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Abstract

Understanding time-series interplay of genes is essential for diagnosis and treatment of dis-

ease. Spatio-temporally enriched NGS data contain important underlying regulatory mecha-

nisms of biological processes. Generative adversarial networks (GANs) have been used to

augment biological data to describe hidden intermediate time-series gene expression pro-

files during specific biological processes. Developing a pipeline that uses augmented time-

series gene expression profiles is needed to provide an unbiased systemic-level map of bio-

logical processes and test for the statistical significance of the generated dataset, leading to

the discovery of hidden intermediate regulators. Two analytical methods, GAN-WGCNA

(weighted gene co-expression network analysis) and rDEG (rescued differentially

expressed gene), interpreted spatiotemporal information and screened intermediate genes

during cocaine addiction. GAN-WGCNA enables correlation calculations between pheno-

type and gene expression profiles and visualizes time-series gene module interplay. We

analyzed a transcriptome dataset of two weeks of cocaine self-administration in C57BL/6J

mice. Utilizing GAN-WGCNA, two genes (Alcam and Celf4) were selected as missed inter-

mediate significant genes that showed high correlation with addiction behavior. Their corre-

lation with addictive behavior was observed to be notably significant in aspect of statistics,

and their expression and co-regulation were comprehensively mapped in terms of time,

brain region, and biological process.

Introduction

Complex time-series gene interactions can be observed in various biological processes, such as

the cell cycle [1–3], circadian rhythm [4, 5], development [6], and pathogenesis. One such

example is the regulation of synaptic plasticity in the nervous system. The functionality of key

factors at specific spatiotemporal points—where, when, and how—is important to this process.

Indeed, the disturbance of a key factor in different spatiotemporal manners can induce differ-

ent diseases. As shown in these biological processes, understanding the spatiotemporal
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interplay of key factors is essential for the diagnosis and treatment of diseases, particularly

those with spatiotemporal complexity.

To understand the spatiotemporal complexity, several experimental methods have been

devised. One experimental approach is systems biology, particularly -omics data generation

using sequencing technology. Typical single-cell RNA sequencing (scRNA-seq) data, which

reads gene expression levels of each cell, consist of 20,000–30,000 cells with over 10,000 genes.

Meanwhile, bulk RNA sequencing reads gene expression levels of each tissue sample, usually

up to a few hundred. Basic interpretation can be done using Differentially Expressed Gene

(DEG) calculations from bulk RNA sequencing, which typically identify over one hundred sig-

nificant genes. In most biological studies using these hundred components, research should

involve complex gene regulatory machinery. Although the network is spatiotemporally com-

plex, the current pipeline in most cases provides only weak or no spatiotemporal regulatory

information.

One of the hurdles for the thorough utilization of transcriptomic next-generation sequenc-

ing (NGS) data is the insufficient degree of sample data density, likely due to the high cost

associated with various spatial, temporal, and treatment conditions. The limited availability of

biological samples is often described as large features (genes) and small samples that cause

overfitting and high-variance problems.

To overcome or compensate for expensive experimental methods, several in silico

approaches have been devised. For example, Marouf et al. demonstrated that generating real-

like omics data with non-linear properties is possible using advanced computational tech-

niques [7]. However, simply generating more data may not be sufficient for credibility and

adding insights to previous studies. Instead, unveiling a hidden trajectory of the transcriptome

between the initial and final phases of experimental conditions affected by disease or drugs

with finer time resolution could provide a better lens to observe minute details of pathogene-

sis-related gene modules without any additional experiments

Generative Adversarial Network (GAN) may be a solution for this problem. A GAN has

been used in several domains, including image processing, not only to achieve a higher perfor-

mance generative model with a lesser amount of training data [8–12], but also to provide

unique operations such as the generation of semantically meaningful fake data using latent

space interpolation. Interpolation between generative data by latent vector arithmetic gener-

ates intermediate fakes that seem authentic and realistic, suggesting that the latent space of

GAN encodes feature space information. Ghahramani et al. (2018), used this idea in biological

research and achieved an increase in the temporal resolution of gene expression data using sin-

gle-cell RNA-seq (scRNA-seq) data from epidermal cells [13]. Inspired by this idea, Park et al.
(2020) showed that increased temporal sample density can be used in biological research

related to Alzheimer’s disease using only augmented bulk mRNA-seq data [14]. The training

procedure and validation used in this research followed Jinhee Park’s work with minor

adjustments.

Accompanying with GAN, Weighted Gene Co-expression Network Analysis (WGCNA)

was used in this study which is a powerful systemic biology method used to describe the corre-

lation patterns among genes across multiple samples. This method calculates a network based

on gene expression data, where nodes represent genes and edges reflect the strength of the cor-

relation between gene pairs. By grouping genes with similar expression patterns into modules,

WGCNA allows researchers to identify clusters of co-expressed genes that may share common

biological functions or regulatory mechanisms. WGCNA is one of well-accepted conventional

methods that particularly valuable for exploring complex biological processes and diseases, as

it integrates high-dimensional gene expression data to study gene networks associated with

specific phenotypes or conditions [15–19].
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In this study, we devised two analytic methods: GAN-WGCNA (weighted gene co-expres-

sion network analysis) and rDEG (rescued differentially expressed genes). GAN-WGCNA is a

combination of the GAN and WGCNA methods that calculates co-expressed gene modules

from generated time-series data at the systemic level. The calculated modules can be used to

analyze their correlation with features or to visualize module networks, which are accompa-

nied by conventional WGCNA. rDEG is also an adapted method for gene-level analysis based

on the conventional DEG method. By calculating the DEG in the generated time-series data,

the rDEG rescue the missed DEG in intermediate stages.

Using these two methods, we tackled the ambiguity of the spatiotemporal interplay of

cocaine addiction, which is a good example of a biological process that has spatiotemporal

complexity [20, 21]. It shows not only complex gene expression levels but also sophisticated

interplay between brain regions. This spatio-temporal interplay leads to different symptoms,

such as coronary artery disease [22], vascular disease [23], and even mortality [24]. Several

studies have used conventional methods for transcriptome analysis of cocaine addiction [25–

27]. Using the same data as previous research but with different methods, we showed that gene

modules have high correlations with cocaine addiction behavior. They consisted of two dis-

tinctive gene module networks, which were also distinguished by Gene Ontology analysis.

Methods

C57BL/6J cocaine self-administration dataset

We used a public dataset generated by a previous study [28] and followed their RNA-seq anal-

ysis method. The detailed method is described in S1 File.

Voom and data preprocessing for training

After sequencing data processing, we also followed normalization and augmentation methods

which applied in previous studies [14, 28]. Detailed method is described in S2 File.

Wasserstein generative adversarial networks with gradient penalty loss

We used the Wasserstein generative adversarial network and gradient penalty loss (WGAN-GP)

[29] for model training. The Gulrajani, et al suggested following loss for training.

min
G

max
DED

Ex�Pr
½DðxÞ� � Ex~�Pg

½Dð~xÞ�

L ¼ Ex~�Pg
½Dð~xÞ� � Ex�Pr

½DðxÞ� þ lEx̂ �Px̂ jjrx̂Dðx̂Þjj2 � 1ð Þ
2

� �

Although we followed most of the previous studies’ implementations, including algorithms,

pipelines, and hyperparameters, some implementations have been modified as needed. For

example, we used the RMSprop optimizer instead of the Adam Optimizer. These modifications

were confirmed to meet the fake data generation criteria, with a Pearson correlation value of

0.95. We have documented the other hyperparameters in S1 Fig.

Averaged gene expression simulation with latent space interpolation

Before generating intermediate transcriptomes between the two datasets, the fakes of each

sample data point should be obtained. A resembled fake is not only a real-like fake data paired

with its latent-space vector (z) by meeting its criteria, but also has a stable manifold in latent

space by averaging multiple latent vectors. To generate a resembled fake corresponding to the

sample data, which is an average over multiple z of each sample, we generated 35,000 fakes
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using a trained generator (G) and selected 10 nearest latent vectors based on the Pearson cor-

relation value between G(z) and a target real sample. The entire process was handled using the

NumPy library in Python [30] and the minimum threshold of the Pearson correlation was

0.95. If 35,000 fakes were unable to generate resembled fakes for each real sample, this process

was repeated until a successful resembled fake generation was obtained using different NumPy

seed values.

delta ¼ zCN � zSN

zith ¼ zSN þ delta∗
i

100
i is 1 to 99ð Þ

The delta vector (delta) was created by subtracting the latent vectors between the resembled

fakes of the cocaine-addicted state (CN) and control (SN). Subtraction was performed for

every possible combination of the resembled fakes of the CN and SN. Next, we generated tran-

scriptomes by using G(zi). zi is an intermediate latent vector and i is stated for sequential

changes in time. The delta and intermediate latent vectors zi were constructed using the above

equation. This process creates transcriptomes that have several gene expression transition

curves during physiological changes from the normal to the addictive state. Finally, by repeat-

ing this process ten times at different epochs (10–20 k) and averaging the gene expression tran-

sition curves, we created the average gene expression profile at intermediate states.

Generating the average gene expression profile using GAN differs from simple linear inter-

polation of expression data. This is because the interpolation process occurs only in the latent

space, which is mapped into a higher feature space through the trained generator. Conse-

quently, the transition in the feature space is not only distinct from linear interpolation in the

feature space but also appears more natural. These differences stem from the fact that the gen-

erator learns about the data distributions, capturing higher-level features and structures.

Indeed, our generation results reveal various transition curves.

Weighted gene co-expression network analysis

To utilize complemented information in aspects of systems biology, WGCNA was performed

on the averaged gene expression profile using the R library (WGCNA) [31]. Detailed process

which followed author provided tutorial is described in S3 File.

Gene ontology

For high-level interpretation of the constructed module, Gene ontology (GO) analysis was per-

formed on each gene module using the R library GOstats [32]. Based on GO enrichment

results, each module has a primary GO term which is the most significant GO term using

hyperGTest and conventional threshold parameters– 0.05 for pvalueCutoff and 50 for cutoff_-

size. The primary GO term for each module was selected as the first GO term of this cutoff

result. However, some GO terms were manually selected. The full results are described in the

supplementary material.

Rescued DEG

An extended version of rDEG was constructed for statistically significant gene expression pro-

file interpretation. By handling the pre-averaged gene expression profile as a biological replica

in conventional DEG, we can calculate Log2FoldChange and P-value using r library voom-
limma [33, 34]. This approach provides quantitative and statistical criteria for genes that are
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significant in an intermediate state. A Log2FC value of 0.2 and a P-value of 0.05, were selected

as thresholds, which were the same as those in the previous study [28].

Ethics approval and consent to participate

Not applicable

Results

Generation of simulated gene expression profile during cocaine addiction

using GAN

In a previous study [28], transcriptome-wide regulation was evaluated in six reward-associated

brain regions (PFC, DStr: CPU, NAc, BLA, vHIP, VTA) by comparing DEG analysis in differ-

ent contexts (acute, re-exposure, etc.) and combining the behavioral addiction index. Based on

pattern analysis, they assessed differentially regulated gene expression across brain regions and

predicted 192 upstream regulators of cocaine addiction. The method, which is a pairwise DEG

comparison of the control and treatment used in the previous study, can be extended using

GAN in terms of temporal resolution.

To acquire time-series gene expression profiles that enable more in-depth analysis than pre-

vious studies, we applied the GAN method to the cocaine-SA data to create simulated gene

expression profiles of the mouse brain transcriptome treated with two-week cocaine-SA. The

GAN method uses bulk mRNA-seq data as the training input and generates a time-series inter-

mediate transcriptome using latent space interpolation. Detailed methods and additional

information on the data structure during the creation of a simulated dataset and the overall

research workflow are presented in S1A–S1C and S2A–S2F Figs.

Spatiotemporally augmented gene expression profile used in WGCNA

The generated gene expression profile provided enriched spatiotemporal information. We

attempted to visualize the gene expression profiles of some important genes involved in

cocaine addiction. We visualized one of the well-known cocaine addiction-related genes, Creb.

(S3 Fig)

The expression profile of the Creb family shows diverse properties of spatiotemporal gene

expression changes, revealing subfamily-specific profile patterns. The expression profile of the

Creb 1 gene shows limited expression level changes during cocaine addiction, compared to the

Creb3 subfamily, which shows not only significant expression changes but also regional differ-

ences. In terms of regional differences, Crebl2 had a homogeneous decreasing expression pro-

file across all regions, and Creb5 showed only valid expression changes in the VTA region.

This spatiotemporal information can provide a possible explanation at the transcriptome level

for specific biological events, such as sophisticated neuronal plasticity regulation during

cocaine addiction [35].

After checking the spatiotemporal information of the generated gene expression profiles,

WGCNA was used for quantitative interpretation of extended gene expression information.

Conventional WGCNA usually takes the normalized gene expression level as input (i.e., the

number of samples and the number of genes), whereas GAN-WGCNA takes the shape of the

simulated timesteps and the number of genes. Genes were then grouped into modules based

on their profile similarity. Similar genes were grouped into the same module and were consid-

ered co-expressed genes.
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GAN enables a calculation of correlation between gene module and

behavioral data

By re-calculating the module’s eigengene expression profile in real samples, we can combine a

gene module that is calculated from a time-series generated sample and behavioral informa-

tion that is available in real samples (addiction index). This combined information provides us

with an opportunity to interpret a feature without temporal information as a feature with a

temporal aspect. The addiction index is an indication of addictive behavior and is available in

a real sample to detect addiction-associated modules. Calculating the Pearson correlation of

the module’s eigengene and behavioral data leads to a quantitative correlation between the

gene module and cocaine addiction in spatiotemporal aspects. (Figs 1A, S4A, S4B and S5)

The most highly correlated gene modules with addictive behavior were found in the NAc

and VTA regions (Fig 1B and 1C), which is consistent with the results of previous studies [26,

36–39]. To calculate the primary biological processes of the highly correlated gene modules,

we performed GO analysis. For each of the 51 modules, one representative GO term was

selected and presented in S1 Table.

Representative GO terms provide an overview of the biological processes involved in

cocaine addiction. This overview can be summarized based on both the module correlation

statistics (correlation coefficients, P-values) of addictive behavior and the representative GO

term statistics of each module (enrichment ratio, OddRatio, and P value of gene ontology anal-

ysis) (Fig 2). According to our criteria, most of the significant gene modules appeared to be

located in the NAc region. For the negatively correlated modules, the GO annotations were

adhesion of symbiont to host (Module 38), miRNA loading onto RISC involved in gene silenc-

ing by miRNA (Module 39), and deoxyribonucleoside metabolic process (Module 40) during

cocaine addiction. For the positively correlated modules, information related to the regulation

of ventricular cardiac muscle cell membrane repolarization (Module 20) and positive regula-

tion of epithelial cell differentiation (Module 24) is provided.

Temporal alignment of highly addiction related modules shows a

distinctive correlation pattern between cell migration and membrane-

related biological process during cocaine addiction

To provide a gene module network in a spatiotemporal manner and seek missed intermediate

regulator genes, highly addiction-correlated modules were visualized using temporal networks

based on their eigengene expression profiles. (Figs S6 and 3A–3C) Each module was aligned to

a specific time point where its eigengene expression level is maximized. Module-to-module

connections were visualized using Pearson correlation values between modules, which referred

to the module distance in the WGCNA.

In Fig 3, modules with the highest eigengene expression levels on day 0 are placed at the

top, and modules that have the highest eigengene expression levels in the intermediate mod-

ules are placed in the middle and late modules are placed at the bottom. The network in the

early mid–late group shows a distinctive pattern. According to the GO results, one of the inter-

mediate modules showed possible intermediate regulatory functions. Heparan sulfate-related

regulation (Module 49) is known as a therapeutic target for cocaine addiction [40, 41]. In pre-

vious studies, there was no detailed information regarding how and when they worked. How-

ever, through this inspection, we can now estimate when they are activated and how heparan

sulfate proteoglycan (HSPG) in the NAc is regulated.

Distinctive correlation patterns were also observed from day 0 to day 14. Based on the cor-

relation pattern, positive regulation of the inositol phosphate biosynthetic process (Module 45)

and polysaccharide biosynthetic process (Module 46) in the NAc leads to HSPG biosynthesis
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in the NAc, which is accompanied by several gene modules in intermediate stages. These inter-

mediate gene modules lead to gene modules that imply biological changes or shifts in addic-

tion. Five NAc modules on day 14 including regulation of the antigen receptor-mediated

signaling pathway (Module 34), were correlated with module 49. Three BLA modules on day

14 including microglial cell activation (Module 6) and response to pain (Module 9), were cor-

related with Module 49.

Several studies have showed the role of HSPGs in the Wnt/β-catenin/FGF signaling path-

way [42], synaptic connectivity [43], and neurogenesis [44]. This time-series interplay of gene

modules provides a spatiotemporal view of cocaine addiction at the transcriptome level. We

applied a clustering method to the correlation matrix to elucidate other correlation patterns in

this network.

Fig 1. Module-Trait Alignment a. Scatter plots for the addiction index and module eigen-genes of both control (addiction index = 0) and addicted mice. We presented

three scatter plots, where four dominant modules on each plot were selected, according to increasing, flat, decreasing correlation patterns between the module eigen-gene

and the behavioral trait (addiction index). Eigengene level was calculated in profile of real samples, instead of time-series generated samples b. Distribution of P-value

and correlation for all modules, samples, and regions. We have 51 highly correlated modules (32 positive and 19 negative correlation) by the criteria (P-value< 0.05 and |

correlation coefficient value|>0.5) c. Trait alignment results show most of the highly correlated modules with behavioral trait belong to the NAc region.

https://doi.org/10.1371/journal.pone.0311164.g001
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Among the highly addiction-behavior-correlated modules in five brain regions, excluding

the CPU that does not have any highly correlated modules, a unique correlation pattern was

found in the temporally aligned network of the NAc region. S7 Fig shows the quantitative attri-

butes of the correlation patterns. First, the modules were grouped into early, mid, or late based

Fig 2. GO terms of addictive behavior modules. The primary GO terms of 51 modules (S1 Table) that highly

correlated with addictive behavior were plotted with four features. P-value, Oddratio and EnrichmentRatio are

evaluated from the GO enrichment analysis and correlation coefficients are calculated from the WGCNA module-trait

alignment. The bottom panel figures show the modules by regions.

https://doi.org/10.1371/journal.pone.0311164.g002
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on their aligned temporal positions. Second, the grouped modules were annotated as 1 or 2

based on their distinctive correlation patterns, which were distinguished by visual inspection

and hierarchical clustering of module-to-module connections.

Mid1 and mid2 had positive correlations between early stage modules. Mid1 had a non-spe-

cific negative correlation with late-stage modules, including late1, in comparison to mid2,

which had a specific negative correlation with late2. These distinctive correlations suggest the

existence of different biological processes during cocaine addiction (Fig 4A and 4B). Indeed,

each group in the NAc region exhibited different GO results. Late1 and late2 both had nervous

system-related GO terms, but there were unique GO terms belonging to each group (Fig 4C).

The unique GO terms of the late1 group were locomotion (GO:0040011), cell motility

(GO:0048870), small molecule metabolic processes (GO:0044281), and localization of cell

migration (GO:0051674), which suggests vascular or glia-related biological processes (S8A and

Fig 3. Temporally Aligned Module Network a. Each module is aligned to a specific timepoint where its module eigengene has the highest value. b. Visualization of

regional and inner regional correlation patterns. Red lines means positive correlation and blue lines means negative correlation. c. GO terms of intermediate gene

module which correlated with HSPG biosynthesis process.

https://doi.org/10.1371/journal.pone.0311164.g003
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S8B Fig). In the late2 group, the establishment of localization in cell projection organization

(GO:0051649), ion transport (GO:0006811), plasma membrane-bounded cell projection orga-

nization (GO:0120036), and ion transmembrane transport (GO:0034220) were included.

These results suggest membrane- or neuron-related biological processes. Mid1 and mid2 both

showed regulatory-related GO terms. (S8A and S8B Fig) Module 49 that was denoted as a

HSPG related module was included in mid2 group. Regulatory GO terms in the mid2 group

appear to be consistent with this result.

Fig 4. Specific Correlation Pattern Shows Distinct Differences Between Cell Migration and Membrane- Related Biological Process a. Diagram of correlation

pattern b. Visualization of correlation pattern between mid and late stage modules c. Gene ontology analysis of separated module group shows not only

common GO terms but also distinct differences, which suggest different biological processes are involved in these correlation patterns.

https://doi.org/10.1371/journal.pone.0311164.g004
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In summary, we enabled qualitative screening of intermediate key gene modules and genes

that show correlation with addictive behavior, both cross-checked in literature and validated

in a well-accepted manner using conventional WGCNA methods. This approach ensures the

robustness and relevance of our findings in the context of spatiotemporal study including

addiction research.

Rescued DEG provides statistically significant gene expression analysis in

intermediate modules

There are two reasons why DEG cannot be used in these findings. First, the averaged gene

expression profile used in previous studies does not provide biological replicas, which leads to

a lack of statistical significance calculations. Second, genes included in the intermediate mod-

ules, whose highest point of log2FC was located in the intermediate module. Therefore, they

can be excluded from conventional DEG because of the lack of sufficient log2FC and high

probability because conventional DEG only compares control (start point) and treatment (end

point), not intermediate.

To overcome this limitation and provide statistical metrics for gene expression profile inter-

pretation, we devised a rescued DEG (rDEG), which is an extended version of the DEG. Figs 5,

S9A and S9B show the basic concept of rDEG, which is a serial DEG calculation analysis using

a raw expression profiles as input instead of the averaged gene expression profile that was orig-

inally used. rDEG not only provides a statistical metric–P-value–but also “rescues” possibly

missed DEGs because of going up and down gene expression patterns in the middle, as shown

in Fig 5.

Indeed, rDEGs were calculated from intermediate modules that were originally missed by

conventional DEGs and showed biological validity in both GO analysis and literature studies

(S2 Table). By screening genes that were included in significant GO terms and filtering signifi-

cant genes using rDEG criteria, we showed the important time series interplay of genes that

have statistical significance. Considering their regulatory GO terms, the rDEGs in the interme-

diate module could be intermediate regulators that were missed in a previous study.

We searched for rDEGs based on previous studies related to addiction or synaptic plasticity

(S2 Table). Modules 44, 47, 48, 49, and 50 have several rDEGs and corresponding references,

which implies inter-module co-expression related to HSPG (module 49). There were also

other rDEGs not included in the mid2 group but included in the mid1 group–Celf in module

41. The significance of these intermediate rDEGs can be shown by a brief introduction to pre-

vious research: Alcam for mid2 and Celf for mid1.

Fig 5. Rescued DEG (rDEG) and its validation an example of rDEG (Zfp51 in NAc), which originally sorted as a non-significant gene because of lack of fold change,

but was rescued in rDEG.

https://doi.org/10.1371/journal.pone.0311164.g005
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An example of an important time series interplay of genes is activated leukocyte cell adhe-

sion molecule (Alcam), which is known to modulate midbrain dopamine neurons (mDA).

Dysfunction of the mDA circuitry is related to neurodegenerative and neuropsychiatric condi-

tions, including drug addiction [45]. In the time-series view of cocaine addiction, Alcam

shows its significance in intermediate stages and mediates membrane-related modification in

gene module 48, which includes group mid2: neuron development, neuron differentiation,

regulation of nervous system development, cell projection organization, plasma membrane-

bound cell projection organization, ion transport, ion transmembrane transport, generation of

neuronal neurogenesis, and establishment of localization in cell and ion transport ion trans-

membrane transportation (S9C Fig). Because of the detailed view of the late2 gene group, GO

analysis using rDEG showed which specific genes were related to behavioral features of

cocaine addiction in focal adhesion, and the collagen-activated signaling pathway. Alcam, a

cytoplasmic membrane protein, provides a complete time-series view of membrane-related

modifications during cocaine addiction

Another example that implies an important interplay in gene modules 41 and mid1 group

is mediated by CUGBP Elav-like family member 4(Celf4), which includes RNA processing

(GO:00006396) and rDEG. Celf4 is known to play a role in neuronal differentiation and excita-

tion, corticothalamic development, synaptic transmission and function, and synaptic plasticity

[46]. Celf4 regulates local translation, including a vast set of mRNAs associated with the regu-

lation of synaptic function. Considering that the mid1 eigengene profile shows a weak negative

correlation with the late1 and late2 groups of gene modules that are not only highly correlated

with behavioral features but also placed in the intermediate stage of the addiction process,

Celf4 might be important for the cocaine addiction process. Recent research that implies a

relationship between Celf4 and amphetamine addiction [47] also supports the possible con-

nection between Celf4 and cocaine addiction.

In addition, although there is no direct evidence for this, a prediction can be made based on

indirect evidence that describes the interaction between HSPG and cadherin [48–51]–Cdh11

can be a possible therapeutic target for cocaine addiction, which is not only one of the rDEGs

of the HSPG biosynthetic process module (module 49), but also a well-known transmembrane

proteins that mediate cell–cell adhesion in signaling.

To assist in the interpretation of our findings, more extensive reviews on spatiotemporal

aspects of cocaine addiction and implications are described in S4 File. Furthermore, an expla-

nation focusing on differences between WGCNA and GAN-WGCNA can be found in S5 File.

In summary, we enabled quantitative measurement of intermediate key genes identified in

previous analyses by applying conventional Differentially Expressed Gene (DEG) methods to

the generated time-series gene expression profiles. This approach allowed us to validate the

significance of these genes in a dynamic context, providing a more detailed and robust under-

standing of their roles in well-acceptable manner.

Discussion

Machine learning is a promising computational method that can be used to overcome existing

limitations in many domains, including biological research [52]. However, its interpretation

and assessment are challenging, especially in the biological domain [53]. We suggest a pipeline

that enables not only the utilization of augmented information from the GAN, but also the

assessment of the statistical significance of generated gene expression data. Because our meth-

ods are an extension of conventional methods, they are easily glued to other methods by

exchanging specific algorithms or adding extra analytic pipelines.
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We proposed a GAN-WGCNA method using generated gene expression data, which is an

unbiased systemic approach for the full utilization of high temporal resolution. Our method,

which combines GAN and WGCNA, improved its analytic results and enabled not only unbi-

ased analysis but also calculation of the correlation between temporal gene modules and addic-

tion behavior. The key idea of combining GAN and WGCNA is to detect gene modules in the

generated time-series profile of each gene and calculate their eigen gene profiles in real samples

that have trait information. Indeed, these approaches showed that gene modules in the NAc

are mostly involved in addiction processes, consistent with previous studies [26, 36, 54, 55].

We rescued DEGs in the intermediate stages of cocaine addiction using the rDEG method.

This enables the understanding of time-series biological processes. GAN-WGCNA combined

with rDEG, has the capability of unbiased and intermediate-level analysis, that allowed the res-

cue of at least two important genes in the intermediate stage.–Celf4 [46, 47], and Alcam [45].

This study had a few limitations. One is that the aligned time point was determined by the

peak point of the expression profile. Most genes belong to the very first or last time points

because their expression profiles simply decrease or increase, making it meaningless to some

extent. For these genes, using differential values instead of the peak point will be more mean-

ingful. This differential value implies the gene module or biological process that shows rapid

changes during cocaine addiction. Therefore, it cannot fully guarantee its biological associa-

tion with a specific time point. We expect more delicate alignment methods to enable sophisti-

cated and intuitive interpretations. These advanced alignment methods could be based on

several biological principles or mathematical calculations, such as differential or integral,

which can reflect transitional or accumulated changes, respectively.

Another limitation is the gene module calculation step in WGCNA. Because of the thresh-

old problem, only the averaged gene expression profile is currently available as an input. Other

inputs, such as the unaveraged profile, did not satisfy the scale-free topological threshold,

which was established empirically using experimental data. An alternative algorithm or princi-

ple is required for generated data that have a higher resolution or dimensionality compared to

traditional experimental data.

Currently, biological researchers are only able to understand a fraction of data using insuffi-

cient dimensional reduction methods and face endless endeavors to reconstruct the entire

map of biological systems from scattered puzzle pieces. Therefore, methods that enable effi-

cient and significant use of machine learning technology in biological research should be

devised to help researchers construct a richer biological hypothesis, which will lead to break-

throughs in understanding complex biological phenomena.

Conclusion

We proposed generative adversarial networks and weighted gene co-expression network anal-

ysis (GAN-WGCNA) pipeline and rescued differentially expressed gene(rDEG) methods to

provide an analysis for intermediate regulators. GAN can be used to generate time-series gene

expression profiles without any intermediate sample collection between control and pathologi-

cal state. WGCNA is an un-biased systemic level analysis method which suitable to analyze

generated time-series gene expression profiles. Combination of these two methods,

GAN-WGCNA indeed provides information about time-series interplay of gene modules dur-

ing cocaine addiction. Moreover, rDEG rescued two intermediate regulators (Alcam and

Celf4) of cocaine addiction which were missed in previous research. Considering that Alcam

and Celf4 have known correlations with addiction-related behaviors. Alcam is involved in cell-

cell adhesion, which is crucial for synaptic plasticity and neural connectivity, potentially influ-

encing the neural circuits involved in addiction. Celf4 regulates RNA processing and local
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translation, which are critical for synaptic function and plasticity. These findings suggest that

GAN-WGCNA is capable of capturing intermediate process from bulk dataset in both inter-

cellular and intracellular phenomena.

In summary, understanding intermediate regulators in spatiotemporal pathogenesis is

essential to treatment and individual components of this pipeline are already well accepted

methods and provide qualitative and quantitative windows to biological researchers, presented

work will contribute to various future research and drug development.
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