanism of these diseases is the elongation of the
eyeball, which influences the anatomic structure of the
retina, choroid, sclera, and optic disc.5–7

Previous studies have reported associations between
AL and posterior structural parameters using various
imaging modalities, including fundus photography,
optical coherence tomography (OCT), and OCT
angiography.7–12 Increased AL was associated with
reduced macular volume and thickness.9 In high
myopia, AL was correlated with atrophic, tractional,
and neovascular components in OCT as well.13 The
incidence of posterior staphyloma increased with a
longer AL.14 Furthermore, recent advancements in
deep learning models have allowed the prediction
of AL using fundus photography or ultra-wide-field
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fundus (UWF) photography.15–17 However, the poten-
tial of OCT imaging in predicting AL and providing
further structural information has yet to be explored.
OCT provides high-resolution cross-sectional images
that offer detailed visualization of the vitreoretinal
surface, retina, and choroid structures.

In this study, we aimed to develop a deep learning
model for predicting AL of eyes using OCT images and
to investigate the accuracy of the deep learning model.

Methods

The study was approved by the Institutional Review
Board (IRB) of the Seoul National University Hospi-
tal (SNUH; IRB No. H-2202-069-1299) and the Seoul
Metropolitan Government Seoul National University
Boramae Medical Center (IRB No. 10-2024-26). All
procedures were conducted in compliance with the
principles of the Declaration of Helsinki. The review
board waived the need for written informed consent
due to the retrospective design of the study and
complete anonymization of patient information.

Dataset

We retrospectively enrolled all patients who visited
the ophthalmology clinic at the SNUH between
September 2018 and March 2023. The patients with
an AL measurement using IOLMaster 700 (Carl Zeiss
Meditec, Jena, Germany) and an OCT image, taken
by Spectralis OCT (Heidelberg Engineering, Heidel-
berg, Germany) within 3 months prior to ALmeasure-
ment, were included. A horizontal and vertical linear
OCT scan of 8.8 mm centered onto the fovea acquired
in high resolution modality with a 100 auto real time
resolution was carried out using Spectralis HRA +
OCT. The OCT images were displayed in 1:1 pixel
model. The exclusion criteria were as follows: (1) eyes
with an unmeasurable AL, and (2) lack of horizontal
or vertical macular OCT images. The OCT images were
classified based on the presence of macular abnormali-
ties, which included epiretinal membrane (ERM), age-
related macular degeneration (AMD), central macular
edema (CME), macular hole (MH), or other macular
abnormalities. The dataset (SNUH dataset) was split
into the development set and the internal test set with
a ratio of 4:1. Using the development set, five-fold
cross-validation was performed to decrease selection
bias. All datasets were constructed exclusively on the
aspect of both the patient and eye to confirm that the
images with the same eye did not belong to the other
dataset.

Data Preprocessing and Augmentation

Data acquisition process was performed manually
from Heidelberg eye explorer, by author Richul Oh as
follows: (1) acquisition of OCT data as an E2E format,
and (2) converting the E2E format files to “png”
format of images using Python library OCT-Converter
version 0.5.8 (https://github.com/marksgraham/OCT-
Converter). We used horizontal and vertical section of
the OCT images, instead of 3D volume scan images.
For each training batch, the following preprocessing
was used. First, because the raw images were grayscale
images, they were converted to red, green, and blue
(RGB) by tripling each pixel value into a three-channel
using the Pillow library. Then, the images were normal-
ized between 0 and 1, and then resized to 224 × 224
pixels, which is the default input size of ResNet-152.18
These preprocessings were performed to better fine-
tune the model and better visualize the images. Further
augmentations were applied as follows: horizontal flip
(random rate = 50%), vertical flip (random rate =
50%), affine rotation (–45 degrees to +45 degrees), and
brightness adjustment (50–150% of uniform distribu-
tion). These augmentations were applied to the images
randomly at each epoch. For the validation and test
dataset, only preprocessing of the images were applied,
and augmentations were not applied.

Deep-Learning Model Development

All development processes were performed using
Pytorch (torch version 1.10.0, and torchvision version
0.11.0) and Python (version 3.6.9). A private server
equipped with a CPU with 64 GB RAM and an
NVIDIA Titan RTX (24 GB GPU; Santa Clara,
CA, USA) were used for development. ResNet-152
was used as a backbone network.17 We constructed
two ResNet-152 parallelly to have dual input images.
Instead of the last fully connected layers of the
models, the outputs of the average pooling layers were
flattened to 1-dimensional (output = 1 × 2048). Two
1-dimensional outputs from two ResNet-152 models
were concatenated (output = 1 × 4096). We added a
fully connected layer (output = 1 × 128), an ReLU
layer, and another fully connected layer with one
output (output = 1 × 1). The Pytorch architectures
of the models are demonstrated in the Supplementary
Data. The model output represented the predicted AL.
ForResNet-152 backbones, we used pretrainedweights
from the Image-Net dataset.19 Stochastic gradient
descent was used as the optimization and the learn-
ing rate was set to 1 × 10−3, momentum to 0.9, and
weight_decay to 5 × 10−4 as optimization parame-
ters. The model was trained through 1000 epochs, and
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Figure 1. The schematic structure anddevelopment process of the deep learningmodel. (A) The internal test setwas split from the dataset.
Using the development dataset, five-fold cross validation was performed. Performance was measured using the internal and external test
set. (B) The model architecture of dual-input models utilizing both the horizontal and vertical section of OCT images.

among the models that were validated with a valida-
tion set using loss function of mean absolute error
(MAE), defined as the mean of absolute difference
between model prediction value and the actual value.
The learning rate was reduced to 10% when the valida-
tion loss did not improve within the 10 epochs. If the
learning rate was reduced to lower than 1 × 10−6, we
stopped the training process to avoid overfitting, and
the model with the lowest validation loss was selected
for the final model. The schematic structure and devel-
opment process of the deep learning model are illus-
trated in Figure 1.

Gradient-Weighted Regression Activation
Mapping

We modified gradient-weighted class activation
mapping into gradient-weighted regression activa-
tion mapping (Grad-RAM) to illustrate the OCT
region predominantly used by the convolutional neural

network (CNN) model.18 With this technique, we were
able to investigate the regions in the OCT that were
important for the prediction of AL.

Analysis of Results

To evaluate the performance of the model, we calcu-
lated the MAE and R-squared (R2). We used linear
regression to obtain the coefficient of determination
(R2).Moreover, the percentages of the eyes within error
ranges of ±1.0, ±2.0, and ±3.0 mm were calculated.

Validation Using an External Test Set

The patients who visited the ophthalmology clinic
at the Seoul Metropolitan Government Seoul National
University Boramae Medical Center between March
2023 and December 2023 were included in this
study. The AL measurement was performed with the
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IOLMaster 500 (Carl Zeiss Meditec, Jena, Germany)
and an OCT image was taken by the Spectralis OCT.
The same evaluation process was performed using the
external test set.

Results

A total of 9064 eyes of 5349 patients were included
in the SNUH dataset. The average AL of the eyes was
24.35 ± 2.03 mm (range = 20.53–37.07 mm). All eyes
had both horizontal and vertical macular OCT images,
resulting in the total image number of 18,128. The

development set consisted of 7240 eyes of 4279 patients
and 1824 eyes of 1070 patients were included in the
internal test set. The external test set consisted of 171
eyes of 123 patients. The internal test set consisted of
1121 eyes without macular abnormality and 703 eyes
with macular abnormality (332 ERMs, 195 AMDs,
88 CMEs, 47 MHs, and 41 other macular abnormali-
ties). The external test set consisted of 132 eyes without
macular abnormality and 39 eyes with macular abnor-
mality (22 ERMs, 8 AMDs, 7 CMEs, and 2MHs). The
prediction results using the internal test set and exter-
nal test set are summarized in the Table. Using only
horizontal OCT images, the model predicted AL with

Table. Accuracy for Axial Length Prediction With Internal and External Test Set
Internal Test Set External Test Set

Total
Without Macular
Abnormality

Macular
Abnormality Total

Without Macular
Abnormality

Macular
Abnormality

Patient, n 1070 788 501 123 94 35
Eyes, n 1824 1,121 703 171 132 39
Age, y 65.50 ± 13.66 64.55 ± 13.76 66.35 ± 13.20 68.49 ± 11.19 68.41 ± 11.33 69.14 ± 10.29
Gender, F 636 464 320 68 54 19
AL, mm 24.31 ± 1.99 24.39 ± 1.99 24.18 ± 1.98 23.58 ± 1.21 23.54 ± 1.19 23.73 ± 1.29

MAE, mm R2 MAE R2 MAE, mm R2 MAE, mm R2 MAE, mm R2 MAE, mm R2

Horizontal 0.644 0.816 0.620 0.832 0.682 0.789 0.615 0.575 0.609 0.546 0.634 0.653
Vertical 0.628 0.822 0.626 0.819 0.630 0.825 0.609 0.608 0.585 0.639 0.688 0.512
Dual-input 0.592 0.847 0.580 0.852 0.610 0.837 0.556 0.663 0.539 0.672 0.613 0.629

AL, axial length; F, female; MAE, mean absolute error; n, number; R2, R-squared value.
Values are presented as mean ± standard deviation or number.
A proportion of patients have one eye with macular abnormality and another eye without macular abnormality.

Figure 2. Performance of the deep learning model estimating the axial length. The red line represents the prediction with no error, the
identity line. (A) The internal test set and (B) the external test set.
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Figure 3. Heatmap analysis of gradient-weighted regression activation mapping (Grad-RAM) for myopic eyes with axial length greater
than 26.0 mm. (A–I) Nine optical coherence tomography (OCT) images were randomly selected among eye with good prediction outcome
(absolute prediction error less than 0.5 mm). For each image, the left one is a horizontal section OCT image and the right one is a vertical
section OCT image.

MAEandR2 of 0.644mm and 0.816 in the internal test
set, respectively. Using only vertical OCT images, the
model predicted AL with MAE and R2 of 0.628 mm
and 0.822 mm in the internal test set, respectively.
Using both horizontal and vertical OCT images, the
dual-input model predicted AL with MAE and R2 of
0.592 mm and 0.847 mm in the internal test set, respec-
tively. The external test set consisted of 171 eyes of
123 patients. The average AL of the eyes were 23.58 ±
1.21 mm (range = 20.87–28.6 mm). Using the external
test set, the dual-input model predicted AL with MAE
and R2 of 0.556 mm and 0.663 mm. The dual-input
model showed 83.50%, 98.14%, and 99.45% accuracy
in the error margins of ±1.0, ±2.0, and ±3.0 mm in
the internal test set, and 85.38%, 99.42%, and 100.00%
accuracy in the error margins of ±1.0, ±2.0, and
±3.0 mm in the external test set. Figure 2 shows the
prediction results of the internal and external test sets.
The representative images of guided Grad-RAM are
shown in Figure 3, indicating the region of importance
in the prediction of AL in the OCT images.

Discussion

Our deep learning model predicted AL using both
horizontal and vertical OCT images with MAE and R2

value of 0.592 and 0.847, respectively, in the internal
test set and 0.556 and 0.663, respectively in the exter-
nal test set. To the best of our knowledge, the present
study was the first to utilize OCT images in the predic-
tion of AL using deep learningmodels in the real-world
data.

Many researchers previously developed deep learn-
ing models predicting AL using conventional fundus
images.15,17 In our previous study, we advanced this
field by developing highly accurate deep learning
models withUWF fundus images.16 However, although
UWF images offer the advantage of capturing the
peripheral area, they have limitations in focusing on
the macular region. Recognizing this limitation, the
current study aims to address the role of the macular
area in predicting AL by utilizing OCT images.

We constructed the deep learning model using dual
input to utilize both horizontal and vertical sections
of OCT images. A dome-shaped macula is often
observed in myopic staphyloma,20 and Caillaux et
al. described three types of the dome-shaped macula
patterns using vertical and horizontal OCT scans.21
They argued that both horizontal and vertical OCT
scans are important in detecting the dome-shaped
macula. Our prediction results are in line with their
opinion. Compared with the horizontal-only model
and the vertical-only model, the dual-input model
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using both horizontal and vertical OCT images showed
lesser MAE and greater R2 value, implying that both
sections have their role in the prediction of AL.
Considering that vertical-only models predicted AL
with lower MAE and greater R2 than horizontal-
only models, vertical scan images might play more
important roles than horizontal scan images. As verti-
cal section images are more axially symmetrical than
horizontal section images as the optic disc is usually
located in the edge of horizontal section, we hypoth-
esized the axial elongation associated macular changes
might predominantly occur in the vertical direction of
the macula, which can be the reason for better predic-
tion of vertical sections. However, as quantification
of the guided Grad-RAM results is not available, we
cannot conclude which section of OCT images among
horizontal or vertical OCT images provides more
information.

The performance of the present model was compa-
rable with the previous model using conventional
fundus photographs and UWF images. The macula is
the most important area in the retina and its shape
and contour are affected by AL elongation. Consider-
ing that posterior staphyloma is a hallmark of patho-
logic myopia and macular type consists of 74% of eyes
with posterior staphyloma,22 macular OCT images
might have a superior role in predicting AL compared
to other modalities. Previous studies utilizing fundus
photographs showed MAEs and R2 values of 0.56 to
0.90 mm and 0.59 to 0.67, respectively.15,17 Deep learn-
ing models using UWF images showed MAE of 0.744
mm andR2 value of 0.815.16 The present study showed
an MAE of 0.592 mm and an R2 value of 0.847 in
the internal test set, which were better than those of
the study using UWF images. Compared with Dong
et al.’s study using fundus photographs, the results of
the internal test set showed a worse MAE but a better
R2 value. However, there were noticeable performance
differences between the internal and external test sets
in the present study. Our external test set still showed
better MAE and R2 values than those in Dong et al.’s
study, but theR2 value difference was smaller compared
to the results of the internal test set. Moreover, the R2

value of the external test set was lower than that of the
UWF study.

The performance using the external test set was
better in terms of MAE but worse in terms of the R2

value. This performance difference can be explained
by two aspects. First, the external dataset consisted of
a greater proportion of eyes without macular abnor-
malities. Considering that the deep learning model
performed better on normal eyes in the internal test set,
the external test set showed a lower MAE. Second, the
external dataset had a narrower range of AL. Includ-

ing more eyes with a greater AL might lead to a better
R2 value.

Eyes without macular abnormalities showed better
accuracy in AL prediction than eyes with macular
abnormalities in both the internal and external test
sets. Macular abnormalities, including MHs, ERMs,
and AMDs, result in structural alterations in the
retina. However, considering the structural differences
between eyes with and without macular abnormali-
ties, eyes with macular abnormalities showed compa-
rable outcomes with previous studies. Choroidal struc-
ture, outer retinal curvature, as well as retinal struc-
ture might play an important role in the prediction
of AL.

Multiple regions in OCT images were related to
the long AL. As shown in the representative case
of Figure 2, the choroid layer, the peripapillary area,
themacular area, and the posterior staphyloma showed
great significance in prediction of AL. Long AL is
associated with not only decreased choroidal thick-
ness23 but also decreased choroidal vascularity and
choriocapillaris perfusion.24 The observed significance
of the choroid layer can be explained by these struc-
tural alterations. It seems that the curvature of the
choroidal layer is also associated with the prediction of
long AL, therefore, further studies are needed to inves-
tigate the choroidal layer impacts on eyeball elonga-
tion. According to theKim et al.’s report, OCT changes
in disc contour and peripapillary structure was highly
associated with axial elongation.25 Notably, in our
representative examples, both horizontal and verti-
cal Grad-RAM images exhibited remarkably strong
signals in the posterior staphyloma region, where
there was a pronounced and rapid curvature of the
choroid and retina. This observation aligns with the
characteristic features of high myopic changes, further
reinforcing the notion that eyes exhibiting such abrupt
focal curvatures are likely highly myopic in nature.
These findings emphasize the importance of monitor-
ing and understanding the structural changes in the
peripapillary area and choroidal curvature as they
relate to axial elongation, particularly in high myopic
eyes.

The limitations of the present study should be
noted. First, our analysis was based solely on horizon-
tal and vertical cross-sectional images, without incor-
porating macular volume scan images. As some eyes
lack macular volume scan images and the number
of scan images differ across eyes, we did not use
macular volume scan images. Future studies should
consider incorporating macular volume scan images
to improve the accuracy of prediction. Second, the
images were obtained from a single OCT device, which
raises concerns about the generalizability of our model
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to other devices. When applying our model to the
images from different devices, the prediction error
would be greater than the internal validation set. The
external validation using images from other devices is
needed for general application of the model. Third,
the heatmap does not guarantee a causal relationship
between the anatomic structure and AL. However,
the heatmap provided additional information regard-
ing the eyeball elongation. Fourth, there were notice-
able performance differences between the internal and
external test sets. The MAE of the external test set
was lower than that of the internal test set, whereas
the R2 value was significantly worse than that of
the internal test set. Further evaluation with larger
and multiple external test sets is needed to validate
our findings. Last, all images were downsized to
224 × 224 pixels, which is the default input size
for the ResNet-152 model. Due to limited computa-
tional resources, downsizing the image size was neces-
sary. Training with larger input image sizes and more
complex models may improve the performance of the
model.

Despite the limitations, our study has several
notable strengths. First, it is the first study to utilize
OCT images in predicting AL through the implemen-
tation of deep learning models. Second, our devel-
opedmodel outperformed previously describedmodels
in terms of predictive accuracy. It demonstrated the
lowest MAE and the highest R2 value, indicating its
superior performance in predicting AL. Third, our
study samples encompass not only normal retinal
images but also a diverse range of pathological condi-
tions. This inclusion of various diseases enhances the
real-world relevance and applicability of our findings,
as it accounts for the complexity and heterogeneity of
retinal fundus lesions that may impact eyeball elonga-
tion.

In conclusion, our research presents a novel deep
learning-basedmodel that effectively predicts AL using
OCT images. This model demonstrates impressive
performance and holds the potential to be utilized not
only for accurate AL prediction based on OCT images
but also for investigating how retinal and choroidal
structures are related to AL elongation. These findings
contribute to the advancement of both ophthalmolog-
ical research and clinical practice.
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