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Transcutaneous auricular vagus nerve 
stimulation in anesthetized mice induces 
antidepressant effects by activating 
dopaminergic neurons in the ventral tegmental 
area
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Abstract 

Depression, a prevalent neuropsychiatric disorder, involves the dysregulation of neurotransmitters such as dopamine 
(DA). The restoration of DA balance is a pivotal therapeutic target for this condition. Recent studies have indicated 
that both antidepressant medications and non‑pharmacological treatments, such as transcutaneous auricular vagus 
nerve stimulation (taVNS), can promote recovery from depressive symptoms. Despite the promise of taVNS as a non‑
invasive depression therapy, its precise mechanism remains unclear. We hypothesized that taVNS exerts antide‑
pressant effects by modulating the DAergic system. To investigate this, we conducted experiments demonstrating 
that taVNS in anesthetized mice reduced depressive‑like behaviors. However, this effect was abolished when DA neu‑
rons in the ventral tegmental area  (VTADA) were inhibited. Additionally, taVNS in anesthetized mice enhanced  VTADA 
activity, providing further evidence to support its antidepressant effects. Overall, our findings suggest that taVNS 
alleviates depression by augmenting  VTADA activity, thereby contributing to a more comprehensive understanding 
of its therapeutic mechanisms.
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Introduction
Depression, or major depressive disorder (MDD), is a 
prevalent and severe neuropsychiatric disease charac-
terized by persistent low mood and diminished inter-
est or pleasure in activities. Although numerous factors 
can contribute to depression, its principal determinants 
remain elusive. Emerging evidence has indicated that the 
dysregulation of neurotransmitters, notably dopamine 
(DA), particularly within brain regions governing emo-
tions, cognition, sleep, and appetite, plays a pivotal role 
in its etiology [1]. As such, restoring the balance in brain 
chemistry may alleviate depression.
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It has been widely recognized that the activity of DA 
neurons in the ventral tegmental area  (VTADA) and DA 
release to various brain regions regulate mood-related 
behaviors. Indeed, research has shown that stress or 
aversive stimuli suppress  VTADA activity [2], while the 
optogenetic inhibition of  VTADA leads to a depressive-
like phenotype. Conversely, phasic photoactivation 
of  VTADA has been shown to mitigate chronic stress-
induced depressive symptoms [3]. Overall, these findings 
underscore the importance of regulating  VTADA as a pri-
mary therapeutic approach for depression.

Numerous antidepressant medications, including 
dopamine agonists, dopamine reuptake inhibitors, and 
norepinephrine and dopamine reuptake inhibitors, as 
well as non-pharmacological therapies, such as elec-
troconvulsive therapy, repetitive transcranial magnetic 
stimulation, and vagus nerve stimulation (VNS), have all 
been employed in the treatment of depression, to regu-
late the DAergic system [4]. In particular, non-invasive 
VNS modalities, such as transcutaneous auricular VNS 
(taVNS), are increasingly being used to treat depression 
owing to their multifaceted advantages [5]. However, the 
precise mechanism by which taVNS mitigates depression 
remains unclear.

Results
We hypothesized that taVNS exerts its antidepressant 
effects by activating  VTADA activity. Initially, we inves-
tigated whether taVNS induced this effect through con-
duction of the forced swim test (FST), a standard rodent 
behavioral test commonly used to assess the efficacy of 
antidepressant drugs or treatments in eliciting or pre-
venting depressive-like states, 20  min after sham (i.e., 
off-site stimulation) or taVNS intervention in anesthe-
tized mice (Fig.  1A, B) [6]. As a result, taVNS, but not 
sham treatment, in anesthetized mice led to a reduction 

in immobility time during the FST, indicating its antide-
pressant effect (Fig. 1C).

Additionally, we explored whether taVNS could allevi-
ate depressive symptoms induced by chronic social defeat 
stress (CSDS), an ethologically validated animal model 
of depression [7, 8]. CSDS markedly diminished social 
interaction with an aggressor mouse only in suscepti-
ble mice, while resilient mice were unaffected (Fig. S1). 
Notably, our findings revealed that taVNS treatment in 
an anesthetized state effectively reversed CSDS-induced 
social avoidance (Fig.  1D, E). These results suggest that 
taVNS may exert anti-stress or antidepressant effects 
under both normal and depressive conditions.

Next, we examined whether the antidepressant effects 
of taVNS in anesthetized mice are mediated by  VTADA 
activity. To investigate this, we performed the FST with 
or without taVNS in mice that received AAV-rTH-Cre 
[9] and AAV-DIO-Kir2.1-EGFP [10] into the VTA to 
inhibit  VTADA (Fig. 1F, G). As anticipated, inhibition of 
 VTADA resulted in increased immobility time during the 
FST (Fig.  1H), consistent with findings from a previous 
study [3]. Importantly, taVNS in an anesthetized state did 
not reduce immobility time in these mice (Fig. 1H). These 
results indicate that the antidepressant effects of taVNS 
are mediated through  VTADA activity.

Finally, we investigated whether taVNS influenced 
 VTADA activity. To accomplish this, we measured  VTADA 
activity via fiber photometry in mice that received AAV-
rTH-Cre and AAV-Flex-jGCaMP8f [11] and implanted 
optic fibers into the VTA (Fig.  1I, J). Overall, we found 
that taVNS in anesthetized mice increased the frequency 
of  Ca2+ transients of  VTADA, suggesting an increase in 
the average activity of  VTADA (Fig. 1K–M). Interestingly, 
the increased activity of  VTADA induced by taVNS was 
further increased for 30  min following taVNS (Fig.  1K–
M). These results indicate that the potentiation of  VTADA 
activity by taVNS resulted in an antidepressant effect.

Fig. 1 taVNS induces antidepressant effects by increasing  VTADA activity. A The FST procedure without (i.e., off‑site stimulation or sham control) 
or with taVNS intervention. B A representative image of a mouse treated with taVNS, followed by the cymba and cavum concha of the vagus 
innervation area in the ear. C Immobility time during the FST. Animals were treated with or without taVNS. Values are shown as the mean ± standard 
error of the mean (SEM) (n = 6 mice per group; Student’s t‑test [unpaired, two‑tailed]; *p < 0.05). D Schematic diagram depicting the experimental 
procedure for CSDS and social interaction test (SIT) with or without taVNS. E taVNS significantly reversed CSDS‑induced social avoidance. (n = 5 
mice per group; Student’s t‑test [paired, two‑tailed]; ns, not significant; *p < 0.05). F Schematic illustration of viral injection to inhibit  VTADA. G 
Representative images of brain sections injected with AAV‑rTH‑Cre and AAV‑DIO‑EYFP (top) or AAV‑DIO‑Kir2.1‑EGFP (bottom) into the VTA. DAPI, 
blue; EYFP (top) or Kir2.1‑EGFP (bottom), green. Scale bars, 1000 μm. H Immobility time during the FST. Control and  VTADA‑inhibited mice were 
treated with or without taVNS. Values are shown as mean ± SEM (n = 6 mice per group; Two‑way ANOVA with Fisher’s LSD multiple comparisons 
test; ns, not significant; ***p < 0.001; ****p < 0.0001). I Schematic illustration of viral injection and optic fiber implantation to measure  VTADA activity 
using fiber photometry. J A representative image of a brain section infected with AAV‑rTH‑Cre and AAV‑Flex‑jGCaMP8f in the VTA. A fiber optic 
cannula was implanted above the viral injection site. DAPI, blue; jGCaMP8f, green. Scale bar, 500 μm. K Procedure for fiber photometry recordings 
with taVNS. L Representative  Ca2+ traces from a single animal. Data are presented as the percentage change in fluorescence over the mean 
fluorescence (ΔF/F). Top, taVNS_OFF (before, 10 min); middle, taVNS_ON (10 min); bottom, taVNS_OFF (after, 30 min). M Peak analysis of Ca.2+ 
imaging traces. (n = 6 mice; repeated‑measures one‑way ANOVA with Tukey’s multiple comparisons test; *p < 0.05; **p < 0.01)

(See figure on next page.)
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Discussion
The vagus nerve, also known as the tenth cranial nerve, is 
one of the 12 cranial nerves that emerge directly from the 
brain. It plays a crucial role in the parasympathetic nerv-
ous system, which regulates numerous unconscious bod-
ily functions such as heart rate, digestion, and respiratory 
rate. Further, the vagus nerve has been implicated in the 
body’s response to stress. The activation of the vagus 
nerve can induce relaxation and calmness [12]. Conse-
quently, despite the use of VNS for depression treatment, 
its precise mechanisms remain incompletely understood.

Information from several peripheral organs is relayed 
to the brain, particularly to the nucleus of the solitary 
tract (NTS) in the brainstem. The NTS is interconnected 
with various brain regions responsible for synthesizing 
specific neurotransmitters, including the locus coer-
uleus, which produces norepinephrine, the dorsal raphe 
nucleus, which synthesizes serotonin, and the VTA, 
which produces DA [13]. This suggests that VNS can be 
used to treat various neuropsychiatric disorders, includ-
ing depression, by modulating these neurotransmitter 
systems throughout the brain.

Although previous studies have reported that invasively 
implanted VNS induces an antidepressant effect [14, 15] 
and activates  VTADA [16], whether and how non-invasive 
taVNS elicits an antidepressant effect currently remains 
unclear. Invasive VNS is effective for treating various 
neuropsychiatric disorders and has sustained therapeutic 
effects. However, it carries the risks of surgery, includ-
ing infection, pain, and high cost [17]. Conversely, taVNS 
offers a non-invasive approach without the need for sur-
gical procedures, along with high levels of safety, ease of 
use, and relatively low cost [18].

Overall, our findings suggest that taVNS in anesthe-
tized mice triggers antidepressant effects by enhanc-
ing  VTADA activity. Further investigation is required to 
identify the specific brain regions where the heightened 
 VTADA activity induced by taVNS results in increased 
DA release and whether this contributes to the anti-
depressant effect. Furthermore, preclinical validation 
in animal models of depression is essential to confirm 
whether taVNS is effective for clinical application based 
on the mechanisms we have elucidated.
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