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Abstract: In this paper, we propose a method for applying the p-ary m-sequence as a
channel-searching pattern for rendezvous in the asymmetric channel model of cognitive
radio. We mathematically analyzed and calculated the ETTR when the m-sequence is
applied to the conventional scheme, and our simulation results demonstrated that the
ETTR performance is significantly better than that of the JS algorithm. Furthermore,
we introduced a new channel-searching scheme that maximizes the benefits of the m-
sequence and proposed a method to adapt the generation of the m-sequence for use in the
newly proposed scheme. We also derived the ETTR mathematically for the new scheme
with the m-sequence and showed through simulations that the performance of the new
scheme with the m-sequence is superior to that of the conventional scheme with the m-
sequence. Notably, when there is only one common channel, the new scheme with the
m-sequence achieved approximately four times the improvement in the ETTR compared to
the conventional scheme.

Keywords: spectrum sensing, cognitive radio networks (CRNs); blind rendezvous; asymmetric
channel model; sequence; fast randezvous modes

1. Introduction
Cognitive radio technology has emerged as a promising solution to the problem of

inefficient spectrum utilization. One of the fundamental challenges in cognitive radio
networks is the rendezvous problem, which involves enabling secondary users to establish
a common communication channel without prior coordination. The efficiency of channel
rendezvous is critical, particularly in environments with asymmetric channel availability,
where the distribution and accessibility of channels vary between devices [1–3].

Previous research has explored various strategies to address the rendezvous problem
in asymmetric environments. Algorithms like ISAC construct channel-hopping sequences
using only available channels to reduce the expected time to rendezvous (ETTR) [4]. Addi-
tionally, p-ary m-sequence-based channel hopping has been analyzed for its performance in
a symmetric channel model [5]. Jump-stay-based algorithms, such as the one proposed by
Lin and colleagues, have also been widely studied for their ability to guarantee rendezvous
by alternating between “jump” and “stay” patterns, minimizing time-to-rendezvous even
in asynchronous scenarios [6]. These methods ensure robust performance, particularly in
environments where the channel availability differs significantly between devices.
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Recent studies have also emphasized the importance of robust channel-hopping pat-
terns in practical applications. For example, the integration of cognitive radio principles
with wireless sensor networks (WSNs) has demonstrated the significance of dynamic spec-
trum access in ensuring reliable communication in distributed environments [2]. Advances
in resource allocation strategies and sequence optimization have further contributed to
enhancing efficiency and mitigating interference in CR networks [3]. Moreover, the applica-
tion of CR principles in IoT scenarios has highlighted scalable approaches to address the
challenges of densely connected networks [4].

Further advancements in rendezvous strategies have focused on systematically con-
structing robust channel-hopping sequences that ensure rendezvous in both symmetric and
asymmetric channel models [7]. For instance, composite channel-hopping algorithms have
been developed to address the challenges posed by heterogeneous cognitive radio networks,
particularly in blind rendezvous scenarios [8,9]. Additionally, novel asynchronous channel-
hopping schemes have demonstrated their ability to achieve fair and fast rendezvous
without relying on time synchronization, even under dynamic channel availability [10].
Finally, quinary coding and matrix-based approaches have been introduced to guarantee
rendezvous under diverse and asynchronous channel conditions, providing scalable and
reliable performance [11].

Building on these established approaches, we focus on applying p-ary m-sequences as
a channel-hopping strategy specifically designed for asymmetric channel environments.
The p-ary m-sequence, known for its desirable autocorrelation properties and even dis-
tribution across channels, provides a strong foundation for efficient rendezvous mech-
anisms. Furthermore, we extend our research to scenarios where the search space is
reduced. By strategically limiting the number of channels to be searched and applying
p-ary m-sequences, our approach aims to further minimize the ETTR, enhancing system
performance in cognitive radio networks.

Our study contributes to the field by proposing and analyzing a novel channel-
searching scheme tailored to asymmetric channel conditions. We demonstrate that our
method not only retains the advantages of traditional p-ary m-sequence strategies but
also benefits from insights drawn from jump-stay-based algorithms, achieving significant
improvements in rendezvous efficiency. This work holds practical implications for design-
ing faster and more reliable cognitive radio systems, providing new insights into efficient
channel hopping in complex, asymmetric environments.

The remainder of this paper is organized as follows: In Section 2, we analyze the
performance of the p-ary m-sequence as a channel-hopping sequence in an asymmetric
channel model. Section 3 proposes a new channel-searching scheme for rendezvous and
analyzes the performance of the p-ary m-sequence for this suggested scheme. Section 4
presents the numerical results of the proposed scheme. Finally, Section 5 concludes the
paper and suggests directions for future research.

2. Applying p-Ary m-Sequence to Asymmetric Channel Model
In this section, we propose using the p-ary m-sequence as a channel-hopping sequence

for achieving rendezvous in the asymmetric channel model. We also calculate the Expected
Time to Rendezvous (ETTR) for the conventional scheme, applying the p-ary m-sequence
as a channel-searching pattern.

In the asymmetric model, two users may have different sets of available channels. The
primary approach for achieving rendezvous in this model involves extending each user’s
available channel set to cover all possible channels and then applying a channel-hopping
pattern over the entire set. However, because the available sets are expanded to include
all channels, the two users may attempt to rendezvous on a channel that is unavailable to
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one or both of them, thereby preventing a successful rendezvous. To address this issue,
Lin, Liu, Chu, and Leung proposed a method that ensures rendezvous over all possible
channels using a carefully designed channel-hopping pattern. Unlike in the symmetric
model, where rendezvous can occur if any common channel is selected, in the asymmetric
model, rendezvous only succeeds when both users are aligned on a channel that is available
to both.

Let p be a prime and n be a positive integer. Let Fpn be the finite field with pn elements.
Then, the trace function trn

1 (x) from Fpn to Fp is defined as

trn
1 (x) =

n

∑
t=1

xpi

where x ∈ Fpn . Then, the trace function satisfies the following properties

(1) trn
1 (ax + by) = atrn

1 (x) + btrn
1 (y), a, b ∈ Fp and x, y ∈ Fpn

(2) trn
1 (xp) = trn

1 (x), for all x ∈ Fpn .

Using the definition of trace function, we can define the p-ary m-sequence m(t) of the
period pn − 1 as follows:

m(t) = trn
1 (α

t)

where α is a primitive element of Fpn . It is well known that the p-ary m-sequence m(t) has
a balance property such that

m(t) =

k, pn−1 times for 1 ≤ k ≤ p − 1,

0, pn−1 − 1 times.

Let p be a prime and n ≥ 1 be a positive integer. We use the notation that Fpn is the
finite field with pn elements and F∗

pn = Fpn /{0}. In the remainder of the paper, we assume
that p > 2. Following is a generalization of the balance property and the two-level ideal
autocorrelation function property of p-ary m-sequences. Note that the period of a sequence
is always the minimum period of the sequence in this paper

Definition 1 (Balanced and Difference-balanced [12]). A q-ary sequence s(t) of period qn − 1
is said to be balanced if zero appears qn−1 − 1 times and any non-zero element of Fq appears qn−1

times in one period. It is said to be difference-balanced [13,14] if, for any non-zero τ mod qn − 1, in
the differences s(t + τ)− s(t) as t runs from 0 to qn − 2, the value zero occurs qn−1 − 1 times and
each of the non-zero values of Fq occurs qn−1 times.

Theorem 1. For positive integers M and p such that p is the smallest prime bigger than M. Let
m(t) be a p-ary m-sequence with period p2 − 1. Using m(t) as a channel-hopping sequence for the
cognitive radio with M asymmetric channels, the rendezvous occurs within p2 − 1 with probability
(p2 − p + 1)/(p2 − 1).

Proof. From the balance property of the p-ary m-sequence, the number of zeroes of m(t)
within a period is p − 1. Using the property of the trace function, we have

tr2
1(α

t)− tr2
1(α

t+τ) = tr2
1(α

t(1 − ατ))

= tr2
1(α

tαδ)

= tr2
1(α

t+δ)
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where αδ = 1 − ατ . Therefore, zero appears p − 1 times within a period p2 − 1. Let
T = (p2 − 1)/(p − 1) = p + 1, then we have

tr2
1(α

kT+t) = αkTtr2
1(α

t). (1)

and from the property of the finite field, it is clear that αkT ∈ F∗
p = Z∗

p.
Let integer 0 ≤ i < p2 − 1 satisfy tr2

1(α
i) = 0. Then, from the above equation, we have

tr2
1(α

kT+i) = 0, f or 0 ≤ k ≤ p

where 0 ≤ kT + i < p2 − 1
For different k1 and k2, 0 ≤ k1, k2 < p − 1, let i be an integer such that 0 ≤ k1T +

i, k2T + i < p2 − 1. From the balance property of m-sequence, m(t) has p − 1 zeroes within
a period. Therefore, all zeroes of m(t) can be represented as kT + i and this means m(t)
has zero within T = p + 1 duration, which means m(t) and m(t + τ) has the same number
with the same position within the first T = p + 1 duration. We can describe the value of
the trace function tr2

1(α
t), 0 ≤ t < p2 − 1 as follows:

tr2
1(α

0) tr2
1(α

1) tr2
1(α

2) · · · tr2
1(α

p−1) tr2
1(α

p)

αTtr2
1(α

0) αTtr2
1(α

1) αTtr2
1(α

2) · · · αTtr2
1(α

p−1) αTtr2
1(α

p)

α2Ttr2
1(α

0) α2Ttr2
1(α

1) α2Ttr2
1(α

2) · · · α2Ttr2
1(α

p−1) α2Ttr2
1(α

p)

. . .
α(p−3)Ttr2

1(α
0) α(p−3)Ttr2

1(α
1) α(p−3)Ttr2

1(α
2) · · · α(p−3)Ttr2

1(α
p−1) α(p−3)Ttr2

1(α
p)

α(p−2)Ttr2
1(α

0) α(p−2)Ttr2
1(α

1) α(p−2)Ttr2
1(α

2) · · · α(p−2)Ttr2
1(α

p−1) α(p−2)Ttr2
1(α

p)

. (2)

Let t1 such that 0 ≤ t1 ≤ p and m(t1) = m(t1 + τ) . From (2), it is clear that

{αkTtr2
1(α

t1)|0 ≤ k < p − 1} =

F∗
p , for m(t1) ̸= 0

0, for m(t1) = 0
. (3)

Let 0 ≤ ta < p + 1 be an integer such that m(ta) = m(tτ). In order to calculate the
expected TTR, we should consider the following cases for 0 ≤ τ < p2 − 1 and m(t) ∈ Fp:

Case 1) τ = 0 Once:
This case occurs only once for p2 − 1. cases. From the property of the trace function, it

is clear that every number in Fp is aligned for both users within p + 1 time slots. Therefore,
rendezvous occurred within p + 1 time slots in this case.

Case 2) τ ̸= 0 and m(ta) = 0 p − 2 times:
From equation (3), we can obtain αkTtr2

1(α
ta) = 0, for 0 ≤ k < p − 1. That means

values of all points align with period T = p + 1 for two sequence m(t) and m(t + τ) are 0.
To make rendezvous for this case, both devices use symbol 0 for their common channel.
But this violates the assumption of cognitive radio that it does not have a control channel.
Therefore, rendezvous does not occur in this case.

Case 3) τ ̸= 0 and m(ta) ̸= 0 p2 − p times:
From the property of the trace function and the assumption of this case, we have ta

such that 0 ≤ ta < p + 1 and the value of m(ta) ̸= 0. From the Equation (3), it is clear that
{αkTtr2

1(α
t1)|0 ≤ k < p − 1} = F∗

p , which means two devices align with every channel in
the channel model. Therefore, rendezvous occurred within p2 − 1 in this case.

From the result of the above cases, rendezvous occurs p2 − p + 1 times out of a total
of p2 − 1 cases. In other words, using the method described above, the rendezvous occurs
with a probability of (p2 − p + 1)/(p2 − 1).
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From the result of the above theorem, we can derive the average time to rendezvous
of the proposed scheme if the time delay between the two devices is not a multiple of
T = p + 1 as follows:

Theorem 2. For positive integers M and p such that p is the smallest prime bigger than M.
Let m(t) be a p-ary m-sequence with period p2 − 1 and C be the number of common channels
between both devices. Using m(t) as the channel-hopping sequence for the cognitive radio with M

asymmetric channels, the average TTR of this scheme is 2(p+1)+p(p−1)(p2−Mp−M−1)
2M(p2−1) ≈ p(p−1−M)

2M
except for the time difference of the two devices which is not a multiple of p + 1.

Proof. From the result of Theorem 1 and the assumption of this theorem, the ETTR of each
case of Theorem 1 can be calculated as follows:

Case 1) τ = 0 Once:
In this case, it is clear that channel alignment occurs M times within 1 time slots.

Therefore, the ETTR of this case is (p + 1)/M.
Case 2) τ ̸= 0 and m(ta) = 0 p − 2 times:
In this case, randezvous does not occur. Therefore, we should make another trial to

rendezvous for this case.
Case 3) τ ̸= 0 and m(ta) ̸= 0 p2 − p times:
Let us divide p2 − 1 time slots into p − 1 sets with p + 1 time slots. In this case, every

p − 1 set has a different aligned channel in F∗
p and the average time to randezvous of each

time set is (p + 1)/2. Since each time set has an equal probability of rendezvous, it is clear
that the probability of randezvous for each set is M/(p − 1). Therefore, the average time to
rendezvous for this case can be calculated as follows:

p2 − 1
M

− p + 1
2

=
p2 − Mp − M − 1

2M
.

From the result of the above cases, the average value of the rendezvous with failure
probability (p − 2)/(p2 − 1) is

1
p2 − 1

× p + 1
M

+
p

p + 1
× p2 − Mp + M − 1

2M
=

2(p + 1) + p(p − 1)(p2 − Mp − M − 1)
2M(p2 − 1)

=
2(p + 1) + p(p − 1)(p2 − 1 − M(p + 1))

2M(p2 − 1)

=
2(p + 1) + p(p − 1)(p + 1)(p − 1 − M)

2M(p − 1)(p + 1)

=
2 + p(p − 1)(p − 1 − M)

2M(p − 1)

≈ p(p − 1 − M)

2M

except where the time difference between the two devices is not a multiple of p + 1.

The above theorem shows the average time to rendezvous and the probability of
rendezvous within a period of p-ary m-sequence. Based on the result of the above theorem,
the ETTR for applying a p-ary m-sequence to an asymmetric channel can be determined
as follows:

Theorem 3. For positive integers M and p such that p is the smallest prime bigger than M.
Let m(t) be a p-ary m-sequence with period p2 − 1 and C be the number of common channels
between both devices. Using m(t) as the channel-hopping sequence for the cognitive radio with M
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asymmetric channels, the ETTR of p-ary m-sequence for the cognitive radio with M asymmetric
channels is (p − 2) + p(p−1−M)

2M .

Proof. From the result of Theorem 1, the average time to rendezvous of the p-ary m-
sequence is p × (p − 1 − M)/(2M) with probability (p2 − p + 1)/(p2 − 1). Since the
two devices share M common channels out of a total of p channels, a rendezvous is
guaranteed to occur after the (p− M+ 1)th search. Therefore, the probability of a successful

rendezvous in the i-th period is ( p2−p+1
p2−1 )( p−2

p2−1 )
i−1. According to the result of Theorem 2,

if a rendezvous occurs in the i-th period, the ETTR for the i-th period is p(p−1−M)
2M . When

rendezvous occurs in i th period, the ETTR is given as follows:

ETTRasym−ith =
p(p − 1 − M)

2M
(

p2 − p + 1
p2 − 1

)(
p − 2
p2 − 1

)i−1 + (i − 1)(p2 − 1)(
p − 2
p2 − 1

)i−1.

Therefore, we can derive the ETTR as follows.

ETTRasym =
p−M+1

∑
i=1

ETTRasym−ith

=
p−M+1

∑
i=1

{ p(p − 1 − M)

2M
(

p2 − p + 1
p2 − 1

)(
p − 2
p2 − 1

)i−1 + (i − 1)(p2 − 1)(
p − 2
p2 − 1

)i−1}

=
p−M

∑
i=0

{ p(p − 1 − M)

2M
(

p2 − p + 1
p2 − 1

)(
p − 2
p2 − 1

)i + i(p2 − 1)(
p − 2
p2 − 1

)i}
.

The above expression can be calculated as follows:

ETTRasym =
p(p − 1 − M)

2M
(

p2 − p + 1
p2 − 1

)
1 − ( p−2

p2−1 )
p−M+1

1 − ( p−2
p2−1 )

+(p − 2)
1 − (p − M + 1)( p−2

p2−1 )
p−M+1 + (p − M + 1)( p−2

p2−1 )
p−M+2

(1 − ( p−2
p2−1 ))

2
.

If p − M is sufficiently large, ( p−2
p2−1 )

p−M+1 and ( p−2
p2−1 )

p−M+2 become negligible, allowing

the approximations 1 − ( p−2
p2−1 )

p−M+1 ≈ 1 and 1 − (p − M + 1)( p−2
p2−1 )

p−M+1 + (p − M +

1)( p−2
p2−1 )

p−M+2 ≈ 1. Then, the above equation can be simplified as follows:

ETTRasym ≈ p(p − 1 − M)

2M
(

p2 − p + 1
p2 − 1

)
1

1 − ( p−2
p2−1 )

+ (p − 2)
1

(1 − ( p−2
p2−1 ))

2

=
p(p − 1 − M)

2M
(

p2 − p + 1
p2 − 1

)
1

p2−p+1
p2−1

+ (p − 2)
1

( p−2
p2−1 )

2 − 2( p−2
p2−1 ) + 1

=
p(p − 1 − M)

2M
(

p2 − p + 1
p2 − 1

)
1

p2−p+1
p2−1

+ (p − 2)
(p2 − 1)2

(p2 − 1 − p + 2)2

=
p(p − 1 − M)

2M
+ (p − 2)(

p2 − 1
p2 − p + 1

)2

≈ p(p − 1 − M)

2M
+ (p − 2).
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The ETTR value derived from Theorem 3 does not significantly differ from the av-
erage TTR value for a rendezvous occurring within one cycle of the p-ary m-sequence in
Theorem 2. Thus, from the result of Theorem 3, it can be concluded that the probability of
rendezvous failure for the p-ary m-sequence, occurring when the time difference between
the two devices is a multiple of p + 1 has a small impact on the overall ETTR performance
if the number of the common channel M is small.

3. Applying p-Ary m-Sequence to Reduced Asymmetric Channel Model
This section introduces a new channel-searching scheme optimized for p-ary m-

sequences. By reducing the number of target channels, the proposed scheme aims to
improve the ETTR while maintaining a high probability of rendezvous. We also derive the
ETTR of the proposed scheme to validate its performance theoretically. Before discussing
the new channel-searching scheme, we first need to look at the useful properties of the
m-sequence.

Definition 2 (Two-tuple balanced, Gong and Song [15]). Let n be a positive integer and q be a
power of prime number. Let s(t) be a q-ary sequence of period qn − 1, and let T = (qn − 1)/(q− 1).
For a given integer τ with 0 < τ < qn − 1 and x, y ∈ Fq, we define

N(x, y) = |{t|(s(t), s(t + τ)) = (x, y), 0 ≤ t < qn − 1}|.

Then, s(t) is said to be two-tuple-balanced if we have N(x, y) = qn−2 for (x, y) ̸= (0, 0) with
N(0, 0) = qn−2 − 1 when τ ̸≡ 0 (mod T), and N(x, y) = qn−1 for (x, y) ̸= (0, 0) with
N(0, 0) = qn−1 − 1 when τ ≡ 0 (mod T).

Theorem 4 (Gong and Song [15]). Let us assume that a q-ary sequence s(t) of period qn − 1 is
difference-balanced and has the cyclic array structure. Then, it is two-tuple-balanced

For a prime p and a positive integer n, it is well known that the p-ary m-sequence with
period pn − 1 is difference-balanced. From Definition 1, Definition 2, and Theorem 4, we
can say, the p-ary m-sequence with period pn − 1 is two-tuple balanced.

The conventional channel-searching scheme applied to the asymmetric channel model
operates such that devices perform channel searching across all channels within the system,
as shown in the following figure. When all channels achieve matching, a rendezvous occurs
on a channel that is commonly available to both devices. See Figure 1.

Figure 1. Conventional channel-searching scheme for asymmetric channel model.

As discussed in the introduction of this section, the m-sequence possesses a two-tuple
balanced property. Therefore, if a p-ary m-sequence is used as the channel-searching
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pattern, each channel will attempt to match with all target channels of the other device, as
in Figure 2.

Figure 2. Proposed channel-searching scheme for asymmetric channel model.

In this paper, we propose a new channel-searching scheme that reduces the number of
target channels and the frequency of searches for rendezvous by decreasing the number of
target channels. To ensure the existence of a common channel, the number of target channels
must exceed half of the total channels. Additionally, to apply the p-ary m-sequence, it is
preferable for the number of target channels to be the smallest prime number greater than
half of the total number of channels. The newly proposed channel-searching scheme in this
paper is as follows:

Theorem 5. For positive integer M, let N be an integer such that N = ⌈M/2⌉ and q be a the
smallest prime bigger than N. Let mq(t) be a q-ary m-sequence with period q2 − 1 and the available
channels of each device be assigned to the alphabets of the q-ary m-sequence in the order of the
channel index, starting from 1. Furthermore, the best channel of each device is assigned to the 0
of the m-sequence. Using mq(t) as the channel-hopping sequence for the cognitive radio with M
asymmetric channels, the rendezvous occurrs within q2 − 1 with probability q/(q + 1).

Proof. From the properties of the p-ary m-sequence and Equation (2), it is clear that the
p-ary m-sequence is difference-balanced and has the cyclic array structure. According to
the results of Definition 2 and Theorem 3, it is evident that two q-ary m-sequences with
a period of q2 − 1 exhibit the two-tuple balance property when the phase difference τ

between them is not a multiple of T = q + 1. Therefore, when two devices utilize q-ary
m-sequences as their channel-searching patterns, a rendezvous is guaranteed to occur
within q2 − 1 time slots, except in cases where the phase difference between the devices is a
multiple of T = q + 1. Since there are q − 1 multiples of q + 1 within a period of sequence,
the property of rendezvous is q/(q + 1).

From the result of the above theorem, we can derive the average time to rendezvous of
the proposed scheme if the time delay between the two device is not a multiple of T = p+ 1
as follows.

Theorem 6. For positive integer M, let N be an integer such that N = ⌈M/2⌉ and q be a the
smallest prime bigger than N. Let mq(t) be a q-ary m-sequence with period q2 − 1 and C be the
number of common channels between both devices. Using mq(t) as the channel-hopping sequence
for the cognitive radio with M asymmetric channels, the ETTR of this scheme is (q2 − 1)/(2N)

except where the time difference of the two devices is not a multiple of q + 1.

Proof. From the tuple-balanced-property in Theorem 4 and Equation (2), it is clear that
the q-ary msequence has every pair (a, b) ∈ (Fq, Fq)\{(0, 0)}. Therefore, the probability
of every pair (a, b) ∈ (Fq, Fq)\{(0, 0)} is equal to 1/(q2 − 1). From the assumption of this
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theorem, we have N common channels; rendezvous can occur N times within the period of
the q-ary m-sequence. Therefore, the average TTR is (q2 − 1)/(2N) except when the time
difference between the two devices is a multiple of q + 1.

The above theorem shows the average time to rendezvous and the probability of
rendezvous within a period of q-ary m-sequence. Based on the result of the above theorem,
the ETTR for applying a q-ary m-sequence to an asymmetric channel with the proposed
channel-searching scheme can be determined as follows:

Theorem 7. For positive integer M, let N be an integer such that N = ⌈M/2⌉ and q is the
smallest prime bigger than N. Let mq(t) be a q-ary m-sequence with period q2 − 1 and C be the
number of common channels between both devices. Using mq(t) as the channel-hopping sequence
for the cognitive radio with M asymmetric channels with the proposed scheme in Theorem 5, the

ETTR of the q-ary m-sequence for the cognitive radio with M asymmetric channels is q + q2−1
2N .

Proof. From the result of Theorem 6, the average time to rendezvous of the q-ary m-
sequence is (q2 − 1)/(2N) with probability q/(q + 1). Since the two devices share N
common channels out of a total of q channels, a rendezvous is guaranteed to occur by
the (q − N + 1)th search. Therefore, the probability of a successful rendezvous in the i-th
period is ( q

q+1 )(
1

q+1 )
i−1. According to the result of Theorem 6, if a rendezvous occurs in

the i-th period, the ETTR for the i-th period is q2−1
2N . When a rendezvous occurs in the i th

period, the ETTR is given as follows:

ETTRpro−ith =
q2 − 1

2N
(

q
q + 1

)(
1

q + 1
)i−1 + (i − 1)(q2 − 1)(

q
q + 1

)(
1

q + 1
)i−1.

Therefore, we can derive the ETTR as follows:

ETTRpro =
q−N+1

∑
i=1

ETTRpro−ith

=
q−N+1

∑
i=1

{ q2 − 1
2N

(
q

q + 1
)(

1
q + 1

)i−1 + (i − 1)(q2 − 1)(
q

q + 1
)(

1
q + 1

)i−1}

=
q−N

∑
i=0

{ q2 − 1
2N

(
q

q + 1
)(

1
q + 1

)i + (i − 1)(q2 − 1)(
q

q + 1
)(

1
q + 1

)i}.

The above expression can be calculated as follows:

ETTRpro =
q2 − 1

2N
(

q
q + 1

)
1 − ( 1

q+1 )
q−N+1

1 − ( 1
q+1 )

+
q(q2 − 1)
(q + 1)2

1 − (q − N + 1)( 1
q+1 )

q−N+1 + (q − N + 1)( 1
q+1 )

q−N+2

(1 − ( 1
q+1 ))

2
.
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If q − M is sufficiently large, ( 1
q+1 )

q−N+1 and ( 1
q+1 )

q−N+2 become negligible, allowing

the approximations 1 − ( 1
q+1 )

q−N+1 ≈ 1 and 1 − (q − N + 1)( 1
q+1 )

q−N+1 + (q − N +

1)( 1
q+1 )

q−N+2 ≈ 1. Then, the above equation can be simplified as follows:

ETTRpro ≈ q2 − 1
2N

(
q

q + 1
)

1
1 − ( 1

q+1 )
+

q(q2 − 1)
(q + 1)2

1
(1 − ( 1

q+1 ))
2

=
q2 − q

2N
1

1 − ( 1
q+1 )

+
q(q2 − 1)
(q + 1)2

(q + 1)2

q2

=
q2 − q

2N
q + 1

q
+

(q2 − 1)
q

=
q2 − 1

2N
+

(q2 − 1)
q

≈ q2 − 1
2N

+ q.

The ETTR value derived from Theorem 7 does not significantly differ from the av-
erage TTR value for a rendezvous occurring within one cycle of the q-ary m-sequence in
Theorem 1. Thus, from the result of Theorem 7, it can be concluded that the probability of
rendezvous failure for the qp-ary m-sequence, occurring when the time difference between
the two devices is a multiple of q + 1 has a small impact on the overall ETTR performance
if the number of common channels N is small

Let us consider an example for the case where M is relatively large.

Example 1. Suppose that two devices in an asymmetric channel environment are attempting to
achieve rendezvous. In this case, assume there are 100 channels in the system, with 30% (i.e.,
30 channels) being shared between the two devices. Furthermore, assume that even when the
newly proposed channel-searching scheme presented in this section is applied, the number of shared
channels remains 30% of the total channels used. When using the m-sequence as the channel-
searching pattern, the ETTR values for the existing method and the newly proposed method can be
calculated as follows, based on the results of Sections 3 and 4:

p = 101, q = 53, M = 30, N = 15.

ETTRasym =
p(p − 1 − M)

2M
+ (p − 2) =

101(100 − 30)
2 × 30

+ 99 = 216.83

ETTRpro =
q2 − 1

2N
+ q =

532 − 1
2 × 15

+ 53 = 146.6

Let us consider another example for the case where M is 1.

Example 2. Suppose that two devices in an asymmetric channel environment are attempting
to achieve rendezvous. In this case, assume there are 100 channels in the system, with 1 (i.e.,
30 channels) being shared between the two devices. Furthermore, assume that even when the
newly proposed channel-searching scheme presented in this section is applied, the number of shared
channels remains 1 of the total channels used. When using the m-sequence as the channel-searching
pattern, the ETTR values for the existing method and the newly proposed method can be calculated
as follows, based on the results of Sections 3 and 4.

p = 101, q = 53, M = 1, N = 1.



Sensors 2025, 25, 62 11 of 13

ETTRasym =
p(p − 1 − M)

2M
+ (p − 2) =

101(100 − 1)
2 × 1

+ 99 = 5098.5

ETTRpro =
q2 − 1

2N
+ q =

532 − 1
2 × 1

+ 53 = 1457

As seen in the two examples above, the newly proposed channel-searching scheme
demonstrates significantly better performance compared to the conventional scheme when
the number of common channels is small.

4. Numerical Results
In this section, we compare the rendezvous performance of the p-ary m-sequence for

the asymmetric model with the conventional scheme and the newly proposed scheme.
To evaluate the performance across various environments, we will conduct simulations,
increasing the number of total channels from 30 to 100, each tested with 30% common chan-
nels and 1 common channel, respectively. For performance comparison, the simulations
will compare three schemes: the JS algorithm [6], the conventional scheme using a p-ary
m-sequence, and the newly proposed scheme using a q-ary m-sequence. The JS algorithm
for the asymmetric channel model is defined as follows:

Definition 3 (JS Algorithm for Asymmetric Channel Model [6]). Let M, the total number
of channels, be a positive integer. Then, the JS algorithm for the asymmetric channel is given as
Algorithm 1.

Algorithm 1 JS Algorithm for Asymmetric Channel Model
1: Input: M
2: p = the smallest prime number greater than M;
3: r0 = rand[1, M]; i0 = rand[1, M]; t = 0;
4: WHILE (not rendezvous)
5: n = ⌊t/3p⌋; r = (r0 + n − 1) mod M + 1;
6: n = ⌊t/6Mp⌋; i = (i0 + n − 1) mod p + 1;
7: c = JSHopping(M, p, r, i, t); t = t + 1;
8: Attempt rendezvous on channelc;
9: END

Figure 3 illustrates the simulation results when 30% of the total channels are shared.
The simulations, based on the average TTR over 10,000 rendezvous events, reveal that the
proposed scheme outperforms the conventional scheme and the JS algorithm. Specifically,
the ETTR of the proposed scheme is approximately half that of the conventional scheme.

Figure 3. ETTR with 30% common channels.

Figure 4 shows the results when only one common channel exists. In this extreme
scenario, the proposed scheme demonstrated ETTR values roughly 25% of those achieved
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by the conventional scheme. This improvement is attributed to the reduced cycle length of
the q-ary m-sequence used in the proposed scheme.

Figure 4. ETTR with 1 common channel.

5. Conclusions
In this paper, we propose a channel-searching pattern and a searching scheme for

achieving rendezvous in an asymmetric channel model. The newly proposed channel-
searching scheme leverages the properties of the m-sequence to maximize rendezvous
performance, as demonstrated through both theoretical analysis and simulation results.
Additionally, we derive and compare the theoretical ETTR values for applying the m-
sequence to a conventional channel-searching scheme and to the newly proposed scheme
in the asymmetric channel model. The simulation results show that applying the p-ary
m-sequence to the conventional channel-searching scheme significantly outperforms the
JS algorithm, both when the number of common channels is 30% and when there is only
one common channel. This superior performance is attributed to the fact that, despite the
m-sequence having a certain failure probability, the average time to rendezvous is very
low within a single cycle. Moreover, applying the m-sequence to the newly proposed
channel-searching scheme yields even better performance compared to the conventional
scheme. Notably, when there is only one common channel, the proposed scheme achieves
ETTR values that are nearly 25% that of the conventional scheme. This improvement is
attributed to the m-sequence’s characteristic of achieving high rendezvous probability
within a single cycle, even when the number of channels to be searched is reduced.

6. Patents
The results of this will be submitted as patent within this year.
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Abbreviations

The following abbreviations are used in this manuscript:

TTR Time To Rendezvous
ETTR Expected Time To Rendezvous
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