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Abstract: Liraglutide, a glucagon-like peptide-1 receptor agonist, is effective in the treatment of
type 2 diabetes mellitus (T2DM) and obesity. Despite its benefits, including improved glycemic
control and weight loss, the common metabolic changes induced by liraglutide and correlations
between those in rodents and humans remain unknown. Here, we used advanced machine learning
techniques to analyze the plasma metabolomic data in diet-induced obese (DIO) mice and patients
with T2DM treated with liraglutide. Among the machine learning models, Support Vector Machine
was the most suitable for DIO mice, and Gradient Boosting was the most suitable for patients with
T2DM. Through the cross-evaluation of machine learning models, we found that liraglutide promotes
metabolic shifts and interspecies correlations in these shifts between DIO mice and patients with
T2DM. Our comparative analysis helped identify metabolic correlations influenced by liraglutide
between humans and rodents and may guide future therapeutic strategies for T2DM and obesity.

Keywords: type 2 diabetes mellitus; obesity; liraglutide; metabolomics; metabolic profiling;
machine learning

1. Introduction

Type 2 diabetes mellitus (T2DM) and obesity are major global health issues that have
significant complications and increase the risk of morbidity and mortality [1,2]. Over the
past 20 years, therapies based on incretin hormones, particularly glucagon-like peptide-1
receptor agonists (GLP-1 RAs), have become the preferred treatment for T2DM and obesity
due to their efficacy and safety in numerous clinical trials [2–4]. Among the most widely
adopted GLP-1 RAs, liraglutide substantially improves glycemic control and promotes
weight loss [5–10]. Recent advancements in omics technologies, including proteomics and
metabolomics, have demonstrated that liraglutide treatment significantly changes protein
expression and metabolite levels across various biological samples in patients with T2DM
and obesity and in mouse models [11–17]. The identified proteins and metabolites provide
insights into liraglutide’s multifaceted mechanisms of action, which improve glycemic
control and lipid profiles, reduce inflammation, and potentially offer cardiovascular and
renal benefits [11–17].

Metabolomics encompasses the analysis of a vast array of metabolites present in
biological samples using sophisticated analytical techniques. The ongoing challenges of
such analysis include obtaining metabolic snapshots and surrogate diagnostics, identi-
fying biomarkers, elucidating the mechanisms driving metabolic disorders, and eval-
uating drug efficacy and therapeutic outcomes [18,19]. Understanding the metabolic
shifts induced by liraglutide treatment can provide valuable insights into its mecha-
nisms of action and help identify potential biomarkers for treatment response. Previous
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metabolomic studies using different analytical platforms in rodents and humans demon-
strated that liraglutide induced various metabolic shifts in multiple tissues and blood.
For example, liraglutide coordinates the modulation of fatty acid metabolism in the
hypothalamus and skeletal muscle as well as amino acid and carbohydrate metabolism
in the plasma and liver in diet-induced obese (DIO) mice [11]. In the urine of DIO mice,
significant alterations were observed in nicotinamide adenine dinucleotide metabolism
and the β-oxidation of fatty acids following liraglutide treatment [12]. Human plasma
and serum metabolomics studies have demonstrated remarkable changes in ketone
bodies, citrate, branched-chain amino acids, and glycerophospholipids after liraglutide
treatment [13,14]. Although these metabolic changes reflect the metabolic effects of
liraglutide, no study has identified or integrated common metabolites altered by liraglu-
tide between rodents and humans due to the lack of comparable datasets that match
experimental parameters such as biological sample types and data processing meth-
ods. Therefore, a comparative metabolomics approach, bridging preclinical and clinical
studies of liraglutide treatment, is needed to fully understand the metabolic changes
that occur in rodents and humans. Also, identifying and targeting key metabolism
or metabolic pathways altered by liraglutide may help develop advanced therapeutic
strategies that enhance liraglutide efficacy for personalized medicine approaches for
T2DM and obesity treatment.

Machine learning uses artificial intelligence methodologies to automatically analyze
large-scale and complex data, and its use is steadily growing across all fields of biomedical
science [20–23]. Machine learning is becoming increasingly integrated into metabolomics,
enhancing the accuracy of data analysis and consolidating various types of omics data to
provide a comprehensive view of biological systems. Consequently, machine learning is
revolutionizing metabolomics by enabling the analysis of complex datasets, improving dis-
ease diagnosis, predicting clinical outcomes, and facilitating biomarker discovery [24–27].
The application of machine learning in metabolomic studies enables a thorough, compre-
hensive understanding of the metabolic efficacy of liraglutide. This approach not only
aids the discovery of novel biomarkers for the outcomes of GLP-1RA intervention but also
advances the development of personalized therapeutic strategies, making it a critical tool
in translational research.

Here, we report machine learning-based metabolomic analysis aimed at understanding
the metabolic effects of liraglutide using the plasma metabolomes of DIO mice and patients
with T2DM. This comprehensive and comparative analysis will offer new insights that
could lead to more precise and personalized interventions for T2DM and obesity.

2. Materials and Methods
2.1. Data Collection

The metabolomics analysis was based on the plasma metabolome raw dataset obtained
from post-liraglutide treatment studies, including our previous study (liraglutide treatment
in male DIO mice fed a high-fat diet) [11] and the open-source data from the Metabolomics
Workbench of the National Institutes of Health (liraglutide treatment in male patients
with T2DM; https://www.metabolomicsworkbench.org, Project ID PR001699, Project DOI:
10.21228/M83B08, accessed on 2 July 2023). The Metabolomics Workbench is supported by
grants #U2C-DK119886, #3OT2OD030544, and #1U2C-DK119889.

Among the DIO mice, one group received vehicle treatment (Veh, n = 8), and the
other received liraglutide treatment (Lira, n = 8). For the patients with T2DM, the datasets
consisted of samples collected before (Pre, n = 20) and after (Post, n = 20) liraglutide
treatment. These metabolomic data were obtained from 20 distinct patients before and after
liraglutide treatment. The plasma samples from DIO mice and patients with T2DM were
analyzed using gas chromatography–tandem mass spectrometry (GC-MS/MS, Agilent
Technologies, Santa Clara, CA, USA) for targeted and untargeted analysis and liquid
chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS, Waters
Corp., Milford, MA, USA) for untargeted analysis, respectively.

https://www.metabolomicsworkbench.org
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2.2. Data Processing

The raw data were converted to analysis base files (“.abf”) using ABF converter
(Reifycs Inc., Tokyo, Japan), and metabolic features (peak detection, deconvolution, identi-
fication, and alignment) were processed using MS-DIAL v5.2.240424.3 software (RIKEN,
Waco, Japan) [28] with the following parameters: mass scan range, 0 to 2000 Da; mass
tolerance for centroid, 0.01 Da; retention time tolerance for alignment, 0.1 min; spectrum
similarity tolerance for alignment, 0.8 min; mass tolerance for alignment, 0.5 Da; identifica-
tion, FiehnRI and ESI(±)-MS/MS standard database. The partial least squares discriminant
analysis (PLS-DA) was performed, and volcano plots were generated in the Metaboanalyst
6.0 online tool [29]. To identify and remove variables, data were filtered and normalized
with the following parameters: variance filter, interquartile range; abundance filter, mean
intensity value; sample normalization, median; data transformation, log (base 10); data scal-
ing, auto. After data processing, Kyoto Encyclopedia of Genes and Genomes (KEGG)-based
metabolite set enrichment analysis and pathway topological analysis were performed using
default values in Metaboanalyst 6.0 [30].

2.3. Machine Learning Processing

Machine learning was performed using Orange v3.37.0 software based on Python, an
open-source data visualization and analysis tool for data mining through visual program-
ming (University of Ljubljana, Ljubljana, Slovenia) [31]. The datasets were preprocessed
using the ‘Preprocess’ widget. Rows with missing values were removed, and 80% of the
data were randomly selected. To prepare the data for model training, all numerical features
were standardized to have a range of −1 to 1.

This standardization allowed seven machine learning algorithms to be implemented
to build classification models, each configured with specific parameters to optimize their
performance [21,32]. Logistic regression used the least absolute shrinkage and selection
operator algorithm with the L1 constraint set to 0.01 to enforce sparsity in the model. For
Random Forest, 5000 trees were used to ensure replicable training and robust performance.
A Neural Network was implemented with the rectified linear unit activation function, and
over 2000 iterations were used to train the model to capture non-linear relationships in the
data. The k-Nearest Neighbors (kNN) algorithm used Euclidean distances to measure the
proximity of instances. Adaptive Boost (AdaBoost) was configured with 2000 estimators
and a learning rate of 0.5, employing the stagewise additive modeling using a multi-class
exponential real algorithm to improve classification accuracy by focusing on misclassified
instances. Gradient Boosting, which used the eXtreme Gradient Boosting (XgBoost) al-
gorithm, was set up with 5000 trees, a learning rate of 0.7, and a lambda regularization
parameter of 1 to control overfitting and enhanced model generalization. The Support
Vector Machine (SVM) classifier was configured with a cost parameter of 1, a regression loss
epsilon of 0.1, a radial basis function kernel, and 2000 iterations to handle the classification
task effectively by maximizing the margin between classes.

The data were imported using the ‘File’ widget, and preprocessing tasks were handled
by the ‘Preprocess’ widget. The ‘Test & Score’ widget was used for model training and
evaluation, enabling the systematic comparison of model performance. The ‘Confusion
Matrix’ and ‘Receiver operating characteristic (ROC) Analysis’ widgets provided a detailed
performance evaluation of each classifier. The datasets were subjected to cross-validation
using Monte Carlo methods, ensuring the robustness and reliability of the results. The
datasets were randomly divided into training and test sets, with 75% of the data used for
training and 25% reserved for testing.

Model performance was assessed using multiple metrics, including the mean values
of classification accuracy, precision, recall, F1 score, area under the ROC curve (AUC), and
the Matthews correlation coefficient score [33]. These metrics comprehensively evaluate
each model’s predictive capability and generalization performance.

To learn the significance of each feature in our classification models, we employed
feature scoring (feature importance analysis) using the ‘Rank’ widget. Specifically, we
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utilized the feature importance analysis metrics, including Information Gain, Gini Index,
Chi-squared, ReliefF, and ANOVA, to quantify the importance of individual features.

The normalized peak intensities were converted to z-scores to represent the data
points on a standard scale for data visualization. The z-score was calculated using the
formula: z = X − µ/σ, where X presents the raw value of peak intensity, µ is the mean of
the population, and σ is the standard deviation of the population.

Machine learning was conducted on a computer equipped with an Intel Core i7 pro-
cessor and 32 GB of RAM running on Windows 11. This setup ensured that computational
resources were sufficient to efficiently handle the data processing and model training tasks.

2.4. Statistical Analysis

In the Supplementary Figures, the quantitative data are presented as the
mean ± standard error of the mean (SEM). To compare the two groups, datasets were
analyzed by a two-tailed unpaired Student’s t-tests. Multiple comparisons were per-
formed by two-way ANOVA followed by Fisher’s LSD test using GraphPad Prism software
(v10.2.3; Dotmatics, Boston, MA, USA). A value of p < 0.05 was considered to indicate a
significant difference.

3. Results
3.1. Study Design

The overall workflow of this study and detailed information on each type of analysis
of the DIO mice and patients with T2DM are presented in Figure 1.

The datasets used in this study were derived from our previous study [11] or were
open-source data from the Metabolomics Workbench of the National Institutes of Health.
After data collection, the raw datasets were processed using MS-DIAL, which involved peak
detection, deconvolution, identification, and alignment. Subsequently, supervised machine
learning models were used with model training, parameter optimization, and performance
evaluation. The machine learning processes used various tools, including Metaboanalyst
for simple metabolomic profiling and Orange (Python) for machine learning tasks. Finally,
through the cross-evaluation of model performance, we identified common key metabolites
and metabolic pathways changed by liraglutide in both humans and mice (Figure 1).

3.2. Changes in Plasma Metabolome in DIO Mice in Response to Liraglutide

To characterize the effects of liraglutide on the plasma metabolome in DIO mice, we
performed a metabolomic analysis to compare the liraglutide- and vehicle-injected groups.
Notably, PLS-DA distinguished the two groups, indicating that the metabolome of DIO
mice is remodeled by liraglutide (Figure 2A). In total, 30 annotated metabolites showed
statistically significant differences between the groups (Figure 2B).

To determine the best-performing machine learning model for identifying potential
vital metabolites, we evaluated the performance of SVM, Neural Network, Random For-
est, Logistic Regression, Gradient Boosting, AdaBoost, and kNN on the mouse plasma
metabolome. Among these algorithms, we chose the SVM owing to its higher performance
metrics (Figure 2C and Supplementary Table S1). The SVM model yielded a high AUC
score of 0.918 (95% confidence interval [CI]: 0.875–0.957) (Figure 2D). We generated a
performance lift curve for the SVM model to validate its robustness and potential utility
in metabolomics analysis. The curve showed that the SVM model had high prediction
accuracy, especially at the positive classification thresholds (probability thresholds ≥ 0.5),
indicating strong performance in identifying key metabolites (Figure 2E). To further evalu-
ate the performance of our SVM model, we analyzed the confusion matrix. This analysis
revealed that the model had a high percentage of true positives (90.5%) and true negatives
(94.7%), indicating solid predictive capabilities (Figure 2F).

By applying our SVM model, we identified the top-ranked metabolites that were most
likely the critical contributors to the observed metabolic changes. These metabolites were
selected on the basis of their significant features generated by the model (Figure 2G). Li-
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raglutide, as predicted by the SVM model, significantly decreased the levels of metabolites
such as asparagine, inositol, N-acetyl-D-glucosamine, caprylic acid, glucuronic acid, glu-
cose, L-glucono-1,4-lactone, uridine, mannose, stearic acid, eicosapentaenoic acid, glucose
6-phosphate, xylulose 5-phosphate, ribulose 1,5-diphosphate, glycerol 3-galactoside, ery-
throse 4-phosphate, fructose 6-phosphate, ribose 5-phosphate, 1,6-anhydroglucose, fructose,
and arachidonic acid in DIO mice compared with the vehicle group (Figure 2G).
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3.3. Changes in Plasma Metabolome in Patients with T2DM in Response to Liraglutide

To characterize the effects of liraglutide on the plasma metabolome in patients with T2DM,
we performed metabolomic analysis to compare the pre-liraglutide treatment group to the
post-liraglutide one. PLS-DA distinguished these two groups, indicating that the metabolome
of patients with T2DM was remodeled by liraglutide (Figure 3A). In total, 82 annotated
metabolites showed statistically significant differences between the groups (Figure 3B).



Metabolites 2024, 14, 483 6 of 15Metabolites 2024, 14, x  7 of 18 
 

 

 
Figure 2. Changes in plasma metabolites in DIO mice in response to liraglutide. (A) Partial least 
squares discriminant analysis (PLS-DA) plot. (B) Volcano plot. FC, fold change. (C) Radar chart 
comparing the performance of seven machine learning models. CA, classification accuracy. AUC, 

Figure 2. Changes in plasma metabolites in DIO mice in response to liraglutide. (A) Partial least
squares discriminant analysis (PLS-DA) plot. (B) Volcano plot. FC, fold change. (C) Radar chart
comparing the performance of seven machine learning models. CA, classification accuracy. AUC,
area under the receiver operating characteristic (ROC) curve. MCC, Matthews correlation coefficient.
F1, 2 × (Precision × Recall/Precision + Recall). (D) ROC curve of the SVM model. TP rate, true
positive rate; FP rate, false positive rate. The calculation of the 95% confidence interval (CI) was
based on the mean and covariance of 100 random sampling tests. (E) Performance lift curve of the
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SVM model. Lift, predicted positive event rate; P rate, precision rate. (F) Confusion matrix for
the SVM model. TN, true negative; FN, false negative. Veh, vehicle; Lira, liraglutide treatment.
(G) Top-ranked metabolic shifts. The bar graph and the heatmap were generated using the z-score of
normalized peak intensity.
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learning models. (D) ROC curve of the Gradient Boosting (XgBoost) model. The calculation of the
95% confidence interval (CI) was based on the mean and covariance of 100 random sampling tests.
(E) Performance lift curve of the Gradient Boosting model. Lift, predicted positive event rate; P rate,
precision rate. (F) Confusion matrix for the Gradient Boosting model. Pre, pre-liraglutide treatment;
Post, post-liraglutide (Post) treatment. (G) Top-ranked metabolic shifts. The bar graph and the
heatmap were generated using the z-score of normalized peak intensity.

We evaluated the performance of different machine learning algorithms on the plasma
metabolome of the patients with T2DM using Gradient Boosting, AdaBoost, Logistic
Regression, Random Forest, kNN, SVM, and Neural Network. We chose Gradient Boosting
owing to its markedly higher performance metrics than those of the other algorithms
(Figure 3C and Supplementary Table S2). The Gradient Boosting model yielded a high
AUC score of 0.878 (95% CI: 0.829–0.927) (Figure 3D). Next, we generated a performance lift
curve for this model, which indicated strong performance in identifying key metabolites at
the positive classification thresholds (probability thresholds ≥ 0.5) (Figure 3E). To further
evaluate the performance of our Gradient Boosting model, we analyzed the confusion
matrix. This analysis revealed that the model had a high percentage of true positives
(86.6%) and true negatives (84.0%), indicating solid predictive capabilities (Figure 3F).

By applying our Gradient Boosting model, we identified the top-ranked metabolites
that were most likely the key contributors to the observed metabolic changes (Figure 3G).
Post-liraglutide treatment, as predicted by the Gradient Boosting model, significantly
decreased the levels of metabolites, such as ferulic acid, trehalose, estrone, lysine, tau-
rodeoxycholic acid, homocysteine, 3-sulfino-L-alanine, indole-3-carboxylic acid, fructose 1-
phosphate, isoleucyl-isoleucine, proline, cis-4-hydroxy-D-proline, and (9Z, 12Z)-
octadecadienoic acid (linoleic acid), compared with the pre-liraglutide group (Figure 3G).

3.4. Changes in Plasma Metabolites and Metabolic Pathways Following Liraglutide Treatment in
DIO Mice and Patients with T2DM

To understand the metabolic similarities and differences in response to liraglutide
between DIO mice and human patients with T2DM, we compared the plasma metabolomic
data between the two species. We used data from the Gradient Boosting model for patients
with T2DM and the SVM model for DIO mice and identified 47 metabolites overlapping
between them (Figure 4A). We categorized the common metabolites into increased and
decreased. Four overlapping metabolites were increased and 27 were decreased in patients
with T2DM, whereas 6 metabolites were increased and 33 were decreased in DIO mice
(Figure 4A).

Among the overlapping metabolites, 42 showed changes in levels due to liraglutide
treatment. Two metabolites (tryptophan and epinephrine) increased, while 26 metabolites
(uridine, taurine, ribulose 1,5-diphosphate, pyroglutamic acid, phenylalanine, methyl-
malonic acid, melezitose, maltotriose, malic acid, lauric acid, lysine, glutamine, glutamic
acid, aspartic acid, asparagine, GABA, fumaric acid, fructose 6-phosphate, fructose, glyc-
eraldehyde 3-phosphate, ribose 5-phosphate, glucose, mannose, cysteine, citric acid, and
arachidonic acid) decreased in both DIO mice and patients with T2DM. Seven metabolites
(methionine, valine, tyrosine, proline, norleucine, leucine, and iditol) changed in opposite
directions. In DIO mice only, tartaric acid, niacinamide, histidine, and arabitol were de-
creased, while ribitol, N-acetyl-D-glucosamine, and indoleacetic acid were increased by
liraglutide (Figure 4B).

To identify the metabolic pathways impacted by liraglutide in both DIO mice and
patients with T2DM, we performed a metabolite set enrichment analysis for the 42 over-
lapping metabolites. The most pronounced impacts of liraglutide were on metabolites
involved in alanine, aspartate, and glutamate metabolism; arginine biosynthesis; fructose
and mannose metabolism; glyoxylate and dicarboxylate metabolism; phenylalanine, ty-
rosine, and tryptophan biosynthesis; starch and sucrose metabolism; the citric acid cycle;
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nitrogen metabolism; the pentose phosphate metabolism; and taurine and hypotaurine
metabolism (Figure 4C).

Metabolites 2024, 14, x  11 of 18 
 

 

 
Figure 4. Comparison of plasma metabolomic changes between DIO mice and patients with T2DM. 
(A) A Venn diagram showing the overlapping and unique metabolites identified in patients with 
T2DM and DIO mice after processing with Gradient Boosting and SVM, respectively. (B) Changes 
in metabolite levels. In the bidirectional bar graph, the left side represents decreased, and the right 
side represents increased. The length of the bars indicates the extent of the increase or decrease. (C) 
Top-ranked metabolite set enrichment analysis. Circle size indicates the expected enrichment value 
for a metabolic pathway. 

3.5. Identification of Key Plasma Metabolites and Metabolic Pathways Changed by Liraglutide in 
Both DIO Mice and Patients with T2DM  

To identify key plasma metabolites and metabolic pathways changed in both DIO 
mice and patients with T2DM, we conducted a performance cross-evaluation of Gradient 
Boosting and SVM. We used the 42 overlapping metabolites from DIO mice as a training 
dataset for SVM and those from patients with T2DM as a test dataset for Gradient Boost-
ing, and vice versa (Figure 5A). The ROC curves for Gradient Boosting and SVM showed 
high AUC scores of 0.972 (95% CI: 0.949–0.995) and 0.936 (95% CI: 0.903–0.973), 

Figure 4. Comparison of plasma metabolomic changes between DIO mice and patients with T2DM.
(A) A Venn diagram showing the overlapping and unique metabolites identified in patients with
T2DM and DIO mice after processing with Gradient Boosting and SVM, respectively. (B) Changes
in metabolite levels. In the bidirectional bar graph, the left side represents decreased, and the right
side represents increased. The length of the bars indicates the extent of the increase or decrease.
(C) Top-ranked metabolite set enrichment analysis. Circle size indicates the expected enrichment
value for a metabolic pathway.

3.5. Identification of Key Plasma Metabolites and Metabolic Pathways Changed by Liraglutide in
Both DIO Mice and Patients with T2DM

To identify key plasma metabolites and metabolic pathways changed in both DIO
mice and patients with T2DM, we conducted a performance cross-evaluation of Gradient
Boosting and SVM. We used the 42 overlapping metabolites from DIO mice as a training
dataset for SVM and those from patients with T2DM as a test dataset for Gradient Boosting,
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and vice versa (Figure 5A). The ROC curves for Gradient Boosting and SVM showed high
AUC scores of 0.972 (95% CI: 0.949–0.995) and 0.936 (95% CI: 0.903–0.973), respectively.
The performance of Gradient Boosting was superior to that of SVM, suggesting that a
well-tuned and optimized Gradient Boosting model is more suitable for identifying and
analyzing key liraglutide-responsive metabolites and metabolic pathways common to DIO
mice and patients with T2DM (Figure 5B).
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The calculation of the 95% confidence interval (CI) was based on the mean and covariance of
100 random sampling tests. (C) Heatmap of metabolites significantly altered by liraglutide that
were common to DIO mice and patients with T2DM. Color gradient represents normalized peak
intensity. (D) Topological analysis of metabolic pathways. Blue dots represent pathways decreased
by liraglutide. (E) Correlation plot of metabolic responses to liraglutide in DIO mice and patients
with T2DM. The X- and Y-axes represent metabolic changes induced by liraglutide from patients
with T2DM and DIO mice, respectively. The reddish-orange dots indicate individual metabolic
features. The red line shows R-squared (R2), and its value is 0.064 (95% CI: −0.189–0.609). Pearson’s
(r) and Spearman’s (ρ) correlation coefficients are shown above the graph. The criteria for Pearson’s
correlation coefficients were as follows: <0.1, no correlation; 0.1 to <0.3, weak correlation; 0.3 to <0.5,
moderate correlation; 0.5 to <0.7, strong correlation; 0.7 to 1.00 very strong correlation. The criteria for
Spearman’s correlation coefficients were as follows: <0.1, no correlation; 0.1 to <0.4, weak correlation;
0.4 to <0.8, moderate correlation; 0.8 to 1.0, strong correlation.

Out of the 42 overlapping metabolites, we identified 22 that were statistically signifi-
cant in both DIO mice and patients with T2DM. Asparagine, glucose, uridine, mannose,
ribulose 1,5-diphosphate, fructose 6-phosphate, fructose, glyceraldehyde 3-phosphate,
aspartic acid, lauric acid, ribose 5-phosphate, phenylalanine, glutamic acid, maltotriose, py-
roglutamic acid, glutamine, malic acid, GABA, and citric acid were significantly decreased
by liraglutide in both DIO mice and patients with T2DM (Figure 5C and Supplementary
Figure S1). By contrast, the levels of epinephrine were increased by liraglutide. Notably,
the levels of valine and proline were remarkably decreased by liraglutide in patients with
T2DM but were increased in DIO mice (Figure 5C and Supplementary Figure S1).

The common 19 decreased metabolites were associated with metabolic pathways such
as phenylalanine, tyrosine, and tryptophan biosynthesis; alanine, aspartate, and glutamate
metabolism; fructose and mannose metabolism; starch and sucrose metabolism, and the
pentose phosphate pathway (Figure 5D).

To further analyze the metabolic proximity and relationships between significantly
changed metabolites in DIO mice and patients with T2DM treated with liraglutide, we
generated a cross-species correlation plot using various statistics, including linear measures
(R-squared and Pearson’s correlation coefficient) and a non-linear measure (Spearman’s
correlation coefficient). Correlation analysis showed a moderate positive linear and rank
correlation between changes in metabolite levels in mice and humans after liraglutide
treatment, indicating that both species exhibit similar patterns in their metabolite responses
to liraglutide, at least for these common metabolites (Figure 5E).

Overall, liraglutide triggered similar plasma metabolome changes (20 metabolites,
with valine and proline showing opposite changes) in both species. This finding suggests
the critical metabolites involved in the response to liraglutide and provides valuable
insights into its mechanism of action and response efficacy. Our finding will facilitate the
advancement of translational research employing liraglutide intervention for the treatment
of metabolic diseases such as T2DM and obesity.

4. Discussion

Numerous metabolic signatures associated with liraglutide treatment have been iden-
tified in either clinical or preclinical practice to understand metabolic changes in plasma,
serum, urine, and various tissues [11–14,34]. Despite these efforts, interpreting sophis-
ticated metabolomics data has been challenging, necessitating the development of new
analytical methods. In this study, using metabolomics analysis combined with machine
learning approaches, we found that liraglutide caused several common metabolic shifts in
DIO mice and patients with T2DM. Twenty metabolites were identified as key indicators
of the metabolic response to liraglutide treatment in both species; these metabolites had
similar patterns in a cross-species correlation plot. Our study revealed the unique advan-
tages of applying machine learning-based metabolomics to facilitate the understanding of
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liraglutide’s efficacy in terms of metabolic changes in both rodents and humans, thereby
providing clinical translation potential in the future.

Obesity and insulin resistance are often associated with elevated plasma levels of
amino acids, particularly alanine, glutamic acid, and phenylalanine. The elevated plasma
amino acids promote oxidative stress and inflammation, increasing cardiovascular risk
and promoting non-alcoholic fatty liver disease [35–37]. In our study, metabolomic ma-
chine learning data showed that liraglutide significantly reduced the plasma levels of
phenylalanine and glutamic acid, which may help lower inflammatory responses and
improve insulin sensitivity [38]. During insulin resistance, impaired mitochondrial respi-
ration increases the metabolic fluxes of gluconeogenesis and the citric acid cycle, which
subsequently leads to oxidative stress and recruitment of pro-inflammatory cytokines,
such as tumor necrosis factor-α (TNF-α) and interleukin 6 [39]. Our machine learning
results showed that the intermediates of gluconeogenesis and the citric acid cycle, such
as glucose, fructose 6-phosphate, glyceraldehyde 3-phosphate, malic acid, and citric acid,
were significantly decreased by liraglutide in both DIO mice and patients with T2DM,
which may also contribute to increasing insulin sensitivity by mitigating pro-inflammatory
responses and excessive oxidative flux in obesity and T2DM [38,40,41].

Our study demonstrated an increase in plasma epinephrine levels following liraglutide
treatment in both DIO mice and patients with T2DM. This increase can elevate metabolic
rate and suppress appetite, leading to weight loss, which is consistent with the effects
of liraglutide [42,43]. However, liraglutide may trigger a rapid lowering of blood glu-
cose, which could activate the sympathetic nervous system and the subsequent release of
epinephrine to prevent hypoglycemia, likely as a compensatory response [44–46]. Therefore,
our study suggests a potential mechanism by which liraglutide regulates blood glucose by
modulating epinephrine levels. In terms of the potential implications for patient care, the
elevated plasma epinephrine levels also raise concerns in patients with T2DM regarding
the risk of hypoglycemia, as they are more vulnerable to fluctuations in blood glucose
levels [47,48]. This may require careful monitoring and individualized treatment plans
when using liraglutide in clinical practice. Future studies should further explore these
implications to optimize the safety and efficacy of liraglutide therapy in managing T2DM
and obesity.

Interestingly, our metabolomic analysis showed that liraglutide markedly reduced ri-
bose 5-phosphate in both DIO mice and patients with T2DM while also decreasing NADPH
in patients with T2DM (Supplementary Figures S1 and S2). The pentose phosphate path-
way (PPP) is critical in glycemic control, producing NADPH for cellular redox balance and
ribose 5-phosphate for nucleotide and nucleic acid biosynthesis [49]. In obesity and T2DM,
free fatty acids released from adipocytes promote the PPP flux in M1 macrophages, leading
to excessive NADPH production [49,50]. Excess NADPH induces oxidative stress and
inflammatory responses by promoting the secretion of pro-inflammatory cytokines, such as
TNF-α and interleukin 1β, and leads to severe insulin resistance in various tissues [49,50].
Notably, liraglutide reduces the production of these cytokines [51,52]. As suggested by
our metabolomic analysis, liraglutide-reduced PPP flux may prevent pro-inflammatory
responses and improve insulin sensitivity.

Integrating machine learning into metabolomics study is a powerful tool that com-
plements and extends traditional statistical methodologies [25]. By enabling the efficient
handling of large-scale data, detecting nonlinear relationships, automating feature selec-
tion, facilitating personalized analysis, and uncovering unexpected discoveries, machine
learning allows for a deeper and more comprehensive understanding of metabolomic data.
Compared to conventional methods, machine learning empowers researchers to explore the
complexity and multidimensionality of metabolomic datasets more effectively, ultimately
enhancing our understanding of biological processes and contributing significantly to
elucidating disease mechanisms and developing therapeutic strategies.

Several limitations of our study should be noted. Firstly, differences in mass spectrom-
etry platforms can significantly influence the number of annotated metabolites identified, as
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shown in the Venn diagram of Figure 4A. LC analysis yields a substantially higher number
of identified metabolites compared with GC. Consequently, it is imperative to conduct addi-
tional analyses using LC to enhance the detection of metabolites in DIO mice. Additionally,
the post-treatment schemes were not matched. The vehicle- and liraglutide-injected DIO
mice were from separate groups, whereas for patients with T2DM, the comparison was
made within the same group before and after liraglutide treatment. A possible alternative
could be comparing the DIO mice before and after liraglutide treatment or including a
placebo control group for patients with T2DM. Finally, this study did not account for inher-
ent differences between rodents and humans, such as race (strain), age, sex, and metabolic
characteristics, which could cause variability in the observed metabolic profiles. There-
fore, a cautious interpretation of the findings is needed, and further clinical or preclinical
research is warranted to validate and optimize the results.

5. Conclusions

In conclusion, using machine learning techniques, our study revealed numerous com-
mon metabolic shifts induced by liraglutide treatment in DIO mice and patients with T2DM.
Our findings can be integrated into medical or pharmacological applications to reveal treat-
ment outcomes and develop new therapeutic strategies. The framework highlights the
unique aspects of machine learning-based interpretation of metabolomics data for clinical
diagnostics and prognostics through GLP-1 RA interventions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo14090483/s1, Figure S1, Plasma metabolites altered by
liraglutide in patients with T2DM and DIO mice; Figure S2, Effect of liraglutide on plasma NADPH
level in patients with T2DM; Table S1, Model performance metrics in DIO mice; Table S2, Model
performance metrics in patients with T2DM.
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