
Academic Editors: Carmen Delgado

and Lanfranco Zanzi

Received: 24 November 2024

Revised: 24 December 2024

Accepted: 27 December 2024

Published: 30 December 2024

Citation: Um, D.; Park, H.-S.; Ryu,

H.; Park, K.-J. Predictive Forwarding

Rule Caching for Latency Reduction

in Dynamic SDNa. Sensors 2025, 25,

155. https://doi.org/10.3390/

s25010155

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Predictive Forwarding Rule Caching for Latency Reduction in
Dynamic SDN
Doosik Um 1 , Hyung-Seok Park 2 , Hyunho Ryu 2 and Kyung-Joon Park 2,*

1 Department of Interdisciplinary Studies (Artificial Intelligence Major), Daegu Gyeongbuk Institute of Science
and Technology (DGIST), Daegu 42988, Republic of Korea; uds0909@dgist.ac.kr

2 Department of Electrical Engineering & Computer Science, Daegu Gyeongbuk Institute of Science and
Technology (DGIST), Daegu 42988, Republic of Korea; hyungseok@dgist.ac.kr (H.-S.P.);
ryuhyunho@dgist.ac.kr (H.R.)

* Correspondence: kjp@dgist.ac.kr

Abstract: In mission-critical environments such as industrial and military settings, the use
of unmanned vehicles is on the rise. These scenarios typically involve a ground control
system (GCS) and nodes such as unmanned ground vehicles (UGVs) and unmanned aerial
vehicles (UAVs). The GCS and nodes exchange different types of information, including
control data that direct unmanned vehicle movements and sensor data that capture real-
world environmental conditions. The GCS and nodes communicate wirelessly, leading to
loss or delays in control and sensor data. Minimizing these issues is crucial to ensure nodes
operate as intended over wireless links. In dynamic networks, distributed path calculation
methods lead to increased network traffic, as each node independently exchanges control
messages to discover new routes. This heightened traffic results in internal interference,
causing communication delays and data loss. In contrast, software-defined networking
(SDN) offers a centralized approach by calculating paths for all nodes from a single point,
reducing network traffic. However, shifting from a distributed to a centralized approach
with SDN does not inherently guarantee faster route creation. The speed of generating
new routes remains independent of whether the approach is centralized, so SDN does not
always lead to faster results. Therefore, a key challenge remains: determining how to create
new routes as quickly as possible even within an SDN framework. This paper introduces a
caching technique for forwarding rules based on predicted link states in SDN, which was
named the CRIMSON (Cashing Routing Information in Mobile SDN Network) algorithm.
The CRIMSON algorithm detects network link state changes caused by node mobility and
caches new forwarding rules based on predicted topology changes. We validated that the
CRIMSON algorithm consistently reduces end-to-end latency by an average of 88.96% and
59.49% compared to conventional reactive and proactive modes, respectively.

Keywords: software-defined networking; mobile unmanned swarm node; predictive
forwarding rule caching; dynamic network optimization

1. Introduction
In recent mission-critical environments, such as industry and military, unmanned

vehicles are increasingly replacing human labor [1–7]. In industrial settings, unmanned
aerial vehicles (UAVs), automated guided vehicles (AGVs), and autonomous mobile robots
(AMRs) perform tasks such as material transport and sorting operations. Additionally,
in the military field, exploration drones and military unmanned vehicles autonomously
perform missions in dangerous conditions, such as battlefields or hazardous areas.

Sensors 2025, 25, 155 https://doi.org/10.3390/s25010155

https://doi.org/10.3390/s25010155
https://doi.org/10.3390/s25010155
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0001-1400-637X
https://orcid.org/0000-0002-4127-0790
https://orcid.org/0000-0002-2860-1612
https://orcid.org/0000-0003-4807-6461
https://doi.org/10.3390/s25010155
https://www.mdpi.com/article/10.3390/s25010155?type=check_update&version=1


Sensors 2025, 25, 155 2 of 22

In this paper, we refer to unmanned vehicles that perform various missions as nodes.
The system in which these nodes operate consists of a GCS (ground control system) and the
nodes themselves [8]. The operation is maintained by various communications between
the GCS and nodes [9,10]. The GCS sends data such as control commands and mission
assignment information to the nodes. The nodes send collected data, such as sensor and
location information, to the GCS. As various types of data are exchanged between the GCS
and nodes, stable communication is necessary to ensure timely command delivery without
delays and a communication environment that avoids data loss. Unstable communication
causes data loss or increases network latency. This prevents the node from properly
performing tasks or missions. In critical cases, the node encounters physical failures.

Using SDN in these conditions enables the creation of a low traffic communication
system through centralized control [11–15]. Unlike the traditional communication methods,
SDN is a method that separates and centralizes the control plane of each node. SDN allows
traffic flow verification, processing, and monitoring through a central controller. Applying
SDN in unmanned node environments enables efficient network traffic management. And
by separating the control planes and reducing vendor dependency, it enhances integration
among various types of nodes.

In SDN, when the topology changes, the SDN controller sends request messages,
such as link layer discovery protocol (LLDP), to assess the network state. Therefore, in
dynamic networks with node mobility shown in Figure 1, request traffic occurs frequently.
A dynamic network indicates a state where the communication link status and topology
change due to the mobility of the nodes [16–18]. In such an environment, SDN increases
network latency due to the traffic generated by providing new forwarding rules. This leads
to packet delivery delays, which can result in mission failure or physical node breakdowns.
Therefore, it is necessary to make improvements to ensure low latency in dynamic networks.

Figure 1. Necessity of forwarding rule updates in dynamic network. In a dynamic network, topology
changes and link changes occur as nodes move around. Accordingly, forwarding rules for node-
specific communication must be updated.

Using caching can improve this issue. Caching refers to storing data in advance that is
frequently used or expected to be used in the future [19–22]. By using caching, traffic and
latency for data requests can be reduced. Therefore, in an SDN composed of mobile nodes,
caching can help reduce the traffic and latency needed to create new forwarding rules. To
achieve this, it is important to decide which information should be cached.

This paper proposes a caching technique for forwarding rules for predicted link
states in SDN. The study aims to reduce latency and request traffic in dynamic networks
compared to existing methods. For this purpose, we introduce the CRIMSON algorithm,
which caches routing information in a mobile SDN optimized network. The CRIMSON
algorithm is designed to detect changes in the state of network links based on node mobility,
which is defined as a change in the communication link due to the movement of nodes
in the network. These changes have the potential to affect the connectivity and topology
of the network, thereby necessitating updates to forwarding rules in order to maintain



Sensors 2025, 25, 155 3 of 22

stable communication. After a change is detected, it caches new forwarding rules based
on the predicted topology changes. The CRIMSON process consists of three stages. The
proposed algorithm is evaluated using a swarm node setting with UAV modeling, utilizing
the open network operating system (ONOS) and Mininet-WiFi simulator. A swarm node
is a network configuration consisting of N mobile nodes, typically UAVs, that operate in
a decentralized manner, enabling cooperative communication and dynamic interactions
for task execution. In the validation, CRIMSON’s latency and LLDP packet count are
assessed. The results indicate that CRIMSON consistently maintains low latency under
various bandwidth conditions. We validated that the CRIMSON algorithm consistently
reduces end-to-end latency by an average of 88.96% and 59.49% compared to conventional
reactive and proactive modes, respectively. Additionally, it was confirmed that CRIMSON
has a lower LLDP packet count compared to the proactive mode. The results of this study
confirm that CRIMSON can achieve low network latency and reduced traffic in SDN-based
dynamic networks. The main contributions of this study are summarized as follows:

• This paper proposes the CRIMSON algorithm, which is a caching technique for
forwarding rules for predicted link states in SDN. The study aims to reduce latency
and request traffic in dynamic networks compared to existing methods.

• This study analyzes the mobility of the swarm with UAV modeling to predict the link
state. For this purpose, movement is detected through node position data. When the
swarm’s movement exceeds a specific threshold, the predicted link state is generated.
Then, the forwarding rules reflecting the predicted link state are cached. This process
consists of three steps in the CRIMSON algorithm.

• This study evaluates the performance of CRIMSON in dynamic networks through
simulation. In this result, the CRIMSON algorithm consistently reduces end-to-end
latency by an average of 88.96% and 59.49% compared to conventional reactive and
proactive modes, respectively.

The structure of this paper is as follows. Section 2 reviews studies related to SDN,
caching, and dynamic networks. Section 3 explains the background necessary for under-
standing this study. This section explains important ideas and content used in the study,
such as SDN, methods for installing forwarding rules, and the confusion matrix. Section 4
describes the system model in which the proposed algorithm is applied. Section 5 explains
the overall flow and each detailed step of the proposed algorithm, CRIMSON. Section 6
introduces the simulation process and parameter settings for comparing the performance of
CRIMSON. It also explains the process and results of CRIMSON’s performance evaluation.
Finally, Section 7 concludes the paper and discusses directions for future research.

2. Related Work
As network environments become more complex and varied, more research is focusing

on improving network performance through SDN and caching. Additionally, studies are
exploring network setups that use unmanned nodes.

As network settings become more complex, SDN research has been contributing
to enhancing network performance and improving management efficiency in various
industries. It has been validated in [23] that the centralized management of SDN reduces
management complexity and improves network management efficiency in WSN (Wireless
Sensor Network) contexts. To ensure reliability and flexibility between different types of
wireless devices in IoT environments, ref. [24] applied SDN and a routing protocol using
reinforcement learning, which reduced network latency and improved packet throughput.
The benefits of applying SDN to WSN for network management, such as energy efficiency,
dynamic network management, and routing optimization, are explained in [25]. It was
shown in [26] that applying a centralized approach through SDN improved load balancing



Sensors 2025, 25, 155 4 of 22

by up to 14% and enabled the processing of more network traffic. Applying SDN in
military environments contributes to network status monitoring and enhanced security,
as explained in [27]. Thus, using SDN provides advantages from a network perspective
through traffic management and improved throughput via a centralized approach.

There is increasing interest in research aimed at achieving high communication perfor-
mance in dynamic network settings. The software architecture and benefits of the prototype
network called UAVNet, specialized for UAVs, are introduced in [28]. Sensor network
auto-deployment and multi-hop communication are used to construct an IoT network in
outdoor settings, as shown in [29]. The architecture and activation techniques for stable
communication between aerospace and airborne systems, along with the optimization
process for the performance analysis of dynamic networks, are described in [30]. A user-
customized network that dynamically utilizes network resources by predicting voice call
duration and data usage using LightGBM is introduced in [31]. Mobile network traffic
prediction employs machine learning algorithms such as multi-layer perceptron (MLP),
multi-layer perceptron with weight decay (MLPWD), and support vector machine (SVM).
The performance analysis of the predicted values can be found in [32]. These methods are
extensively utilized in machine learning for pattern prediction and network performance
optimization. UAVs are used as relay nodes in a NOMA (Non-Orthogonal Multiple Access)
network to enhance network performance, as demonstrated in [33]. The NOMA network is
a multiple access technique that allows multiple users to share the same frequency channel
by differentiating signals through power levels. As demonstrated in [34], the optimized
placement of UAVs utilizing the DDPG (Deep Deterministic Policy Gradient) method, a
reinforcement learning algorithm, has been shown to enhance communication performance
by up to 86%. In dynamic networks, communication performance is improved through
traffic prediction, node placement, or specific network strategies.

The importance of caching is increasing for enhancing communication performance
and creating a stable communication. Cooperative caching based on mobility prediction
(CCMP) was proposed in [20] to improve the performance of vehicular content-centric
networks (VCCNs). This method predicts the movement area based on the past trajectory of
mobile nodes to improve network performance. The importance of caching research in 5G
wireless systems, cloud, and internet computing is emphasized in [21]. 5G mobile network
performance was improved in [22] by caching content based on predicted user movement
paths, reducing average latency and backhaul load. A learning algorithm designated
PopCaching, which makes caching decisions based on content popularity, was proposed
in [35]. Content popularity, which denotes the likelihood of specific data or content being
frequently requested by network users, was effectively utilized by this algorithm, resulting
in an increased cache hit rate and a performance improvement of over 40%, especially
under limited cache capacity. A machine learning-based caching strategy called ELCache,
which considers user mobility and interests to enhance QoE, was used in [36]. Therefore, by
using caching to reduce average latency and traffic, network performance can be improved.

The integration of SDN with caching mechanisms has been demonstrated to be a powerful
approach to improve network performance in dynamic and data-intensive environments [37].
SDN-based cooperative caching mechanisms reduce backhaul traffic, mitigate download la-
tency, and improve data transfer rates in mobile multimedia networks [38]. These mechanisms
leverage user mobility and probabilistic caching to optimize resource utilization and ensure
seamless content delivery. This combination also provides significant benefits in IoT environ-
ments, such as reduced latency, increased energy efficiency, and better resource allocation.
These results highlight the need for SDN-caching integration to ensure scalable, reliable, and
efficient network management across a wide range of applications.



Sensors 2025, 25, 155 5 of 22

This paper proposes the CRIMSON algorithm, which is a caching technique to forward
rules for predicted link states in SDN. The algorithm aims to reduce latency and request
traffic in dynamic networks.

Limitations of Previous Work

Previous studies utilizing machine learning and reinforcement learning for SDN
optimization have demonstrated significant improvements, but they often face certain
limitations:

• Scalability and Computational Overhead: Many reinforcement learning-based ap-
proaches, such as those described in [24], require substantial computational resources
and extensive training data. This makes it challenging to apply them in real-time
application in highly dynamic networks.

• Latency in Dynamic Environments: Machine learning-based methods, including [32],
often involve exploration and learning phases, which can cause delays, especially in
rapidly changing systems.

• Adaptability to node mobility: Approaches such as collaborative caching based on mo-
bility prediction in [20] have been shown to effectively handle content delivery, but they
lack adaptability in high mobility environments where link conditions change frequently.

CRIMSON addresses these limitations with a predictive caching mechanism tailored
to dynamic SDN networks. Unlike existing approaches, CRIMSON leverages node mobility
to pre-cache forwarding rules, significantly reducing latency and computational overhead.
Furthermore, CRIMSON stands out by its focus on preemptive rule caching for topology
changes, enabling more reliable communication in highly dynamic environments.

3. Background
In this section, we introduce the technologies and methods used for understanding this

paper. In this context, we present SDN, dynamic networks, and forwarding rule methods.
We also discuss concepts such as graph-based representations, shortest path algorithms,
caching, and the confusion matrix.

3.1. Software-Defined Networking (SDN)

SDN is a network management technology that divides the control and data-
forwarding functions, enabling centralized control [11–14]. Unlike legacy network ar-
chitectures, SDN allows applications for network management to be developed through the
SDN controller, as shown in Figure 2. This enables the simple and flexible management and
optimization of network resources. The components of SDN can be divided into the control
plane and the data plane. The control plane handles tasks such as setting communication
paths and managing topology. The data plane is the part that sends data according to the
paths set by the control plane.

There are various SDN controllers, each offering unique features and functions [39–41].
The main types of SDN controllers are open network operating system (ONOS), OpenDay-
light, Ryu, Floodlight, and Pox. Of these, the ONOS controller helps manage data flow and
has the ability to scale for large networks. These features improve traffic management and
provide benefits for cooperation in the industry through open-source communities.

In SDN, the link layer discovery protocol (LLDP) is a protocol that allows network
devices to recognize each other and check their connection status [42,43]. LLDP regularly
shares information between devices in an SDN system to collect and maintain the network
topology. The basic SDN flow includes incoming packets and checking the flow table.
When a packet arrives at a network switch, the switch checks the flow table to determine
how to handle the packet. If the flow table contains a forwarding rule for the packet, the



Sensors 2025, 25, 155 6 of 22

switch processes the packet according to the stored rule. However, if there is no forwarding
rule, the switch requests the appropriate forwarding rule from the SDN controller. SDN
uses LLDP to explore the network topology and detect state changes, as shown in Figure 3.

Figure 2. Comparison between traditional communication and SDN methods. In a traditional
network, a control plane is configured on each node. However, in an SDN environment, only the
central controller has a control plane. In this case, the central controller provides the forwarding
rules.

Figure 3. LLDP transmission process for communication between SDN nodes. In an SDN, the SDN
controller recognizes new switches through the process of packet-out, deliver LLDP, and packet-in to
the switches it already knows.

3.2. Dynamic Network

A dynamic network is a network environment in which the topology continuously
changes because of changes in node positions and link states [16,17]. Unlike static networks,
dynamic networks require real-time management and adaptation because of the rapidly
changing network conditions. One example of a dynamic network is mobile cluster node
settings, where nodes move and communicate with each other. The dynamic network
has issues such as link disconnection, network overhead, latency reduction, and path
reconfiguration due to changing topology. This requires efficient management and opti-
mized communication techniques because it causes high uncertainty, such as fluctuating
link states and unpredictable traffic changes, leading to performance issues. A dynamic
network changes in real time, so adaptive routing algorithms are essential.



Sensors 2025, 25, 155 7 of 22

3.3. Forwarding Rule Installation Method

The method of establishing forwarding rules has a significant impact on data trans-
mission and the efficient use of network resources. This method is classified into reactive
mode and proactive mode [44,45].

3.3.1. Reactive Mode

Reactive mode is a method where a path is created in real time to handle a packet
when it arrives. This approach finds and sets up a path only when specific data need to
be sent. The advantage of this method is that it saves network resources because it does
not need any paths set up in advance. But it takes a long time to send the first request and
obtain a response. In a dynamic network, nodes are constantly moving, which requires
replacing forwarding rules after they are requested. This lead to more network overhead
and potentially increases network latency.

3.3.2. Proactive Mode

The proactive mode is a method where all nodes in the network keep and manage
routing information in advance. The proactive mode keeps updating the communication
paths in the network. It also sets up forwarding rules between the sender and receiver
before any data are sent. This method has the disadvantage of using computing power
and network resources to keep and update routing information. However, it enables fast
data transmission through pre-configured paths, ensuring stable communication, such as
in environments where there is minimal communication delay and low data loss.

3.4. Graph Form Representation

In a network, the graph data represent node information as vertices and the con-
nections between nodes as edges in the network information. This method is useful for
representing network topology and analyzing the relationships between nodes. Graphs are
represented in two ways, which are the adjacency matrix and the adjacency list [46].

An adjacency matrix represents the connection status between vertices of a graph in
a two-dimensional array format. This array is an n × n matrix, where n represents the
number of nodes (vertices) in the graph. Each element in the matrix represents whether
there is a direct connection (edge) between two vertices. As shown in Figure 4, A[i][j] = 1
means there is an edge from vertex i to vertex j, whereas A[i][j] = 0 indicates that no edge
exists between these vertices. On the other hand, an adjacency list stores a list of other
vertices connected to each vertex. For each vertex, the list records the direct connections
between the vertices. When comparing adjacency matrices and adjacency lists, adjacency
matrices enable a quick validation of edge existence due to their lower time complexity. In
particular, checking whether an edge exists between two nodes in an adjacency matrix can
be performed in constant time O(1), since the presence or absence of a connection is stored
directly in the matrix. It also offers advantages to understanding the graph structure.

Figure 4. Representation of node link states using adjacency matrix. Graph data for each topology
are represented as an adjacency matrix. Depending on the number of nodes (n), an n × n matrix is
formed, where each row and column data represent the connection status between nodes.



Sensors 2025, 25, 155 8 of 22

3.5. Shortest Path Algorithm

The shortest path algorithm assists with finding the shortest way between two points,
and it is one of the main topics in graph theory [47,48]. These algorithms are widely used
in various fields, such as network routing, path finding in maps, and communication
network design. There are different kinds of shortest path algorithms, and each one has its
own features and purposes. The most well-known ones are Dijkstra’s algorithm and the
Bellman–Ford algorithm.

While the A*’s algorithm has the advantage of reducing unnecessary node expansions,
it has been shown to have performance issues in complex environments [49]. Dijkstra’s
algorithm is a useful method for quickly finding the shortest path from one starting point
with non-negative edge weights. The algorithm starts by setting the distance from the
source vertex to zero. Next, it includes the steps of initialization, vertex selection, and
distance updating. The initialization process means storing unprocessed vertices in a
priority queue. Vertex selection refers to choosing the vertex with the shortest distance
among the unprocessed vertices. Distance updating means calculating and updating the
distances to all adjacent vertices connected to the selected vertex. This process repeats
until the shortest path is determined. The bidirectional Dijkstra’s algorithm explores in
two directions simultaneously and therefore performs better in terms of time and path-
finding efficiency than unidirectional exploration with fewer node expansions. Unlike
Dijkstra’s algorithm, the Bellman–Ford algorithm can be applied to graphs with negative
edge weights. This algorithm works by cycling through each edge and updating the path if
a shorter path is found. Compared to other shortest path algorithms, Dijkstra’s algorithm
offers advantages in efficiency and simplicity for solving single source problems in graphs
with non-negative weights.

3.6. Caching

Caching is a method used in computers and network systems to temporarily save data,
so it enables quick access to necessary data when needed [19–22]. This method reduces
data access time and improves overall system performance. As a result, it becomes a
widely used optimization technique in various fields. In the network field, caching enables
the reduction of network load by saving traffic and bandwidth, so it also leads to lower
operating costs.

To make caching effective, it must have a high hit rate, which means the predicted
data are very similar to the actual data. So, it is important that cached data keep a high hit
rate, and this requires intelligent caching strategies. These approaches include methods for
caching frequently used data as a priority or methods for caching predicted future data.
These strategies enhance the efficiency of caching and optimize the use of system resources.
This increases the reliability of caching and ensures the accuracy of data in the system.

3.7. Confusion Matrix

A confusion matrix is a matrix used to compare predicted values with actual values
to measure the performance of a prediction model [50,51]. This matrix is widely used to
evaluate how effectively a classification model works, especially in binary classification
tasks. In the matrix, T represents True, F represents False, P represents Positive, and N
represents Negative. So, TP means True Positive, TN means True Negative, FP means False
Positive, and FN means False Negative.

As shown in Figure 5, various performance metrics are calculated from this confusion
matrix. These include four key indicators: Precision (Positive Predictive Value), Recall,
NPV (Negative Predictive Value), and Specificity. These metrics are defined as the ratios of
the specific components in the matrix as follows:



Sensors 2025, 25, 155 9 of 22

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

NPV =
TN

TN + FN
,

Specificity =
TN

TN + FP
,

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative.
The meanings of each metric are as follows. Precision means the ratio of correct

predictions in all cases where the model predicted positive. Recall means the ratio of
actual positives that were correctly predicted by the model. NPV means the ratio of correct
predictions in all cases where the model predicted negative. Specificity means the ratio
of actual negatives that were correctly predicted as negative by the model. These metrics
evaluate different aspects of prediction performance. And based on the situation, a specific
metric may be prioritized over others.

Figure 5. Confusion matrix. The confusion matrix calculates Precision, NPV, Specificity, and Recall using
the TP, TN, FP, and FN metrics. This matrix is used to evaluate the performance of classification models.

4. System Model
The CRIMSON algorithm operates in the environment shown in Figure 6. This setting

consists of a GCS and a total of N mobile nodes. The GCS functions as an SDN controller
and provides each node with forwarding rules. The N nodes change network link states
according to their missions and create a dynamic network. In this environment, the nodes
receive the necessary forwarding rules for communication from the GCS and perform
network communications. These nodes include various types of devices, such as UAVs
and UGVs, depending on specific missions or roles. This setting has different types of
nodes that work together to complete missions. Additionally, due to mission situations and
mobility, there is a possibility that all nodes may enter a multi-hop state where they are not
directly connected to the GCS.

In this context, important information is exchanged in both directions between the
GCS and the nodes [1,9,10]. The data flow in this system is divided into three main parts.
The first type of data is sent from the GCS to the nodes, including control commands
and mission assignment information. This type of data has a direct impact on mission
performance and is time-sensitive. The second type of data is sent from the nodes to the



Sensors 2025, 25, 155 10 of 22

GCS, including position information and sensor data. These data are used by the GCS to
monitor the mission status in real time and make decisions. The third type of data is shared
among the nodes, including situational analysis and risk information. These data help
nodes understand the environment and respond collaboratively.

Figure 6. System model. This environment includes a GCS and multiple mobile unmanned nodes.
The GCS and nodes transmit various types of communication, such as data collection, topology
maintenance, and command control.

In this environment, a large amount of data is continuously transmitted between the
GCS and the nodes and among the nodes. Therefore, environments with communication
delays or a high risk of data loss are likely to impact mission performance. Delays or the loss
of important control commands and situational information affect the system’s response
and reliability. Consequently, if nodes fail to respond quickly to situational changes, it can
result in mission failure or physical damage to the nodes.

The CRIMSON algorithm maintains low network latency and low request traffic in
SDN-based dynamic networks. The CRIMSON algorithm caches forwarding rules based
on predicted link states that reflect node mobility. By storing changes in advance before
communication between nodes is interrupted, it keeps communication stable.

5. The CRIMSON Algorithm
In this section, we propose CRIMSON, a caching technique for forwarding rules for

predicted link states in SDN. The overall scenarios for CRIMSON are shown in Figure 7, and
the flow chart is shown in Figure 8. The simulation process generally consists of two parts.
First, topology changes occur due to the mobility of nodes. For example, a change occurs
from the current topology (e.g., Formation A) to a new unfixed topology (e.g., Formation B).
Second, the proposed CRIMSON algorithm operates. The CRIMSON algorithm includes
processes such as link change detection and node prediction location calculation, generating
adjacency matrices and processing data, and updating the forwarding rule based on the
predicted link status. The proposed method analyzes various scenarios that occur in
dynamic networks through the simulation setup. This approach aims to quickly respond to
changes in communication link status and topology. This reduces communication delays in
dynamic networks.



Sensors 2025, 25, 155 11 of 22

Figure 7. CRIMSON flow. CRIMSON is composed of three main steps. The first is topology change
detection and generation of the predicted node locations. The second is the creation of a predictive
adjacency matrix. The third is caching the forwarding rules for the predicted link states. Through this
process, CRIMSON prepares forwarding rules in advance, reflecting the predicted link states.

Figure 8. CRIMSON flow chart. The analysis of time-series data calculates node movement trends,
and if they exceed a threshold, the system predicts the node positions. The system calculates distances
between nodes using the predicted positions and checks them against the communication range to
generate an adjacency matrix. The matrix updates forwarding rules for both direct and alternative
paths.

5.1. Link Change Detection and Node Prediction Location Calculation

The description of Algorithm 1 is as follows. In this process, we calculate the predicted
positions of nodes within the cluster in the X-axis and Y-axis directions. Then, we detect
the mobility of the cluster. Through this, we predict changes in network link status and
cluster position.

To achieve this, we first store time-series data for each node’s position in the cluster
at each prediction cycle. These data enable us to monitor how the positions of nodes in
the cluster change over time. Next, we compare the changes in the X and Y directions for
each node in the cluster relative to their previous positions. This change from previous
positions is calculated by the difference in the X and Y coordinates between prediction
cycles. After that, we aggregate this information to identify a common movement trend for
the cluster. Through this process, we calculate the average distance the nodes in the cluster
move, allowing us to understand the movement trend of the cluster.

These movement trend data provide a reference point to identify the overall movement
direction and rate of change for the cluster. We check whether the movement trend data of



Sensors 2025, 25, 155 12 of 22

the cluster exceed a certain threshold. If the X-axis or Y-axis value of the movement trend
exceeds the threshold, the cluster is predicted to be moving.

If it is predicted that the cluster will move, we perform a process to predict the
positions of the nodes in the cluster after the prediction cycle. The calculations for each
node’s predicted position are based on the node’s previous and current data. This includes
calculating the angle by considering the movement direction and quadrant direction relative
to the previous location. Then, we combine each node’s angle data and speed data to
determine the expected position for each node. This process is repeated until the cluster’s
movement tendency decreases below the threshold. This approach allows us to ensure the
flexibility to quickly respond to changing environments by detecting cluster mobility in
advance.

Algorithm 1 Predict topology change and calculate node expected location
1: Save time series data for position values for each AP
2: Calculate X and Y tendency for clustered nodes

Calculate X Tendency:

3: x_tendency = 1
len(Number of Nodes) ∑

Numbero f Nodes
i=1

∣∣∣ Tendency_to_move_ap[i]
EX_Tendency_to_move_ap[i]

∣∣∣
Calculate Y Tendency:

4: y_tendency = 1
len(Number of Nodes) ∑

Numbero f Nodes
i=1

∣∣∣ Tendency_to_move_ap[i]
EX_Tendency_to_move_ap[i]

∣∣∣
5: if x_tendency > threshold or y_tendency > threshold then
6: for each AP i do
7: Determine quadrant direction
8: Calculate prediction position using angle calculation
9: if AP[i]x_position > threshold or AP[i]y_position > threshold then

10: Save_Node_Angle[i] = tan
(

Tendency_Y
Tendency_X

)
11: Predict_x_position[i] = x_position + predict_move_distance · cos

(
π ·

(
degrees(Save_Node_Angle[i])

180

))
12: Predict_y_position[i] = y_position + predict_move_distance · sin

(
π ·

(
degrees(Save_Node_Angle[i])

180

))
13: end if
14: end for
15: end if

5.2. Generating Adjacency Matrices and Processing Data

The description of Algorithm 2 is as follows. In this process, we determine the expected
communication link status and topology after the prediction cycle. Then, we continue with
saving graph data that reflect the predicted link status. To accomplish this, we first use the
predicted positions of the nodes in the cluster after the prediction cycle.

Each node compares its own communication range at the predicted position with
that of other nodes, excluding itself. Then, each node calculates which other nodes it will
connect to based on the communication link status. If the distance between nodes is less
than the specified communication range, it is predicted that a communication link will be
created between the nodes. But if the distance is greater than the specified communication
range, it is predicted that there will be no communication link between the nodes. This
predicted communication link status for each node is represented by 0 or 1, where 0
indicates no communication link, and 1 indicates a communication link. This process is
performed for each node from (i + 1) to n times, assuming the current node is the i-th out
of n nodes.

The predicted link status for each node is represented as an adjacency matrix, which is
created through this process. This matrix is represented as an n × n matrix if the number of
nodes is n. To make calculations easier, we save these data as a list in the form of an upper
triangular matrix, excluding the main diagonal elements.

Then, we compare this list of data to the previously calculated predicted link data using
the mean squared error (MSE) method. This comparison enables us to find any differences
between the two datasets. The similarity between the datasets is expressed as a similarity score,
which enables us to determine if there has been a change in the network state. If there is a
difference in the similarity score, we expect the network link status to change.



Sensors 2025, 25, 155 13 of 22

Algorithm 2 Implementing expected adjacency matrix and processing data
1: Initiate the process of generating adjacency matrices for predicted link status
2: for each AP i do
3: for each AP j where j > i do
4: Calculate distance between APi and APj

5: dij =
√
(Difference in X of APi,j)2 + (Difference in Y of APi,j)2

6: if dij ≤ Transmission Range then
7: A[i][j] = 1
8: A[j][i] = 1
9: else

10: A[i][j] = 0
11: A[j][i] = 0
12: end if
13: end for
14: end for
15: Extract upper triangular part of adjacency matrix excluding the main diagonal
16: Simple_Predict_arr = []
17: for each i from 1 to n do
18: for each j from i + 1 to n do
19: Simple_Predict_arr.append(A[i][j])
20: end for
21: end for
22: Calculate mean squared error (MSE) between current and previous link prediction data
23: mse = mean((Simple_Predict_arr − Ex_Simple_Predict_arr)2)
24: Ex_Simple_Predict_arr = Simple_Predict_arr
25: Calculate similarity score
26: similarity_score = 1

1+mse
27: if similarity_score ̸= 1 then
28: Detect link changes and update forwarding rules
29: end if

5.3. Update Forwarding Rule Based on Predicted Link Status

The description of Algorithm 3 is as follows. In this process, we create new forwarding
rules using the predicted adjacency matrix data. By caching forwarding rules that reflect
expected link state changes, we maintain low network latency in dynamic networks.

Algorithm 3 Forwarding Rule Update
1: Update forwarding rules based on predicted adjacency matrix
2: for each AP i do
3: for each AP j where j > i do
4: if A[i][j] == 1 then
5: Establish link connection between APi and APj

6: else
7: Calculate shortest path using Dijkstra’s algorithm for rerouting
8: Establishing forwarding rules for bypass routes
9: end if

10: end for
11: end for
12: Remove previous routes and establish new forwarding rules
13: procedure DIJKSTRA(graph, source)
14: Initialize distance of all vertices as infinity except the source vertex
15: Set distance of source vertex as 0
16: while unvisited vertices remain do
17: Select the vertex with the minimum distance
18: for each neighbor of the selected vertex do
19: Calculate tentative distance
20: if tentative distance is less than the known distance then
21: Update the shortest distance
22: Update the previous vertex
23: end if
24: end for
25: Mark the selected vertex as visited
26: end while
27: Return the shortest path and distance
28: end procedure

An SDN application performs this task by updating forwarding rules based on the
predicted link state. When the link state changes, an event is triggered in the SDN controller,
which activates an update process for the communication link state. The SDN controller
generates new forwarding rules based on the data from the updated predicted adjacency
matrix. The predicted adjacency matrix data are composed of binary values, 0 and 1,
which depend on the link state. A predicted link state of 1 means that an active link exists
between the nodes. In this case, we create direct forwarding rules for communication



Sensors 2025, 25, 155 14 of 22

between the source (src) node and the destination (dst) node. However, a predicted link
state of 0 indicates that there is no direct connection between the nodes. In such cases,
an alternative path forwarding rule needs to be created for communication between the
src and dst nodes. To achieve this, we use the Dijkstra algorithm to find the shortest path
between the src and dst. Then, we create forwarding rules for the lowest-cost alternative
path, allowing communication between the src and dst nodes. Afterward, we remove the
existing forwarding rules and apply new ones that reflect the predicted link state.

This method pre-caches forwarding rules based on predicted link states, reflecting the
relevant information. This allows for quick adaptation to link disconnections in dynamic
networks. It helps reduce network latency and improves the stability of data transmission.
This ensures reliable communication through low latency, even in environments where the
topology changes frequently.

6. Validation
In this section, various metrics are used to verify whether the CRIMSON algorithm

has reduced latency and request traffic in dynamic networks. In this process, we conduct
simulations to compare CRIMSON with other forwarding rule setup methods in dynamic
networks. For this, we use metrics such as the confusion matrix, round trip time (RTT) tests,
and the count of LLDP packets.

6.1. Common Setup

We explain the simulation setup and the details of each process for evaluating the per-
formance of the proposed algorithm, CRIMSON. This evaluation is conducted in a dynamic
network featuring mobile SDN nodes. It also includes elements such as communication discon-
nections and connections that occur in dynamic network as part of the simulation content. We
conduct the simulations in various scenarios where the topology changes due to the mobility
of nodes with UAV modeling. The details of each setting are shown in Table 1.

Table 1. Simulation settings.

Environment Setting Detail

SDN controller tool ONOS
Nodes tool Mininet-WiFi
Node NUM 5
Mobility model UAV modeling
Velocity of node 1∼3 m/s
Prediction cycle 0.01 s
Transmission range 5.5 m
Topology shape linear, v-shaped, star, trapezoid, pentagon
Simulation area 50 × 50 m2

Bandwidth 0.5 Mbps, 1 Mbps, 5 Mbps, 10 Mbps

6.1.1. Simulation Setup

In this section, we describe the set up of the simulation setting for comparing the
performance of CRIMSON. This simulation uses a GCS as the SDN controller and several
mobile unmanned nodes. ONOS was used as the SDN controller with version 2.3.0. The
mobile unmanned nodes were set up with Mininet-WiFi. We conducted the simulations
with five mobile nodes in a 50 × 50 m2 area using Mininet-WiFi. We set the prediction
interval to 0.01 s to check the real-time network status and topology changes. And we used
four bandwidths of 0.5 Mbps, 1 Mbps, 5 Mbps, and 10 Mbps.



Sensors 2025, 25, 155 15 of 22

6.1.2. UAV Modeling

We conducted simulations in a 50 × 50 m2 area with mobile nodes using the Mininet-
WiFi environment. To enable node mobility, we extracted UAV movement data from
rosbag data based on the robot operating system (ROS). Afterward, we converted these
data to work with Mininet-WiFi, applying real UAV mobility. We used five nodes with
various topologies, including linear, v-shaped, trapezoid, star, and pentagon configurations,
as shown in Figure 9. And we set up the environment in Mininet-WiFi to connect or
disconnect links based on each node’s coverage area. In this simulation, nodes moved at
speeds between 1∼3 m/s based on UAV modeling. Each node’s communication range
was set to 5.5 m. Through this setup, we simulated node mobility and communication that
could occur in real-world scenarios.

Figure 9. Types of topologies used in the simulation. We use five topologies consisting of five nodes
with UAV modeling applied. The topology shapes used, from left to right, are linear, v-shaped,
trapezoid, star, and pentagon.

6.2. Find the Shiftpoint

In this process, we explain how to find a optimal threshold for detecting changes in
cluster movement. The CRIMSON algorithm activates when the changes in the X and Y
axes of the cluster exceed the specific threshold. If the threshold is set too high, it does not
detect node movement correctly. On the other hand, if the threshold is too low, it may react
too sensitively to small movements caused by UAV hovering or wind. Therefore, finding
the optimal threshold is important. In this paper, we define this optimal threshold as the
Shiftpoint. The goal of this simulation is to use metrics from the confusion matrix, including
Precision, Recall, NPV, and Specificity. We aim to find the Shiftpoint by identifying the
point where the average of these four values is the highest.

6.2.1. Simulation Setup

The main setup for the simulation is shown in Section 6.1. We tested threshold values
from 0.0010 to 0.0350. In Figure 10, we compare the four metrics of the confusion matrix for
the predicted link data and the actual data.

Figure 10. Evaluation of confusion matrix metrics within the threshold range of 0.001 to 0.035.
We assess the values of Precision, Recall, NPV, and Specificity throughout this threshold range.
Afterward, we select the optimal threshold value that produces the highest average among these four
metrics.



Sensors 2025, 25, 155 16 of 22

6.2.2. Simulation Results

In this simulation, we aimed to find the Shiftpoint by selecting the best option that
gave the highest average from the four confusion matrix metrics. For this, we used hyperpa-
rameter tuning techniques such as Grid Search Optimization, Random Search Optimization,
and Bayesian Optimization. As shown in Figure 11, Grid Search and Random Search found
0.0015 to be the best threshold, and Bayesian Optimization identified 0.001 as the best value.
After some evaluation from human and using optimization techniques, we confirmed that
0.0015 is the Shiftpoint.

Figure 11. Optimization process for finding the Shiftpoint. This process applies three optimization
methods to the average value of the four confusion matrix metrics.

For the Shiftpoint set at 0.0015, the values from the confusion matrix are Precision
0.979, Recall 0.952, NPV 0.945, and Specificity 0.976, as shown in Table 2. These results
indicate that the predicted adjacency matrix accurately indicates the dynamic network.

Table 2. Confusion matrix indicator value at threshold 0.0015.

Metrics of the
Confusion

Matrix
Precision Recall NPV Specificity

Value 0.979 0.952 0.945 0.976

6.3. Network Latency Analysis of CRIMSON

In this process, we compare the dynamic network latency of the proposed algorithm,
CRIMSON. The simulation performs the RTT test in a dynamic network where nodes have
mobility. The comparison methods are reactive mode and proactive mode.

6.3.1. Simulation Setup

The main setup for the simulation is shown in Section 6.1. We compare CRIMSON’s
performance with the reactive mode and proactive mode. For each method, we perform an
RTT test in a dynamic network to compare network latency. The reactive mode uses the
org.onosproject.fwd app, which is provided by default in ONOS. The proactive mode uses
the cobbal.app to establish forwarding rules in advance. For CRIMSON, we created the
uds09.app to include the caching of predicted link states.

6.3.2. Simulation Results

The RTT test results, shown in Figure 12, compare the communication latency for
different forwarding rule setups. The simulation results indicated that the proposed
CRIMSON method reduced average latency compared to the reactive mode and proactive
mode, as shown in Table 3. On RTT avg, CRIMSON shows 86.41% and 55.58% lower
network latency compared to the reactive mode and proactive mode, respectively. And the
maximum RTT demonstrates low network latency by 86.22% and 6.96% compared to the
reactive mode and proactive mode, respectively. Additionally, the standard deviation in



Sensors 2025, 25, 155 17 of 22

RTT indicates low network latency by 87.00% and 33.90% compared to the reactive mode
and proactive mode, respectively. This indicates that CRIMSON achieves lower network
latency than other methods. This means that data reach the destination faster even in
dynamic networks.

Figure 12. Latency comparison of CRIMSON based on RTT tests. The comparison includes reactive
mode and proactive mode. The simulation measured latency using rtt avg, rtt max, and rtt mdev.

Table 3. Performance improvement of the CRIMSON compared to other forwarding rule setup
methods.

rtt avg rtt max rtt mdev

Improvement over
Reactive Mode 86.41% 86.22% 87.00%

Improvement over
Proactive Mode 55.58% 6.96% 33.90%

6.4. LLDP Packet Analysis of CRIMSON

In this process, we compare the LLDP transmission count of the proposed algorithm,
CRIMSON. LLDP is a protocol that enables the SDN controller and each node to com-
municate with each other. This allows for the detection of changes in network topology.
When the topology changes frequently, the number of LLDP communications for each node
increases. This results in an increase in overall network traffic. Therefore, it is important to
find a forwarding rule setup that maintains a low LLDP packet count.

6.4.1. Simulation Setup

The main setup for the simulation is shown in Section 6.1. We assess the LLDP count
for reactive mode, proactive mode, and CRIMSON. To accomplish this, we measure the
number of LLDP packets sent for each forwarding rule system at the SDN controller.

6.4.2. Simulation Results

In this process, we evaluate the number of LLDP packet transmissions in the reactive
mode, proactive mode, and CRIMSON. This indicates the average number of LLDP packets
transmitted by the SDN controller to each node in a dynamic network.

As shown in Figure 13, CRIMSON has relatively more LLDP transmissions compared
to the reactive mode. However, it has fewer LLDP packet transmissions than the proactive
mode. This is due to the difference in the method of establishing forwarding rules between
reactive and proactive modes. In the reactive mode, forwarding rules are set only when a
packet processing request is received. This results in a relatively lower number of LLDP



Sensors 2025, 25, 155 18 of 22

packets compared to the proactive mode. However, in Section 6.3, we confirmed that the
reactive mode has higher latency in dynamic networks.

Figure 13. Evaluation of LLDP usage in CRIMSON. The proposed CRIMSON method indicates a
lower LLDP count compared to the proactive mode. In an SDN system, LLDP packets are transmitted
when packet processing is not handled. This indicates that CRIMSON performs packet processing
effectively in dynamic networks.

CRIMSON has fewer LLDP transmissions compared to the proactive mode. This is
because CRIMSON caches forwarding rules that are expected to change before the topology
changes. In an SDN system, if a node does not process a packet, LLDP packets need to be
exchanged between the SDN controller and the nodes. Therefore, in the proactive mode,
LLDP packets are transmitted whenever network link states change, and nodes do not
process packets. This increases the number of LLDP transmissions in dynamic networks
where link states frequently change. However, CRIMSON pre-stores forwarding rules for
predicted link states. This enables reducing the amount of request traffic.

6.5. Comparison of CRIMSON Network Latency at Various Bandwidths

In this process, we compare the network latency of CRIMSON for various types of
bandwidth. The quality of the network changes based on the location and distance of
the nodes. However, to keep communication stable, it is important to have low latency
regardless of changes in bandwidth. In this simulation, we perform RTT tests for each
forwarding rule method at four different bandwidth conditions.

6.5.1. Simulation Setup

The main setup for the simulation is shown in Section 6.1. We perform RTT tests in
simulated environments with bandwidths of 0.5 Mbps, 1 Mbps, 5 Mbps, and 10 Mbps. We
assess reactive mode, proactive mode, and CRIMSON in this simulation.

6.5.2. Simulation Results

The simulation is executed with various bandwidth conditions of 0.5 Mbps, 1 Mbps,
5 Mbps, and 10 Mbps, as shown in Figure 14. As a result, CRIMSON demonstrates
improved performance compared to other methods, as shown in Table 4. CRIMSON has
a lower latency than the reactive mode by 90.09% at 0.5 Mbps, 89.98% at 1 Mbps, 87.75%
at 5 Mbps, and 88% at 10 Mbps. Compared to the proactive mode, CRIMSON indicates
lower latency by 55.21% at 0.5 Mbps, 62.37% at 1 Mbps, 55.54% at 5 Mbps, and 64.84%
at 10 Mbps. On average, CRIMSON is about 88.96% and 59.49% better than the reactive
mode and proactive mode, respectively. This result indicates that in dynamic networks,
CRIMSON still maintains low latency at lower bandwidths compared to other methods.



Sensors 2025, 25, 155 19 of 22

Figure 14. Network latency comparison of CRIMSON at various bandwidths. We conduct RTT tests
at 0.5 Mbps, 1 Mbps, 5 Mbps, and 10 Mbps for the proposed CRIMSON algorithm. Simulation results
confirm that CRIMSON achieves lower and more stable network latency.

Table 4. Performance improvement with bandwidth adjustment of CRIMSON compared to other
forwarding rule setup methods

Bandwidth [Mbps] Performance Improvement Compared
to Reactive Mode

Performance Improvement Compared
to Proactive Mode

0.5 90.09% 55.21%

1 89.98% 62.37%

5 87.75% 55.54%

10 88% 64.84%

7. Conclusions
This paper proposes the CRIMSON algorithm, which is a caching technique for

forwarding rules for predicted link states in SDN. The study aims to reduce latency and
request traffic in dynamic networks compared to existing methods. CRIMSON consists
of three steps. Through these steps, node mobility and link states are predicted, and then
forwarding rules are proactively cached based on these predictions.

The performance evaluation of CRIMSON compares network latency and request
traffic through simulations. The comparison is conducted between the reactive mode
and proactive mode. In the validation, CRIMSON consistently maintains low latency
throughout various bandwidths. The CRIMSON algorithm reduces end-to-end latency by
an average of 88.96% and 59.49% compared to conventional reactive and proactive modes,
respectively. Furthermore, when comparing the number of LLDP packet transmissions by
the SDN controller, the results demonstrate that CRIMSON reduces request traffic more
effectively than the proactive mode.

The results of this study indicate that CRIMSON achieves lower network latency and
reduced request traffic latency compared to other methods in dynamic networks. This
approach has the potential to greatly improve communication reliability and efficiency
in future dynamic networks. However, the UAV modeling used in this study primarily
assumes movement in a consistent direction when transitioning to different topologies.
Therefore, the current CRIMSON algorithm has limitations in environments where node
mobility is highly irregular or unpredictable. To address this, future research needs to
incorporate machine learning and mathematical modeling for UAV mobility to improve
prediction accuracy in irregular movement scenarios. Additionally, it is necessary to explore
how CRIMSON performs in various environments by using diverse mobility models and



Sensors 2025, 25, 155 20 of 22

increasing the number of nodes. The goal is to build a reliable dynamic network that
improves communication performance and stability in various environments. In future
work, we will explore how to adapt the CRIMSON algorithm to environments with varying
node densities by incorporating queuing theory to optimize network resource allocation.
We will also explore its application to high-bandwidth scenarios, focusing on efficient
caching strategies and bandwidth utilization techniques to maintain low latency and
reliable communication.

Author Contributions: Conceptualization, D.U. and H.-S.P.; Methodology, D.U. and H.R.; Software,
D.U., H.-S.P. and H.R.; Validation, D.U.; Writing—original draft, D.U.; Writing—review & editing,
D.U., H.-S.P., H.R. and K.-J.P.; Supervision, K.-J.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been supported by the Unmanned Swarm CPS Research Laboratory
Program of Defense Acquisition Program Administration and Agency for Defense Development
(UD220005VD).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the datasets.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Javaid, S.; Saeed, N.; Qadir, Z.; Fahim, H.; He, B.; Song, H.; Bilal, M. Communication and control in collaborative UAVs: Recent

advances and future trends. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5719–5739. [CrossRef]
2. Lee, C.K. Development of an Industrial Internet of Things (IIoT) Based Smart Robotic Warehouse Management System. 2018.

Available online: https://aisel.aisnet.org/confirm2018/43/ (accessed on 1 November 2024).
3. Indri, M.; Lachello, L.; Lazzero, I.; Sibona, F.; Trapani, S. Smart sensors applications for a new paradigm of a production line.

Sensors 2019, 19, 650. [CrossRef]
4. Yang, X.; Gao, Z.; Niu, Q. Unmanned aerial vehicle–assisted node localization for wireless sensor networks. Int. J. Distrib. Sens.

Netw. 2017, 13, 1550147717749818. [CrossRef]
5. Kim, S.; Kim, Y. Development of an MUM-T integrated simulation platform. IEEE Access 2023, 11, 21519–21533. [CrossRef]
6. Lindner, S.; Schwerd, S.; Schulte, A. Defining generic tasks to guide UAVs in a MUM-T aerial combat environment. In Proceedings

of the Intelligent Human Systems Integration 2019: In Proceedings of the 2nd International Conference on Intelligent Human
Systems Integration (IHSI 2019): Integrating People and Intelligent Systems, San Diego, CA, USA, 7–10 February 2019; Springer:
Berlin/Heidelberg, Germany , 2019; pp. 777–782.

7. Dudek, M.; Schulte, A. Effects of tasking modalities in manned-unmanned teaming missions. In Proceedings of the AIAA
SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 2478.

8. Perez, D.; Maza, I.; Caballero, F.; Scarlatti, D.; Casado, E.; Ollero, A. A ground control station for a multi-UAV surveillance system:
design and validation in field experiments. J. Intell. Robot. Syst. 2013, 69, 119–130. [CrossRef]

9. Mansfield, K.; Eveleigh, T.; Holzer, T.H.; Sarkani, S. Unmanned aerial vehicle smart device ground control station cyber security
threat model. In Proceedings of the 2013 IEEE International Conference on Technologies for Homeland Security (HST), Waltham,
MA, USA, 2–14 November 2013; IEEE: Piscataway, NJ, USA; pp. 722–728.

10. Hosseini, N.; Jamal, H.; Haque, J.; Magesacher, T.; Matolak, D.W. UAV command and control, navigation and surveillance: A
review of potential 5G and satellite systems. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9
March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–10.

11. Kim, H.; Feamster, N. Improving network management with software defined networking. IEEE Commun. Mag. 2013, 51, 114–119.
[CrossRef]

12. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A survey on software-defined networking. IEEE Commun. Surv. Tutorials 2014,
17, 27–51. [CrossRef]

http://doi.org/10.1109/TITS.2023.3248841
https://aisel.aisnet.org/confirm2018/43/
http://dx.doi.org/10.3390/s19030650
http://dx.doi.org/10.1177/1550147717749818
http://dx.doi.org/10.1109/ACCESS.2023.3248096
http://dx.doi.org/10.1007/s10846-012-9759-5
http://dx.doi.org/10.1109/MCOM.2013.6461195
http://dx.doi.org/10.1109/COMST.2014.2330903


Sensors 2025, 25, 155 21 of 22

13. Qin, Z.; Denker, G.; Giannelli, C.; Bellavista, P.; Venkatasubramanian, N. A software defined networking architecture for the
internet-of-things. In Proceedings of the 2014 IEEE network operations and management symposium (NOMS), Krakow, Poland,
5–9 May 2014; IEEE: Pisacatway, NJ, USA, 2014; pp. 1–9.

14. Macedo, D.F.; Guedes, D.; Vieira, L.F.; Vieira, M.A.; Nogueira, M. Programmable networks—From software-defined radio to
software-defined networking. IEEE Commun. Surv. Tutorials 2015, 17, 1102–1125. [CrossRef]

15. Kwon, Y.M.; Park, K.J. SDN-based controller switching for resilience of drones. In Proceedings of the The 23rd IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2017), Hsinchu, Taiwan, 16–18 August
2017.

16. litalo, J.; Jokikyyny, T.; Kauppinen, T.; Tuominen, A.J.; Laine, J. Dynamic network interface selection in multihomed mobile hosts.
In Proceedings of the 36th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 6–9 January 2003;
IEEE: Piscataway, NJ, USA, 2003; p. 10.

17. Rost, P.; Banchs, A.; Berberana, I.; Breitbach, M.; Doll, M.; Droste, H.; Mannweiler, C.; Puente, M.A.; Samdanis, K.; Sayadi, B.
Mobile network architecture evolution toward 5G. IEEE Commun. Mag. 2016, 54, 84–91. [CrossRef]

18. Park, H.S.; Lee, S.; Park, K.J. Wireless sdn self-recovery for unmanned swarm cyber-physical systems. In Proceedings of the 2021
21st International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 12–15 October 2021; IEEE:
Piscataway, NJ, USA, 2021; pp. 87–90.

19. Sun, Z.; Chen, G. Enhancing Heterogeneous Network Performance: Advanced Content Popularity Prediction and Efficient
Caching. Electronics 2024, 13, 794. [CrossRef]

20. Yao, L.; Chen, A.; Deng, J.; Wang, J.; Wu, G. A cooperative caching scheme based on mobility prediction in vehicular content
centric networks. IEEE Trans. Veh. Technol. 2017, 67, 5435–5444. [CrossRef]

21. Paschos, G.S.; Iosifidis, G.; Tao, M.; Towsley, D.; Caire, G. The role of caching in future communication systems and networks.
IEEE J. Sel. Areas Commun.s 2018, 36, 1111–1125. [CrossRef]

22. Yu, G.; Wu, J. Content caching based on mobility prediction and joint user Prefetch in Mobile edge networks. Peer -Peer Netw.
Appl. 2020, 13, 1839–1852. [CrossRef]

23. Evelin Zoraida, B.S.; Indumathi, G. A Comparative Study on Software-Defined Network with Traditional Networks. TEM J. 2024,
13, 167. [CrossRef]

24. Godfrey, D.; Suh, B.; Lim, B.H.; Lee, K.C.; Kim, K.I. An energy-efficient routing protocol with reinforcement learning in
software-defined wireless sensor networks. Sensors 2023, 23, 8435. [CrossRef] [PubMed]

25. De Gante, A.; Aslan, M.; Matrawy, A. Smart wireless sensor network management based on software-defined networking. In
Proceedings of the 2014 27th Biennial Symposium on Communications (QBSC), Kingston, ON, Canada, 1–3 June 2014; IEEE:
Piscataway, NJ, USA, 2014; pp. 71–75.

26. Al-Tam, F.; Correia, N. On load balancing via switch migration in software-defined networking. IEEE Access 2019, 7, 95998–96010.
[CrossRef]

27. Gkioulos, V.; Gunleifsen, H.; Weldehawaryat, G.K. A systematic literature review on military software defined networks. Future
Internet 2018, 10, 88. [CrossRef]

28. Morgenthaler, S.; Braun, T.; Zhao, Z.; Staub, T.; Anwander, M. UAVNet: A mobile wireless mesh network using unmanned aerial
vehicles. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December 2012; IEEE: Piscataway, NJ,
USA, 2012; pp. 1603–1608.

29. Romeo, L.; Petitti, A.; Colella, R.; Valecce, G.; Boccadoro, P.; Milella, A.; Grieco, L.A. Automated deployment of IoT networks in
outdoor scenarios using an unmanned ground vehicle. In Proceedings of the 2020 IEEE International Conference on Industrial
Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 369–374.

30. Zhou, D.; Sheng, M.; Li, J.; Han, Z. Aerospace integrated networks innovation for empowering 6G: A survey and future challenges.
IEEE Commun. Surv. Tutorials 2023, 25, 975–1019. [CrossRef]

31. Lu, H.; Zhang, Y.; Li, Y.; Jiang, C.; Abbas, H. User-oriented virtual mobile network resource management for vehicle communica-
tions. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3521–3532. [CrossRef]

32. Nikravesh, A.Y.; Ajila, S.A.; Lung, C.H.; Ding, W. Mobile network traffic prediction using MLP, MLPWD, and SVM. In Proceedings
of the 2016 IEEE International Congress on Big Data (BigData Congress), San Francisco, CA, USA, 27 June–2 July 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 402–409.

33. Wang, S.; Li, J.; Pei, H. Efficient non-orthogonal multiple access for predicting arrival direction in multiple UAV-6G networks.
Wirel. Netw. 2024, 30, 6929–6938. [CrossRef]

34. Baghnoi, F.M.; Jamali, J.; Taghizadeh, M.; Fatehi, M.H. Multi-agent based optimal UAV deployment for throughput maximization
in 5 G communications. Wirel. Netw. 2024, 30, 2285–2296. [CrossRef]

35. Li, S.; Xu, J.; Van Der Schaar, M.; Li, W. Popularity-driven content caching. In Proceedings of the IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 1–9.

http://dx.doi.org/10.1109/COMST.2015.2402617
http://dx.doi.org/10.1109/MCOM.2016.7470940
http://dx.doi.org/10.3390/electronics13040794
http://dx.doi.org/10.1109/TVT.2017.2784562
http://dx.doi.org/10.1109/JSAC.2018.2844939
http://dx.doi.org/10.1007/s12083-020-00954-x
http://dx.doi.org/10.18421/TEM131-17
http://dx.doi.org/10.3390/s23208435
http://www.ncbi.nlm.nih.gov/pubmed/37896528
http://dx.doi.org/10.1109/ACCESS.2019.2929651
http://dx.doi.org/10.3390/fi10090088
http://dx.doi.org/10.1109/COMST.2023.3245614
http://dx.doi.org/10.1109/TITS.2020.2991766
http://dx.doi.org/10.1007/s11276-023-03559-3
http://dx.doi.org/10.1007/s11276-023-03641-w


Sensors 2025, 25, 155 22 of 22

36. Tang, B.; Kang, L. EICache: A learning-based intelligent caching strategy in mobile edge computing. Peer -Peer Netw. Appl. 2022,
15, 934–949. [CrossRef]

37. Li, Q.; Wang, X.; Wang, D. Mobility-aware caching strategy in an SDN-based cooperative caching network. China Commun. 2023,
20, 196–214. [CrossRef]

38. Jazaeri, S.S.; Asghari, P.; Jabbehdari, S.; Javadi, H.H.S. Toward caching techniques in edge computing over SDN-IoT architecture:
A review of challenges, solutions, and open issues. Multimed. Tools Appl. 2024, 83, 1311–1377. [CrossRef]

39. Berde, P.; Gerola, M.; Hart, J.; Higuchi, Y.; Kobayashi, M.; Koide, T.; Lantz, B.; O’Connor, B.; Radoslavov, P.; Snow, W.; et al. ONOS:
towards an open, distributed SDN OS. In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking,
Chicago, IL, USA, 22 August 2014; pp. 1–6.

40. Mamushiane, L.; Shozi, T. A QoS-based evaluation of SDN controllers: ONOS and OpenDayLight. In Proceedings of the 2021
IST-Africa Conference (IST-Africa), Virtual, 10–14 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–10.

41. Salman, O.; Elhajj, I.H.; Kayssi, A.; Chehab, A. SDN controllers: A comparative study. In Proceedings of the 2016 18th
mediterranean electrotechnical conference (MELECON), Lemesos, Cyprus, 18–20 April 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 1–6.

42. Liao, L.; Leung, V.C. LLDP based link latency monitoring in software defined networks. In Proceedings of the 2016 12th
International Conference on Network and Service Management (CNSM), Montreal, QC, Canada, 31 October–4 November 2016;
IEEE: Piscataway, NJ, USA, 2016; pp. 330–335.

43. Wazirali, R.; Ahmad, R.; Alhiyari, S. SDN-openflow topology discovery: An overview of performance issues. Appl. Sci. 2021,
11, 6999. [CrossRef]

44. Fernandez, M.P. Comparing openflow controller paradigms scalability: Reactive and proactive. In Proceedings of the 2013 IEEE
27th International Conference on Advanced Information Networking and Applications (AINA), Barcelona, Spain, 25–28 March
2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1009–1016.

45. Khoobbakht, M.; Noei, M.; Parvizimosaed, M. Hybrid flow-rule placement method of proactive and reactive in SDNs. In
Proceedings of the 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), Mashhad, Iran, 28–29
October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 121–127.

46. Chiaselotti, G.; Gentile, T.; Infusino, F.G.; Oliverio, P.A. The adjacency matrix of a graph as a data table: A geometric perspective.
Ann. Mat. Pura Appl. 2017, 196, 1073–1112. [CrossRef]

47. Magzhan, K.; Jani, H.M. A review and evaluations of shortest path algorithms. Int. J. Sci. Technol. Res 2013, 2, 99–104.
48. Shu-Xi, W. The improved dijkstra’s shortest path algorithm and its application. Procedia Eng. 2012, 29, 1186–1190. [CrossRef]
49. Goje, B.; Nayak, P.; Hanuman, A.S. An Optimal Route Finding on Road Networks Using A*, Dijkstra & Bidirectional Algorithms:

A Brief Comparison. In Proceedings of the 2022 13th International Conference on Computing Communication and Networking
Technologies (ICCCNT), Virtual, 3–5 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7.

50. Zeng, G. On the confusion matrix in credit scoring and its analytical properties. Commun. -Stat.-Theory Methods 2020, 49, 2080–2093.
[CrossRef]

51. Arias-Duart, A.; Mariotti, E.; Garcia-Gasulla, D.; Alonso-Moral, J.M. A confusion matrix for evaluating feature attribution
methods. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 3709–3714.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12083-021-01266-4
http://dx.doi.org/10.23919/JCC.ea.2021-0262.202302
http://dx.doi.org/10.1007/s11042-023-15657-7
http://dx.doi.org/10.3390/app11156999
http://dx.doi.org/10.1007/s10231-016-0608-1
http://dx.doi.org/10.1016/j.proeng.2012.01.110
http://dx.doi.org/10.1080/03610926.2019.1568485

	Introduction
	Related Work
	Background
	Software-Defined Networking (SDN)
	Dynamic Network
	Forwarding Rule Installation Method
	Reactive Mode
	Proactive Mode

	Graph Form Representation
	Shortest Path Algorithm
	Caching
	Confusion Matrix

	System Model
	The CRIMSON Algorithm
	Link Change Detection and Node Prediction Location Calculation
	Generating Adjacency Matrices and Processing Data
	Update Forwarding Rule Based on Predicted Link Status

	Validation
	Common Setup
	Simulation Setup
	UAV Modeling

	Find the Shiftpoint
	Simulation Setup
	Simulation Results

	Network Latency Analysis of CRIMSON
	Simulation Setup
	Simulation Results

	LLDP Packet Analysis of CRIMSON
	Simulation Setup
	Simulation Results

	Comparison of CRIMSON Network Latency at Various Bandwidths
	Simulation Setup
	Simulation Results


	Conclusions
	References

