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ABSTRACT Small cell technology for future 6G networks allows network operators to increase network
capacity by reducing the distance between Base Stations (BSs) and users, thereby increasingwireless channel
gains. However, it also leads to significant computational complexity to optimally mitigate inter-cell and/or
inter-beam interference by dynamically managing beamforming, transmit power and user scheduling. In this
paper, we formulate an optimization problem aiming to maximize the sum utility of users where decision
variables are beam pattern selection, user scheduling and transmit power allocation in small cell networks.
Next, we capture room for performance enhancement and low computational complexity that existing studies
have overlooked by proposing i) a novel decision making process of DQN (Deep Q-Network) to jointly
learn all decision variables in a single DRL (Deep Reinforcement Learning) model without a curse of
dimensionality by adopting a user-specific state to each agent with distributed interference approximation
meaning that interferences to all users in all neighbor BSs can be abstracted by a single user, and
ii) a novel reward design so that the reward is judged by the result of a practical optimization-based solution.
Finally, we show the superiority of the proposed DQL (Deep Q-Learning) algorithm compared to the
existing interference management algorithms via simulations and provide insights for network providers
who will leverage DQL in future small cell networks through in-depth performance analysis compared with
conventional DQL algorithm and practical optimization algorithms.

INDEX TERMS Deep Q-learning, judgement-based learning, beam pattern selection, power allocation, user
scheduling.

I. INTRODUCTION
Small cell network, deploying numerous cells within small
area, is expected to offer enhanced network capacity.
Particularly, when integrated with advanced communication
technologies, e.g., mmWave Multi-Input and Multi-Output
(MIMO), it is expected to offset limitations and alleviate
high interference in the small cell network, i.e., vulnerability
in long-range communication and interference reduction
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with directional beams. Despite these advantages, however,
network operators face significant challenges as follows.
The proliferation of cells leads to exponential increase in
possible combinations of decision variables, substantially
raising computational complexity for network resource man-
agement, including dynamic beamforming, user scheduling,
and transmit power allocation [1]. As a result, several
optimization-based techniques failed to achieve the optimal-
ity of the formulated problem due to the high computational
complexity of the algorithms and hence, some researchers
proposed heuristic-based sub-optimal algorithms.
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Recently, Open RAN (Radio Access Network) architecture
in 6G network stands at the forefront of network deployment,
specifically within the small cell networks, by incorporating
interoperability and standards across RAN components. This
architecture significantly enhances the integration ability
of the network with cutting-edge technologies such as
mmWave MIMO, thereby meeting the growing demand for
high-capacity and low-latency communications. Moreover,
Open RAN facilitates the AI-driven functionalities in the
internal components such as non real-time RIC (RAN
Intelligent Controller) and near real-time RIC. By adopting
an open and AI-based framework, it can drastically reduce
the algorithmic complexity for dynamic beamforming, user
scheduling and power allocation controls. This not only
simplifies the advancement towards more intelligent and
efficient network resource management but also enables
network operators to rapidly adapt to technological advance-
ments, ensuring a more scalable and robust cellular network
ecosystem.

In this context, there have been a number of studies
to efficiently unravel the computational complexity of
network resource management with the aid of AI (Artificial
Intelligence). For example, RL (Reinforcement Learning),
that agent learns optimal action which maximizes the reward
for a given state by interacting with the environment, has
been actively studied from Q-learning to DRL (Deep RL)
for efficient and enhanced resource management [2], [3], [4].
However, to fully leverage RL, there are not only needs for
sophisticated reward design but also challenges in learning
due to the exponential increase in the size of the state and
action space as the dimension of decision variables expands.
To this end, there exist some studies that proposed algorithms
based on a blend of AI (e.g., DQL (Deep Q-Learning)
and DNN (Deep Neural Network)) and optimization to
control beamforming, user scheduling and transmit power
allocation simultaneously [3], [4], [5]. For example, Ahmed
et al. considered sum-rate maximization problem of which
solution is to sequentially solve the user grouping, group-
beam pairing and transmit power allocation [4]. In this
work, DRL was employed for only group-beam pairing,
yet transmit power and user grouping were determined by
leveraging an optimization framework. However, it is noted
that the agent was unable to learn the overall relationships
among decision variables in the DRL framework since
authors disentangled the intertwined decision variables. The
reason authors adopted this approach is due to the high
dimensionality of a set of state and action spaces, resulting
in exceedingly complex interference relationships in resource
management. To solve this issue, it requires tremendous size
of DNN model and computing power, yet it is not realizable
for each BS in small cell networks.

Practical transmit power control and user scheduling in
multi-cell networks under dynamic channel conditions has
been proposed with distributed manner [6]. In this work,
they abstracted the interference received by all users in
neighboring cells into the interference experienced by the

most interfered users in those cells. Then, they exchanged
this interference information, i.e., channel gains between BSs
at long intervals and exchanged only the indices of the users
scheduled by neighboring BSs at each time slot to operate in a
distributed manner. We conjecture that this distributed nature
can reduce the state and action spaces in the DRL framework
by individually making Q-value for each user in each BS,
and then selecting the best one for user scheduling. Note
that conventional centralized optimization solution cannot
achieve this since all states and actions are interdependent
across all BSs.

Hence, in this paper, we propose a novel decision-making
process of DQN (Deep Q-Network) that reduces the dimen-
sionality of a set of the state and action spaces, enabling the
agent to learn the relationships among all decision variables,
i.e., beam pattern selection, user scheduling, and transmit
power allocation. Moreover, we design a reward function
so that the reward is judged by the result of a practical
optimization-based solution, which are overlooked in prior
studies. The DRL algorithm improves its performance by
designing the reward function to encourage comparisons with
the optimization-based solution [6], motivating the algorithm
towards better outcomes.

Meanwhile, existing studies have shown performance
superiority such as execution time or network performance
and benefits of learning methods such as partial feedback
compared with optimization-based algorithms. On top of
them, we analyze the operational aspects of the existing
optimization-based and learning-based solutions in small
cell networks in perspectives of network operators. Our
contributions are summarized as follows.

1) Novel decision-making process: we design decision-
making process of agent by leveraging the nature of
DQN with reasonable size of states and actions. Here,
we integrate all decision variables into a single learning
process so that each agent learns the relationship among
entire decision variables, which were not addressed
in the existing DQN solutions due to the complexity
issue.

2) Judgement-based reward design: we design a reward
so as to exploit both advantages of ‘‘DQL’’ and
‘‘approximated optimization solution’’ by accelerat-
ing or breaking the reward for action according to
the judgement from a practical optimization-based
solution.

3) Performance evaluation and analysis: we show the
superiority of the proposed DQL, and insights to utilize
DQL in small cell networks for network operators
with operational analysis between optimization and
learning.

In the rest of this paper, we begin with the related work in
Section II. Then, we provide the system model in Section III.
In Section IV, we formulate the stochastic optimization prob-
lem. Next, we describe the proposed DQN-based algorithm in
Section V. We provide the simulation results in Section VI.
Finally, we conclude this paper in Section VII.

136772 VOLUME 12, 2024



P. Yoon et al.: Judgement-Based DQL Framework for Interference Management in Small Cell Networks

II. RELATED WORK
Resource management in multi-cell networks has been
widely studied aiming to maximize utility of users where the
utility captures both time-averaged throughput of users and
fairness of them. However, the joint optimization of various
control variables in the existence of inter-cell and inter-
beam interferencemakes the computational complexity of the
algorithms significantly high. To this end, many researchers
tried to make tractable algorithms with considerations of
realistic aspects of cellular networks in terms of feedback
information and computational complexity. The tractable
algorithms can be categorized by two theoretical approaches.

The first approach is to make low-complex and heuristic
algorithms on top of the optimization theory [6], [7], [8],
[9], [10]. For example, Son et al. [7] proposed a practical
joint user scheduling and power allocation algorithm by
introducing a concept of reference user in single antenna
multi-cell network environment. Here, the single reference
user for each cell abstracts complex inference relationship
from the corresponding BS to scheduled users in neighboring
cells; this enables significant complexity reduction of the
algorithm. Moreover, Hong et al. [8] reduced the complexity
of the algorithm by decomposing the slot-by-slot problem
into two subproblems with different time scales where the
first subproblem is to find beam activation probability with
a long time-scale and the second subproblem is to find user
scheduling and power allocation with a short time-scale.
Subsequently, they further reduced the computational com-
plexity by sequentially making decisions of beam activation,
user scheduling, and power allocation. In addition, Yoon
et al. [6] proposed a low-complex and practical interference
management algorithm by introducing critical user and power
sharing virtual queue concepts which maximally exploit
structural characteristics of hybrid centralized and distributed
network architecture, namely EdgeSON to heuristically
solve the optimization problem aiming to maximize the
time-averaged utility of users constrained by the time average
transmit power budget. Besides, Zhang et al. [10] focused on
user association and power allocation control in ultra-dense
networks with energy-harvesting BSs. Their problem is
to balance load and manage cross-tier interference while
meeting user QoS requirements. The problem is formulated
as MIP (Mixed Integer Programming) and relaxed to convex,
solved using Lagrangian dual decomposition with an iterative
gradient-based algorithm. The proposed algorithm efficiently
balances load and allocates power, meeting energy and QoS
(Quality of Service) constraints.

The second approach is to apply a variant of learning
methods to develop the algorithms [2], [3], [4], [5], [11],
[12], [13]. For example, Amiri et al. [2] proposed a transmit
power control algorithm using the reinforcement learning
framework in the joint existence of a macro cell and femto
cells. Here, they mainly focused on the impact of reward
design for the reinforcement learning on the sum transmission
rate in all cells. Moreover, Braga et al. [3] proposed a

user scheduling solution with multi-agent DQL for solving
beamforming problem which maximizes total rate in a
multicell MISO (Multiple Input Single Output) system in the
existence of wireless channel estimation errors. In addition,
Ge et al. [12] considered homogeneous cellular networks
with multi-antenna BSs using universal frequency reuse.
Their problem is that downlink-beamforming coordination
helps BSs manage interference, but it is impractical in
dynamic environments due to computational complexity
and significant overhead. To solve this issue, a DRL-based
solution is proposed where each BS trains a Q-network
to determine the appropriate beamformer using partially
observable CSI (Channel State Information). Besides, Sun
et al. [13] used DNN (Deep Neural Networks) to approximate
the nonlinear mappings of signal processing algorithms,
particularly WMMSE (Weighted Minimum Mean Squared
Error) for power allocation in an interference management
problem. Although these studies adopted DRL/DNN or
optimization theory as the solution frameworks for power
control, user scheduling and/or beamforming, there is no
work to apply the DRL framework into entire beamforming,
user scheduling and power control system due to the high
complexity to design states and actions.

FIGURE 1. Judgement-based deep Q-learning framework.

III. SYSTEM MODEL
In this paper, we consider downlink mmWave-based small
cell networks with DRL-based interference management as
shown in Fig. 1. In wireless network, the service signal for
specific user (e.g., User B in Fig. 1) can interfere the service
signal for other users (e.g., User A in Fig. 1). Moreover, this
interference forms a highly complex relationship depending
on various factors such as decision variables and wireless
channel conditions, and it is a key factor that degrades
network performance (e.g., throughput). Therefore, in this
paper, we aim to efficiently manage this complex interference
by leveraging the advantages of learning. Specifically,
we adopt deep Q-learning while proposing a decision-making
process with user-specific state and judgement-based reward
design.
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We consider a time-slotted system indexed by t and OFDM
(Orthogonal Frequency DivisionMultiplexing) systemwith a
set of subchannels1 O = {1, . . . , o, . . . ,O}. In this network,
there are a set of Base Stations (BSs)N = {1, . . . , n, . . . ,N }
with L transmit antennas and a set of users associated with
BS n, Kn = {1, . . . , kn, . . . ,Kn} with a single receive
antenna. To specify whether user is scheduled for network
service, we define user scheduling indicator as Ion,kn (t) ∈
{0, 1}. Here, Ion,kn (t) = 1 means user kn is scheduled on
subchannel o of BS n at time slot t , and vice versa. To denote
beamformer of BS n for subchannel o at time slot t , we define
wo
n(t) =

√
pon(t)w̄

o
n(t) where p

o
n(t) and w̄o

n(t) ∈ CL×1 mean
the allocated transmit power and beam pattern which is a
set of directed beams, for subchannel o of BS n at time
slot t , respectively. Here, we define a set of patterns X =
{X1, . . . ,XB} with codebook design [14] where each pattern
consists of following elements:

Xb =

 1
√
L
exp

j2π
S

⌊ l·mod(b+ B
2 ,B)

2
B
A

⌋∣∣∣∣∣∣∀l ∈ {1, · · · ,L}
 ,

(1)

where mod(·) and ⌊·⌋ are modular and floor operation,
respectively. Moreover, A is a parameter used to adjust the
beamwidth. In other words, to generate a narrow beam, it can
be set to a small value and vice versa. For the pattern set,
we define pattern selection indicator asBon,b(t) ∈ {0, 1}where
b ∈ B = {1, · · · ,B} to imply that pattern b is selected
by BS n for subchannel o at time slot t when Bon,b(t) = 1,
i.e., w̄o

n(t) = Xb, and vice versa.
From the defined system model above, we define SINR

(Signal-to-Interference-plus-Noise Ratio) of user kn which
includes inter-beam interference as follows:

µo
kn (t) =

∑
b B

o
n,b(t)I

o
n,kn (t)

∣∣∣hon,kn†(t)√pon(t)Xb∣∣∣2
ηokn (t)+ σ 2 , (2)

where hon,kn (t) ∈ CL×1 is a direct channel between BS n and
user kn at time slot t and subscript † is Hermitian transpose
operation. Moreover, σ and ηokn (t) denote noise power and
interference that user kn receives at time slot t as follows2:

ηokn (t) =
∑
m\n

∑
b

Bom,b(t)
∑
km

Iom,km (t)
∣∣∣hom,kn

†(t)
√
pom(t)Xb

∣∣∣2 .

(3)

From the defined SINR, the normalized data rate of user kn
on subchannel o at time slot t is calculated as follows:

cokn (t) = log2(1+ µo
kn (t)). (4)

1Here, a subchannel is a set of subcarriers and we assume that
inter-subchannel interference can be ignored [7].

2Hereinafter, the symbol \ is used to represent the elements of a set
excluding the right-hand element. From the defined system model above,
we define SINR (Signal-to-Interference-plus-Noise Ratio) of user kn which
includes inter-beam interference as follows.

IV. PROBLEM FORMULATION
Now, we formulate an optimization problem where the
objective is to maximize sum utility of time-averaged data
rates of users, Co

kn = limT→∞
1
T

∑T−1
t=0 c

o
kn (t), constrained

by the maximum power budget and (beam, user) scheduling
of each subchannel as follows.

(P1) : max
(B,I,p)

N∑
n=1

O∑
o=1

Kn∑
kn=1

U (Co
kn ),

s.t.
B∑
b=1

Bon,b(t) = 1,∀n ∈ N ,∀o ∈ O,

K∑
kn=1

Ion,kn (t) = 1,∀n ∈ N ,∀o ∈ O,

0 ≤ pon(t) ≤ P
o
max,∀n ∈ N ,∀o ∈ O,

where the utility function is defined as U (f (x)) = log(1 +
f (x)) so as to capture both throughput and fairness among
all users [15]. Using this function as the objective function
ensures that users with lower throughput receive more weight
in the scheduling process. This helps to balance the network
by giving more priority to users with poorer connections,
thereby improving overall fairness. The logarithmic function
grows more slowly at higher values, which means that
increases in throughput for users already experiencing high
rates contribute less to the objective function than similar
increases for users with lower throughput. Besides, Pomax
denotes the maximum transmit power for subchannel o
and decision variables are joint pattern selection B, user
scheduling I and power allocation p. The original optimal
solution to solve this problem should be based on the
optimization theory since this is an optimization problem.
However, this problem is known as NP-hard, i.e., there is
no known algorithm that can be solved within polynomial
time due to the complex inter-beam interference relationships
and complex decision variables, i.e., beamforming, user
scheduling and power control every time slot, which is
MINLP (Mixed Integer and Non-Linear Program) [7], [16].
Hence, we have two options to obtain tractable solution of
this problem: (i) a heuristic solution with approximation on
top of optimization theory, and (ii) a DRL solution with a
help of optimization-based solution. In this paper, we adopt
multi-agent DQN with reasonable state and action space
complexity and judgement-based reward design to achieve
high performance in the next section.

V. MUTI-AGENT DQN APPROACH WITH NOVEL
DECISION-MAKING PROCESS AND
REWARD DESIGN
A. DECISION-MAKING PROCESS FOR DQN
In this subsection, we briefly review Q-learning and DQL,
and introduce our decision-making process. The Q-learning
is a well-known model-free learning that agent learns the
optimal action by updating values of state-action (Q-values).
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Typically, Q-value is updated as follows [2]:

Q(s, a)← Q(s, a)+ α

(
r + γ max

a′
Q(s′, a′)− Q(s, a)

)
,

(5)

where s, a and r mean state, action and reward emitted
from environment by acting a for state s, respectively, and
s′ corresponds to next state given from environment after
action a. Moreover, α and γ refer learning rate in regard to
the degree of update and discount factor that indicates the
level of expectations about the future, respectively. In update
formula (5), each agent learns the optimal action for a given
state by exploiting known rewarding actions and exploring
unfamiliar actions that may lead to promising rewards in
the future. However, it requires each agent to maintain a
Q-table for all combinations of states and actions. Hence,
as the number of states and actions increases, the size of
Q-table exponentially increases. To tackle this, by replacing
Q-table with DNN, the agent can approximate the complex
relationship between state and action without maintaining
huge Q-table [4]. This manner is typically called DQL and
each agent learns Q-values by minimizing loss invoked by
target network parameterized with θ− and train network
parameterized with θ [17]. This loss is illustrated with MSE
(Mean Squared Error) as follows:

L =
(
r + γ max

a′
Q(s′, a′; θ−)− Q(s, a; θ )

)2
. (6)

FIGURE 2. The proposed decision-making process of agent.

Meanwhile, existing studies to solve the IM (Interference
Management) problem have adopated this DRL framework.
However, as mentioned earlier, they have utilized DRL for a
subset of decision variables, and adopted other frameworks,
e.g., optimization, for the rest of decision variables due to
the inherent complexity of IM. For example, let us consider
that there are two agents (BSs) learning actions for four beam
patterns, two users and {0,Pmax} transmit power levels. Here,
the number of possible (BS, beam pattern, user, transmit
power level) combinations for interference is 42 × 22 ×
22, which drastically increases to 4N × 2N × 2N as the

number of BSs increases to N . Hence, even under a simple
assumption of action space, the possible combinations of
states might be extremely high. Accordingly, to learn this
complex relationship for interference, a tremendous size of
neural network is required with longer training time and rich
computing resources.

Hence, to resolve this curse of dimensionality issue,
we focus on the fact that the largest Q-value for the current
state exhibits the value of state. As a result, it leads to
the insight that if we design states standing for each user,
the agent can produce the value of state, i.e., the value
of user, as Q-value with learned action. This user-specific
state design cannot be realizable due to the high number of
state combinations for the original intertwined inter-beam
interference relationships for all users. However, if we adopt
interference abstraction technique of reference user concept
in [6], then states can bemodeled for each user.In other words,
in the previous work [6], they abstracted the interference
received by all users in neighboring cells into the interference
experienced by the most interfered users in those cells,
thereby operating in a distributed manner, i.e., each BS can
manage interference with small feedback exchange among
neighboring BSs. Therefore, we follow this model to design
our DQN framework so that states and actions can be
modeled for each user. Then, by scheduling user having the
largest Q-value at each iteration,3 the remained beam pattern
selection and transmit power allocation can be chosen as
actions by feeding his/her state to the agent. This approach
can reduce the size of action space as well as the number of
possible combinations of states for interference; hencewe can
train the agent with small-sized DNN model.

Finally, this decision-making process can be illustrated as
shown in Fig. 2. Here, target network and train network have
the same size where the input size corresponds to states of
each user and the output size corresponds to the number of
available beams multiplied by the number of transmit power
levels. Hence, if there are Kn users in BS n, each BS yields
Kn Q-values for Kn target networks.
In the execution phase, each agent, i.e., BS first observes

states for all associated users and feeds them to target
network one by one. Then, the agent selects the largest
Q-value as output of the target network for each user and
schedules a user whose Q-value is the largest. Next, the agent
determines action, i.e., beam pattern selection and transmit
power allocation, for the scheduled user with a train network,
and receives next state from environment and then stores the
tuple of state, action, reward and next state to replay memory.
Here, tuples generated from the same BS for all subchannels
are stored in the same replay memory to let the agent learn
for the general state.

In the training phase, the agent randomly samples
mini-batches with sizeDbtc from replay memory of which the
buffer size is Rbuf . Next, the agent updates the train network

3This is because that the objective of DQN is to maximize Q-value every
time slot.
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by minimizing MSE loss (6). For every Tu time slots, the
agent updates the parameters of its target network with that
of the train network. In this process, target network is used to
obtain the value of user to be scheduled, as its parameters do
not change during Tu time slots. This ensures stable learning
procedure for stable user scheduling. Moreover, this process
can be conducted with afforded complexity thanks to DNN
with fixed parameters [11].

B. STATE, ACTION, AND REWARD DESIGN
Next, we define state, action and reward function for our
decision-making process design. Here, to simplify notations,
we omit indices of subchannel o and time slot t since state,
action and reward are defined for a single subchannel and
a single time slot. To feed a user-specific state to agent,
we follow interference approximation concept in a practical
optimization-based algorithm [7].4 Hence, the state of user
kn is defined with following elements: (i) time-averaged data
rate,wkn =

1
t

∑t−1
τ=0 ckn (τ ), (ii) normalized channel gain from

BS n for each beam pattern, {|h†n,knXb|
2/gmax|∀b ∈ B}, where

gmax = maxb∈B |h
†
n,knXb|

2, (iii) distance from BS n divided
by the BS radius and (iv) normalized maximum receiving
interference from other BSs, {maxb |h

†
m,knXb|

2/gmax|∀m ∈
N \ n}. Moreover, to give information about harm to others
compared to own gain, we define a victim for each beam
pattern Xb as vn,b = argmaxk∈K\Kn |h

†
n,kXb|

2. Accordingly,
we define (v) time-averaged data rate of victims, {wvn,b |∀b ∈
B}, (vi) normalized maximum interference towards other
users for each beam pattern, {|h†n,vn,bXb|

2/|h†n,kXb|
2
|∀b ∈

B}, and (vii) distances between victims and BS n divided
by BS radius. Although we assume perfect CSI (Channel
State Information) such as [4], each agent distributedly
requires only CSI of users in a corresponding BS and edge
users in the neighboring BSs, hence we can obtain them with
reasonable overheads like [7].

Second, we define action set A as discrete transmit power
set with quantization level Pqn as follows:

A =
{
(p, b)

∣∣∣∣∀p ∈ {
0,

1
pqn − 1

pmax, . . . , pmax

}
,∀b ∈ B

}
.

(7)

Note that action space should be PqnBKn to control all
combinations of variables in a single DQN model. However,
in our decision-making process, action space is limited on
PqnB while using a single model since our action space is
defined per each user.

Now, we propose a novel reward function which consists
of judgement term and objective term. For judgement term,
we leverage the result from a practical optimization-based

4This approximation means that each BS decides transmit power by
considering only a user who receives the highest interference from BS [7].
This distributed feature makes original RL to transition from single
agent (before approximation) to multi-agent with user-specific states (after
approximation).

algorithm in [6] as follows (see equation (21) of [6]):

pn =
[

1/wkn
ln 2+ taxn

−

∑
m̸=n

∑
b Bm,b|h

†
m,knXb|

2∑
b Bn,b|h

†
n,knXb|

2

]Pmax

0
, (8)

where taxn is calculated every time slot to quantify the
amount of interference towards a user whose received
inteference from selected action of BS n is the largest
among scheduled users in other BSs. This optimization-
based algorithm showed high throughput performance with
practical computational complexity. Indeed, the complexity
of the above closed form power allocation per cell is
O(N ) where N is the number of users, which is quite low,
and this equation allows distributed computation at each
BS. Additionally, the required information per time slot
includes the user indicators scheduled by each BS and the
long-term average interference, minimizing the feedback
needed. Hence, we devise a way to provide a judgement for
the action of agent where the criterion is given by the result
of this optimization-based algorithm, namelyULTIMA in [6].
In this regard, we introduce a judgement term as follows:

rn,jud =
∑
m

∑
km

ckm
wkm
−

∑
m

∑
km

ckm (a
REF
n )

wkm
, (9)

where aREFn is an action tuple of all BSs where transmit
power of BS n is replaced by pn calculated from (8). This
reward, being designed as the difference between sum data
rate divided by time-averaged data rate with current selected
action and that from ULTIMA in [6], can be either negative
value or positive value. A negative value happens when the
result of ULTIMA is higher than that from currently learned
action, and vice versa. As a result, this reward forces the agent
to learn in two ways. In one way, the agent learns to adjust its
action to minimize negative reward, thereby mimicking the
solution of ULTIMA. In the other way, the agent seeks better
action than ULTIMA to increase positive reward. Finally,
we define reward function with objective term and judgement
term as follows:

rn =
ckn
wkn
+ rn,jud. (10)

where objective term ckn/wkn is introduced to capture our
objective function in a long-term perspective. In other words,
the maximization of ckn/wkn results in the maximization of
our objective function in (P1) [18].

C. ALGORITHM DESCRIPTION
The description of the proposed decision-making algorithm
is shown in Algorithm 1. Every time slot and subchannel,
an agent, i.e., BS observes the user-specific states as
described in Section V-B. Next, in the order of observed states
for users, the agent obtains Q-values for each state using
the target network and stores the highest value among them.
Through this step, the Q-values of all users is obtained, hence
the agent can schedule a user whose Q-value is the largest.
For remaining action, transmit power and beam pattern, the
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Algorithm 1 Decision-Making Process Description.
This algorithm is independently operated in each BS n.
Output: A tuple of (Bn, In, pn)
Initialization:
Zero-initialization for decision variables:
Bn = {0}, In = {0}, pn = {0}.

Action set for transmit power and beam pattern, (7).
A = {a1, . . . , aPqnB}.

Randomly initialize the parameters of train network and
target network, θ and θ−.

while t ≤ T do
for o ∈ O do

Observe the user-specific states for all subchannels:
so = {so1, . . . , s

o
|Kn|
}.

Initialize Q-values set for user scheduling:
V ← {}.

for s ∈ so do
Obtain Q-values for state s with target network:
Vs = {Q(s, a1; θ−), . . . ,Q(s, a|A|; θ−)}.

Store the largest Q-value among Vs:
V ← {V ,maxVs}.

end
Schedule a user whose Q-value is the largest one

among users:
Ion,kn (t) = 1, where kn = argmaxV .

Obtain Q-values for state of user kn with train
network:

Vkn = {Q(skn , a1; θ ), . . . ,Q(skn , a|A|; θ )}.

Select beam pattern and transmit power based on
ϵ-greedy policy with exploration rate ϵ:

with probability ϵ:
Select action a = (p, b) uniformly randomly

from action set, A.
with probability 1− ϵ:
Select action aargmaxVkn = (p, b) of which

Q-value is the largest one.
pon(t) = p and Bon,b(t) = 1.

end
Update ϵ with decreasing rate of ϵdc:

ϵ = max{ϵmin, (1− ϵdc)ϵ}.

agent selects action with train network based on ϵ-greedy
policy. Here, the ϵ-greedy policy allows the agent to take
action randomly with a probability of ϵ (exploration); on the
other hand, it chooses the action with the highest Q-value
among the actions (exploitation). In the end of time slot, the
agent updates ϵ with decreasing rate of ϵdc so that sufficient
exploration of various cases is ensured at the beginning stage
and the agent exploits the learned actions consistently at the
later stage.

VI. PERFORMANCE EVALUATION
A. SIMULATION SETUP
In this section, we first provide our simulation settings
summarized in Table 2. First, wemodel themmWavewireless
channel with Rayleigh fading channel model based on the
first-order Gauss-Markov process [19] with its correlation

TABLE 1. System parameters.

TABLE 2. Hyper parameters.

coefficient 0.64 and UMi Street Canyon path loss model [20].
For network topology, we consider a homogeneous network
where the distance between any two BSs is uniform with BS
coverage diameter. In this setup, we deploy 7 BSs (agents)
and 12 dummy BSs that cause interference with randomly
selected patterns and maximum transmit power. Moreover,
we construct fully connected DNN for DQN with two hidden
layers consisting of 128 and 64 nodes and use epsilon-greedy
method which decreases its exploration probability at rate of
10−4. In all simulations in this paper, we set total 70,000 time
slots and calculate the average performance from 50,000 time
slot to 70,000 time slot after convergence of the learning.
Note that control parameters in this simulation are a tuple of
transmit power control, beamforming and user scheduling.

To evaluate the performance of our DQN framework,
we consider four benchmark algorithms as follows:
i) CRIM [8] is Lyapunov optimization-based algorithm
with probabilistic pattern selection and virtual queue-based5

user scheduling and transmit power allocation algorithm,
ii) PF-DQN is DQL algorithm that adopts PF (Proportional
Fairness) user scheduling and same DQN for the remained
decision variables. In other words, PF-DQN is following
the conventional approaches [3], [4], [5] where the links
among decision variables are untangled. iii) MATCH [9] is
a Gale-Shapely matching algorithm that each BS matches
user and subchannel based on channel gain as preferences
for possible user scheduling scenarios. Then, each BS selects
a match result that provides the highest sum data rate divided
by time-averaged data rate, and iv) ONOFF [21] is an
algorithm that turns on BSs with maximum transmit power of
which the giving interference is lower than a predetermined
threshold and schedules users with PF scheduling. Moreover,
we use performance metrics as GAT (Geometric Average
of Throughput for all users) which captures our objective

5It denotes a typical data structure with First-In-First-Out manner. In [8],
authors create virtual queues for each user to express how much service they
have received by designing departure of queue as achieved data rate.
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TABLE 3. Neural network configurations.

function in (P1) thanks to the shape of log function and Avg.
Throughput (Average Throughput for all users).

FIGURE 3. Convergence performance for the number of users per BS as 8.

B. SIMULATION RESULTS
1) CONVERGENCE AND COMPUTATIONAL COMPLEXITY
First, we compare the decision-making process of our pro-
posed method with conventional DRL (Deep Reinforcement

FIGURE 4. Convergence performance for the number of users per BS as 5.

Learning) methods to assess the convergence performance
and computational complexity. Conventional DRL methods
refer to a scenario where each agent receives the state for the
entire users associated in each BS and then makes decisions
on action. As benchmark algorithms for conventional DRL
methods, we use Conventional DQN, Dueling DQN, and
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A2C (Actor-Critic). Moreover, these approaches utilize two
neural network configurations: i) the first one represents
the small-sized neural network configuration used in our
proposed method, and ii) the second one denotes a wider
and deeper neural network. Specifically, we represent each
configuration in Table 3 where configuration 1 is small-sized
neural network used for our proposed method, and configura-
tion 2, 3 and 4 are heavy neural network used for conventional
DQN, Dueling DQN and A2C, respectively.

We conduct simulations on the network where the number
of users in each BS is 8 and the radius of BS is 100m.
Finally, we illustrate the simulation results as shown in
Fig. 3, and we mark [H] (Heavy) indicator for methods
using configuration 2, 3, and 4 in the figure legend. In each
subfigure, the translucent lines indicate the GAT performance
calculated using a sliding window manner with a size
of 500 time slots, while the opaque lines represent the
cumulative GAT performance measured at each time slot.
As illustrated in each subfigure, the conventional DRL
methods with small-sized neural network configuration fail
to achieve high performance and stable learning. Moreover,
even when the neural network size is expanded, these
methods do not reach successful and stable learning pro-
cedure. In contrast, our proposed approach demonstrates
high performance and stable learning with even small-sized
neural network. Moreover, this impact can be highlighted by
comparing the FLOPs (FLoating Point Operations), where
FLOPs represent the number of multiplication and addition
operations required during the forward of neural network.
As shown in Table 3, the proposed DRL outperforms the
benchmark algorithms with lower FLOPs, i.e., computational
complexity.

To further validate these observations, we conduct sim-
ulations with a reduced number of users per BS and
reduced cell radius, say five users and 60m, respectively.
The results are shown in Fig. 4. As the number of users
decreases, it is observed that the stability of learning in
the benchmark algorithms improves compared to previous
results. This suggests that utilizing a wider and deeper neural
network could potentially lead to more stable and higher
performance. However, the benchmark algorithms still fail
to achieve high performance and stable learning, even with
higher computational complexity than ours. Despite this, our
proposed approach, thanks to its decision-making process
and distributed nature of interference abstraction, continues
to achieve stable learning and high performance even with a
small-sized neural network.

In summary, it can be seen that the existing DRL methods
are difficult to learn the complex and spatio-temporally
varying interference relationships in small cell networks and
to control a number of decision variables for managing
them, even at the expense of high computational complexity.
However, it can be also seen that the proposed DQN enables
to efficiently learn the interference relationships thanks
to the decision-making process and distributed nature of
interference abstraction.

FIGURE 5. Performance analysis for the different number of users.

2) THROUGHPUT PERFORMANCE
To examine the overall performance according to the different
number of users,6 we conduct simulations with 100m
cell radius where users are randomly distributed in the
coverage of their associated BSs. As shown in Fig. 5(a),
it can be confirmed that our proposed DQN framework
outperforms benchmark algorithms in both GAT and Avg.
Throughput. Moreover, the importance of joint learning for
decision variables can be confirmed through performance
enhancement of our algorithm compared to PF-DQN. Next,
we focus on the operational aspects of DQN, PF-DQN and
optimization-based algorithm, i.e., CRIM.

To this end, we first present the Avg. Throughput
performance of users according to their distance from

6We assume that all BSs associate with identical number of users
and associated user sets are disjoint from each other. However, our
decision-making process can operate with varying distributions of the
number of users.
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the associated BS, as shown in Fig. 5(b) and Fig. 5(c).
Interestingly, we observe that there are consistent trends in the
operational aspects of all three algorithms across simulation
settings. Specifically, the proposed DQN method provides
higher Avg. Throughput for users closer to their associated
BS compared to the other algorithms, while delivering lower
Avg. Throughput performance for users who are farther away.

FIGURE 6. Performance analysis for the different number of users.

To provide a clear view of these results, we define IN
and OUT regions where users are located closer than 80m
and users are located farther than 80m from their associated
BS, respectively. Next, we represent the GAT performance of
users in each region as shown in Fig. 5(d). In this figure, the
line plots and symbol sizes represent the GAT performance
of the IN and OUT users, respectively. As observed in
the Fig. 5(b) and Fig. 5(c), the proposed DQN improves
performance for IN users by up to 23.9%, but it results in
up to an 8.1% decrease in performance for OUT users. This

is because CRIM determines the user scheduling based on
the virtual queue, i.e., users with lower data rate (users in
the OUT) has large virtual queue resulting in more service
chances and GAT increment. In contrast, DQN just aims to
maximize its reward, and the strategy for this results in more
focus on users of the IN.

FIGURE 7. Convergence performance for transmit power allocation.

To confirm this phenomenon in details, we conduct
additional simulations on a smaller cell radius (i.e., 60m)
environment. Here, the number of users are set to scale down
proportionally to the decrement of BS radius for comparison.
As illustrated in Fig. 6(a), we figure out that our DQN not
only outperforms benchmark algorithms but also increases
the performance gap between ours and CRIM in the smaller
cell environment. Additionally, different from the previous
observations, our DQN outperforms the other algorithms for
the majority of users as shown in 6(b) and 6(c) regardless of
distance. Furthermore, these results can also be confirmed
in 6(d), where IN and OUT are separated by 50 m. This is
due to the fact that in a smaller cell environment, inter-cell
interference tends to be stronger for most users, leading to a
more pronounced impact of efficiently designed algorithm,
i.e., our DQN, on interference. Meanwhile, the PF-DQL
demonstrates superiority in OUT but exhibits inferiority in IN
for both simulations due to its strong emphasis on fairness.
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3) IMPACT OF DIFFERENT REWARD FUNCTIONS
Next, we conduct additional simulations to verify the validity
of the proposed judgement-based reward design.We consider
a single-user and single-antenna scenario where the agent
learns to maximize the sum data rate of all users through
the transmit power allocation. Additionally, to reflect a
realistic aspects of wireless network environment, we employ
a heterogeneous network using PPP (Poisson Point Process)
with seven BSs, as shown in Fig. 7(a). For comparison,
we use an optimization-based algorithm, ULTIMA, and two
DQN methods employing different reward designs, namely
Sum-rate and Distributed. The reward design of Sum-rate is
calculated for each BS n as the sum of data rate provided by
the entire BSs, and the reward design of Distributed consists
of two terms as expressed in Eq. (12). Here, REF and REFn
denotes the reference user and its associated BS, respectively.

cREFn\n(t) = log2
(
1+

hREFn,REF(t)pREFn (t)∑
m\n hm,REF(t)pm(t)+ σ 2

)
, (11)

rn(t) = cn(t)− (cREFn\n(t)− cREFn (t)), (12)

where the first term represents the data rate provided by
BS n, and the second term represents the loss in data rates
of reference user caused by BS n, calculated as Eq. (11).
The result is shown in Fig. 7(b). As depicted in Fig. 7(b),
the proposed judgment-based reward design enables learning
to achieve higher performance compared to existing reward
designs.

An important point to note is the efficiency of the
proposed method in heterogeneous networks and multi-agent
learning environments. In heterogeneous networks, BSs
generate highly diverse and intensive interference, leading
to performance degradation for users. Therefore, each agent
must learn according to its own interference environment,
necessitating a sophisticated reward design to facilitate the
benefits of learning. In this context, the reward design
of Sum-rate achieves the lowest performance, since each
agent receives rewards based on the actions of all agents.
In contrast, both Distributed and proposed reward designs
allow distributed learning tailored to each agent’s interference
environment thanks to the concept of reference user, leading
to higher performance than the Sum-rate. Nevertheless, the
proposed design outperforms the Distributed, because the
judgement-based reward enables the agent to be judged
by the correctness of its actions and by imposing a strict and
stable penalty than Distributed. Moreover, due to the judge-
ment term in the proposed design, the agent is compelled to
determine better solutions than ULTIMA, i.e., to maximize
positive reward and to minimize negative reward, thereby
achieving higher performance compared to ULTIMA.

4) DISCUSSION
Now, we discuss the necessary feedback information and
training duration for the proposed decision-making process.

First, as we apply an approximation of interference by
introducing the reference user concept, each BS requires two

types of feedback information: (i) intra-cell feedback from
users within the same cell, and (ii) inter-cell feedback from
neighboring BSs. For intra-cell feedback, CSI from all users
within the cell must be relayed to the BS. However, for inter-
cell feedback, each BS needs CSI information pertaining
to the reference user in neighboring cells. To acquire this
information, the BS must be aware of the scheduled users
in neighboring cells and their CSIs at each time slot.
To minimize inter-cell feedback, it is efficient to only correct
the CSIs of edge users in neighboring cells, as these users,
often experiencing high interference, are typically chosen as
reference users.

Second, concerning the training duration of the proposed
decision-making process, our simulation results indicate
that performance saturation after 10,000 time slots, i.e.,
10 seconds. Given that the proposed Deep Q-Network (DQN)
solution consistently outperforms the optimization-based
approach after this period for all simulation environment
such as the number of users, the training duration is deemed
reasonably adequate.

VII. CONCLUSION
In this paper, we leveraged DQL to efficiently solve the
utility maximization problem with decision variables of
beam pattern selection, user scheduling and transmit power
allocation. In order to resolve the curse of dimensionality
due to the high dimension of state-action combinations
and enhance learning efficiency, we proposed a novel
decision-making process which designs per-user state and
action spaces and a judgement-based reward design. Finally,
we not only showed the superiority of the proposed DQN but
also figured out interesting points that give network operators
the following insights: i) our proposed DQN can be an
attractive framework for overall performance enhancement,
especially in a smaller cell environment, and ii) the network
operator can utilize our DQN and PF-DQN in complementary
way for high throughput and high fairness among users in
relatively large cell environment.
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