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Felodipine attenuates neuroinflammatory @

responses and tau hyperphosphorylation
through JNK/P38 signaling
in tau-overexpressing AD mice
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Abstract

We previously demonstrated that felodipine, an L-type calcium channel blocker, inhibits LPS-mediated neuroinflam-
matory responses in BV2 microglial cells and wild-type mice. However, the effects of felodipine on tau pathology,

a hallmark of Alzheimer's disease (AD), have not been explored yet. Therefore, in the present study, we determined
whether felodipine affects neuroinflammation and tau hyperphosphorylation in 3-month-old P301S transgenic mice
(PS19), an early phase AD mice model for tauopathy. Felodipine administration decreased tauopathy-mediated micro-
glial activation and NLRP3 expression in PS19 mice but had no effect on tauopathy-associated astrogliosis. In addition,
felodipine treatment significantly reduced tau hyperphosphorylation at $202/Thr205 and Thr212/Ser214 residues

via inhibiting JNK/P38 signaling in PS19 mice. Collectively, our results suggest that felodipine significantly ameliorates
tau hyper-phosphorylation and tauopathy-associated neuroinflammatory responses in AD mice model for tauopathy
and could be a novel therapeutic agent for AD.
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Main text

The growing size of the older population is increasing the
societal burden of Alzheimer’s disease (AD), a degenera-
tive brain disease [1]. Accumulating evidence suggests
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[7]. However, the effects of felodipine on tau pathology
and tau-mediated neuroinflammatory responses have not
been explored in a mouse model of AD.

In the present study, we investigated the effects of
felodipine on neuroinflammation and tau hyperphos-
phorylation and its mechanisms of action in P301S trans-
genic mice (PS19), a model of AD overexpressing human
mutant tau. To test this, Tau Tg PS19 mice were injected
with vehicle (5% DMSO+5% PEG+5% Tween20+85%
D.W., i.p.) or felodipine (5 mg/kg, i.p.) daily for 14 days,
and immunofluorescence (IF) staining was conducted
with an anti-Iba-1 and anti-GFAP antibody. Felodipine
treatment significantly reduced Iba-1 fluorescence inten-
sity, Iba-1-labeled area and the number of Iba-1-positive
cells (Fig. 1A-B). However, felodipine injection did not
alter GFAP fluorescence intensity in Tau Tg PS19 mice
(Supplementary Fig. 1). These data suggest that felodi-
pine administration suppresses tauopathy-mediated
microgliosis in Tau Tg PS19 mice but not astrogliosis.

NLRP3 is an important molecular target for inhib-
iting neuroinflammatory responses [8]. Activation of
NLRP3 expression results in upregulation of IL-1p,
which induces NLRP3 inflammasome complex forma-
tion and accelerates AD progression [9]. The NLRP3
inflammasome activates AB-induced tau pathology and
neurodegeneration in vivo [10, 11]. Activation of NLRP3
inflammasome requires Ca®" signaling, which leads to
IL-1p secretion. Interestingly, we recently found that
injection of the L- and T-type calcium channel blocker
lomerizine significantly inhibits LPS-induced NLRP3
expression in wild-type mice [12]. In this study, we thus
examined whether the L-type calcium channel blocker
felodipine modulates NLRP3 expression in a mouse
model of AD. For this experiments, Tau Tg PS19 mice
were injected with felodipine (5 mg/kg, i.p.) or vehicle
daily for 14 days, and IF staining was performed with
an anti-NLRP3 antibody. Felodipine administration sig-
nificantly decreased NLRP3 fluorescence intensity in
Tau Tg PS19 mice (Fig. 1C-D). In addition, felodipine
treatment decreased NLRP3 mRNA levels in the cortex
and hippocampus region of Tau Tg PS19 mice (Fig. 1E),
suggesting that felodipine treatment may downregulate
tauopathy-associated neuroinflammatory responses by
inhibiting NLRP3 expression. However, we did not deter-
mine whether felodipine treatment regulates the NLRP3
inflammasome complex formation. Thus, it is possible
that felodipine-treated Tau Tg PS19 mice may suppresses
neuroinflammatory responses by regulating NLRP3
inflammasome complex formation. Other possibility is
that felodipine may regulates other neuroinflammation-
associated molecular targets to regulate neuroinflamma-
tory responses in Tau Tg PS19 mice, thus we will address
in a future study.
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Tau hyperphosphorylation is a hallmark of AD and
a major target of efforts to develop AD drugs. Abnor-
mal phosphorylation of tau leads to the formation of
NFTs, aggregates of hyperphosphorylated tau [13]. The
association between calcium channels and tau was first
suggested by reports that okadaic acid, a phosphatase
inhibitor, activates LTCCs and increases tau phosphoryl-
ation [14, 15]. Here, we therefore investigated the effects
of felodipine treatment on tau hyperphosphorylation in
RIPA-soluble and RIPA-insoluble fractionation of cortex
and hippocampus from Tau Tg PS19 mice. We found that
felodipine treatment significantly reduced RIPA-soluble
tau hyperphosphorylation at Ser202/Thr205 (AT8) and
Thr212/Ser214 (AT100) residues in the cortex and hip-
pocampus regions, but not RIPA-insoluble tau levels
(Fig. 1F-Q). To further confirm our findings as above, we
conducted IF staining and found that felodipine-treated
Tau Tg PS19 mice significantly decreased tau hyperphos-
phorylation at Ser202/Thr205 (AT8) and Thr212/Ser214
(AT100) in the cortex and hippocampus (Fig. 1H-K),
suggesting that felodipine regulates tauopathy in early
phase AD mice model. In this study, we did not exam-
ine whether felodipine administration inhibits NFT
formation or whether felodipine reduces tau hyperphos-
phorylation in an aged Tau Tg PS19 mice. Thus, we will
investigate the effects of felodipine on tau hyperphos-
phorylation and/or NFT formation in aged Tau Tg PS19
mice.

Tau kinase activity and JNK/P38 signaling are associ-
ated with hyperphosphorylation of tau [16]. Therefore,
inhibiting tau kinase activity or JNK/P38 signaling is
involved in suppressing tau inclusion therefore being an
therapeutic strategy for AD treatment [17]. To address
this, we investigated the effects of felodipine on JNK/
P38 signaling and found that felodipine-treated Tau Tg
PS19 mice significantly downregulated JNK phospho-
rylation in cortex and hippocampus (Fig. 1L). In addi-
tion, felodipine-treated PS19 mice showed decreased
P38 phosphorylation in cortex but not in hippocampus
(Fig. 1M). However, felodipine did not alter phosphoryla-
tion of tau kinases including CDK5 and CaMKIIa in hip-
pocampus of PS19 mice (Fig. IN-O). These data suggest
that felodipine alleviates tauopathy by inhibiting JNK/
P38 signaling in Tau Tg PS19 mice. Of course, it is pos-
sible that felodipine-treated Tau Tg PS19 mice modulate
other tau kinases (i.e., DYRK1A and GSK3p) to alter tau
pathology in a mouse model of AD. In future work, we
will explore whether felodipine regulates tauopathy in
L-type calcium channer (on target)-dependent manner
by using AAV shRNA knockdown vector system in AD
mice model. In addition, we will investigate the effect of
felodipine on various AD pathologies including synaptic
loss, mitochondrial dysfunction, autophagy malfunction,
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Fig. 1 Felodipine treatment signficantly suppresses microgliosis, NLRP3 expression and tau hyperphosphory\anon by regulating JNK/P38 5|gnal|ng
in Tau Tg PS19 mice. Three-month-old PS19 mice were injected with vehicle (5% DMSO+5% PEG + 5% Tween20+85% D.W,, i.p.) or felodipine

(5 mg/kg, i.p.) daily for 14 days. A, C Immunofluorescence staining was performed with anti-Iba-1 and anti-NLRP3 antibodies. B Quantification

of data in A (n=23-24 brain slices from 6 mice/group). D Quantification of data in C (n=24 brain slices from 6 mice/group). E The relative mRNA
levels of the indicated genes were analyzed by real-time PCR (n=9-10/group). F-G Western blotting of RIPA-soluble/insoluble brain lysates

was conducted with anti-AT8 and anti-AT100 antibodies (n=8 mice/group). H, J Immunofluorescence staining was performed with anti-AT8

and anti-AT100 antibodies. (1) Quantification of data in H (n=24 brain slices from 6 mice/group). K Quantification of data in J (n=23-24 brain slices
from 6 mice/group). L-O Western blotting of brain lysates was conducted with anti-p-JNK, anti-JNK, anti-p-P38, anti-P38, anti-p-CDK5, anti-CDKS5,
anti-p-CaMKlla, and anti-CaMKlla antibodies (n=8 mice/group). *p <0.05, **p < 0.01, ***p <0.001. Scale bar=100 um

metal dyshomeostasis, hormonal imbalance, and oxi-
dative stress in AD mice model. Furthermore, we will
assess how the regulatory effect of felodipine on these
AD pathologies affect cognitive function via multiple

behavioral tests such as Y maze, novel object recognition
test, passive avoidance test, and fear conditioning test in
AD mice model.
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In conclusion, we demonstrated that administration of
felodipine, an LTCC blocker, inhibits tauopathy-mediated
microglial activation and neuroinflammation-associated
molecular target NLRP3 expression in Tau Tg PS19 mice.
Importantly, felodipine treatment significantly reduced
tau inclusion by suppressing JNK/P38 phosphoryla-
tion in Tau Tg PS19 mice. Collectively, our data suggest
that felodipine treatment alleviates neuroinflammatory
responses and tau pathology in a mouse model of AD.

Abbreviations

AD Alzheimer’s disease

LTCCs L-type calcium channels

CDK Cyclin-dependent kinase

GSK3pB Glycogen synthesis kinase 3 beta

INK C-Jun N-terminal kinase

CaMKlla  Calcium/calmodulin-dependent protein kinase Il a
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