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Abstract: Although image captioning has gained remarkable interest, privacy concerns
are raised because it relies heavily on images, and there is a risk of exposing sensitive
information in the image data. In this study, a privacy-preserving image captioning
framework that leverages partial encryption using Double Random Phase Encoding (DRPE)
and deep learning is proposed to address privacy concerns. Unlike previous methods that
rely on full encryption or masking, our approach involves encrypting sensitive regions of
the image while preserving the image’s overall structure and context. Partial encryption
ensures that the sensitive regions’ information is preserved instead of lost by masking
it with a black or gray box. It also allows the model to process both encrypted and
unencrypted regions, which could be problematic for models with fully encrypted images.
Our framework follows an encoder–decoder architecture where a dual-stream encoder
based on ResNet50 extracts features from the partially encrypted images, and a transformer
architecture is employed in the decoder to generate captions from these features. We utilize
the Flickr8k dataset and encrypt the sensitive regions using DRPE. The partially encrypted
images are then fed to the dual-stream encoder, which processes the real and imaginary
parts of the encrypted regions separately for effective feature extraction. Our model is
evaluated using standard metrics and compared with models trained on the original
images. Our results demonstrate that our method achieves comparable performance to
models trained on original and masked images and outperforms models trained on fully
encrypted data, thus verifying the feasibility of partial encryption in privacy-preserving
image captioning.

Keywords: double random phase encoding; deep learning; partial encryption; image
captioning; privacy preserving

MSC: 68P27; 68P25; 68U10; 68T07

1. Introduction
Image captioning involves accurately understanding an image’s content and generat-

ing grammatically correct and contextually relevant sentences [1]. Thus, this involves two
primary domains of Artificial Intelligence for completing the tasks: computer vision and
natural language processing [2–4]. Image captioning must recognize image objects, their
attributes, and relationships and translate them into semantically correct captions [1,5,6].
This task has gained considerable interest due to the advances in neural networks that
generate human-like descriptions based on the input image [1] and its wide range of
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applications, including content understanding, facilitating image search, and enhancing
accessibility for visually impaired individuals [1,3,5,7,8].

The most popular approach proposed for image captioning is the encoder–decoder
structure optimized end-to-end [9]. The encoder is utilized for visual cues; thus, a Convolu-
tional Neural Network (CNN) is typically employed [10]. CNNs excel at computer vision
tasks such as object detection and image classification due to effectively extracting salient
features from images through convolutions, pooling, and activations into a feature vector.
Architectures such as ResNet [11], which introduces residual connections, DenseNet [12],
which uses a dense connection pattern, and Faster R-CNN [13] with its region proposal
network, are primarily used in the encoder due to their ability to extract high-level visual
features effectively [14]. Other works incorporate spatial attention mechanisms on CNN
layers to focus on relevant features [15]. Another alternative is the vision transformer [16],
which utilizes a self-attention mechanism to extract features and outperforms traditional
CNNs in specific contexts. The decoder produces the output caption; thus, Recurrent Neu-
ral Networks (RNNs), including Long Short-Term Memory (LSTM), serve as a language
model to process the extracted features in parallel with the text label [10,15]. RNNs can
process entire data sequences and generate sentences word by word. Recently, transform-
ers [17] have performed better than RNNs across natural language processing tasks such as
machine translation and language generation [2,18,19].

Image captioning relies heavily on large amounts of image data, which raises concerns
about data privacy as there is a risk of exposing sensitive information in the images if they
are improperly handled or attacked [20]. Visual privacy protection has accumulated signif-
icant attention due to its demand in different fields, such as social networks, healthcare,
and security. Researchers have explored methods using optics and algorithms to address
these concerns [21–23]. Data encryption for cloud computing enables computations on
encrypted data without decryption, enhancing security in social multimedia and medical
applications [7,24,25]. Thus, privacy-preserving deep learning schemes that use techniques
such as cryptographic algorithms, differential privacy, secure multi-party computation,
and federated learning have been proposed to safeguard sensitive information [26].

In this paper, we propose a privacy-preserving image using partial encryption with
Double Random Phase Encoding (DRPE) [27]. Full encryption, as used in [7], involves
encrypting the entire image; however, partial encryption involves selecting specific regions
or features containing sensitive information and encrypting them while preserving the
image’s overall structure and context. By using partial encryption, we can maintain privacy
in the image while retaining other recognizable features, thereby allowing the generation of
accurate captions. Thus, the information in the sensitive regions is not lost by using a gray
box [19] but preserved using image encryption, and relevant features must be extracted
from partially encrypted images’ encrypted and unencrypted regions. We propose a
dual-stream encoder based on ResNet50, which processes the real and imaginary parts
of the encrypted region separately, resulting in the effective extraction of features. In the
decoder, we employ a transformer to generate captions based on the extracted features
from the decoder.

Additionally, we performed ablation studies to validate the structure of our proposed
method in generating accurate captions for partially encrypted images. We evaluate our
proposed method on the Flickr8k [28] dataset using standard metrics such as BLEU [29],
ROUGE [30], METEOR [31], and CIDEr [32]. From the results, our proposed method
achieves comparable metrics scores to models trained on original and masked images and
outperforms models trained on fully encrypted images. The results verify the effectiveness
of our approach in providing privacy in image captioning tasks.

The main contributions of this paper are summarized as follows:
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• We performed image captioning using partial encryption with Double Random Phase
Encoding (DRPE). The partially encrypted images ensure data privacy while retaining
other recognizable information;

• We employed a dual-stream encoder based on ResNet50, which enables effective
feature extraction from the encrypted regions and unencrypted regions as it processes
the real and imaginary parts of the encrypted region separately;

• We used a transformer-based decoder with a 2-2-layer configuration and word embed-
dings trained from scratch to generate captions;

• Ablation studies were conducted to validate our proposed architecture’s effective-
ness, highlighting the advantages of the dual-stream encoder and comparing the
performance across original, partially encrypted, fully encrypted, and partially
blocked/masked images;

• We demonstrated that partial encryption provides a balance between privacy and
usability, outperforming the performance of full encryption and masking with
black/gray boxes.

The rest of the paper is organized as follows: Section 2 describes the related work;
Section 3 describes the technique for partial encryption and the proposed method for
privacy-preserving image captioning. Section 4 provides the ablation studies conducted,
the experimental results, a comparison of performance across original, partially encrypted,
fully encrypted, and partially blocked/masked images, and a comparison with state-of-the-
art models. Finally, Section 5 concludes the paper by summarizing the proposed method
and the results.

2. Related Work
Privacy preservation in machine learning and deep learning has emerged as a neces-

sary research direction with various techniques proposed to protect privacy during training
data collection, training, inference, and fine-tuning phases [26,33]. Differential privacy
introduces noise to the output of the model to conceal sensitive data [33,34]. In [35], an
end-to-end framework using Graph Transformer and Convolutional Networks is proposed
to improve visual data classification and privacy preservation. They employ differential
privacy-based graph construction and noise-induced graph transformation to protect the
privacy of knowledge graphs and evaluate their framework on the MS-COCO dataset
in a semi-supervised setting. They applied a General Data Protection Regulation com-
pliant method to obfuscate sensitive information such as faces, passport numbers, and
license plate numbers. In [36], a differentially private image captioner is trained, and
unprecedented high-quality image features are obtained, which can be used for vision
and vision–language downstream tasks. The trained model is used to caption images
from the MS-COCO dataset. On the other hand, homomorphic encryption enables com-
putations to be conducted on encrypted data [37]. A residual network implementation
based on fully homomorphic encryption is proposed in [38] for the classification of en-
crypted images. They achieved an almost equivalent accuracy with the encrypted model
to that of the plain model, demonstrating the feasibility of privacy preservation without
performance degradation.

Federated learning allows collaborative model training while protecting the privacy
of data in distributed environments [39]. A federated learning framework is proposed [40]
to improve the performance on a variety of vision-and-language grounding problems
without sharing the downstream task data. Their centralized model converts the extracted
features into fine-grained image representations. They validate their approach in three
federated learning settings: horizontal federated learning, vertical federated learning, and
federated transfer learning. Other approaches that allow performing image captioning
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from privacy-protected images are the framework by [5], which addresses the problem
from a hardware perspective, and [19], which focuses on generating captions for dietary
assessment instead of original images, reducing the risk of privacy leakage from images.
In [5], the approach comprises end-to-end learning of an optical system (reflective lens)
for scene acquisition coupled with deep neural networks for generating captions. The
reflective lens distorts the scene in a way that still allows extracting relevant features
for image captioning, thus protecting sensitive information. In [19], when training their
image captioning method, they use images of faces masked with gray boxes [19]. In this
work, we focus on using cryptographic algorithms to preserve the privacy of data. We
use the DRPE algorithm, which has been used by researchers to enhance image-based
systems’ privacy-preserving capabilities without compromising their utility [7,25,41]. In
our previous work [7], we utilized full encryption; however, the performance of image
captioning decreased as compared to non-privacy-preserving approaches. However, in the
paper, we adopt partial encryption, which maintains privacy and allows for the generation
of accurate captions.

3. Materials and Methods
3.1. Image Encryption

The optical cryptographic algorithm used in the study is the Double Random Phase
Encoding (DRPE) [27] algorithm. DRPE uses parallel processing to encrypt extensive data,
such as image data, at a high speed [41]. In DRPE, the original image is converted to
stationary white noise using random phase masks and a 4f optical system to improve the
difficulty of illegal attacks. The encrypted image does not reveal visual information without
the appropriate decryption keys (two random phase masks). The input image and the
random phase masks must be the same size to guarantee pixel-by-pixel multiplication [42].
The encryption process is mathematically expressed as follows:

g(x, y) = IFT(FT{ f (x, y).exp[j2πt(x, y)]}.exp[j2πs(µ, ν)]) (1)

where g(x, y) is the encrypted image, FT and IFT are the Fourier Transform and Inverse
Fourier Transform, respectively, f (x, y) is the input image, and j is the mathematical no-
tation for the imaginary symbol. The random phase masks are p1 = exp[j2πt(x, y)] and
p2 = exp[j2πs(µ, ν)], respectively. t(x, y) and s(µ, ν) are random variables uniformly dis-
tributed on the interval [0, 1] and are independent and identically distributed. Sensitive
visual regions of interest, such as faces and vehicle registration plate numbers, are manually
selected from the images and encrypted using Equation (1) while the rest of the image
remains unchanged. The same regions are selected in the random phase masks for multi-
plication. Since the resulting encryption pixel values are complex, the encryption regions
are split into real and imaginary parts.

3.2. Proposed Image Captioning Method
3.2.1. Overall Process

The proposed framework for performing image captioning on partially encrypted im-
ages using DRPE, which follows the encoder–decoder architecture, is depicted in Figure 1.
Since the encryption process of DRPE generates complex numbers in the encrypted regions,
these regions are split into real and imaginary parts. A dual-stream encoder processes the
images with real and imaginary parts separately and extracts features from the encrypted
and unencrypted regions of the images, and a transformer-based decoder generates the
corresponding predicted captions. The dual-stream encoder consists of two parallel en-
coders based on ResNet50, each initialized with pre-trained weights from ImageNet. The
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outputs from both streams are concatenated to form a 14 × 14 × 4096 and then flattened to
a 196 × 4096 as input to the transformer encoder. The transformer-based decoder generates
captions based on the 196 × 4096 features (and ground truth captions during training) one
word at a time.
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Figure 1. The proposed framework’s architecture for image captioning of partially encrypted images
using DRPE. (a) Overview of the proposed framework, which features a dual-stream encoder followed
by a transformer-based decoder. (b) Detailed view of the multi-head attention block within the
transformer. (c) Expanded representation of the scaled dot-product attention block found in (b).

3.2.2. Dual-Stream Encoder

The structure used for the dual-stream encoder, which consists of two parallel encoders,
is the ResNet50 [11] architecture, commonly used in image classification and captioning
tasks. The ResNet50 architecture consists of 50 layers with residual blocks of 1 × 1, 3 × 3,
and 1 × 1 convolutional layers. The computational efficiency of ResNet50, depth, skip
connections, performance, and transfer learning capabilities make it a compelling choice
for various image-related tasks. The final pooling layer, fully connected layer, and Softmax
layer of the ResNet50 architecture are removed in this task. We extract the features from the
last convolutional layer, which has an output size of B × 8 × 8 × 2048. An adaptive average
pooling layer of size 14 is applied to the outputs of the last convolutional layer to obtain a
final output size of B × 14 × 14 × 2048, where B is the batch size. In the first encoder, the
input to the encoder is the image with the real part of the encrypted region. In contrast, the
second encoder takes the image (same) with the imaginary part of the encrypted region.
The pre-trained weights of the ResNet50 (from ImageNet) layers are used to initialize
the model layers. These are then fine-tuned during training (weights are updated with
backpropagation), allowing the model to adapt to the partially encrypted images.

3.2.3. Transformer

The transformer [17] has an encoder–decoder structure, as depicted in Figure 1a. Given
the features from the dual-stream encoder, the transformer encoder maps the features
unto a continuous representation, z, and the transformer decoder generates an output
sequence given z one word/element at a time. The transformer encoder takes inputs
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of size 196 × 4096, where 196 represents the flattened 14 × 14 feature map, and 4096 is
the dimension resulting from concatenating the results from the parallel encoders. The
transformer decoder takes inputs of size 52 × 300, where 52 is the maximum sequence
length (padded), and 300 is the embedding dimension. The transformer architecture relies
heavily on the scaled dot-product attention function (Figure 1c). This function maps queries
(Q), keys (K), and values (V) to an output and expressed as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (2)

where dk is the dimension of the keys, and 1√
dk

is a scaling factor to prevent the values of

the dot products from being large in magnitude, causing minimal gradients. The multi-
head attention layer (Figure 1b) in the transformer network ensures that the model learns
to attend to different representations of the same input. Thus, multiple independent scaled
dot-product attentions are computed over linear projected QKV vectors. The outputs are
concatenated and linearly projected, resulting in final values. The formula for multi-head
attention is given as follows:

MultiHead (Q, K, V) = Concat(headi, . . . , headn)WO

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (3)

where WO, WQ
i , WK

i , WV
i are learnable weight metrics. The encoder consists of N identical

layers in this study, N = 2. Each layer has two sub-layers: a multi-head attention layer and a
feed-forward network. A residual connection is employed around each sublayer, followed
by layer normalization. The decoder is also composed of N = 2 identical layers. Each layer
has three sub-layers: first is the masked multi-head attention, which is modified to prevent
the current token from attending to subsequent tokens. Therefore, predictions of the current
token depend on past information instead of future information. The second sublayer
performs multi-head attention over the output of the transformer encoder, and the third is
a feed-forward network. The dimension for the feed-forward network for both transformer
encoder and decoder is 4096. Likewise, residual connections are employed, followed by
layer normalization. There are dropout layers after each sublayer to prevent overfitting.

4. Experiments
4.1. Dataset

In this study, we use one of the popular datasets, the Flickr8k dataset [28], which
comprises 8092 images, each associated with five descriptions. The Karpathy splits config-
uration [43] is adopted, allocating 6000 images for training, 1000 for validation, and 1000
for testing. Images are resized to 256 × 256 for consistency using bilinear interpolation,
and partial encryption is performed as discussed in Section 3.1. Each description text is
standardized by converting to lowercase and removing punctuation. We remove words that
occur less than five times, resulting in a 2633-word vocabulary. Additionally, each caption
is prepended with <start> token and appended with <end> token, while all captions are
padded to a fixed length of 52 to address variable caption lengths. Examples of partially
encrypted images, original images, and corresponding captions are presented in Figure 2.
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Figure 2. Illustration of partially encrypted images using DRPE. (a) Original image from the dataset,
(b) partially encrypted images with the real part of the encrypted region of interest using DRPE,
(c) partially encrypted images with the imaginary part of the encrypted region of interest using
DRPE, and (d) the corresponding caption of the original image. The red boxes are the manually
selected sensitive regions of interest in the original images and the encrypted regions in the partially
encrypted images. The green boxes are the 9 × 9 center matrix of the selected regions.

4.2. Experimental Settings

The models were trained by a server with an Intel Xeon Silver 4214 CPU and NVIDIA
RTX A5000 GPU. The models are constructed using Python 3.11.7 with the PyTorch frame-
work, and the encryption process is performed using MATLAB R2024a. The optimizer
used is the Adam Optimizer with a 32-batch size, a 0.0001 learning rate for the dual-stream
encoder and transformer-based decoder, and categorical cross-entropy as a loss function.
The encoders extracted a 2048 feature vector from their respective inputs. The maximum
number of epochs is set to 50 for training, and a beam size of 3 is used during the inference
stage. The number of encoder and decoder layers in the transformer is set to 2. The number
of heads is 8, the dropout rate is 10%, and the embedding dimension is 300. We performed
model evaluation using the standard metrics ROGUE [30], METEOR [31], BLEU [29], and
CIDEr [32].

4.3. Ablation Study
4.3.1. Effect of Dual-Stream Encoder

We perform an ablation study to validate the effectiveness of the dual-stream encoder
in our proposed framework. We trained four models with different encoders and evaluated
them using the metrics. The encoders are Encoder 1 only (uses images with the real part of
the encrypted region), Encoder 2 only (uses images with the imaginary part of the encrypted
region), a single encoder that uses the concatenation of both images and our proposed
dual-stream encoder. From Table 1, the proposed dual-stream encoder outperforms the
other methods, achieving the highest scores for each metric. Interestingly, the model that
used only Encoder 2 performed better than Encoder 1. We can assume that it may be more
effective at capturing relevant features. Another is that the model with the concatenation
of images as input had the lowest performance, which suggests that treating the image
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parts separately and adopting the dual-stream encoder is more effective or beneficial.
Furthermore, using a dual-stream encoder preserves information that might be lost if only
one part of the encrypted region (complex representation) is considered, as utilized in
Encoder 1 and Encoder 2. Based on the results we can assume that the dual-stream encoder
possibly enables learning complementary feature representations. From Table 1, using the
dual-stream encoder enhances the model’s performance at achieving optimal results.

Table 1. Quantitative results on the effect of dual-stream encoder.

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider

Using Encoder 1 only
(Images with real part of the

encrypted region)
62.41 45.85 32.47 22.54 22.24 48.64 60.54

Using Encoder 2 only
(Images with imaginary part of the

encrypted region)
67.70 49.86 35.56 24.96 22.40 49.03 62.41

Using one encoder (concatenation
of both images) 59.64 40.43 26.96 17.84 20.06 43.66 42.57

Our proposed method
(dual-stream encoder) 68.36 50.36 36.00 25.16 22.58 49.38 64.48

4.3.2. Transformer Architecture Analysis

The encoder and decoder layers are six each in the transformer architecture [17]. We
evaluate four configurations of the transformer architecture, each defined by the number of
encoder and decoder layers: (2–2) configuration, (2–4) configuration, (4–4) configuration,
and (6–6) configuration. The number of layers is increased with the assumption that the
deeper the model, the better the generalization; hence, a better performance would be
achieved. Our proposed method ((2–2) configuration), which features two layers in both
the encoder and decoder, achieved the best scores across most metrics except METEOR
and CIDEr. The results in Table 2 suggest that a simple model architecture with fewer
layers is more effective for this particular task and dataset. However, when the number of
layers increases, the METEOR score also increases. The (6-6) configuration has the highest
METEOR score (22.83) despite having the lowest scores for the other metrics. The METEOR
score measures both precision and recall and considers stemming and synonyms.

Table 2. Quantitative results of transformer architecture analysis.

Encoder–Decoder Layers Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider

Our proposed method (2–2) 68.36 50.36 36.00 25.16 22.58 49.38 64.48
(2–4) 65.68 47.61 33.83 23.63 22.62 48.33 62.72
(4–4) 65.99 48.32 34.27 23.91 22.82 49.55 63.81
(6–6) 64.22 46.57 32.87 22.83 22.83 48.29 60.88

We can assume that the deeper models might better capture synonymy, although
the performance for other metrics reduces. The (4–4) configuration performs well, with
the highest ROUGE (49.55) and second-highest scores for the other metrics. This result
also suggests that increasing the number of layers can improve specific evaluations. In
summary, increasing the number of layers in the transformer encoder and decoder affects
the model’s performance. The (2–2) configuration proves to be most effective for our task.
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4.3.3. GloVe Embeddings

Next, we experiment using GloVe (Global Vectors for Word Representation) [44]
embeddings in the embedding layer for the transformer decoder. GloVe projects words
onto a vector space of dimension, d. The numerical vector representation captures the
semantic and syntactic information of the words [45,46]. If words have similar contexts,
their representations are also very similar. We compare three configurations regarding the
use of embeddings in our model: no GloVe embeddings, pre-trained GloVe embeddings,
and fine-tuned GloVe embeddings. For no GloVe embeddings, the model uses randomly
initialized embeddings, which are then learned from scratch during training. For pre-
trained GloVe embeddings, the model uses GloVe embeddings, which are trained on a large
corpus. In contrast, for fine-tuned GloVe embeddings, the pre-trained GloVe embeddings
are further fine-tuned during training to allow the model to adapt the embeddings to
the task.

Table 3 shows that the proposed method (without GloVe embeddings) outperforms
the other GloVe-based approaches across all metrics discussed in this section. Notably,
fine-tuning GloVe embeddings yields better results than pre-trained GloVe embeddings
without fine-tuning, indicating that adapting the embeddings to a particular task is crucial.
From the proposed model’s performance, we can conclude that learning the embeddings
from scratch may be more effective than using pre-trained or fine-tuning GloVe embeddings
to achieve better performance in this task.

Table 3. Quantitative results on using GloVe Embeddings.

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider

With GloVe embeddings 61.84 45.11 31.98 22.07 22.11 48.57 61.30
Fine-tuning GloVe embeddings 67.07 48.72 34.32 23.81 22.42 49.15 62.30

Our proposed method (no GloVe) 68.36 50.36 36.00 25.16 22.58 49.38 64.48

4.3.4. Fine-Tuning Strategies on the Encoder

In this section, we apply fine-tuning techniques to the ResNet50 encoder. With fine-
tuning, we adapt the pre-trained model weights to the characteristics of our partially
encrypted image dataset, which then improves the model’s overall performance. We
implemented three different fine-tuning approaches. The first is no fine-tuning (frozen
weights); here, all the layers of the ResNet50 encoder are frozen, meaning that their weights
remain unchanged during training. With this approach, the features from ImageNet are
retained, but this limits the model to extract features from the encrypted patterns in our
dataset. The second is partial fine-tuning (trainable weights in selected layers); here,
we allow fine-tuning of the second to fourth convolutional blocks within the ResNet50
architecture as these layers capture mid-level and high-level features. The weights in these
blocks are updated during training, while the remaining layers are kept frozen. Thus, the
low-level features learned from ImageNet are retained, while the deeper layers are adapted
to the characteristics of the partially encrypted images. The last approach that is used in
our proposed model is full fine-tuning (all weights trainable). Here, all the weights of the
ResNet50 encoder are set to trainable. Full fine-tuning allows the model to fully adapt to the
partially encrypted images using DRPE, leveraging the entirety of the encoder’s capacity to
learn from the images. Figure 3 shows the fine-tuning schemes used in this section.
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there is no update to the weights during backpropagation. (b) Fine-tuning with trainable weights for
convolutional blocks 2 to 4 while the other layers are frozen. (c) Fine-tuning without frozen weights.
All weights are trainable.

The results in Table 4 demonstrate the benefits of allowing more model parameters
to be fine-tuned, as the more trainable weights, the higher the value of the metrics. The
proposed method, which presumably allows all weights to be updated during training,
consistently outperforms the other two approaches across all metrics. The approach with
trainable weights in convolutional blocks 2 to 4 shows intermediate performance, better
than the model without trainable weights but not as good as the fully trainable model. An
average difference of 4.15 is calculated between our proposed method and training with
frozen weights only.

Table 4. Quantitative results on different fine-tuning strategies.

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider

Without trainable weights 63.42 45.17 31.31 21.20 21.98 47.23 57.17
With trainable weights in

convolutional blocks 2 to 4 65.84 48.19 34.46 24.13 22.60 49.07 64.14

Our proposed method (without
frozen weight) 68.36 50.36 36.00 25.16 22.58 49.38 64.48

4.4. Quantitative Results and Visualization

Our study involves a comparison among captioning models trained on original images,
fully encrypted images, partially blocked images, and partially encrypted images. The
models trained on partially blocked and original images utilized a ResNet50 encoder and
transformer-based decoder. Additionally, the model trained on fully encrypted images used
a modified ResNet50 encoder, in which the first layer is adjusted to take a tensor input with
channel size 6 (the input is a concatenation of the real and imaginary parts of the encrypted
images) and transformer-based decoder. We include a baseline model that comprises a
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dual-stream encoder and attention-based LSTM decoder trained on partially encrypted
images. The baseline model has an attention dimension and an LSTM dimension of 512.
Table 5 presents the metrics results to evaluate the quality of the predicted captions on the
Flickr8k dataset. As depicted in Table 5, the model trained on original images achieved
the highest performance across all metrics. Notably, using partial encryption and deep
learning, our proposed framework achieved comparable performance to the original one
with a BLEU-4 of 25.16 and a CIDEr score of 64.48. The transformer-based decoder in our
model outperformed the baseline model’s decoder, which uses an attention-based LSTM;
this can be attributed to the multi-head attention mechanism used in the transformer, which
allows the model to attend to multiple aspects of the input features simultaneously.

Table 5. Quantitative results on the test dataset.

Images Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider

Original 69.59 51.56 37.36 26.43 22.88 49.68 65.48
Partially blocked 67.20 49.34 35.30 24.70 22.20 48.98 62.57

Fully encrypted (AES-CBC) 41.81 23.41 12.49 7.35 16.35 32.78 8.71
Fully encrypted (DRPE) 46.07 25.32 12.89 7.29 15.89 34.48 13.97

Partially encrypted (AES-CBC) 66.69 49.15 35.10 24.49 22.71 49.59 63.36
Partially encrypted

(DRPE-Baseline) 64.64 46.81 32.78 22.34 22.35 48.71 58.96

Partially encrypted
(DRPE-Proposed) 68.36 50.36 36.00 25.16 22.58 49.38 64.48

The model trained on partially blocked images performs slightly worse than our
proposed framework, while the model trained on fully encrypted images showed the worst
performance. The metrics scores of our proposed method being close to that of the model
trained on original images suggest that our approach preserves essential visual information
for caption generation while providing privacy protection. Also, comparing Encoder 2
only (Table 1) to partially blocked images in Table 5, the performance of Encoder 2 only
(which uses images with the imaginary part of the encrypted region) is comparably close
to that of the partially blocked approach. Encoder 2 only outperforms the partially blocked
approach in most metrics except the CIDEr score. Therefore, by encrypting the sensitive
regions, we preserve meaningful information rather than mask it (blocking). These results
indicate that partial encryption offers a balance in providing privacy while maintaining
captioning accuracy.

The DRPE algorithm is compared to the Cipher Block Chaining (CBC) mode of the
Advanced Data Encryption Standard (AES) [47]. For this task, we used the 128-bit block
size with a 256-bit key, which requires 14 rounds to encrypt the data. In [48], images
are encrypted with AES and encryption algorithms for the classification of encrypted
images. We chose the CBC mode with the assumption that it would be significantly secure
as compared to the other modes. The models trained on fully encrypted and partially
encrypted AES-CBC images consist of a single ResNet50 encoder and a transformer-based
decoder. The fully encrypted AES-CBC model achieved higher BLEU-4 (7.35) and METEOR
(16.35) scores than the fully encrypted DRPE but achieved lower scores for the other metrics.
The results for partial encryption with AES-CBC were comparable to our DRPE-based
approach with a relatively small gap (CIDEr: 63.36 vs. 64.48). This indicates that both
encryption methods can be used to protect the privacy of sensitive information and achieve
fairly accurate captions.

Figure 4 illustrates the captioning results of different models and images. The model
trained on original images usually provides fairly accurate captions. However, there are
some inaccuracies, such as in Figure 4a (a woman instead of a man), Figure 4c (a <unk>
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variable), and Figure 4e (repetition of black hat). Our proposed model performs comparably
well as the captions are close to the ground truth. However, it also has inaccuracies, such
as in Figure 4c (a group of people instead of a man and woman) and Figure 4e (building
instead of a red wall). The captions by the model trained on partially blocked images are
also reasonably accurate. There are also some inaccuracies, such as the repetition of words
(Figure 4a,e) and Figure 4c (subway instead of bench). However, the model trained on fully
encrypted images struggles to provide accurate captions (Figure 4a,b,d,e), but the predicted
caption for Figure 4c matches the ground truth caption.

Figure 5 illustrates the caption results of models trained on original images and par-
tially encrypted images using DRPE and AES-CBC. It also includes the captions generated
by our baseline model for partially encrypted images using DRPE. For Figure 5a, the
baseline line model could not identify the bicycle as it represents it with a <unk> variable.
All the models identified the overcoat as a different color and referred to the overcoat
as a jacket. For Figure 5b, the captions generated fairly describe the picture as the key
words “black and white dog”, “ball”, and “mouth” were in the captions, but the “grass”
was omitted in all predicted captions. The predicted captions for Figure 5c also had some
omissions (“on a tripod is smiling for another camera”). Both the baseline and proposed
model identify two cameras, but the caption fails to describe the scene. The model trained
on partially encrypted images using AES-CBC included words that are not visible in the
picture. The predicted captions for Figure 5d identify two out of the three girls in the
picture, and the captions are generalized with missing words.

Based on Table 6, which compares the time complexity and inference time for the
1000 images in the test dataset, key observations can be made. Masking the sensitive
regions in the images takes the shortest time (14.06 s) as compared to encrypting the regions
with either DRPE (60.21 s) or AES (66.38 s). Masking involves minimal computation as it
involves pixel overwriting. Notably, encryption with DRPE is approximately 6 s faster than
encryption with AES. For the time complexity, AES and masking have a linear complexity
of O(N), while DRPE has a higher theoretical complexity of O(nlogn). However, we notice
a difference between theoretical complexity and the encryption or masking time, which
can be attributed to operations per step. AES involves complex mathematical operations
and multiple encryption rounds for each block of data, which resulted in a longer time
(66.38 s) than DRPE and masking. Due to the additional encoder in the proposed method,
the inference time (208.66 s) and GPU memory (1534.83 MB) are the highest compared to
the other methods; however, from Tables 1 and 5, using the dual-stream encoder enhances
the model’s performance at achieving optimal results that are close to that of the model
trained on original images.

Table 6. Comparison of time complexity and inference time for 1000 images in the test dataset.

Method Encryption
Time (s)

Inference
Time (s)

GPU Allocated
Memory (MB) Time Complexity

Single encoder with original images -- 182.01 882.19 --
Single encoder with partially

blocked images 14.06 184.65 882.19 O(N)

Single encoder with partially
AES-CBC-encrypted images 66.38 181.90 1098.98 O(N)

Dual-stream encoder with partially
DRPE-encrypted images 60.21 208.66 1534.83 O(n log n)
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Figure 5. Visualization of generated captions from the test dataset. The predicted captions for each
model trained on the three different images (original images, partially encrypted images using DPRE,
and partially encrypted images using AES-CBC) are below each image. For the partially encrypted
image using DRPE, B denotes the baseline model caption, and P denotes the proposed model caption.

Figure 6 illustrates the captioning results of 5 sample images with different types
of encrypted objects. For Figure 6a, only the human faces are encrypted. The predicted
caption remains relatively close to the ground truth caption except for the mention of the
genders in the original images; therefore, the words “two men and a woman” are replaced
with “a group of people” in the predicted caption. For Figure 6b, though both the faces
of the children and the dogs are encrypted, the model failed to identify the dogs in the
image as the caption focuses on the children in the pool. Thus, we can assume that the
model struggles when there is a mixture of human and animal faces encrypted in the image.
For Figure 6c, where the vehicle’s license plate and the driver’s face are encrypted, the
predicted caption accurately describes the presence of the car, though it misses the color
information about the car. In Figure 6d, the faces of the protestants and the text on the
signboards are encrypted, but the predicted caption turned out to be more generic. This is
also noticed in Figure 6e, where the restaurant signs and other objects are encrypted. We
can assume that the model might be more sensitive to the encryption of human faces and
probably animal faces that encrypted text information. Thus, a more diverse dataset would
improve the performance of the model.
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“smiling”. Though the young boy is wearing a blue shirt, the word “smiling” in the 
predicted caption is an action mismatch. Another example of an action mismatch is seen 
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misidentifies the gender of one lady as the predicted caption states “a man and a woman” 
instead of “two ladies”. A subject misidentification occurs in Figure 7d, where the 
prediction has “a black dog” instead of “a bull”. This can be attributed to the fact that the 
dataset contains more images of dogs than other animals. In Figure 7b, we noticed the 
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Figure 6. Impact of different types of encrypted objects on image captioning. The first row shows the
original images, while the second shows the partially encrypted images. The encrypted regions are
(a) only human faces, (b) human and dog faces, (c) vehicle license plate and human face, (d) human
faces and text on signboards, and (e) restaurant signs and other objects.

Figure 7 illustrates an analysis of caption generation errors highlighting key failure
cases such as subject misidentification, omission of details, and action mismatch. From the
figure, the model struggles to identify some attributes, such as in Figure 7c (brown-eyed boy
syrup on his lips); instead, it introduces details such as “wearing a blue shirt” and “smiling”.
Though the young boy is wearing a blue shirt, the word “smiling” in the predicted caption
is an action mismatch. Another example of an action mismatch is seen in Figure 7a, where
“standing” is predicted instead of “walking”. Also, the model misidentifies the gender of
one lady as the predicted caption states “a man and a woman” instead of “two ladies”. A
subject misidentification occurs in Figure 7d, where the prediction has “a black dog” instead
of “a bull”. This can be attributed to the fact that the dataset contains more images of dogs
than other animals. In Figure 7b, we noticed the model focused on the more salient object
(the man riding the bike) while ignoring secondary elements (the two others following).
Therefore, refining the dual-stream encoder to better handle the encrypted regions during
training could minimize the generation error.
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4.5. Comparison with State of the Art

We compare the performance of our approach with several proposed models for image
captioning. The models we compare include Google NIC [49], which established early
foundations in image captioning, and Soft-Attention and Hard-Attention [50], which use
VGG for image extraction and LSTM for sentence generation in the decoder. However,
in [50], attention mechanisms are utilized in the decoder to enhance performance. More
recent approaches include SwinCaption [51], which uses a Swin transformer to extract
image features and a feature enhancement technique to capture more information about
the features, and 2PSC-w and 2PSC [5], which uses ResNet101 to extract image features,
and LSTM with an attention mechanism for generating sequences. 2PSC-w is trained on
original images, while 2PSC is trained on images from the proposed optical encoder for
scene distortion to protect privacy. Additionally, we compare to the models in [52–54] that
introduce advanced techniques. Reference [52] employs an ensemble learning strategy,
which combines eight CNN models via a voting process to fine-tune the ideal caption for
every image. Reference [54] utilizes wavelet decomposition, a visual attention prediction
network, and a contextual spatial relation extractor for effective feature extraction [53]
proposed a network that perceives object-level information from inter-layer fusion and
intra-layer interaction in the transformer-based decoder.

Table 7 shows that our proposed method, trained on original images using a single
encoder, achieved the highest results for the BLEU-2 (51.56), BLEU-3 (37.36), ROUGE
(49.68), and CIDEr (65.48) metrics. Meanwhile, our proposed method, trained on partially
encrypted images using DRPE, achieved the second-highest results on the aforementioned
metrics. The relatively small difference in performance (1-3%) between our models trained
on original and partially encrypted images indicates that our model effectively captures
semantic information even under partial encryption. Our proposed model performed
better than training on the fully encrypted DRPE model proposed in [7], highlighting the
challenge of generating accurate captions from fully encrypted images. It further indicates
the effectiveness of partial encryption.

Table 7. Comparison results on the test dataset.

Images Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 Meteor Rouge Cider

Original

Google NIC [49] 63 41 27 - - - -
Soft-Attention [50] 67 44.8 29.9 19.5 18.93 - -

Hard-Attention [50] 67 45.7 31.4 21.3 20.3 - -
2PSC-w [5] 65.7 47.6 33.9 23.8 25.5 35.6 57.9

Our proposed method 69.59 51.56 37.36 26.43 22.88 49.68 65.48
SwinCaption [51] 67.7 46.8 32.9 22.9 22.7 - -

[52] 72.8 49.5 32.3 20.8 23.5 43.2 60.4
[53] 67.4 - - 24.3 21.5 44.8 63.6
[54] 70.5 50.2 37.3 28.6 24.5 - -

Fully encrypted
using DRPE [7] 48.3 29 17.1 10.1 13.6 36.1 22.5

Privacy 2PSC [5] 63.5 45.2 31.4 21.5 24.7 34.7 51.8

Partially encrypted
AES—CBC 66.69 49.15 35.10 24.49 22.71 49.57 63.36

Baseline (ours) (DRPE) 64.64 46.81 32.78 22.34 22.35 48.71 58.96
Our proposed method (DRPE) 68.36 50.36 36.00 25.16 22.58 49.38 64.48

Bold results are the highest, and underlined results are the second highest.

Our proposed model performed comparably better than some methods trained on
original images. Thus, our model can learn from the images’ encrypted and unencrypted
parts. These results demonstrate that our proposed architecture offers a balance between
privacy and utility. However, we note that the model [54] achieved the highest BLEU-4
score (28.6), which indicates that the use of a visual attention predictor network that consists
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of atrous convolution, channel attention, and spatial attention further allows extraction
of relevant features that are needed to acquire the best captions. The ensemble approach
in [52] achieved the highest BLEU-1 score (72.8), which denotes that different encoders can
help capture different aspects of an image as we use a dual-stream encoder for our proposed
framework (partial encryption). Likewise, Table 1 confirms this as the dual-stream encoder
outperformed the single encoder for the partially encrypted images. Future work could
explore incorporating attention mechanisms such as that in [54] for the encoder to improve
the model’s performance.

5. Conclusions
This paper demonstrated the feasibility of performing image captioning on partially

encrypted images using Double Random Phase Encoding. Specific regions of interest said
to have sensitive information are encrypted using DRPE, resulting in a stationary white
noise rendering no visual information to unauthorized parties. By partially encrypting
the images, the structure of the image is preserved, and enough background information
is retained. We used a dual-stream encoder based on the ResNet50 architecture and a
transformer-based decoder to generate captions for the images. The dual-stream encoder
processes the encrypted regions’ real and imaginary parts separately, and we fine-tuned
all the model layers, leading to richer feature extraction. We trained the embeddings in
the embedding layer of the transformer from scratch, and the number of encoder and
decoder layers is set to 2–2. We performed ablation studies to validate our architecture.
We evaluated the proposed framework on the Flickr8k dataset and achieved a BLEU-4
score of 25.16, demonstrating a comparable performance to models trained on original
images, and the captions generated fairly describe the provided images. Also, our method
outperforms the image captioning method that utilized fully encrypted images, though
using fully encrypted images provides more robust security. From this, we can assume that
encrypting the whole image makes it difficult for the model to extract meaningful features
for captioning.

Additionally, comparing our proposed method (partially encrypted images) with
partially blocked images suggests that encryption preserves and keeps the image infor-
mation rather than losing it by blocking or masking. Thus, partially encrypted images
offer advantages over fully encrypted and partially blocked images (masked with black or
gray boxes) as they balance privacy (encryption of sensitive information) and retain other
information, which allows the model to process both areas and generate captions. Our
results suggest that our method is a viable solution for privacy-preserving image caption-
ing using deep learning and DRPE. From our results, we can assume that the proposed
model helps use machine learning as a service as it ensures data privacy and information
security. Furthermore, incorporating attention mechanisms in the encoder or using a vision
transformer could further enhance the model’s performance in order to minimize caption
generation error. An extension of this work would be to use complex and diverse datasets
such as the COCO dataset.
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