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Abstract

Fibroblast growth factor 2 (FGF2) is an attractive biomaterial for pharmaceuticals and func-

tional cosmetics. To improve the thermo-stability of FGF2, we designed two mutants harbor-

ing four-point mutations: FGF2-M1 (D28E/C78L/C96I/S137P) and FGF2-M2 (D28E/C78I/

C96I/S137P) through bioinformatics, molecular thermodynamics, and molecular modeling.

The D28E mutation reduced fragmentation of the FGF2 wild type during preparation, and

the substitution of a whale-specific amino acid, S137P, enhanced the thermal stability of

FGF2. Surface-exposed cysteines that participate in oligomerization through intermolecular

disulfide bond formation were substituted with hydrophobic residues (C78L/C78I and C96I)

using the in silico method. High-resolution crystal structures revealed at the atomic level that

the introduction of mutations stabilizes each local region by forming more favorable interac-

tions with neighboring residues. In particular, P137 forms CH-π interactions with the side

chain indole ring of W123, which seems to stabilize a β-hairpin structure, containing a hepa-

rin-binding site of FGF2. Compared to the wild type, both FGF2-M1 and FGF2-M2 main-

tained greater solubility after a week at 45 ˚C, with their Tm values rising by ~ 5 ˚C.

Furthermore, the duration for FGF2-M1 and FGF2-M2 to reach 50% residual activity at 45

˚C extended to 8.8- and 8.2-fold longer, respectively, than that of the wild type. Interestingly,

the hydrophobic substitution of surface-exposed cysteine in both FGF2 mutants makes

them more resistant to proteolytic cleavage by trypsin, subtilisin, proteinase K, and actinase

than the wild type and the Cys! Ser substitution. The hydrophobic replacements can influ-

ence protease resistance as well as oligomerization and thermal stability. It is notable that

hydrophobic substitutions of surface-exposed cysteines, as well as D28E and S137P of the

FGF2 mutants, were designed through various approaches with structural implications.
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Therefore, the engineering strategies and structural insights adopted in this study could be

applied to improve the stability of other proteins.

Introduction

The human fibroblast growth factor (FGF) family consists of 18 members (FGF1–FGF10 and

FGF16–FGF23) [1, 2] known to be involved in morphogen and growth factor functions in

development and homeostasis [2–5]. Canonical FGFs including FGF2 act as a paracrine and/

or an autocrine by forming ternary complexes with FGF receptors (FGFRs) and heparan sul-

fate proteoglycans (HSPGs) on the cell surface [6–8]. The FGFR-FGF-HSPG complex induces

the dimerization of FGFR, resulting in a series of intracellular signaling cascades including the

activation of MAPK/ERK pathway, PI3K/AKT pathway, and PLCγ pathway, etc [9, 10].

Through these signaling pathways, FGF2 regulates diverse cellular responses and has beneficial

effects on wound healing, wrinkle reduction, and protection against neomycin-induced hair

cell loss [11, 12]. Therefore, it has attracted attention in the pharmaceutical and cosmetic

fields.

While the therapeutic potentials of FGF2 are widely recognized, a significant challenge hin-

dering its broader application is inherent instability [12, 13]. Furthermore, thermo-stability

and protease resistance are required to prevent protein denaturation during production and

long-term storage. Previous studies have reported some strategies to improve the stability of

FGF through genetic modification [14–17], structural analysis [18–20], and computational

approaches [12, 21, 22], etc. While these strategies are promising, most FGF2 variants possess

limitations that necessitate further optimization to enhance the potential of FGF2 [15]. Conse-

quently, it remains important to explore various approaches, such as atomic-level structural

analysis, to improve the stability of FGF2 and provide insights for its enhancement. This study

aimed to identify novel mutation sites in FGF2 and apply a hydrophobic replacement strategy

targeting surface-exposed cysteines to enhance protein stability.

Protein engineering has been employed by using genetic information to enhance protein

stability [23, 24]. Especially, the distinctive traits of marine life have a lot of industrial potential,

leading to more research on utilizing the genetic information from marine organisms [25].

Calcitonin, a peptide hormone composed of 32 amino acids, has the ability to regulate blood

calcium levels [26] and is effective in treating Paget’s disease of bone, a chronic disease of the

skeleton [27]. Notably, salmon calcitonin is used as an alternative to human calcitonin [28]

because of its high stability and efficacy against Paget’s disease [29]. In addition, the evolution-

ary analysis of cetacean FGFs has provided insight into the adaptation of cetaceans to aquatic

environments [30]. The cetacean genome-based design of the FGF21 variant successfully

enhanced its potency for FGFR1c/β-Klotho activation than the wild type [31]. Interestingly,

whale exhibits great wound-healing capacity [32, 33]. Regarding FGF2’s role in wound healing,

it is plausible that whale FGF2 could contribute to the regenerative ability of the skin. There-

fore, we chose the whale-specific sequence (S137P) as a novel mutation site to improve its sta-

bility and efficacy. Besides, the D28E mutation was introduced into human FGF2 through

mass analysis of fragmented FGF2 to protect against the proteolytic sites.

Intramolecular disulfide bonds between cysteine residues contribute to protein stability

[34]. Conversely, cysteines exposed on the surface can cause aggregation by forming intermo-

lecular disulfide bonds [35]. In previous studies, it has been shown that two surface-exposed

cysteines (C78 and C96) of FGF2 play a crucial role in extracellular secretion via
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oligomerization [36, 37]. On the other hand, these cysteines were targeted for the major muta-

tion sites, being replaced by alanine [37], serine, or asparagine to prevent aggregation in the

production of recombinant FGF2 [12, 38]. In this study, we implemented a hydrophobic

replacement approach for the surface-exposed cysteines by using in silico energy calculations.

Additionally, we solved the high-resolution crystal structures of the FGF2 mutants harboring

both the novel mutation sites and the hydrophobic replacements to elucidate their stabilizing

effects. These approaches showed better enhancement of stability for FGF2, suggesting the

structural insights on modifying the structural and physicochemical characteristics of proteins

to enhance their therapeutic potential.

Materials and methods

Cloning, expression, and purification of FGF2

The genes for human (Homo sapiens) proFGF2 (residues 1–155) and Δ9N_FGF2 (residues 10–

155) were synthesized at Bionics Co., Ltd. (Republic of Korea). They were inserted at the SalI
and HindIII sites of the expression vector pQE80 (Qiagen, Germany), and the NdeI and XhoI

sites of the expression vector pET17b(+) (Novagen, USA), respectively (S1 Fig). We initially

used the pQE80 vector for expressing the FGF2 protein. This vector includes a His tag at the

N-terminal of FGF2 without a cleavage site. To produce the native FGF2, we utilized the

pET17b vector. proFGF2 contains residues 1–9 and Δ9N_FGF2 does not. The construct was

transformed into Escherichia coli strain Rosetta (DE3) pLysS (Stratagene, La Jolla, CA, USA).

The transformed cells were grown at 37 ˚C in a Luria-Bertani medium containing 50 μg/

mL to an OD600 of ~ 0.6. Afterward, FGF2 expression was induced by adding 0.5 mM isopro-

pyl β-D-thiogalactopyranoside. After an 18 h induction at 20 ˚C, cells were harvested and

resuspended in a buffer containing 20 mM Tris (pH 8.0) and 100 mM NaClfor sonication. The

cell debris was discarded by centrifugation at 13,000 rpm for 40 min at 4 ˚C. The supernatants

were loaded onto a heparin column (GE Healthcare, USA). The column was washed using

buffers containing 20 mM Tris (pH 8.0) with 100 mM NaCl and 20 mM Tris (pH 8.0) with 500

mM NaCl. The elution of bound FGF2 was performed using 20 mM Tris buffer (pH 8.0) with

a gradient of NaCl (500–1800 mM). The eluted fractions containing FGF2 were applied to a

Superdex 75 HR 16/60 column (GE Healthcare, USA) equilibrated with 1X phosphate-buff-

ered solution (PBS) buffer.

Site-directed mutagenesis

The human fgf2 gene was synthesized at Bionics Co., Ltd. Various mutants (proFGF2 D15E,

proFGF2 D28E, proFGF2 T121S, proFGF2 S137P, proFGF2 T121S/S137P, FGF2 D28E, FGF2

S137P, FGF2 D28E/S137P, FGF2 C78L/C96I, FGF2 C78I/C96I, FGF2 C78A/C96A, FGF2

C78S/C96S, FGF2 D28E/C78L/C96I/S137P (FGF2-M1), and FGF2 D28E/C78I/C96I/S137P

(FGF2-M2)) were obtained by site-directed mutagenesis. The details of the mutant proteins

used in this study are shown in Table 1 and S1 Fig.

Analysis of protein N-terminus by mass spectrometry

The N-terminal peptide FGF2 or its fragments was recovered from the corresponding protein

band of sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) by the GelN-

rich method as described in the paper [39]. Briefly, the protein band was cut and treated with

10 mM dithiothreitol (56 ˚C, 45 min) and 55 mM iodoacetamide (RT, 30 min, in the dark) in

50 mM EPPS buffer (pH 8). Next, the gel piece was dehydrated using acetonitrile, treated with

50 mM d6-acetic anhydride (Sigma Aldrich) in 0.2 M EPPS buffer (pH 8) at RT for 20 min to
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acetylate amino groups at the protein N-terminus and lysine residue side chains, and washed

with the same buffer. This whole sequence of dehydration, N-acetylation, and washing was

repeated three times. Next, the protein in the gel piece was digested with trypsin by the so-

called in-gel digestion method and the peptides were redissolved in a buffer containing 0.2 M

EPPS and 0.15 M NaCl (pH 8). In the mixture of tryptic peptides, internal peptides were

depleted by using NHS-activated agarose beads. The resultant supernatant (comprising mostly

the undepleted N-terminal peptide) was analyzed by nano-flow reversed-phase liquid chroma-

tography-tandem mass spectrometry. Whether a peptide measured in mass spectrometry is N-

terminal is determined by the acetylation status of the peptide. The N-terminal peptide appears

as d3-acetylated or acetylated, while the internal peptide appears as unacetylated.

Sequence analysis

The amino acid of FGF2 is a low molecular weight isoform (LMW) consisting of 155 amino

acids and is approximately 18kDa. The FGF2 protein sequences of humans and four whale

species (bowhead whale, sperm whale, fin whale, and minke whale) were compared and ana-

lyzed using the MultAlin [40] and ESPript [41] 3.0 servers.

Energy calculation of the substitutions of the cysteine residues on the

surface of FGF2

For mutation optimization of FGF2, the stability of mutations was assessed; the energy was cal-

culated using two stability prediction tools: Site Directed Mutator (SDM) [42] and Discovery

Studio (version 2021, Biovia, USA). The crystal structure of FGF2 mutants (C78S, C96S) (PDB

ID:1ii4) molecular has been replaced by the wild type with the SWISS-MODEL server [43] for

use as stability calculation models.

Crystallization, data collection, and structure determination

FGF2-M1 and FG2-M2 in a buffer consisting of 20 mM Tris (pH 8.0) and 200 mM NaCl were

concentrated to ~15 mg/mL and crystallized using the modified vapor batch crystallization

Table 1. Indication of the FGF2 name described in the manuscript.

Vector Variant Abbreviation

pQE80

(Residues 1–9 included)

proFGF2 pFGF2

proFGF2 D15E pFGF2 D15E

proFGF2 D28E pFGF2 D28E

proFGF2 T121S pFGF2 T121S

proFGF2 S137P pFGF2 S137P

proFGF2 T121S/S137P pFGF2 T121S/S137P

pET17b Δ9N_FGF2 (Wild) FGF2

Δ9N_FGF2 D28E FGF2 D28E

Δ9N_FGF2 S137P FGF2 S137P

Δ9N_FGF2 D28E/S137P FGF2 D28E/S137P

Δ9N_FGF2 C78L/C96I FGF2 C78L/C96I

Δ9N_FGF2 C78I/C96I FGF2 C78I/C96I

Δ9N_FGF2 C78A/C96A FGF2 C78A/C96A

Δ9N_FGF2 C78S/C96S FGF2 C78S/C96S

Δ9N_FGF2 D28E/C78L/C96I/S137P FGF2-M1

Δ9N_FGF2 D28E/C78I/C96I/S137P FGF2-M2

https://doi.org/10.1371/journal.pone.0307499.t001
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method reported in our previous studies [44, 45]. Crystals of FGF2-M1 were grown in mother

liquor consisting of 1.5 M sodium citrate and 100 mM sodium cacodylate (pH 5.5). To create a

complex between FGF2-M2 and sucrose octa-sulfate (SOS), the proteins were mixed with 2

mM SOS. Crystals of the complex were grown in a mother liquor of 30% (w/v) polyethylene

glycol 2K and 100 mM potassium thiocyanate.

For data collection, crystals were transferred into the mother liquors supplemented with

20% glycerol as a cryoprotectant. The samples were mounted in a stream of liquid nitrogen at

100 K. The X-ray diffraction data of FGF2-M1 and the FGF2-M2/SOS complex were collected

to the resolution of 1.40 Å and 1.48 Å, respectively, at the beamline 11C of Pohang Light

Source installed by a Pilatus3 6M (Dectris) detector (Pohang Light Source, Republic of Korea)

(S1 Table). The collected data were processed using the DENZO and SCALEPACK programs

available in the HKL2000 program suite (HKL Research, Inc., VA, USA) [46].

FGF2-M1 crystals belonged to the space group, P3121 (a = b = 54.375 Å and c = 97.012 Å),

with one molecule in the asymmetric unit (S1 Table). Molecular replacement with the available

FGF2 structure (PDB code: 4OEE) as a search model was successful using Phaser-MR [47] in

the PHENIX program suit [48]. The capital and small letters of each program should be consis-

tent. Several rounds of manual refitting and refinement were performed with Coot [49] and

Phenix [48], respectively. The final model of FGF-M1 with Rwork/Rfree of 18.51/21.27% contains

residues 20–154 and 138 water molecules (S1 Table). Crystals of the FGF2-M2/SOS complex

with three molecules in the unit cell belonged to the space group, P21 (a = 51.38 Å, b = 54.45 Å,

and c = 71.97 Å) (S1 Table). Molecular replacement, manual refitting, and refinement were

performed using the same method described above. The final model of the FGF2-M2/SOS

complex structure with Rwork/Rfree = 17.91/19.56% contains residues 20–154, two SOS mole-

cules, and 360 water molecules (S1 Table). B-factor values of the atoms were normalized by the

following equation: B´ = (B—<B>)/σ(B), in which <B> and σ(B) represented the average

value of B-factors and the standard deviation of the B-factor values, respectively [50].

Thermal stability of FGF2 proteins assessed using sodium dodecyl-sulfate

polyacrylamide gel electrophoresis

Protein samples (0.5 mg/mL, volume 40 μL) were mixed with 1X PBS (137 mM NaCl, 2.7 mM

KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 at a pH of 7.4). The proFGF2 mutants were incu-

bated at 37 ˚C for 6 days and sampled at an interval of two days. FGF2 mutants with surface

cysteine substitution were incubated for seven days. Soluble proteins were collected by centri-

fugation (12,000 rpm for 10 min) and analyzed using 15% SDS-PAGE. The relative amount of

soluble protein as a percentage of each protein band was quantified using the ImageJ software.

Reversed-phase HPLC analysis

10 μL of 1 mg/mL protein was injected onto an Xbridge Protein BEH300 C4 column 300 Å,

3.5 μm, 4.6 × 150 mm; Waters) using solution A (0.1% FA in water) and solution B (0.1% FA

in acetonitrile). The sample was separated with a gradient (20–50% of B) for 20 min at a col-

umn temperature of 80 ˚C and a flow rate of 1.44 mL/min. Peak areas were integrated using

Agilent Chemstation software (Agilent, USA). All samples were thawed and centrifuged at

10,000 rpm for 10 minutes to remove aggregation, and only the supernatant was analyzed.

Circular dichroism (CD) spectroscopy

The CD measurement was performed using a Jasco J-1500 with a PTC-517 Peltier thermostat-

ted cell holder (Jasco Corporation, Japan) at the National Research Facilities and Equipment

Center (NanoBio-Energy Materials Center) at Ewha Womans University. FGF2 concentration
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was ~0.2 mg/mL in a quartz cuvette (path length of 1 mm; Jasco Corporation). Thermal dena-

turation measurements were performed at 228 nm with a heating rate of 1 ˚C/min and an

interval of 1 ˚C from 20 to 100 ˚C. Data were collected by continuous scanning at a CD scale

of 200 mdeg/0.1 dOD, a digital integration time of 2 s, and a bandwidth of 1.00 nm. The values

of the protein-free PBS buffer were subtracted from each signal in the CD spectrum. The tran-

sition curve representing the denaturation state of the protein sample in the 0–100% range was

developed using the standard equation: % denaturation = ((θ20−θtemp)/(θ20−θ100)) × 100; θtemp

indicates the mean residue molar ellipticity of the protein at a specific temperature. The curves

were fitted using a nonlinear adjustment by the Boltzmann method of the OriginPro 2021 pro-

gram suite (Origin Lab Corporation, USA). The inflection point of the curve corresponds to

Tm. Each average Tm value with a standard deviation was calculated from three independent

experiments (S3 Table).

Protease resistance assay

Proteolysis was conducted using Proti-Ace (α-chymotrypsin, trypsin, elastase, papain, subtili-

sin, and endoproteinase Glu-C) and Proti-Ace 2 (proteinase K, clostripain, pepsin, thermoly-

sin, bromelain, and actinase), which consist of 12 proteases from Hampton Research. Small-

scale screening experiments were conducted on 30 μl samples of FGF2s at a concentration of

0.3 mg/ml. The protein and protease were mixed at a ratio of 1:100 for the experiment, and 1X

PBS buffer (pH 7.4, 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) was

used. Protein degradation took place at 37 ˚C for 3 hours. A 10 μl sample was subjected to

SDS-PAGE electrophoresis, and quantification was performed using the ImageJ program.

Cell culture and cell proliferation assay

BALB3T3 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; GIBCO,

Life Technologies Ltd., Paisley, UK) supplemented with 10% bovine serum (BS; GIBCO) and

1% penicillin/streptomycin (GIBCO) at 37 ˚C in a 5% CO2 incubator. To assess cell prolifera-

tion activity, cells (0.365 × 104/well) were seeded in 96-well plates and incubated with FGF2s

in DMEM/F12 medium (GIBCO) containing 1 μM dexamethasone, 10 μg/mL insulin, 10 ng/

mL sodium selenite, 10 μg/mL transferrin, 5 μg/mL fibronectin, 100 μg/mL ovalbumin, and

10 μg/mL heparin. After 40 h, the levels of proliferation were determined using the Cell Count-

ing Kit-8 (CCK8; Dojindo, Gaithersburg, MD, USA), according to the manufacturer’s proto-

col. Results are expressed as the average ± standard error of the mean (SEM) of at least three

independent experiments. Statistical significance was calculated using one-way analysis of var-

iance (ANOVA) followed by Tukey’s post hoc test. A P-value of< 0.05 was considered statisti-

cally significant.

Results and discussion

Identification of a novel mutation site through sequence comparison

between human and whale FGF2 sequences

A single FGF2 transcript contains five FGF2 isoforms. It can be translated into an LMW (18

kDa) isoform and four high molecular weight (HMW) isoforms (22, 22.5, 24, and 34 kDa)

[51, 52]. In this study, we attempted to improve the stability of FGF2 by introducing whale-

specific amino acids using LMW FGF2. Alignment of the sequences of FGF2s from human

and four whale species (Bowhead, Sperm, Fin, and Minke) revealed 98.7% amino acid

sequence identity. They differed by only two amino acids (T121S, S137P; Fig 1A). To examine

the effect of the sequence disparities on the thermo-stability of FGF2, purified proFGF2
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mutants with whale FGF2 sequences (T121S, S137P, and T121S/S137P) were incubated at 37

˚C for 6 days and compared using SDS-PAGE gels. proFGF2s appeared to degrade into small-

sized proteins, of which S137P retained its original size compared to proFGF2, as well as the

whale FGF2 sequence-introduced T121S and T121S/S137P mutants (Fig 1B). Likewise, in the

reversed-phase HPLC experiments, a major peak was observed only for the FGF2 S137P

mutant among the FGF2 mutants on day 6 (Fig 1C and S2 Table). Based on these results,

S137P from the whale FGF2 sequence was selected as the candidate for a mutation to improve

protein stability.

Discovery of a novel mutation site to prevent site-specific fragmentation of

FGF2

S-glutathionylation is a reversible disulfide combination of cysteinyl thiol in the protein and

thiol of glutathione [53]. Glutathionylation can protect against peroxidation or decomposition

of proteins [54]. Cysteine on the surface of FGF2 is known to form oligomers between FGF2s

and translocate FGF2 to the cell surface [37]. However, this feature causes protein aggregation

during purification and concentration. Therefore, glutathione was mixed with FGF2 to pre-

vent oligomerization. proFGF2 was incubated with 5 mM GSSG for six days in 1X PBS buffer

and monitored by SDS-PAGE (Fig 2). The incubation of proFGF2 with GSSG yielded a spe-

cific fragmentation pattern of proFGF2. The mass analysis of three thick protein bands excised

from SDS-PAGE gel identified distinct cleavage sites located before M1, after D15 (between

Asp and Gly amino acids), and after D57 (between Asp and Pro amino acids) (Fig 2A, Left

graph and sequence in S2 Fig). Based on observations (Fig 2 and S2 Fig), it seemed to be possi-

ble that the cleavage of FGF2 might occur due to contamination by a D selective protease. To

prevent the site-specific fragmentation, proFGF2 mutants were constructed by considering the

protein tertiary structure and sequences. In the FGF2 structure, D57, located between β3 and

β4 strands (Figs 1A and 2B), was excluded from the mutation site (Fig 2) because the mutation

Fig 1. A comparative analysis of sequence and thermal stability in human and whale FGF2. (A) Mutation positions

are indicated with yellow boxes and red text. The different sequences of humans and whales are indicated with a black

star. Beta-strands are indicated by a black arrow. Protein sequence alignment was calculated using ESPript 3.0 (Robert

and Gouet 2014) and MultAlin (Corpet 1988) servers. (B) The FGF2 mutants (T121S, S137P, T121S/S137P) with whale

sequences are tested for thermal stability for six days at 37 ˚C, compared with wild-type human FGF2. Protein stability

is demonstrated by SDS-PAGE gel and (C) Reverse phase HPLC. FGF2 variants (FGF2, FGF2 T121S, FGF2 S137P,

FGF2 T121S/S137P) were tested for 6 days. The main protein bands of the FGF2 variants (FGF2 (▤), FGF2 T121S (▥),

FGF2 S137P (&), and FGF2 T121S/S137P (▧) are calculated as percentages and shown as bar graphs.

https://doi.org/10.1371/journal.pone.0307499.g001
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can distort the structure of FGF2. There is one more aspartic acid D28 located between D15

and D57 at the starting point of the β-trefoil fold domain of FGF2. D28 can be another cleavage

site even though this residue was not detected by mass analysis. The D15 and D28 residues in

the N-terminal loop were replaced with glutamic acid (E). To verify the stability of proFGF2

mutations, the GSH and GSSG were incubated with two proFGF2 mutants (D15E and D28E)

for 3 h at 37 ˚C to compare the fragmentation of proFGF2 mutant protein. proFGF2 D15E

showed a similar fragmentation pattern to proFGF2, but proFGF2 D28E decreased protein

fragmentation (Fig 2C). It has been shown that the introduction of D28E could reduce the

FGF2 fragmentation by a D selective protease. Therefore, the D28E mutation was added to

proFGF2 S137P to improve further stability of FGF2.

A hydrophobic replacement strategy for surface-exposed cysteines by using

in silico prediction

SDM and Discovery Studio 2019 programs were used to identify alternative amino acids that

can prevent oligomerization and improve energy stability. To predict the stabilization of a

region containing cysteine residues on the FGF2 surface, we replaced that region with 19

amino acids and calculated the energies of each. Calculations using the SDM program showed

that C78 and C96 were most energy-stabilized when replaced by leucine (predicted pseudo

ΔΔG: 0.33) and isoleucine (predicted pseudo ΔΔG: 0.19), respectively (Table 2). Discovery Stu-

dio revealed that C78 was most energy-stabilized when it was replaced by isoleucine (mutation

energy: −1.2 kcal/mol). However, the energy stability of C96 did not differ significantly before

and after being replaced by tryptophan (mutation energy: 0.39 kcal/mol) (Table 3). Based on

the calculation by in silico predictions, two FGF2 mutants with four-point mutations

(FGF2-M1 with D28E/C78L/C96I/S137P and FGF2-M2 with D28E/C78I/C96I/S137P) were

finally designed.

Determination of the crystal structure of FGF2 mutants

We successfully solved the high-resolution (1.40 Å and 1.48 Å, respectively) crystal structures

of FGF2-M1 and the FGF2-M2/SOS complex (Fig 3 and S2 Table). The crystallization of

Fig 2. Glutathione effect of FGF2 mutants. (A) The result of 15% SDS-PAGE after incubating pFGF2 with 5 mM

glutathione at 45 ˚C for 6 days. The bands analyzed by GelNrich-coupled mass spectrometry are marked in red boxes

and labeled as①,②, and③. The pFGF2 sequence is shown in the right box, with D15 and D57 indicated in red text.

The major fragments of pFGF2 analyzed by N-terminal sequencing are highlighted in gray and labeled as①,②, and

③. (B) The structure of FGF2 with D15, D57 (green sticks), and D28 (a magenta stick). (C) The result of 15%

SDS-PAGE after incubating pFGF2, pFGF2 D15E, and pFGF2 D28E with 0 ~ 20 mM GSSG and GSH, respectively.

https://doi.org/10.1371/journal.pone.0307499.g002
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FGF2-M1 was successful in the absence of SOS. On the other hand, SOS was used as an addi-

tive reagent to promote the crystallization of FGF2-M2 because it binds to the heparin-bind-

ing site of FGF2 [55]. The structures of FGF2-M1 and FGF2-M2 were superimposed to that

of the wild type (PDB code: 4FGF) with a root-mean-square deviation (RMSD) of 0.336 Å
and 0.328 Å for all Cα atoms, respectively. When superimposed onto the structure of the

FGF2 mutant harboring two-point mutations (C78S & C96S; PDB code: 1BFG) [56], they

exhibited the RMSD value of 0.256 Å and 0.275 Å for all Cα atoms, respectively (Fig 3). The

Table 2. Prediction of FGF2 stability using SDM.

Wild type Mutation Predicted pseudo ΔΔG: Stability

C78 E -0.05 Reduced

C78 S -1.15 Reduced

C78 G -0.46 Reduced

C78 A 0.09 Increased

C78 H 0.27 Increased

C78 D -0.7 Reduced

C78 N -0.48 Reduced

C78 Y 0.07 Increased

C78 F 0.27 Increased

C78 W -0.01 Reduced

C78 V -0.07 Reduced

C78 T -0.69 Reduced

C78 L 0.33 Increased

C78 P -0.71 Reduced

C78 R 0.12 Increased

C78 K 0.07 Increased

C78 Q 0.07 Increased

C78 M -0.03 Reduced

C78 I -0.07 Reduced

C96 E -0.34 Reduced

C96 S -0.82 Reduced

C96 G -0.29 Reduced

C96 A -0.76 Reduced

C96 H 0.09 Increased

C96 D -0.28 Reduced

C96 N -0.76 Reduced

C96 Y 0.09 Increased

C96 F -0.2 Reduced

C96 W 0.02 Increased

C96 V 0.04 Increased

C96 T -0.8 Reduced

C96 L -0.2 Reduced

C96 P -0.48 Reduced

C96 R 0.08 Increased

C96 K -0.29 Reduced

C96 Q -0.28 Reduced

C96 M -0.08 Reduced

C96 I 0.19 Increased

https://doi.org/10.1371/journal.pone.0307499.t002
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RMSD value between the structures of the FGF2 mutants was 0.144 Å for all Cα atoms, indi-

cating that the introduction of mutations did not affect the overall structure of FGF2. Both of

them adopted the canonical β-trefoil fold, in which two sets of three β-hairpins are arranged

with a pseudo-three-fold symmetry [57]. The β1–β12, β4–β5, and β8–β9 hairpins formed a

β-barrel domain, which was covered with a triangular cap domain constructed by three

other β-hairpins (β2–β3, β6–β7, and β10–β11) (Figs 3 and 4A). In the crystal structure of the

FGF2-M2/SOS complex, negatively charged SOS was bound to the positively charged HSPG-

binding site harboring K128, R129, K134, and K138 through extensive electrostatic interac-

tions (Fig 3).

Table 3. Prediction of FGF2 stability using Discovery studio 2019.

Index Mutation Mutation Energy(kcal/mol) Effect

1 A: CYS78>ILE -1.2 STABILIZING

2 A: CYS78>TRP -0.99 STABILIZING

3 A: CYS78>TYR -0.75 STABILIZING

4 A: CYS78>ASN -0.66 STABILIZING

5 A: CYS78>ASP -0.49 NEUTRAL

16 A: CYS78>HIS 0.67 DESTABILIZING

17 A: CYS78>ARG 0.92 DESTABILIZING

18 A: CYS78>GLY 1.49 DESTABILIZING

19 A: CYS78>LYS 1.96 DESTABILIZING

20 A: CYS78>PRO 2.3 DESTABILIZING

Index Mutation Mutation Energy(kcal/mol) Effect

1 A: CYS96>TRP -0.39 NEUTRAL

2 A: CYS96>CYS -0.38 NEUTRAL

3 A: CYS96>ASP -0.19 NEUTRAL

4 A: CYS96>ILE 0.03 NEUTRAL

5 A: CYS96>ASN 0.17 NEUTRAL

16 A: CYS96>TYR 1.14 DESTABILIZING

17 A: CYS96>ARG 1.16 DESTABILIZING

18 A: CYS96>LYS 1.52 DESTABILIZING

19 A: CYS96>GLY 1.7 DESTABILIZING

20 A: CYS96>PRO 5.02 DESTABILIZING

https://doi.org/10.1371/journal.pone.0307499.t003

Fig 3. Structural comparison of FGF2-M1 and the FGF2-M2/SOS complex. Left, The superimposed Cα tracing of

the FGF2 wild type (yellow; PDB code: 4FGF), the structure of the FGF2 mutant harboring C78S & C96S (orange; PDB

code: 1BFG), FGF2-M1 (green), and the FGF2-M2/SOS complex (purple). The N- and C-terminus of FGF2-M1 are

shown as blue and red spheres, respectively. Right, Surface representation with electrostatic potentials of FGF2-M2

with SOS (purple stick). The positively and negatively charged regions on the surface are colored in blue and red,

respectively. In the box, the SOS-interacting residues of FGF2-M2 are shown as white sticks with labels. Nitrogen,

oxygen, and sulfur atoms in the sticks are colored in blue, red, and yellow, respectively.

https://doi.org/10.1371/journal.pone.0307499.g003
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Structural investigation into the mutation sites in FGF2 mutants

The S137P mutation was designed based on sequence comparison between human and whale

FGF2s (Fig 1A). As shown in Fig 4B, P137 is located at the end of the β11 strand and contacts

with the side-chain indole ring of W123, positioned at the beginning of the β10 strand. It has

been established that the electron-rich π face of the indole ring forms a CH-π interaction with

the partially positively charged hydrogen atoms adjacent to the carbonyl and amide nitrogen

of P137 [58]. Therefore, S137P seems to improve the thermo-stability of FGF2 by anchoring

the beginning and end of the β10–β11 hairpin such as a knot. Since the β10–β11 hairpin con-

tains a heparin-binding site that is essential for the activity of FGF2, stabilization of the region

is noteworthy (Fig 4B) [6, 7, 16, 59].

The D28E mutation is situated at the end of the N-terminal loop (residues 20–28 in the

structure of FGF2-M1) independent from the β-trefoil fold of FGF2 (Fig 4A and S3A Fig). In

crystal structure, the B-factor reflects how scattered the electron density is and how the atoms

are arranged. To calculate the flexibility of the N-terminal loop of FGF2 mutants, the B-factor

values for Cα atoms in the loop were normalized (B´ value) to the overall B-factor for all Cα
atoms in the structures of the FGF2 mutants (S3A Fig). The B´ value of the N-terminal loop

was 2.82 Å2, suggesting that the region could be structurally disordered and easily exposed to

protease [50, 60]. This observation is also consistent with the fact that the N-terminal loop (res-

idues 1–28) in the NMR structure of FGF2 (PDB code: 1BLA) is disordered and exhibits high

mobility (S3A Fig) [61]. The N-terminal loop of FGF2 serves as the primary site for direct

interaction with FGFR, initiating the signaling pathway [2, 8, 10]. In the crystal structure of the

FGF2 mutant (C78S & C96S) and FGFR1c complex (PDB code: 1CVS), it was observed that

the side chains of F17, K21, and Y24 in the N-terminal loop of FGF2 were found to interact

with FGFR1c [8]. Accordingly, we constructed in silico model structure of the FGF2-M1/

Fig 4. The mutation sites in the crystal structures of FGF2-M1 and FGF2-M2. (A) A side view & a top view of

cartoon diagrams of FGF2 mutants labeled with each β strand in a β-barrel domain (green) and a triangular cap

domain (gray). For brevity, only a cartoon diagram of the FGF2-M2/SOS complex is presented while the mutations in

both structures of FGF2-M1 (pink sticks) and FGF2-M2 (purple sticks) are represented. (B-D) Close-up view of the

mutation sites. The interacting residues with the mutation sites are shown as labeled sticks. The arrows indicate the β
strands. Nitrogen, oxygen, and sulfur atoms in the sticks are colored blue, red, and yellow, respectively. (C) The

surfaces of C78L, C78I, and interacting residues (P45 & P58 & H59 & L77) are represented as dots. (D) Interactions

between C96I, T98, adjacent residues (K86 & E100), and a water molecule (a red sphere) are depicted by dashed lines

with labeled distances (Å).

https://doi.org/10.1371/journal.pone.0307499.g004
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FGFR1c complex on the basis of the complex structure (PDB code: 1CVS). Structural analysis

of the model structure showed that the side chain of D28E was at least 7.5 Å away from the sur-

face of FGFR1c (S3B Fig), indicating that the mutation at position 28 only confers resistance to

fragmentation of FGF2 without affecting its interaction with FGFR1c (Fig 2 and S3B Fig).

Taken together, we could know that it was reasonable to introduce the D28E and S137P muta-

tions in this region for structural stability and function.

The surface-exposed cysteines (C78 and C96 positioned within the β5–β6 loop and β7–β8

loop, respectively; Fig 4A) have been known to lead the oligomerization of FGF2 through

intermolecular disulfide bond [37]. The structures of FGF2-M1 and FGF2-M2 showed that

leucine or isoleucine at position 78 were sandwiched by hydrophobic interactions consisting

of P45, P58, H59, and L77 (Fig 4C). In fact, free cysteine is recognized for its hydrophobic

properties with a hydropathy scale of 2.5 and a respective volume of 108.5 Å3 [62, 63]. Thus,

C78L and C78I seem to allow for better interactions with neighboring residues, which prefer a

bit more hydrophobic and a bit larger amino acid; the hydropathy scales of leucine and isoleu-

cine are 3.8 and 4.5, respectively, with their volumes of 166.7 Å3 [63]. As shown in Fig 4D, the

C96I mutation formed a van der Waals interaction with the methyl group of T98 at a distance

ranging from 4.1 Å to 4.7 Å. The hydroxyl group of T98 formed hydrogen bonds with the

main chain amino (-NH) group of E100 and a water molecule at the distance of 3.2 Å and 2.8

Å, respectively. This water molecule further established two additional hydrogen bonds with

the side chains of K86 and E100 (Fig 4D). The introduction of isoleucine at position 96 in the

FGF2 mutants likely dictates the orientation of the T98 side-chain. Consequently, the hydro-

phobic replacements of surface-exposed cysteines enhanced the stability of FGF2, as this fos-

tered extensively hydrophobic interactions with adjacent residues.

Assessment of stability of FGF2 mutants

To investigate how susceptible FGF2 mutants are to thermal denaturation, the FGF2-contain-

ing solutions were incubated at 45 ˚C for 7 days. When proteins are denatured, they form

aggregates. The heat-treated FGF2 solutions were centrifuged to remove protein aggregates,

and then supernatants were analyzed using SDS-PAGE (S4 Fig). The thermal stability was

assessed by the portion of soluble FGF2. As shown in S4 Fig, the soluble wild type disappeared

after one day, while the D28E/S137P-harboring FGF2 mutants maintained soluble in a consid-

erable amount for 7 days. Furthermore, FGF2-M1 and FGF2-M2 exhibited higher thermal sta-

bility than FGF2 D28E/S137P.

For Tm value comparison among the FGF2 mutants, we monitored their thermal denatur-

ation curves within the temperature range of 20–100 ˚C [57]. As depicted in Fig 5, the Tm val-

ues of FGF2 S137P (53.2 ± 0.9 ˚C) and FGF2 D28E/S137P (54.8 ± 0.3 ˚C) were higher than

that of the wild type (50.9 ± 0.0 ˚C). Meanwhile, FGF2 D28E exhibited a similar Tm value of

51.9 ± 0.8 ˚C to the wild type. Regarding mutations involving surface-exposed cysteines (C78

and C96), the replacements with alanine or serine did not yield a significant enhancement in

the thermal stability of FGF2. The Tm values of FGF2 mutants with C78A/C96A (52.8 ± 0.5

˚C) and C78S/C96S (49.3 ± 0.5 ˚C) were slightly higher and lower, respectively, compared to

that of the wild type. On the other hand, FGF2 mutants harboring C78L/C96I and C78I/C96I

displayed Tm values of 52.7 ± 0.1 ˚C and 54.8 ± 0.3 ˚C, respectively. Consequently, the combi-

nation of four-point mutations in FGF2-M1 (55.2 ± 0.6 ˚C) and FGF2-M2 (55.8 ± 0.6 ˚C)

yielded Tm values around 5 ˚C higher than that of the wild type (Fig 5). This suggests that the

combined impact of these mutations synergistically contributes to enhancing the thermo-sta-

bility of FGF2 against heat-induced stress.
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To evaluate the protease resistance of FGF2 mutants, the proteins were incubated for 3

hours at 37 ˚C using 12 proteases. The protease-treated FGF2s were centrifuged, and aggre-

gates and cleaved peptides were excluded from the analysis. The FGF2 mutants showed differ-

ences in protease resistance when tested with trypsin (cleavage site: lysine or arginine, except

when either is followed by proline), subtilisin (cleavage site: uncharged residue), proteinase K

(cleavage site: aliphatic and aromatic amino acids), and actinase (cleavage site: glutamic or

aspartic acid) out of the 12 proteases tested (S5 Fig). These four proteases, along with two

other proteases—elastase (cleavage site: glycine, alanine, and valine) and papain (cleavage site:

leucine or glycine)—which showed minor differences in digestion, were selected. SDS-PAGE

analysis after treatment with these proteases was performed three times (Fig 6 and S4 Table).

In protease resistance experiments, undigested FGF2 was visualized using an SDS-PAGE gel

and presented as a bar graph. Also, in cases where the results of protease-treated FGF2 were

statistically significant (p< 0.05), they were marked with an asterisk (*) in Fig 6. In the

Fig 5. Thermal denaturation curve measured by CD experiments. Each graph displays the temperature-dependent

spectral change at 228 nm. FGF2 and the mutants are represented by different colored lines and symbols, as shown in

the right box of the figure.

https://doi.org/10.1371/journal.pone.0307499.g005

Fig 6. Comparison of protease digestion profiles of FGFs. Six different proteases were mixed with FGF2 variants

(FGF2, FGF2 D28E, FGF2 C78S/C96S, FGF2-M1, and FGF2-M2). The protease reaction was conducted at 37 ˚C for 3

hours. The remaining proteins identified in the SDS-PAGE gel were quantified using the ImageJ program. The

quantified values were presented as a bar graph. Cleaved proteins were excluded from quantification. The horizontal

axis of the graph represents the following order: unincubated FGF2, incubated FGF2, trypsin, subtilisin, protease K,

actinase, elastase, and papain. The vertical axis of the graph represents the percentage of protease digestion (N = 3,

average ± SD). The statistical differences at each protease were performed by one-way ANOVA with Tukey’s post hoc

test. Asterisk (*) indicates P< 0.05.

https://doi.org/10.1371/journal.pone.0307499.g006
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experiment, unincubated FGF2 and incubated FGF2 without protease were used as controls.

FGF2 treated with elastase and papain did not show a significant statistical difference. How-

ever, results from trypsin and actinase treatments indicated that FGF2-M1 and FGF2-M2

exhibited higher protease resistance compared to FGF2, FGF2 D28E, and FGF2 C78S/C96S.

Subtilisin and proteinase K treatment results revealed that FGF2 C78S/C96S displayed lower

protease resistance than FGF2 and FGF2 D28E, while FGF2-M1 and FGF2-M2 showed

enhanced protease resistance compared to FGF2 and FGF2 D28E. These results suggest that

FGF2-M1 and FGF2-M2, which contain hydrophobic replacements for surface-exposed cyste-

ines, exhibit improved protease resistance compared to the FGF2 wild type and a serine-substi-

tuted mutant.

To confirm the thermal stability of the FGF2 mutants by biochemical methods, we used a cell

proliferation assay in BALB3T3 cells to monitor residual biological activity after thermal incuba-

tion. The activities of FGF2-M1 and FGF2-M2 were similar to that of the wild type (Fig 7A and

Fig 7. Cell proliferation activity of FGF2 mutants. (A) BALB3T3 cells were treated with 0.3 ng/mL FGF2s for 40 h,

and then the proliferation assay was performed using cell counting kit-8. The proliferation levels of non-treated cells

(Control) were set to 1, and that of the treated cells was calculated relative to this value (n = 4, average ± SD). The

statistical differences were analyzed using the one-way ANOVA, followed by Tukey’s post hoc test. *P< 0.05 vs.

Control. n.s., not significant. (B, C) After incubation of FGF2s at 37 ˚C (B) or 45 ˚C (C) for the indicated duration,

their residual activity was determined using the cell proliferation assay. BALB3T3 cells were treated with 0.3 ng/mL

FGF2s for 40 h, followed by the cell proliferation assay. The proliferation levels of non-incubated FGF2 at 37 ˚C (B) or

45 ˚C (C) were set to 100%, and that of the treated cells was calculated relative to this value (n = 3, average ± SD). Non-

linear regression was performed using GraphPad Prism 9.4, and the best-fit non-linear regression curve is depicted.

The statistical differences at each time point were calculated using one-way ANOVA followed by Tukey’s post hoc test.

*P< 0.05. The dotted lines indicate half-levels of proliferation and their incubation day.

https://doi.org/10.1371/journal.pone.0307499.g007
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S5 Table), indicating that the mutation did not change the biological activity of FGF2. At 37 ˚C,

the cell proliferation activity of the FGF2 wild type decreased with incubating duration, wherein

the activities of FGF2-M1 and FGF2-M2 were maintained (Fig 7B and S5 Table). At 45 ˚C, the

activity of the wild type almost disappeared after two days, but the activities of FGF2-M1 and

FGF2-M2 were maintained at more than 80% (Fig 7C and S5 Table). The durations for reaching

50% residual activity of FGF2-M1 (4.92 day) and FGF2-M2 (4.58 day) were increased to 8.8-fold

and 8.2-fold, respectively, compared to the wild type (0.56 day). These results suggest that the

FGF2 mutants exhibit improved thermal stability while retaining their biological activities.

Conclusion

Protein stability is a critical factor in pharmaceutical and industrial fields. Factors that affect

protein stability include temperature, proteolytic cleavage, ionic strength, etc. Due to these fac-

tors and the distinct characteristics of each protein, it is difficult to increase stability through a

common engineering strategy. Presenting various approaches to improve the stability of FGFs

could have a positive impact on pharmaceutical and industrial fields. In particular, FGF2 plays

diverse biological roles and has emerged as a potential therapeutic target for several diseases.

However, its practical application has been hindered by its short half-life. Previous research on

FGF2 predominantly focused on enhancing its thermo-stability for applications in cell cultiva-

tion media such as FGF2-G3 including nine-point mutations [12, 13, 16, 17]. However, we

paid attention to showing the different strategies. In our approach, novel mutation sites

(S137P and D28E) were introduced into FGF2 by utilizing genomic data from marine organ-

isms and demonstrating enhanced resistance to glutathione. Additionally, the surface-exposed

cysteines of FGF2 were replaced with energetically optimized hydrophobic residues (C78L,

C78I, and C96I) through in silico calculations. We could figure out the structural effects of

each mutation on improving the stability of the FGF2 mutants (Fig 4). Although 22 structures

of FGF2 have been deposited in the Protein Data Bank, there was no report describing how

mutations contributed to the stability of FGF2 at the atomic level. Thus, this study could pro-

vide structural insights into engineering strategies to improve the thermal stability of FGF2.

To enhance the therapeutic potentials of protein, genomic data from organisms residing in

diverse habitats, like marine environments, have been utilized [25]. Therefore, we investigated

whether the thermal stability of FGF2 can be improved by adopting marine genome informa-

tion. Initial findings revealed that human and whale FGF2s had highly similar sequence identi-

ties, except for only two residues at positions 121 and 137 among 155 residues. Subsequently,

the S137P mutation demonstrated an improvement in FGF2’s thermo-stability, as determined

by SDS-PAGE and CD experiments (Figs 1B, 1C and 5). It was also identified through the crys-

tal structures of FGF2-M1 and FGF2-M2 (Fig 4); the substituted proline residue at position

137 forms CH-π interactions with W123 to stabilize the β10–β11 hairpin, a portion of the hep-

arin-binding site of FGF2. Since HSPG is essential for the activity of FGF2, it is important to

stabilize the heparin binding site. For this purpose, strategies have been developed in clinical

applications to maintain the activity of FGF2 by adding heparin or conjugating it with syn-

thetic glycosaminoglycans (GAGs) [14]. It has also been reported that GAGs, including hepa-

rin, contribute to the stabilization of FGF [64, 65]. Notably, heparin binding to FGF2

increased Tm by 22.2 ˚C [66]. As shown in the cell proliferation assay (Fig 7), the activities of

FGF2-M1 and FGF2-M2 were maintained 8.2~8.8-fold longer than that of the wild type in the

presence of heparin. Taken together, these results suggest the potential of the FGF2 variants

for further optimization and exploration of synergistic effects with other stabilizing agents or

modifications.
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Disulfide bonds play an important role in protein folding and stability by pairing cysteines

[67]; however, mismatching cysteines can lead to misfolding and aggregation [68]. Since two

cysteines on the FGF2 surface caused protein oligomerization [37], we treated FGF2 with glu-

tathione to reduce the oligomerization. However, the addition of GSH or GSSG fragmented

FGF2 into a fixed pattern, which was cleaved after the aspartic acid residues. The introduction

of D28E made FGF2 resistant to cleavage and affected its thermo-stability in CD results as well

(Fig 5). In addition, the double mutation of D28E/S137P yielded a more effective enhancement

in the thermo-stability compared to the wild type or the introductions of each single mutation,

indicating a synergistic effect of the point mutations. Substitution of cysteine with serine or

alanine, which has structural similarity without the chemical properties of cysteine, has gener-

ally been employed for structural or functional studies of proteins. It has been reported that

the mutation of Cys! Ser also stabilized FGF2 by preventing its aggregation [38]. However,

our strategy was not only to prevent aggregation by surface-exposed cysteines but also to ener-

getically optimize adjacent residues. The residues with the best results were selected by using

SDM and Discovery Studio 2019. It suggested that leucine or isoleucine at positions 78 and 96

were more energetically stabilized than the introduction of alanine or serine (Tables 2 and 3).

The modification of C78 and C96 with leucine or isoleucine did not form oligomers and exhib-

ited higher Tm values than other FGF2 mutants, supported by SDS-PAGE and the CD analysis

(Fig 5 and S4 Fig). From a structural perspective, C78L, C78I, and C96I of the FGF2 mutants

extensively form hydrophobic interactions with adjacent residues (Fig 4C and 4D). Therefore,

the Cys! Ala or Ser substitutions showed no better improvement in thermal stability of

FGF2 than our hydrophobic replacements. Notably, our structural studies and CD measure-

ments explained the reason why the hydrophobic replacements showed more effectiveness in

enhancing the stability of FGF2 than other mutations (Figs 4 and 5). These results suggest that

the energy optimization moiety may vary depending on the in silico method and structural

analysis should be performed together.

Consequently, FGF2-M1 and FGF2-M2 harboring the four-point mutations were obtained

by combining bioinformatics, molecular thermodynamics, and molecular modeling. They

exhibited higher thermo-stability than other FGF2s, which was further supported by the results

of SDS-PAGE, ~5 ˚C higher Tm values, and 8.2 ~ 8.8-fold longer cell proliferation activity at 45

˚C than the FGF2 wild type. Additionally, FGF2-M1 and FGF2-M2 with introduced hydro-

phobic residues showed improved resistance to the limited proteolysis. FGF2 mutants were

reacted with 12 different proteases for 3 hours. FGF2-M1 and FGF2-M2 showed enhanced

resistance to four proteases (trypsin, subtilisin, protease K, and actinase), while the wild type,

FGF2 D28E, and FGF2 C78S/C96S showed lower resistance to these proteases (Fig 6). This

means that FGF2-M1 and FGF2-M2, which contain novel mutation sites and hydrophobic

replacements for cysteines, show higher resistance against protease. Combined with the struc-

tural descriptions, our strategies not only contributed to improved thermal stability but also

exhibited more enhanced resistance to protease compared to the wild type. Additionally,

FGF2-M1 and FGF2-M2 also affected protein stability and increased protein yield (S6 Fig).

The yields of FGF2, FGF2-M1, and FGF2-M2 were 27.48%, 46%, and 36.13% respectively.

Thus, these findings may help to further improve our understanding of developing FGF2 in

pharmaceutical and industrial applications.

Supporting information

S1 Table. Value of reverse-phase HPLC in Fig 1.

(DOCX)
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S2 Table. Data collection and refinement of FGF2 crystals.

(DOCX)

S3 Table. The values of Tm for the FGF2 wild type and mutants showed in Fig 5.

(DOCX)

S4 Table. The values of protease resistance for the FGF2 wild type and mutants showed in

Fig 6.

(DOCX)

S5 Table. The values of protease resistance for the FGF2s showed in Fig 7.

(DOCX)

S1 Fig. N-terminal sequences of pFGF2 and FGF2. pQE80 and pET17b for expressing

pFGF2 (residue 1–155) and FGF2 (residue 10–155), respectively, are indicated to the left of the

corresponding sequence. The residue number is shown above the sequence.

(TIF)

S2 Fig. Analysis of N-terminus of FGF2 fragments. N-terminal sequences of FGF2 protein

fragments after the addition of glutathione were determined by GelNrich-coupled mass spec-

trometry. The sequence in the top black box represents the complete sequence of pFGF2.

FGF2 cloned into the pQE80 vector has 25 additional sequences, including a His tag at the N-

terminus. The graph on the right contains sequence information confirming the N-terminal

sequence using the GenNrich method. The GenNrich method enriches N-terminal peptides

following trypsin digestion of a protein or a fragment (red bar). The table indicates the semi-

tryptic peptides identified. In particular, the PSM values of the peptide starting at amino acid

15 (band 2) (GGSGAFPPGHFKDPKR) and the peptide starting at amino acid 57 (PHIKLQL-

QAEER) were the most abundant. The starting sequences of bands 2 and 3 identified in the

SDS-PAGE gel are indicated by red arrows in the sequence above the graph on the right.

(TIF)

S3 Fig. Structural analysis of the D28E mutation in the N-terminal loop. (A) Superimposi-

tion between the FGF2-M1 structure and the NMR structure (PDB code: 1BLA). Their N-ter-

minus are shown as spheres. For clarity, only the N-terminal loop (residues 1–29) of the NMR

structure is shown as black, while the full structure of FGF2-M1 is shown with B-factor repre-

sentation. The color spectrum (red to blue) represents a range of B-factor values (43.63 to

9.02), which corresponds to a range of B’-factor values (3.38 to -1.28). The D28E mutation in

FGF2-M1 is shown as a pink stick with a label. (B) Superposed model structure of the

FGF2-M1/FGFR1c complex. From the template (PDB code: 1CVS), D28 is shown as a white

stick with a label and FGFR1c is also depicted in a grey surface representation. The distance

between the E28 side-chain and the surface of FGFR1c is indicated by a black dashed line.

(TIF)

S4 Fig. Thermal stability of FGF2 mutants. The FGF2 mutants were incubated at 45 ˚C for 7

days and checked for thermal stability using 15% SDS-PAGE.

(TIF)

S5 Fig. Comparison of protease resistance of FGF2 mutants. FGF2 variants (FGF2, FGF2

D28E, FGF2 C78S/C96S, FGF2-M1, FGF2-M2) were mixed with 12 different proteases and

quantified using SDS-PAGE gel. Protease reactions were performed at 37 ˚C for 3 h. M: pro-

tein size marker, Lanes 1 and 2 represent unincubated and incubated protein samples, respec-

tively. Lines 3: trypsin, 4: elastase, 5: chymotrypsin, 6: papain, 7: subtilisin, 8: endoproteinase

Glu-C, 9: protease K, 10: clostripain (endoproteinase-Arg-C), 11: pepsin, 12: thermolysin, 13:
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bromelain, 14: actinase.

(TIF)

S6 Fig. Comparison of FGF2 yield. Calculation of (A) FGF2, (B) FGF2-M1, and (C)

FGF2-M2 concentrations in supernatants of crude extracts by western blot. (D) Using the

Western blot method, I calculated the standard curves for S6A-S6C Fig. To determine the peak

levels of FGF2, I used the supernatant diluted 1/24 from the lysed cells. (E) production com-

parison table for each stage of FGF2s purified in two stages.

(TIF)
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