
INTRODUCTION

In daily life, we principally detect and interpret our environment 
with five sensory modalities, namely visual, auditory, olfactory, 
tactile, and gustatory. Multimedia content predominantly targets 
two human senses, i.e., visual and auditory senses. In an attempt to 
expand sensory engagement, olfactory stimulation has been added 
to multimedia content [1-6]. Particularly, the addition of odors to 

multimedia in the film industry has been increasing each year [7-
9]. Moreover, adding olfactory stimuli to multimedia content can 
enrich the multimedia experience of individuals. In previous mul-
timedia studies using olfactory stimuli, these stimuli enhanced the 
sense of multimedia reality [10, 11]. 

Odors that match objects in scenes based on categories have been 
widely used to select olfactory stimuli for multimedia [2, 3, 10-15]. 
However, including all odors corresponding to every object in a 
scene for viewers is impractical. As an alternative, researchers have 
suggested reducing the number of odors by selecting representa-
tive ones based on their categories [16]. Selecting representative 
odors based on odor categories could reduce the number of odors 
offered in scenes or replace odors with cheaper and safer odors. 
However, similar odors in an identical category might not match 
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identical objects. Thus, odors can still induce different viewer re-
sponses to multimedia. There is still little evidence that odors in 
identical categories could similarly induce user responses to multi-
media.

Unlike multimedia studies with olfactory stimuli, there have been 
several studies on the olfaction of odors in similar categories [17-
21]. Odors in similar categories are similarly perceived in human 
behavior tests. Neuronal signals in the piriform cortex (PC) and 
orbitofrontal cortex (OFC) induced by odors in similar categories 
are more similar than those in different categories [17, 18]. These 
findings suggest that odors within comparable categories poten-
tially elicit similar behavioral and neuronal responses compared to 
those in different multimedia categories.

However, upon simultaneously offering stimuli of different 
modalities, the response is not merely the sum of neuronal activi-
ties elicited by each stimulus. In previous multimodal functional 
magnetic resonance imaging (fMRI) and electroencephalography 
(EEG) studies [13, 22-25], neuronal activities were higher upon 
simultaneously offering stimuli than that on offering them sepa-
rately. This tendency was more noticeable while matching stimuli 
from different modalities. These studies implied that there is an in-
teraction among stimuli affecting different modalities in the brain. 
However, it is unclear if odors belonging to comparable categories 
can induce similar neuronal activity as that elicited from videos.

Additionally, in multimedia studies, researchers have widely used 
EEG and the analysis of frequency bands (delta, theta, alpha, beta, 
and gamma) to measure neuronal responses in viewer [13, 26-
32]. The emotional responses of multimedia viewers are related to 
each frequency band. In addition, a multimedia study with odors 
demonstrated increased delta, theta, and alpha bands of EEG data 
upon offering the video with a matching odor than that presented 
without an odor [13]. Specifically, the theta band of EEG data is as-
sociated with olfactory processing [33, 34] in olfactory studies. 

Therefore, our purpose was to examine if odors belonging to 
similar categories in the video could be comparable in behavioral 
congruency and the five frequency bands (delta, theta, alpha, beta, 
and gamma) of EEG data than those belonging to different cat-
egories in the video, as a matching method for odors with objects 
in videos. To this end, we selected four odors and two videos based 
on a previous study [16]. We aimed to measure the congruency 
between odors and videos for matching the odors with videos. 
Moreover, the congruency was related to the senses of multimedia 
reality [10, 11]. To accomplish these objectives, we planned to con-
duct EEG experiments and analyze event-related spectral pertur-
bations (ERSP) to measure brain activities with frequency bands, 
examining how these activities change over time during the video 
presentation [13].

MATERIALS AND METHODS

Participants

We recruited fifty-six participants (29 men and 27 women) aged 
between 18 and 23 years, with a mean age of 20.79 (SD: 1.25), 
from the Daegu Gyeongbuk Institute of Science and Technology. 
Three participants were excluded due to technical issues with the 
olfactometer during tests, resulting in a total of 53 participants 
for this study. All participants were right-handed, passed the 
Sniffin’ Sticks test [35] to confirm no olfactory dysfunction, and 
provided written informed consent. The study received approval 
from the Institutional Review Board (IRB) of DGIST (DGIST-
180524-HR-005-03), ensuring adherence to relevant guidelines 
and regulations [36].

Videos

Two 10-second videos from the LIRIS database were utilized 
[37-41]. The first depicted an adult woman and a girl with flowers 
(flower video, FV), while the second showed a man with a cup of 
coffee on a table (coffee video, CV) (Fig. 1a). Participants, seated 
comfortably, watched the clips on a 24-inch LED screen positioned 
approximately 60 cm away.

Odor preparation and delivery

Lavender oil (CAS 8000-28-0, Lot #BCBM0576V), geraniol 
(CAS 106-24-1, Lot #MKBW0796V, Sigma), 2-furanmethanethiol 
(CAS 98-02-2, Lot #SHBH5642, Sigma), and 2-ethyl-3,5-dimeth-
ylpyrazine (CAS 27043-05-6, Lot #STBF8794V, Sigma) were used 
in this study (Fig. 1a). All four odorants were diluted in mineral oil 
(Sigma, lot # MKBZ6778V). Lavender was diluted to 0.005% (v/
v), geraniol was diluted to 50%, 2-furanmethanethiol was diluted 
to 0.0004%, and 2-ethyl-3,5-dimethylpyrazine was diluted to 0.5%. 
The concentrations of the odors were chosen to ensure that par-
ticipants perceived the odors at a similar intensity level (Fig. S1a, b). 

The rationale for selecting these specific odors was based on pre-
vious studies. Lavender and geraniol were chosen as representative 
floral scents due to their frequent use in olfactory research [42, 
43]. For the coffee odors, 2-furanmethanethiol and 2-ethyl-3,5-
dimethylpyrazine were selected as key components contributing 
to the characteristic aroma of coffee [44, 45].

 Odorants were delivered differently based on the experiment. In 
the category survey and discrimination tests, odors were offered 
by bottles. in the EEG recording test, a custom-built olfactometer 
delivered the odorants. The olfactometer was linked to the mask 
(without cannula) worn by the participants. When the olfactome-
ter offered odors, airflow speed was 5.18 m/s for lavender, geraniol, 
and 2-ethyl-3,5-dimethylpyrazine and 10.35 m/s for 2-furanmeth-
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anethiol. The airflow rates were selected to ensure that participants 
perceived the odors at a similar intensity level. The odors were de-
livered during the first 5 s at the beginning of the videos. Lavender 
and geraniol (flower odors) were named FO1 and FO2, respec-
tively [42, 43]. 2-furanmethanethiol and 2-ethyl-3,5-dimethyl pyr-
azine (coffee odors) were named CO1 and CO2 in this study [44, 
45] (Fig. 1a). All odors were given to participants with separated 
tubes to avoid contamination of odors by each other.

Experimental procedure

All the tests were conducted in a ventilated and soundproof 
chamber. The participants were instructed to maintain natural res-
piration during the tests. Our experiments consisted of four steps: 
a category survey, discrimination test, EEG recording test, and 
congruency survey (Fig. 1b). Before the EEG recording test and 
congruency survey, a category survey and discrimination test for 
the four odors were conducted as pilot tests to determine whether 
the four odors could be differentiated into two categories to avoid 
repetition effects in EEG recording test and congruency survey. 
For the pilot test, there were separately recruited thirteen partici-

pants (8 men, 5 women) who took part in the category survey and 
discrimination test. 

In the category survey, four odors were offered to the partici-
pants in bottles, and they could freely smell the odors during the 
survey. Participants marked the categories of the odors among 19 
categories (citrus, fruit, coffee, flower, nut, green, tree, root, herb, 
sweet, powdery, creamy, soap, spicy, musk, mint, watery, tropical 
fruits, and others) on a 9-point Likert scale questionnaire. The 
cumulative scores of the 19 categories across the four odors were 
calculated to examine which odor categories got the highest scores 
among participants. 
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Next, the discrimination test was conducted using the ‘three 
bottle test.’ Three odors in the bottles were randomly offered to the 
participants. Participants were asked to choose the most different 
category of odor among the three odors. Four possible combina-
tions of odors were tested for each participant. The accuracy of 
the test was calculated by dividing the number of trials in which 
participants chose odors in different categories by the whole trial.

In the EEG recording test and congruency survey, 40 participants 
were divided into three groups depending on the odors to avoid 
repetition of viewing the same videos (Fig. 1a). In group 1, there 
were 13 participants (7 men and 6 women). FO1 was offered with 
FV, and CO1 was offered with CV. Group 2 included 14 partici-
pants (7 men, 7 women). FO2 and CO2 were applied to FV and 
CV, respectively. In group 3, there were 13 participants (5 men and 
8 women). CO1 was offered with FV, and FO1 was offered with 
CV. Therefore, Groups 1 and 2 were given the flower odor with the 
FV and the coffee odor with the CV. However, Group 3 was given 
the coffee odor with the FV and the flower odor with the CV.

During the EEG recording test, the participants sat on a chair 
in the chamber and wore a mask linked to the olfactometer. Par-
ticipants’ respiration was monitored using a respiration belt. The 
odors were delivered to the participants immediately after an 
inhalation peak for 5 s, and the video was started simultaneously 
and offered for 10 s. After the end of the video, there was a rest pe-
riod of 30 s before the next round of testing (Fig. 1c). Two sessions 
were conducted for each of the two videos for each participant. All 
videos in the sessions were presented once, and the participants 
watched FV and CV once.

After the EEG recording test, participants were asked to evaluate 
the congruency between the videos and odors. Participants rated 
congruency in percentages (%) from 0 to 100 where 0% repre-
sented “not congruent” and 100% represented “congruent” [46]. In 
addition, participants evaluated the pleasantness and intensity of 
the odors on a 9-point Likert scale questionnaire.

Electroencephalogram recording

An EEG was recorded during video and odor stimulation. EEG 
signals were digitized using an EEG amplifier (ActiveTwo; Bi-
oSemi, Amsterdam, the Netherlands). EEG signals were recorded 
with Ag/AgCl scalp electrodes from 64 positions based on the in-
ternational 10/20 system (Fp1, AF7, AF3, F1, F3, F5, F7, FT7, FC5, 
FC3, FC1, C1, C3, C5, T7 (T3), TP7, CP5, CP3, CP1, P1, P3, P5, P7, 
P9, PO7, PO3, O1, Iz (inion), Oz, POz, Pz, CPz, Fpz, Fp2, AF8, AF4, 
Afz, Fz, F2, F4, F6, F8, FT8, FC6, FC4, FC2, FCz, Cz, C2, C4, C6, T8 
(T4), TP8, CP6, CP4, CP2, P2, P4, P6, P8, P10, PO8, PO4, and O2) 
on a BioSemi head cap (64 ch, BioSemi). Eye blinks (electrooculo-
graphic signals) were measured at approximately 2 cm above the 

outer canthus of the right eye. The sampling rate was 2,048 Hz, and 
the signals were analog-filtered via a 0.15 Hz high-pass filter and a 
100 Hz low-pass filter. The 0.15 Hz high-pass filter was the default 
configuration of the BioSemi system, used to remove slow drifts in 
the signal while retaining the relevant neural activity. A conductive 
electrolyte gel was used for a stable connection between the scalp 
and electrodes. The impedance of each electrode was less than 10 
kΩ. Electrophysiological activity was referenced to the common 
average of all channels.

Electroencephalogram preprocessing

EEG data were downsampled from 2,048 to 512 Hz. Then, an 
offline bandpass filter (0.5~50 Hz) was used to minimize the noise 
caused by muscle artifacts and skin potential. The bandpass filter 
was applied with a cutoff frequency (-6 dB point) of 0.25 to 50.25 
Hz after extracting epochs, and the type of filter applied was an 
FIR (finite impulse response) filter. The default order were used 
for the FIR filter in EEGLAB which is determined by internal opti-
mization routines, which select an appropriate order based on the 
sampling frequency of the data and the specified cutoff frequen-
cies [47]. The EEG data were segmented into epochs depending 
on the two videos. Each epoch had a 5 s pre-stimulus period and 
a 10 s post-stimulus period. Data from -5 s to 0 s in each epoch 
were used for baseline correction. To extract the five frequency 
bands (delta: 1~3 Hz, theta: 4~8 Hz, alpha: 8~13 Hz, beta: 13~30 
Hz, gamma: 30~50 Hz) from each channel of the EEG data (0~10 s) 
across time, analysis of event-related spectral perturbations (ERSP) 
was used for each epoch by EEGLAB. Wavelet cycles were 3 and 0.5, 
respectively. The time points were set at 400. The window size of 
each time point was 3,341.8 ms.
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where CHn is the electrode number of the EEG, Tm is the 
ERSP time point, I is the start point, and I I+N-1 is the endpoint 
of ERSP in a specific frequency band (i.e., delta, theta, alpha, beta, 
and gamma). For instance, ERSPCH1-T1 [1] means “first frequency 
point of ERSP value in the electrode channel 1 and time point 1” 
and ƒCH1-T1 means “ERSP value in the electrode channel 1 and time 
point 1”.
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CO2), and the frequency band is one of the frequency bands (i.e., 
delta, theta, alpha, beta, gamma) of the EEG data. P is the partici-
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pant. For example, FFO1-theta-p1 means “ERSP data of participant 1 in 
theta band”.

Clustering analysis design and procedure

After EEG preprocessing, we conducted clustering methods to 
examine which frequency bands of ERSP data were more similar 
depending on the categories of odors in each video. Agglomera-
tive hierarchical clustering (AHC) and K-means clustering were 
used as clustering methods. AHC can easily couple the data from 
the closest distances and show the closest data pairs. Furthermore, 
AHC is faster than other machine learning methods because AHC 
does not need additional training steps. These reasons were why 
we used AHC to analyze our ERSP data. In addition, K-means 
clustering was also conducted to check whether our clustering re-
sults of EEG data were restricted to AHC. AHC was conducted on 
the ERSP data of 64 channels for all participants. The ERSP data of 
the five frequency bands from 0 s to 10 s were used in this analysis. 
This was done to examine which frequency bands of ERSP data 
were more similar depending on the categories of odors in each 
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where HCRRandom is the number of the first pair during 1,000 
repetitions of the “random sampling group condition.” In the “ran-
dom sampling group condition,” the ERSP data of each participant 
could be shuffled into other groups. The random sampling group 
was the control group. The number of first odor pairs in the AHC 
results during the 1,000 repetitions was calculated because the 
first pair of AHC results showed the most similarity. We examined 
whether ERSP data induced by videos and odors belonging to 
similar categories were similar to those induced by videos and 
odors from different categories. The cumulative moving average 
(CMA) during all repetitions of the AHC was drawn to check that 
1,000 repetitions of AHC were sufficient for counterbalancing 
(Fig. S2). In CMA, the closest odor pair ratio was calculated, and 
the number of closest odor pairs was calculated as the number of 
repetition trials increased. Furthermore, K-means clustering was 
also conducted with the same clustering design as AHC to check 
whether our clustering results of EEG data were restricted to AHC. 
The K value was 2, and the number of odor pairs was counted in-
stead of the first odor pair.

Support vector machine analysis design and procedure

We conducted support vector machine (SVM) analysis to iden-
tify which frequency bands of ERSP data were most similar across 
odor categories within each video. SVM was applied to the ERSP 
data, as with the clustering methods, to evaluate patterns related to 
odor similarity. To optimize the model, we used grid search with 
five-fold cross-validation on the training data, allowing us to select 
the best parameters for improved accuracy on test data.

For the FV condition, FO1 and CO1 were used as training data 
with labels FO1=1 and CO1=2, while FO2 served as test data 
to determine its classification accuracy under label 1. In the CV 
condition, CO1 and FO1 were used as training data with labels 
CO1=1 and FO1=2, and CO2 was reserved as test data, with accu-
racy evaluated by its classification under label 1.

In the random sampling condition, participants’ data from FO1, 
FO2, and CO1 for FV, or CO1, CO2, and FO1 for CV, were ran-
domly assigned to either training or test sets. The SVM model 
used regularized support vector classification with the best pa-
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rameters identified through grid search. The highest-performing 
model from cross-validation and grid search was subsequently 
applied to test data to evaluate classification accuracy.

Statistics

The results are presented as mean±SEM. Statistical significance 
is marked as * for p<0.05, ** for p<0.01, and *** for p<0.001. The 
accuracy of all participants in the odor discrimination test was 
a factor of the one-sample Wilcoxon signed rank test to check 
whether participants chose odors belonging to a different category, 
not randomly (33.3%). Congruency between videos and odors 
of all participants, depending on the group, was the factor for 
Kruskal-Wallis test for each video. Dunn's multiple comparison 
test was conducted as a post-hoc test, and the correction level 
for the Dunn’s multiple comparison test was 0.017(0.05/3). We 
used Dunn’s multiple comparison test because it is a widely used 
method, like false discovery rate, and has the strictest standard 
for post hoc tests. In addition, the original degrees of freedom, H 
values, p values, and epsilon-squared effect sizes (ε2) are reported. 
The chi-square test was used to analyze the number of first pairs 
of AHC results and K-means clustering results in each band across 
1,000 repetitions, depending on the group. The original degrees of 
freedom, χ2 values, and p-values are reported. Bonferroni’s test was 
conducted as a post-hoc test, and the correction level for the Bon-
ferroni correction was 0.017(0.05/3).

Software

Electrophysiological data were analyzed using MATLAB 2020a 

in conjunction with toolboxes, including EEGLAB [47]. MATLAB 
was used for statistical analysis.

RESULTS

Four odors could be grouped into two categories: flower, 

coffee

To assess if the four odors exhibited differences in categories 
compared to prior studies [42, 43, 45, 48], we initially conducted 
a category survey, cumulatively calculating participants’ scores 
in each category. For FO1, the categories of herbs (84), flowers 
(48), and green (31) were highly scored. For FO2, the categories 
of herbs (67), flowers (48), and citrus (43) were highly scored. The 
categories of flowers and herbs were commonly scored highly in 
FO1 and FO2. On the other hand, for CO1, the categories of coffee 
(66), sweet (35), and spicy (27) were highly scored. For CO2, nut 
(48), coffee (28), sweet (24), and root (24) were highly scored. The 
coffee and sweet categories were commonly highly scored in CO1 
and CO2. The results showed that the four odors were principally 
grouped into two groups (Fig. 2a). Furthermore, to check whether 
participants could differentiate odors in different categories from 
those in similar categories, a discrimination test was conducted 
(Fig. 2b). The accuracy of choosing odors in different categories 
among the three odors was 81.8%, which was significantly higher 
than the accuracy of random choice (33.3%) (W [12]=91.0, 
p<0.001; Wilcoxon signed rank test). 
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High congruencies were observed between videos and 

odors in similar categories, but not odors in different  

categories

To examine whether congruencies between videos and odors 
differed depending on the categories of odors, we compared the 
congruency of odors belonging to similar categories and different 
categories with videos. Congruencies between the FVs and odors 
differed depending on the categories of odors (H[2|37]=8.51, 
p=0.0142, ε²=0.18; Kruskal-Wallis test) (Fig. 3a). The congruency 
of CO1 was significantly lower than that of FO2 (p=0.02, Dunn’s 
multiple comparison test). The congruency of CO1 showed a 
tendency to be lower than that of FO1 (p=0.06, Dunn’s multiple 
comparison test). The congruence of FO1 was not significantly 
different from that of FO2. Congruencies between CVs and odors 
differed depending on the categories of odors (H[2|37]=19.01, 
p<0.001, ε²=0.46; Kruskal-Wallis test) (Fig. 3b). The congruen-
cies of CO1 (p<0.001, Dunn’s multiple comparison test) and CO2 
(Z=0.03, p=0.03, Dunn’s multiple comparison test) were signifi-
cantly higher than those of FO1. The congruency of CO1 was not 
significantly different from that of CO2. The intensity scores of 
the odors in the FV (H[2|37]=0.15, p=0.9255, ε²=-0.05; Kruskal-
Wallis test) (Fig. S1a) and CV (H[2|37]=1.99, p=0.3690, ε²=-0.00; 
Kruskal-Wallis test) (Fig. S1b) were not significantly different. 
The pleasantness scores of the odors in the FV (H[2|37]=3.35, 
p=0.1871, ε²=0.04; Kruskal-Wallis test) (Fig. S1c) were not signifi-
cantly different. The pleasantness scores of the odors in the CV 
H[2|37]=5.95, p=0.0511, ε²=0.11; Kruskal-Wallis test) (Fig. S1d) 
show a tendency to be different.

The ERSP data of the videos with the odors was clustered 

depending on the categories of odors

To examine whether the ERSP data of the videos with odors are 
clustered according to the categories of odors similar to the con-
gruency test, each frequency band of the ERSP data of three odors 
in each video was clustered by AHC. In the representative figure of 
ERSP (Fig. 4), the x-axis represents time, and the y-axis represents 
frequency. In the FV, the clustering number in all frequency bands 
was significantly different depending on the categories of odors in 
“within group condition,” not in “random sampling group condi-
tion” (Table 1; delta: X2[2]=312.02, p<0.0001, theta: X2[2]=746.61, 
p<0.0001, alpha: X2[2]=2000.03, p<0.0001, beta: X2[2]=1474.62, 
p<0.0001, gamma: X2[2]=1452.28, p<0.0001). In the delta, the 
clustering number of the FO2–CO1 pair was above the random 
level (333.33) and greater than that of the FO1–FO2 pair (p<0.001, 
Bonferroni test) and the FO1–CO1 pair (p<0.001, Bonferroni test). 
The clustering number of FO1–FO2 was also above the random 
level (333.33) and greater than that of FO1–CO1 (p<0.001, Bon-
ferroni test). In the theta bands, the clustering number of the FO1–
FO2 pair was greater than that of the FO1–CO1 pair (p<0.001, 
Bonferroni test) and the FO2–CO1 pair (p<0.001, Bonferroni 
test). In the alpha bands, the clustering number of FO1 in the CO1 
pair was greater than that of the FO1–FO2 pair (p<0.001, Bonfer-
roni test) and the FO2–CO1 pair (p<0.001, Bonferroni test). In 
the beta bands, the clustering number of FO1 in the CO1 pair was 
also greater than that of the FO1–FO2 pair (p<0.001, Bonferroni 
test) and the FO2–CO1 pair (p<0.001, Bonferroni test). In the 
gamma band, the FO2–CO1 pair had the greater number of pairs 
than that of the FO1–FO2 pair (p<0.001, Bonferroni test) and the 
FO1–CO1 pair (p<0.001, Bonferroni test). 
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Like the FV, in the CV, the clustering number in all frequency 
bands depending on the categories of odors was significantly 
different only in the “within group condition” (Table 2; delta: 
X2[2]=51.21, p<0.0001; theta: X2[2]=1047.92, p<0.0001; alpha: 
X2[2]=167.78, p<0.0001; beta: X2[2]=65.40, p<0.0001; gamma: 
X2[2]=1882.45, p<0.0001). In the delta, theta, and alpha bands, 
the clustering number of the CO1–CO2 pair was greater than 
that of the CO1–FO1 pair (delta: p<0.001, Bonferroni test; theta: 
p<0.001, Bonferroni test; alpha: p<0.001, Bonferroni test) and the 
CO2–FO1 pair (delta: p<0.001, Bonferroni test; theta: p<0.001, 
Bonferroni test; alpha: p<0.001, Bonferroni test). The clustering 

number of the CO2–FO1 pair in the beta band was above the 
random level (333.33) and greater than that of the CO1–CO2 pair 
(p<0.001, Bonferroni test) and the CO1–FO1 pair (p=0.028, Bon-
ferroni test). The clustering number of the CO1–FO1 pair in the 
beta band was also above the random level (333.33) and greater 
than that of the CO1–CO2 pair (p<0.001, Bonferroni test). In the 
gamma band, the clustering number of the CO1–FO1 pair was 
greater than that of the CO1–CO2 pair (p<0.001, Bonferroni test) 
and the CO2–FO1 pair (p<0.001, Bonferroni test). These results 
suggest that some frequency bands of the ERSP data could be clus-
tered depending on the categories of odors in accordance with the 

5 

 

 53 

Fig 4. Representative event-related spectral perturbation (ERSP) data of the videos with the 54 
odors depending on the categories of odors. X-axis is the time and Y-axis is the frequency. a. 55 
Representative ERSP data of the FV and three odors. b. Representative ERSP data of the CV and 56 
three odors. 57 

Fig. 4. Representative event-related spectral perturbation (ERSP) data of the videos with the odors depending on the categories of odors. X-axis is the 
time and Y-axis is the frequency. (a) Representative ERSP data of the FV and three odors. (b) Representative ERSP data of the CV and three odors.

Table 1. Hierarchical clustering of closest odor pairs in each frequency band depending on categories of odors in each video

Video Condition
Frequency 

band
Count of closest odor pairs Cophenetic 

correlation
X2-value

FO1 – FO2 FO1 – CO1 FO2 – CO1 Total

Flower Within group Delta 436 72 492 1,000 0.79 312.02***
Theta 718 25 257 1,000 0.79 746.61***
Alpha 0 1,000 0 1,000 0.95 2,000.03***
Beta 9 904 87 1,000 0.82 1,474.62***
Gamma 5 96 899 1,000 0.78 1,452.28***

Random sampling group Delta 311 357 332 1,000 0.82 3.18 (n.s)
Theta 349 304 347 1,000 0.81 3.88 (n.s)
Alpha 337 328 335 1,000 0.84 0.13 (n.s)
Beta 338 327 335 1,000 0.84 0.19 (n.s)
Gamma 334 334 332 1,000 0.89 0.01 (n.s)

The hierarchical clustering results were replicated 1,000 times, and the count of nearest odor pairs was tallied during these repetitions. The clustering 
count of the nearest odor pairs in the FV across the five frequency bands. A chi-square test was performed for this table. *p value<0.05, **p value<0.01, 
***p value<0.001.
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results of the congruency test. In the case of FV, the ERSP data of 
the delta and theta bands were clustered as a FO1–FO2 pair. In the 
case of CV, the ERSP data of the delta, theta, and alpha bands were 
clustered as CO1–FO2 pairs. Similar patterns were observed in the 
k-means clustering results (Table S1, S2). ERSP data of delta and 
theta bands were clustered as the FO1–FO2 pair in FV, and ERSP 
data of delta, theta, and alpha bands were clustered as CO1–FO2 
pairs in CV. 

We also conducted an SVM to check whether it could show bet-
ter results than using clustering analyses (Table S3, S4). In the case 
of FV (Table S3), FO2 was classified as FO1 with 64.4%, 78.7%, 
and 70.3% accuracy in the delta, theta, and gamma bands. In the 
case of CV (Table S4), CO2 was classified as FO1 with 65.4%, 
79.5%, 68.7%, and 96.5% accuracy in the delta, theta, alpha, and 
beta bands. However, the average accuracy of the model based on 
5-fold cross-validation was generally near random chance levels 
(50%). Therefore, the results of the SVM were not reliable. 

DISCUSSION

We found that the congruency between the videos and odors 
in similar categories was higher than that between the videos 
and odors in different categories. We chose lavender oil, geraniol, 
2-furanmethanethiol, and 2-ethyl-3,5-dimethylpyrazine. We 
confirmed that the participants principally grouped these odors 
into two categories: flower and coffee (Fig. 2). This result is in line 
with those of previous odor studies [42-45]. Even if odors in the 
flower category and coffee category shared at least two categories, 
they were not the same odors (Fig. 2a). However, odors in the 
flower category were more similar to odors in the coffee category, 
and vice versa (Fig. 2b). This similarity based on the categories of 

odors might be reflected in the congruency between the videos 
and odors (Fig. 3). In addition, among the 27 participants who 
were presented with matchable sets of stimuli, including videos 
and odors (FO1 and FO2 with FV, and CO1 and CO2 with CV), 
only one participant showed low congruency in both videos. Par-
ticipants who were unable to recognize FO1 and FO2 as flowers, 
and CO1 and CO2 as coffee, showed low congruency between 
the videos and odors. In line with previous multimedia studies, 
we used EEG to measure viewers' neuronal responses [13, 27, 31]. 
ERSP analysis was used for the frequency bands. In our results, the 
ERSP data of odors with videos were clustered according to the 
similarity of the categories of odors (Table 1, 2). As our congru-
ency result, ERSP data were clustered by AHC when odors from 
similar categories were matched with the videos. Especially in the 
delta and theta bands, the ERSP data of odors of similar categories 
in both videos were principally clustered. However, the alpha, beta, 
and gamma bands did not cluster depending on the odors of simi-
lar categories. All the results suggest that viewers’ responses to mul-
timedia could be similarly induced even after replacing the odors 
with other odors in similar categories. Based on our results and 
methods, we suggested a system that can find odors as representa-
tives or replacers to reduce the number of odors for multimedia.

Our results suggest that selecting odors based on the catego-
ries of odors is possible. Matching odors with objects based on 
categories has been used in multimedia and the film industry [1, 
13, 49]. However, there is little evidence that viewers’ responses 
to multimedia presented with a given odor can be generalized 
to their responses to multimedia with other odors when they 
belong to similar categories. Previous studies that selected odors 
for multimedia by odor categories (Table 3) did not examine view-
ers’ responses to multimedia with several odors within similar 

Table 2. Hierarchical clustering of closest odor pairs in each frequency band depending on categories of odors in each video

Video Condition
Frequency 

band
Count of closest odor pairs Cophenetic 

correlation
X2-value

CO1 – CO2 CO1 – FO1 CO2 – FO1 Total

Coffee Within group Delta 440 281 279 1,000 0.83 51.21***
Theta 812 147 41 1,000 0.85 1,047.92***
Alpha 514 302 184 1,000 0.83 167.78***
Beta 216 368 416 1,000 0.84 65.40***
Gamma 0 980 20 1,000 0.89 1,882.43***

Random sampling group Delta 312 332 356 1,000 0.82 0.06 (n.s)
Theta 336 318 346 1,000 0.83 0.01 (n.s)
Alpha 346 318 336 1,000 0.84 5.70 (n.s)
Beta 331 326 343 1,000 0.83 0.66 (n.s)
Gamma 339 327 334 1,000 0.85 0.70 (n.s)

The hierarchical clustering results were replicated 1,000 times, and the count of nearest odor pairs was tallied during these repetitions. The clustering 
count of the nearest odor pairs in the CV across the five frequency bands. A chi-square test was performed for this table. *p value<0.05, **p value<0.01, 
***p value<0.001.
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categories. Furthermore, most of the studies in Table 3 measured 
behavioral responses. Our study first showed that odors could 
induce similar congruency and neuronal responses to viewers in 
multimedia as odors of similar categories. In addition, a previous 
study observed neuronal responses to multimedia with an odor. 
The delta, theta, and alpha bands changed in this study [13]. These 
bands were also crucial in our study because delta and theta bands 
were clustered depending on the odor categories (Table 1, 2). The 
delta band could be clustered depending on the category of odors 
in both videos. Previous studies [13, 31] suggest that the delta band 
is related to discriminating emotional responses while watching 
videos. In addition, the theta band predominantly clustered among 
these bands. According to previous olfactory studies [33, 34, 50], 
the theta band could include information on olfactory stimulation 
and be generated in the PC of the human brain. The PC is known 
as one of the major areas that perform olfactory processing in the 
brain and is related to categorizing odors [17-20]. Therefore, the 
theta band in our results might represent the similarity of odors in 
similar categories.

However, some results did not align with odor categories. The 
alpha band in the CV clustered depending on the similarity of 
odor categories, unlike in the FV (Table 1, 2). Previous studies 
related to the alpha band [51-54] suggest its association with the 
pleasantness of stimuli. In our study, there was tendency that the 
pleasantness of odors differed in the CV but not in the FV (Fig. 
S1d). Hence, differences in the pleasantness of odors may have 
influenced our alpha band results. Furthermore, the beta and 
gamma bands indicated that a significant number of closest pairs 
were unrelated to the categories of odors in both videos. Since 
the clustering pattern of FO1–CO1 in the FV and CO1–FO1 in 
the CV differed (Table 1, 2), odors might not be involved in the 
clustering patterns of the beta and gamma bands. The beta band 

is also known to be related to emotional responses such as arousal 
and stress [24, 55-58]. One explanation could be that the odors 
offered to viewers were different, even though they belonged to 
similar categories. These variations among odors could induce 
different emotional responses in viewers. Regarding the gamma 
band, a previous odor study without multimedia observed the 
gamma band clustered depending on the similarity of odors [21]. 
Possible reasons for this inconsistency include our offering odors 
for 5 seconds and analyzing 10 seconds of data, whereas gamma 
oscillation was transient within 1 second in the previous study [21]. 
This temporal difference might affect the clustering results of the 
gamma band. Additionally, the gamma band is related to respira-
tion [59]. Despite offering odors at the beginning of the videos, 
participants’ respiration might not synchronize precisely with the 
onset of odors, potentially introducing variability in the gamma 
band in our results.

Several factors merit consideration when interpreting results re-
lated to odor categories. Our study differentiates between specific 
objects and categories of objects, recognizing that the criteria for 
a specific object and its category are not absolute but relative due 
to potential differences in the level of categorization. This implies 
that words used for object categories could also function as specif-
ic objects depending on their contextual relationship. For instance, 
in the case of ‘flower,’ it serves as the category of object in our study. 
However, ‘flower’ can be a specific object in relation to the broader 
category of ‘plant.’ The similarity among specific objects at lower 
levels of categorization (e.g., flowers) generally tends to be higher 
than that among specific objects at higher levels of categorization 
(e.g., plants) [60]. Despite this, clear standards for specific objects 
and their categories remain elusive. While our analysis revealed 
statistically significant EEG patterns across groups, we cannot 
fully exclude the potential influence of physiological noise, such 

Table 3. Comparison between previous multimedia studies with odors and our study

Ref Stimuli Odor selection method
Number of odors 

in identical 
categories

Features

[14] Traditional multimedia + olfaction Selecting odors depending on odor categories 
and scenes

1 Behavior response

[10] Traditional multimedia + olfaction Selecting odors depending on odor categories 
and scenes

1 Behavior response

[2] Traditional multimedia + olfaction Selecting odors depending on odor categories 
and scenes

1 Behavior response

[13] Traditional multimedia + olfaction Selecting odors depending on odor categories 
and scenes

1 Behavior response/ EEG

Our study Traditional multimedia + olfaction Selecting odors depending on odor categories 
and scenes

2 Behavior response/ EEG

Previous multimedia studies with odors were compared to our study in terms of stimuli, odor selection method, number of odors in identical categories, 
and features.
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as EMG, EOG, and ECG signals, due to the limitations of the 
preprocessing methods applied. Although independent compo-
nent analysis (ICA) was considered, its application to single-trial 
data has been shown to be unreliable in distinguishing between 
brain signals and noise [47, 61]. For this reason, applying ICA 
to remove artifacts can remove not only artifacts but also EEG 
signals, making it unsuitable for our data. Therefore, the presence 
of physiological artifacts may have influenced the observed pat-
terns to some extent. Additionally, there may be major and minor 
odors within a given category. In our data, 2-furanmethanethiol 
exhibited the highest congruency (88%) when matched with the 
CV and displayed a higher congruency than CO2 (2-ethyl-3,5-
dimethylpyrazine), though the difference was not statistically sig-
nificant. Notably, 2-furanmethanethiol is recognized as a crucial 
aroma component of fresh coffee [44], potentially influencing our 
congruency and neuronal response results. However, delving into 
major and minor odors within this category extends beyond the 
scope of our study, warranting further investigation to address this 
aspect.

In summary, our study primarily aimed to investigate whether 
odors belonging to similar categories could elicit comparable 
behavioral and neuronal responses compared to odors from 
different categories. We observed that viewers’ behavioral and 
neuronal responses to multimedia align more closely with odors 
in similar categories than with odors in different categories. This 
finding offers insights into a potential matching method for in-
tegrating odors with objects in multimedia. Based on the results 
and methods we used, we suggested a system that can find odors 
as representatives or replacers to reduce the number of odors for 
multimedia. Therefore, our study could be helpful in conserving 
effort and saving resources in selecting odors for multimedia.
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