
Original Article

Global Spine Journal
2025, Vol. 15(4) 2309–2317
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/21925682241299332
journals.sagepub.com/home/gsj

Lumbar Spinal Stenosis Grading in Multiple
Level Magnetic Resonance Imaging Using
Deep Convolutional Neural Networks

Dongkyu Won, BS1, Hyun-Joo Lee, MD, PhD2,3, Suk-Joong Lee, MD, PhD4*, and
Sang Hyun Park, PhD1*

Abstract

Study Design: Retrospective magnetic resonance imaging grading with comparison between experts and deep convolutional
neural networks (CNNs).

Objective: The application of deep learning to clinical diagnosis has gained popularity. This approach can accelerate image
interpretation and serve as a screening tool to help doctors.

Methods: A comparison was conducted between retrospective magnetic resonance imaging (MRI) grading performed by
experts and grading obtained using CNN classifiers. Data were collected from the lumbar axial dataset in the DICOM format.
Two experts labeled the sampled images using the same diagnostic tools: localization of patches near the spinal canal, rootlet
leveling, and stenosis grading. Comprehensive comparisons were presented for both rootlet cord classification and stenosis
grading.

Results: Rootlet-cord classification for the two analyzers was 90.3% and the F1 score was 86.6%. The agreement of Analyzers-
Classifiers was 92.7% and 96.8% for data with 90.6% and 95.6% F1 scores, respectively. For stenosis grading, there was an
agreement of 89.2% between the two analyzers, resulting in an F1 score of 76.5%. The grades of the Analyzers-Classifiers agreed
on 91.5/89.4% of the data, with an F1 score of 78.4/75.7%. Analyzer1 and Analyzer2 classified >74% as grade A (78.8% and
74.4%, respectively), 15.4% and 18.6% as grade B, 4.2% and 6.0% as grade C, and 1.6% and 2.0% as grade D, respectively.

Conclusions: The fully automated deep learning model showed competitive results in stenosis grade diagnosis and rootlet cord
classification under similar anatomical conditions. However, abrupt anatomical changes can lead to a puzzle diagnosis based only
on images.
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Introduction

Lumbar spinal stenosis is a disease of spinal canal narrowing
by hypertrophied ligaments or bone spurs. Even though
sagittal image is required to enhance the diagnostic accuracy,1

dural sac cross-sectional surface area in T2-weighted axial MR
images of the lumbar spine is crucial for diagnosis. The grade
is frequently determined by the morphological characteristics
of the cerebrospinal fluid and rootlet contents in proximity to
the dural sac.2,3

Artificial intelligence (AI) in medicine has gained popu-
larity owing to its high-precision and time-saving capabilities.
AI has the potential to assist doctors in accomplishing re-
petitive and time-consuming tasks such as reading multiple
medical images and automatically identifying medically rel-
evant indicators.

In spinal diseases, approximately 90 studies have proven
the usability of deep learning to help clinicians diagnose and
predict prognosis and outcome.4 Lehnen et al. reported the
feasibility of using AI to detect degenerative changes by
segmenting tissues in the spinal canal and classifying the
changes using convolutional neural networks (CNNs).5

Ouyang et al6 utilized AI to evaluate a detection model
specifically designed for spinal tumors on magnetic resonance
imaging (MRI), demonstrating its effectiveness.6 Wang et al7

demonstrated the efficacy of a deep learning model for
identifying intervertebral foraminal stenosis in the postoper-
ative view.7 Additionally, Yeh et al. and to analyze the di-
agnostic performances and errors between human and deep
learning models for vertebral fractures on MRI.8

Won et al. showed the reliability of AI for the diagnosis of
spinal stenosis at the uni-level, exhibiting a strong correlation
with clinical experts.9 These studies collectively highlight the
potential of AI in enhancing diagnostic accuracy and clinical
decision-making. However, the previous study was limited in
its scope, as it focused solely on the L4/5 level; therefore,
doctors needed to manually select and input the images of the
4/5 level from multiple images of a single patient into the
artificial intelligence system. To broaden the clinical utility of
this study, we expanded our training dataset to include all
imaging data from the entire lumbar region and its related
levels. By incorporating this comprehensive dataset, we de-
veloped a multilevel automatic detection system capable of
identifying narrow spinal canals across various levels and then
classifying the grades of intervertebral stenosis. Thus, the
proposed technique can automatically assess the character-
istics of all vertebrae and provide grading without the need for
manual intervention once MR images are acquired.

The primary objective of this study was to evaluate the
agreement between the grades labeled by the two experts and
classifiers using a multilevel dataset from each expert. In

addition, we investigated the transferability of the deep
learning algorithm trained at the lumbar level to the cord level.

Materials and Methods

Dataset

The Institutional Review Board of our hospital approved the
use of this dataset. Initially, 13,758 lumbar spine MR images
from 542 consecutive patients who performed lumbar spine
MRI were used. These images were extracted from at least 15-
46 slices, regardless of the rootlet and cord level, between all
MR images of each patient. Axial mages were obtained with a
slice thickness of 4 mm. The data samples were collected in
Digital Imaging and Communications in Medicine (DICOM)
format from the Picture Archiving and Communication
System, which contained T2-weighted axial images of the
lumbar, lower thoracic, and upper sacral spine. All MR images
per patient were collected as a set, regardless of level. Fur-
thermore, we collected T2 axial images using Siemens (1.5 T)
and used them for the analysis. During the data collection
process, there was no communication between the analyzers,
and the final collected data were selected as the intersection of
the data collected from each analyzer.

Classification by Two Experts

The images were classified and graded by two expert surgeons
who assessed the center of the spinal canal, rootlet/cord level,
and stenosis grade. Specifically, two analyzers labeled the
locations of the spinal canal and determined the level at which
the spinal canal was assigned between the rootlet and cord.
The images were graded into one of the four levels using an
existing grading tool for stenosis grading. Among the col-
lected MR images, images of difficult cases for clinical op-
erations or those lacking quality were discarded in our
classifier training. Analyzer1 is a spine surgeon with over 10
years of experience, while Analyzer2 is an orthopedic surgeon
with an equivalent level of clinical practice. There was no
communication between the experts for any labeling process,
such as localization of the spinal canal, rootlet-cord classifi-
cation, or stenosis grading.

Stenosis Grade Classification Using Deep Convoluted
Neural Network (CNN)

Using the labels generated by the two surgeons, we con-
structed a fully automatic diagnostic framework for stenosis
grading. The framework for the stenosis grading is shown in
Figure 1. This framework consists of 3 parts: a canal detector
for localizing the spinal canal in collected images, which is the
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bounding box; a rootlet classifier that classifies the rootlet and
cord levels from the patches extracted by the detector; and a
stenosis classifier that classifies the stenosis grade of predicted
rootlet patches from the rootlet classifier.

To locate the spinal canal, Faster R-CNN,10 which trains the
bounding boxes of the spinal canal labeled by experts, was used.
This model consists of one backbone network, region proposal
network (RPN), and region of interest (ROI) pooling layer. The
backbone network, comprising ImageNet pre-trained Re-
sNet50,11 extracts the features of the input MR images. Using
features from the backbone, the RPN generates bounding-box
proposals and probability scores using a regression and classi-
fication module. The regression module minimizes the error
between the ground truth and the predicted bounding boxes, and
the classificationmodule learns whether the class in the predicted
bounding box is assigned to the spinal canal. To match the sizes
of the feature maps from the RPN, ROI pooling was utilized so
that the spinal canal detector could always train feature maps of
the same size. The predicted bounding boxes and their scores
were predicted by placing the features from the ROI pooling
layers into the fully connected layers.

For rootlet-cord classification, we trained a Visual Geometry
Group (VGG)12 network using the extracted bounding box from
the detector, where the spinal canal was located. We used a VGG
network with 10 convolutional layers, 4 max pooling layers, 1

global average pooling layer, and 1 fully connected layer. As the
network learns an image, the convolutional layers extract
meaningful features of the rootlet on the input image. To calculate
the error between the labels and predictions, we used the binary
cross-entropy loss. The model was optimized using an ADAM13

optimizer for 200 epochs. The learning rate was initially set to
0.0001 and was decreased by 50% when the validation accuracy
did not increase from the last best validation accuracy. The best
model was selected with high accuracy during validation.

For stenosis grading, we trained a VGG12 likewise rootlet
classifier using the predicted rootlet patches from the rootlet
classifier. A fully connected layer with four outputs, that is, the
final stenosis grade level, was used in our stenosis classifier.
Softmax with cross-entropy loss was calculated to measure the
error between the predictions and labels. The model was
optimized using the ADAM13 optimizer and was trained for
100 epochs. The initial learning rate was set to 0.0001 and
reduced by 50%when the validation accuracy did not improve
during the validation steps. The model with the highest ac-
curacy for the validation dataset was chosen.

In the testing stage, our trained Faster R-CNN detects the
bounding box of the spinal canal from a test MR image. The
rootlet classifier subsequently classifies whether the patch
extracted from the bounding box is at the rootlet or cord.
Finally, the stenosis classifier predicted the grade with the

Figure 1. Our deep learning based spinal stenosis grading system. Our grading system consists of 3 stages; Canal Detector, Rootlet/Cord
Classifier and Stenosis Classifier. Canal Detector predicts the spinal canal region, and the classifiers predict rootlet/cord level and stenosis
grade on localized canal region from the detector, respectively.
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highest probability among the four probabilities on the rootlet
patches as the final stenosis.

To evaluate our framework, we divided our collected
dataset into 10 sets and performed 10-fold cross-validation,
where 1-fold training was formed with 7 training, two vali-
dation, and one test data. Each set was stratified by con-
structing an equal distribution of the grade levels.

Since our collected dataset was highly imbalanced (larger
number of intervertebral discs and A and B grades on stenosis),
we performed weighted sampling and data augmentation. Spe-
cifically, weighted sampling samples an even number of levels
and grades on the mini-batch to ensure that the model trains
equally on each label. For data augmentation, we used random
rotation, scaling, translation, and horizontal flipping at the image
level, and zero-mean Gaussian noise at the pixel level. Our
experiments were performed on a GPU server with an Intel Xeon
Silver 4210 2.2 GHz CPU, NVIDIA RTX 2080Ti, and 256 GB
RAM, with a PyTorch implementation.

Comparison Between Inter-observer Agreement and
Observer-Classifier Agreement

To evaluate our framework, the inter-observer and observer-
classifier agreements of the rootlet and stenosis classifiers

were measured. The inter-observer agreement reflects the
degree of agreement in the diagnostic results between ana-
lyzers, whereas the observer-classifier agreement represents
the diagnostic agreements between analyzers and classifiers.

For a fair comparison, the inter-observer and observer-
classifier agreements were compared at the intersection of the
data used in both analyzers’ labels. To represent the agree-
ments visually, we generated confusion matrices to illustrate
the agreement between the following pairs: Analyzer1 and
Analyzer2, Analyzer1 and Classifier1 trained using Ana-
lyzer1’s labels, and Analyzer2 and Classifier2 trained using
Analyzer2’s labels. We further provided confusion matrices
for each task, rootlet-level classification, and stenosis-grade
classification. To validate the efficacy of our framework
quantitatively, we utilized accuracy, F1 scores, and a two-
sample paired t-test to assess the statistical significance of the
variations in diagnostic outcomes.

Results

Number of Labeled Data

The collected dataset size was 13,758, for which the analyzers
labeled samples into 3 categories: rootlet, cord, and others
(invalid for training owing to interference from screws or
deformity). Among these samples, 11,551 and 12,442 slices
were labeled as rootlet or cord levels per analyzer, respec-
tively, and the deep learning-based detection models were
trained using these data under a cross-validation setting.
Consequently, the spinal canal detectors predicted 11,542 and
12,436 rootlet and cord slices, respectively, and the rootlet
classifiers predicted 8092 and 8387 rootlet cases, respectively.
Finally, 8092 and 8387 samples were used to train the stenosis
classifiers (Table 1), and a comparison of the predictions was
performed on 7282 intersection cases.

Inter-observer Agreement

The rootlet/cord classifications created by the two analyzers
are summarized in Table 2. Analyzer1 and Analyzer2 clas-
sified >73% as rootlets and 26.2% and 23.5% as cords,
respectively.

The stenosis grading results generated by the two analyzers
for the intersection cases are summarized in Table 3. In
Table 2, even though the number of read data that Analyzer1

Table 1. Dataset.

Stage Analyzer1 Analyzer2 Intersection

Collected 13,758
Rootlet + cord 11,551 12,442 10,969
Rootlet 8443 9613 7693
Predicted rootlet + cord 11,542 12,436 10,965
Predicted rootlet 8092 8387 7282

Table 2. Confusion Matrix Between Analyzer1 and Analyzer2 in
Intervertebral-Cord Classification.

Analyzer1

Rootlet Cord

Analyzer2 Rootlet 7693 694 8387 (76.5%)
Cord 399 2179 2578 (23.5%)

8092 (73.8%) 2873 (26.2%) 10,965

Table 3. Confusion Matrix Between Analyzer1 and Analyzer2 in Stenosis Grading.

Analyzer1

A B C D

Analyzer2 A 5312 107 3 0 5422 (74.4%)
B 422 832 18 8 1280 (18.6%)
C 4 152 263 15 434 (6.0%)
D 1 31 22 92 146 (2.0%)

5739 (78.8%) 1122 (15.4%) 306 (4.2%) 115 (1.6%) 7282

2312 Global Spine Journal 15(4)



and 2 recognized as rootlets was 7693, only 7282 of these
were analyzed by the classifier. For further analysis between
analyzers and classifiers, only 7282 cases were analyzed
(Table 3). Analyzer1 and Analyzer2 classified more than 74%
of the samples as Grade A, with Analyzer1 assigning 15.4% to
Grade B and Analyzer2 assigning 18.6%. Additionally, they
assigned 4.2% and 6.0% to Grade C and 1.6% and 2.0% to
Grade D, respectively.

Observer-Classifier Agreement

The rootlet/cord classification generated by the accuracy and
F1-score of the two analyzers is shown on the left side of
Table 4. Of these, 90.3% agreed with the two analyzers and the
F1 score was 86.6% in the rootlet/cord classification. The
accuracy and F-score between Analyzer1-Classifier1 and
Analyzer2-Classifier2 are higher than those between Ana-
lyzer1-Analyzer2.

The stenosis grading agreement and F1-score are shown on
the right side of Table 4. The two analyzers agreed on 89.2%
of the data, resulting in an F1 score of 76.5%. The accuracy
and F-score between Analyzer1-Classifier1 and Analyzer2-
Classifier2 are comparable to or higher than those between
Analyzer1-Analyzer2. There was a significant difference
between Analyzer1 and 2 in both rootlet/cord classification
and stenosis grading. Conversely, the differences between the
analyzers and classifiers were not significant.

Tables 5 and 6 show the confusion matrices of the analyzer
classifier for rootlet-cord classification and stenosis grading,
respectively. Compared to the agreement between Analyzer1
and Analyzer2 in rootlet cord classification, Analyzer1-
Classifier1 and Analyzer2-Classifier2 were able to classify
most rootlet slices. We have provided the label consistencies of
classifiers and analyzers in the supplementary data with
agreement percentages (Supplements 1-4 in the Supplementary
Information). In stenosis grading, when comparing the label
consistency of Classifier1 and Analyzer2 with respect to the
labels of Analyzer1, Classifier1 showed higher agreement than
Analyzer2 in Grade A (96.0% vs 92.5%, each percentage was
calculated based on Analyzer 1 and 2; Supplements 1 and 2
show the percentage numbers) and Grade B (76.5% vs 74.1%),
but lower agreements in Grade C (71.2% vs 85.9%) and Grade
D (64.3% vs 80%). Conversely, when comparing the label
consistency of Classifier2 and Analyzer1 with respect to the

labels of Analyzer2, Classifier2 showed higher agreements than
Analyzer1 in Grade B (73.2% vs 65%) and Grade C (69.5% vs
60.6%), but lower agreements in Grade A (95.8% vs 97.9%)
and Grade D (58.2% vs 63%). For both cases, the classifier
agreement was similar to or higher than that of other analyzers
in Grades A and B, which included most of the data, but the
agreement between analyzers was higher in Grade D, where
there was little data available.

Discussion

In summary, this study showed similar diagnostic agreement
levels between experts and the agreement between experts and
CNN classifiers trained in two specific areas: 1) distinguishing
between rootlet and cord levels, and 2) grading stenosis across
multiple lumbar levels. In general, the agreement between the
analyzers and classifiers ranged from 91.5% to 92.7%, sur-
passing the level of agreement seen between Analyzer1 and
Analyzer2, which was 89.2%. In both the rootlet/cord classifi-
cation and stenosis grading, analyzers 1 and 2 showed significant
differences. However, there were no significant differences be-
tween the Analyzers and Classifiers. The agreement between
Analyzers and Classifiers for stenosis grading in this study was
higher than that in a previous study (77.9%–83%).6 We con-
firmed that the decisions generated by deep learning are rea-
sonable for spinal stenosis grading and rootlet level
differentiation from the cord level, at least at the entire lumbar
level, with one grading system.

The classifier which had been trained at a single level can
be applied to other lumbar levels with a higher level of
consistency. The classified samples for the lumbar levels are
presented in Figures 2 and 3. We speculate that this is possible
because of the similar anatomical morphology of other lumbar
levels with the single L4/5 level. To develop a more clinical

Table 4. The F-Score, Accuracy, and P Value of Rootlet-Cord and Stenosis Grade Classification Models.

Rootlet-Cord Classification Stenosis Grading

Analyzer1-
Analyzer2

Analyzer1-
Classifier1

Analyzer2-
Classifier2

Analyzer1-
Analyzer2

Analyzer1-
Classifier1

Analyzer2-
Classifier2

F-score (%) 86.6 90.6 95.6 76.5 78.4 75.7
Accuracy (%) 90.3 92.7 96.8 89.2 91.5 89.4
P <0.01 0.7128 0.2741 0.01 0.6739 0.2329

Table 5. Confusion Matrix Between Analyzers and Rootlet-Cord
Classifiers.

Classifier1/Classifier2

Rootlet Cord

Analyzer1/Analyzer2 Rootlet 7683/8180 409/207 8092/8387
Cord 385/138 2488/2440 2873/2578

8068/8318 2897/2647 10965
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Table 6. Confusion Matrix Between Analyzers and Stenosis Grade Classifiers.

Classifier1/Classifier2

A B C D

Analyzer1/Analyzer2 A 5512/5188 226/226 1/8 0/0 5739/5422
B 205/258 859/937 48/78 10/7 1122/1280
C 2/6 71/100 218/302 15/26 306/434
D 0/4 21/18 20/39 74/85 115/146

5719/5456 1177/1281 287/427 99/118 7282

Figure 2. Rootlet/Cord classification cases between analyzers or an analyzer and a classifier.
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Figure 3. Matched cases between analyzers.
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situation-based deep learning model for determining the grade
of spinal stenosis, extensibility to multiple levels is necessary.
Although single- to multiple-level transfer learning is possi-
ble, the specific level that contains the spinal cord results in
incorrect categorization by the algorithm. Thus, for a versatile
diagnostic tool using deep learning, an additional rootlet
classifier with cord compression classification is required at
the cord level.

At the spinal cord level, the disagreement between ana-
lyzers and classifiers was higher than at other levels where the
spinal cord was not present. We assumed that the classifier was
confused by spinal cord morphology, which mimicked the
aggregated spinal root, as it did not have information on spinal
cord morphology. Therefore, we speculated that training data
at the cord level is needed to broaden the deep learning model
to the thoracic lumbar level.

Image-based diagnosis is a key procedure in the final di-
agnosis of spinal stenosis. AI-based image interpretation has
gained popularity to enhance diagnostic accuracy and for fast
detection excluding critical human error.8,14,15 The spine has
multiple levels with a similar shape, and requires considerable
time for level checking and diagnostic decisions. As Herzog
described, more clinically practical tools are needed to per-
form relevant analyses.16

We found that the highly imbalanced dataset across the
grades caused current results, and the data augmentation and
class-wise sampling techniques used in this experiment were
insufficient to cover the sample diversity of severe cases such
as grades C and D. Nevertheless, we found that trained
classifiers still perform competitive diagnosis in grades A and
B, similar to human analyzers. We expect that more samples or
undersampling processes with respect to Grades C and D for
sample diversity could resolve the current issues.

This study had several limitations. Despite our efforts to
collect a substantial MRI dataset, an imbalance in grades
occurred within the training dataset, primarily owing to the
relatively smaller number of collected images for Grades C
and D compared to Grades A and B. In this study, we did not
consider the priority of under-diagnosis or over-diagnosis.
However, high sensitivity is often required for screening. To
use this model as a screening tool, a loss function using re-
gression or classification is required. Therefore, overdiagnosis
should be considered. Furthermore, to improve diagnostic
accuracy, the inclusion of sagittal images is essential. We
anticipate that the effective utilization of these images will
necessitate the development of more advanced segmentation
techniques and the application of multiple classifiers. This will
be a focus of our future research.

Conclusion

Our trained deep learning model can be used when anatomical
conditions are similar. However, anatomical changes can lead
to a puzzle diagnosis based only on images. Doctors should be
involved in interpreting the model for medical diagnosis.

Appendix

List of Abbreviations

CNN convolutional neural network
AI artificial intelligence

MRI magnetic resonance imaging
DICOM Digital Imaging and Communications in Medicine

RPN region proposal network
ROI region of interest
VGG Visual Geometry Group
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