
Received 4 March 2025, accepted 20 March 2025, date of publication 26 March 2025, date of current version 2 April 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3554803

An RNN-Based Adaptive Hybrid Time Series
Forecasting Model for Driving Data Prediction
JI HWAN SEO AND KYOUNG-DAE KIM , (Member, IEEE)
Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea

Corresponding author: Kyoung-Dae Kim (kkim@dgist.ac.kr)

ABSTRACT In this paper, we propose a hybrid time series forecasting model, named as the Adaptive
Multivariate Exponential Smoothing–Recurrent Neural Networks (AMES-RNN), which enables accurate
prediction for time series data with non-seasonal and additive trend characteristics. The AMES-RNN follows
a hybrid approach in which each of the statistical and deep learning models predicts particular time series
components and then merges their output. To enhance prediction performance, the optimal smoothing
coefficients of the Exponential Smoothing (ES)model are estimated and updated online. Here, the coefficient
estimation is performed through a deep learning-based regression model, and a method for training the
regression model is presented. In addition, the prediction model utilizes future-implying information as
additional input if available in order to improve prediction accuracy. The effectiveness of the proposed model
was validated through multistep forecast tests using vehicle driving data that has non-seasonal and additive
trend characteristics. The results show that the prediction accuracy of the proposed model was improved
at least 23.0% compared to those of the existing prediction model. Additionally, we demonstrated that
AMES-RNN requires low computational resources, making it feasible to perform online predictions.

INDEX TERMS Adaptive, exponential smoothing, hybrid model, RNN, time series forecasting, vehicle
data.

I. INTRODUCTION
Time series forecasting is a method of predicting future
values based on the patterns of data observed over time [1].
This forecasting approach is model-free, meaning it does
not require knowledge of the complex dynamics of the
system [2], [3]. Additionally, it can handle multivari-
ate data, making it effective in analyzing correlations
among multiple variables [4], and supports multi-step
forecasting. Due to these advantages, time series forecast-
ing has been widely used in various domains, such as
energy consumption [5], stock price [6], traffic flow [7],
etc.

Traditionally, statistical models such as Auto-Regression
(AR) [8], Auto-Regression Integrated Moving Aver-
age (ARIMA) [9], and Exponential Smoothing (ES) [10]
have been used for time series forecasting. However, these
statistical models have limitations in capturing complex data

The associate editor coordinating the review of this manuscript and

approving it for publication was Sajid Ali .

patterns [11]. Accordingly, interest in applying deep learning
models that can handle nonlinear relationships within time
series data has increased [12]. Among various deep learning
models, Recurrent Neural Networks (RNNs) have become
a popular choice for time series forecasting due to their
ability to remember historical data and capture temporal
dependencies [13]. These models usually show superior
forecasting performance over other network types [14].
Recently, Transformers have also been applied to time
series forecasting as they excel at handling long-term
dependencies [15]. However, using only deep learning
models can lead to overfitting and over-parameterization
problems, even when sufficient training data is available,
and this can result in lower prediction accuracy compared
to statistical methods [16], [17]. One approach to mitigate
these issues for deep learning models is to apply data pre-
processing. Instance normalization is a widely used technique
that standardizes each input time series data by subtracting its
mean and dividing by its standard deviation [18]. Through
this process, the input data has consistent distributions in

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 54177

https://orcid.org/0000-0003-3617-6879
https://orcid.org/0000-0003-2631-1993
https://orcid.org/0000-0003-4868-7932

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

terms of mean and variance, helping the deep learning
models to focus more on predicting temporal patterns.
As demonstrated in [18] and [19], this technique has been
utilized in various studies. Another approach is employing
hybrid method, which use both statistical and deep learning
models to complement the limitations of eachmethod. Hybrid
approaches have also shown improved prediction accuracy in
various fields [20], [21], [22].

This study aims to improve the prediction accuracy for time
series data in the vehicle system domain where time series
forecasting techniques have been utilized in various ways
such as enhancing fuel consumption efficiency [23], [35],
advancing driving safety [24], [29], [30], [31], improving user
experience in driving simulators [32], and extending vehicle
life cycles through early detection of abnormal status [34].
To achieve this goal, we adopt a hybrid approach instead
of instance normalization, which can have some limitations
when applied to driving data. Specifically, in cases where
the driving data remains nearly constant (e.g., constant speed
driving), the standard deviation is close to 0. In this case,
applying instance normalization can transform the data as if it
has extreme variability, providing distorted information to the
model. Moreover, this normalization process, which makes
the mean and variance across all input data the same, loses
information about the strength of trend: Two data with similar
shapes of patterns but different rates of change (e.g., smooth
cornering vs. sharp cornering) will appear almost identical
after instance normalization. This may hinder the model’s
ability to utilize diverse driving behaviors in forecasting. For
these reasons, we leverage the hybrid method for predicting
driving data. Additionally, we employ RNN models as deep
learning models for the following two reasons. First, driving
data is difficult to collect on a large scale due to cost and
variability in driving conditions, especially when developing
individual driver-oriented models. In such small datasets,
RNN-based models are more advantageous than Transform-
ers in achieving high prediction accuracy [25], [26]. Second,
RNNs require lessmemory and computational load compared
to Transformers [27], which allows RNNs to be more suitable
for vehicle applications where online processing is important
but computational resources are limited. On another note,
driving data often shows the characteristics of non-seasonal
and additive trends. Seasonality is not considered because
it is difficult to expect periodic data, which has a clear and
regular cycles, unless specific situations are imposed such
as slalom tests. Additionally, the change rate of the vehicle
states is adjusted by the driver’s control inputs, and such
adjustments are not necessarily determined depending on the
current state values. Hence, additive trend, which assumes
the rate of change is independent from current state value,
is more preferred than multiplicative trend, where the two
components are coupled. Furthermore, since various types of
vehicle data that can be collected while driving are inherently
related to each other [28], it is very important to capture the
interrelations between data types in order to make accurate
predictions.

Taking into account all these issues on various types of
forecasting models and the characteristics of time series data
in the vehicle application domain, we propose a new time
series forecasting model, named as the Adaptive Multivariate
Exponential Smoothing - Recurrent Neural Networks (AMES-
RNN) model, which provides better prediction performance
than other models for time series data with non-seasonal and
additive trend characteristics. The proposed model adjusts
its parameters online if the characteristics of incoming
time series data change so that the model can provide
optimal forecasting performance as possible. Additionally,
it leverages informative data that hints at the future to
reduce uncertainty in the predictions. The effectiveness of the
proposed predictor is validated through multi-step prediction
tests on multiple vehicle control signals and the results
demonstrate that the prediction accuracy of the proposed
predictor is improved compared to those of the existing
forecasting techniques.

The remainder of this paper is organized as follows.
Section II presents a review of existing time series forecasting
methods to improve the prediction accuracy in vehicle
applications. Section III introduces MES-LSTM, the founda-
tional model for this research, and discusses its limitations.
Section IV describes our approach. Section V presents the
experimental results for performance evaluation. Finally, this
work is concluded in Section VI.

II. RELATED WORKS
As stated earlier, time series forecasting models have been
effectively utilized to enhance the performance of various
functions related to vehicles. Guo et al. [23] proposed
a method to predict vehicle speed and road gradient by
using an ARIMA model. The ARIMA model fitted with
pre-acquired driving data is utilized to perform online
predictions during vehicle driving. Their tests demonstrated
that the maximum Root Mean Square Error (RMSE) for
a 10-second-long prediction was about 3.5 m/s for speed
and 0.04% for road gradient. However, using fixed time
series model parameters limits the ability to reflect online
changes in data characteristics during vehicle operation.
To address this, Zhang and Fu [29] proposed an online
ARIMA model, which continuously updates its parameters
to minimize the difference between the data acquired online
and the model’s predicted values. In a 1.5-second-long
prediction test, the online ARIMA model showed maximum
RMSE values of 0.27 m for lateral position, 0.40 m for
longitudinal position, 0.37 m/s for speed, and 0.40 m/s2 for
acceleration. Although performance comparisons with the
traditional ARIMA model were not explicitly provided, the
authors showed that the values predicted by online ARIMA
could be effectively utilized in a Bi-LSTM-based turning
detection system. Additionally, Cao et al. [30] proposed a
heuristic method for online updating of the coefficients in an
ES model to improve the prediction accuracy of state values
for vehicles in sideslip conditions. Through their approach,
the prediction accuracy was improved compared to the case

54178 VOLUME 13, 2025

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

of using fixed coefficients in the 5-second-long prediction test
for vehicle acceleration data where rapid trend changes were
observed.

In deep learning-based approaches, LSTM networks have
been widely used as they can effectively capture long-term
dependencies. For instance, Jeong et al. [24] used LSTM
to predict surrounding vehicles’ trajectories consisting of
position, heading, and speed, while Jo et al. [31] applied
LSTM to predict lateral acceleration. Alsanwy et al. [32]
leveraged LSTM for predicting motion signals of a driving
simulator. According to their results, LSTM outperformed
other models in multi-step prediction tests. Specifically, [24]
showed that LSTM achieved improved trajectory prediction
accuracy compared to several conventional vehicle model-
based predictors. In particular, compared to the model-based
predictor referred to as ‘‘CV/Path’’ in [24], the RMSE
for longitudinal/lateral position, heading, and speed was
reduced by 48.7%, 85.5%, 63.1%, and 54.1%, respectively.
In addition, [31] and [32] demonstrated that LSTM showed
lower prediction errors than other types of neural networks
such as CNN or vanilla RNN. As such, LSTM is effective in
predicting time series data acquired from vehicle systems.

For further improvement of the prediction accuracy by
complementing the shortcomings of statistical models and
deep learning models, hybrid approaches that use both types
of models together have gained attention. For example,
Zhang [33] proposed a hybrid method of ARIMA and
Artificial Neural Network (ANN) which uses ARIMA to
capture the linear components of time series data and an ANN
to predict the nonlinear components. Here, the nonlinear
component corresponds to the residual obtained by subtract-
ing the ARIMA-predicted component from the original data.
Zhang [33] showed improved prediction accuracy for sunspot
data, lynx population data, and exchange rate data, and this
approach was later applied to vehicle data by replacing
ANN with other neural networks. Alizadeh et al. [34]
proposed a method to predict fuel rate, engine torque, and
injection control pressure data using ARIMA-WNN (Wavelet
Neural Network). As a result of evaluating the prediction
performance for each data by Mean Absolute Error (MAE),
ARIMA-WNN improved accuracy by 67.17% and 28.11%on
average, compared to ARIMA and WNN alone, respectively.
Similarly, Wang et al. [35] utilized ARIMA-LSTM to
improve vehicle speed prediction accuracy. The model
showed that MAE was reduced by at least 61.6% and 60.7%
compared to ARIMA and LSTM, respectively, and it also had
superior accuracy compared to other neural network models
such as vanilla RNN, CNN, and WNN.

However, the ARIMA model assumes that the differenced
time series data satisfies stationarity [36], so the role of the
ARIMA model may be limited in cases where stationarity
cannot be satisfied even after applying differencing multiple
times. A noteworthy model to address this problem is
ES-RNN proposed by Smyl [37]. ES-RNN is a hybrid model
that performs prediction by sequentially applying an ES

model and an RNN model, and both models are suitable for
processing non-stationary data. ES-RNN is designed based
on the idea that each time series data consists of level
l, trend b, seasonality s, and noise ϵ (in some cases, the
seasonal component may not be contained). The ES model
estimates the level and seasonality for a given time series
data, and the RNN model predicts a future trend from the
past trend. Smyl [37] verified its performance by winning the
M4-competition, a time series prediction accuracy compe-
tition, by using LSTM as an RNN model. However, since
ES-RNN can only be applied to univariate time series data,
it is unable to use interrelations between multiple time series
for prediction. To address this limitation, Mathonsi and Zyl
proposed Multivariate ES-LSTM (MES-LSTM) [38]. The
overall prediction process is similar to that of ES-RNN, but it
considers interrelation by passing trend components extracted
from multiple time series data to a single LSTM model.
In forecasting the number of Covid-19 cases and deaths
in South Africa, compared to other 6 existing multivariate
time series forecasting models, MES-LSTM reduced RMSE
by at least 11.3% and 83.9%, respectively. Another hybrid
approach that incorporates the ESmodel for multivariate time
series data is ETSformer [39]. ETSformer is a model where
the classical Transformer architecture is redesigned into an
encoder-decoder structure that models the time series decom-
position process of the Exponential Smoothing. ETSformer
is trained to extract and predict the time series components
used in the ES model (l, b, and s). Both MES-LSTM and
ETSformer do not require the data to be stationary and can
consider interrelations among multiple data. However, from
the perspective of vehicle applications,MES-LSTM is amore
attractive approach, as it consists of computationally efficient
models, including ES models (a form of linear recursive
formula) and RNNs. This makes the MES-LSTM approach
more advantageous for online processing. In addition, unlike
ETSformer, where a deep learning model is responsible for
extracting time-series components, MES-LSTM decomposes
the components according to the mathematical formula of
exponential smoothing. This enhances interpretability and
can contribute to improving the reliability of vehicle-related
functions.

In this paper, we propose a multi-step forecasting model
for multivariate time series data with non-seasonal and
additive trend characteristics to further improve the prediction
accuracy. The proposedmodel is designed based on theMES-
LSTMmodel. Apart from the MES-LSTMmodel, our model
has additional deep learning-based regression model that
is incorporated to estimate optimal ES model coefficients
online. In addition, our model is designed to utilize future-
implying data, if available, that can be acquired during
vehicle driving such as forward road shape [40] or eye-gaze
data [41], [42]. As demonstrated in [43], incorporating the
future-implying data can reduce the uncertainty and hence
can help improve the prediction accuracy. We also improve
the input data preprocessing and output data postprocessing

VOLUME 13, 2025 54179

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

FIGURE 1. A data flow of MES-LSTM for non-seasonal and additive trend
time series data.

processes. More details on our model are presented in
Section IV.

III. PRELIMINARY
In this section, we briefly review the MES-LSTM model and
discuss its limitations especially when it is used with the ES
model for non-seasonal and additive trend time series data.

A. MES-LSTM
When configuring MES-LSTM, one ES model is used per
each time series data type, and there are various ES models
to choose from. The selection of the ES model depends on
the trend type (additive or multiplicative trend) and the type
of seasonal component (non- or additive or multiplicative
seasonality) of the time series data. Among several selectable
options for the ES model, we consider the MES-LSTM for
non-seasonal and additive trend time series data in this work.
The following explanation assumes that non-seasonal and
additive trend time series data are processed.

Figure 1 shows the overall data flow of MES-LSTM, and
its prediction process is summarized in Algorithm 1. Also,
the notations used in Figure 1 and Algorithm 1 are described
in Table 1. ES(·) in line 6 of Algorithm 1 represents a general
exponential smoothing model in (1), which is applicable to
non-seasonal and additive trend time series data.

ŷ[t + 1|t] = l[t]+ φb[t]

l[t] = αy[t]+ (1− α)(l[t − 1]+ φb[t − 1])

b[t] = β ′(l[t]− l[t − 1])+ (1− β ′)φb[t − 1]

where β ′ = β/α (1)

where α and β are the smoothing coefficients for the level
and trend components, respectively, and φ is the damping
factor of the trend component. In general, the smooth-
ing coefficients λ = (α, β, φ) satisfy the following

Algorithm 1MES-LSTMWith Non-Seasonal and Addi-
tive Trend ES Model

1: procedure TS Forecast
2: init Ypre[t]← zeros_like(YT [t])
3: init B̂F [t]← zeros_like(ŶF [t])
4: for i ∈ {1, 2, .., k} do
5:

Y (i)
T [t]←

[
y(i)[t − LT + 1], . . . , y(i)[t − 1], y(i)[t]

]
6: l(i)[t]← ES(Y (i)

T [t], λ
(i)
0)

7: Y (i)
pre[t]← Y (i)

T [t]⊖ l(i)[t]
8: end for
9: B̂F [t]← LSTM(Ypre[t])
10: for i ∈ {1, 2, .., k}doŶ (i)

F [t]← B̂(i)F [t]⊕ l(i)[t]
11: return ŶF [t]
12: end procedure

TABLE 1. Notations in Figure 1 and Algorithm 1.

inequalities (2), called admissible constraints. The condi-
tions (2) are for maintaining the stability of the ES model,

54180 VOLUME 13, 2025

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

ensuring that observations from the distant past have a
negligible effect on current and future predictions [44].

1− 1/φ < α < 1+ 1/φ (2a)

α(φ − 1) < β < (1+ φ)(2− α) (2b)

0 < φ ≤ 1 (2c)

In MES-LSTM, a modified constraint equation (3) is used
instead of (2). This defines a region for λ that is a subset of
the original region defined by (2).

0 < α ≤ 1

0 < β < α and φ = 1 (3)

Then, within this smaller region forλ, a smoothing coefficient
set λ0 = (α0, β0, φ0) = (α0, β0, 1) is determined and fixed
through an optimization process that minimizes the overall
difference between ŷ[t + 1|t] estimated by (1) and the actual
y[t + 1].

B. LIMITATIONS OF MES-LSTM
First of all, the MES-LSTMmodel utilizes a fixed smoothing
coefficient set λ0. The model with the fixed coefficient
set decomposes the time series components adequately
when the time series data to be predicted has similar
characteristics to that of the data used to determine λ0.
However, it does not ensure that the time series components
are properly estimated when the characteristics of the data
are changed over time. Consequently, the LSTM model
uses such inaccurately extracted trend components to predict
the future, leading to degraded prediction accuracy. This
limitation constrains the adaptability of the model in envi-
ronments where the characteristics of the data are changed
dynamically.

Additionally, a constant value of φ = 1 is employed
regardless of the characteristics of the time series data.
Since this assumption does not reflect the damped trend,
it negatively impacts the model’s performance when pro-
cessing data with a damped trend. Adjusting φ according to
the characteristics of the data would be crucial to improve
the prediction accuracy in situations where trend behavior
changes.

Appropriate use of the ES model’s forecast value is also
important for accurate predictions. Equation (4) represents
the future time series data that the model aims to predict.
As in (4), the sequence Y (i)

F [t] begins with y(i)[t + 1].

Y (i)
F [t] =

[
y(i)[t + 1], y(i)[t + 2], . . . , y(i)[t + F]

]
(4)

Subsequently, the prediction for Y (i)
F [t] is computed as

described in (5).

Ŷ (i)
F [t] =

[
ŷ(i)[t + 1|t], ŷ(i)[t + 2|t], . . . , ŷ(i)[t + F |t]

]
=

[
ŷ(i)[t + 1|t], ŷ(i)[t + 1|t]+ b̂(i)[t + 2|t],

. . . , ŷ(i)[t + 1|t]+ b̂(i)[t + F |t]
]

FIGURE 2. A data flow of AMES-RNN for non-seasonal and additive trend
time series data.

=

[
0, b̂(i)[t + 2|t], . . . , b̂(i)[t + F |t]

]
⊕ ŷ(i)[t + 1|t]

= B̂(i)F [t]⊕ ŷ(i)[t + 1|t] (5)

Referring to (5), formore accurate prediction, it is desirable to
use ŷ(i)[t+1|t] (the estimated value of y(i)[t+1]) as the initial
forecasted value for Y (i)

F [t]. However, as outlined in line 10 of
Algorithm 1, the MES-LSTM model uses l(i)[t] as y(i)[t + 1]
when computing Ŷ (i)

F [t]. This approach may lead to potential
errors in the prediction process, which can adversely affect
the prediction accuracy.

Lastly, MES-LSTM relies only on past-to-current observa-
tions to make predictions. This limits its ability to integrate
information that may hint at future data. Hence, a way to
integrate future-implying data into the prediction process is
needed to improve overall prediction performance.

IV. ADAPTIVE MES-RNN
In this section, we present our approaches to address
the limitations of MES-LSTM discussed above, aiming to
achieve more accurate time series prediction.

Figure 2 shows the overall structure of our proposed time
series forecaster, and the prediction process is summarized
in Algorithm 2. Most of the notations used in Figure 2 and
Algorithm 2 are the same as in Table 1, but changed or
newly added notations are described in Table 2. Since the
overall prediction process is similar to that of the MES-
LSTM, we focus on explaining the main differences from
MES-LSTM.

A. SMOOTHING COEFFICIENT UPDATER
First of all, to enhance the adaptability of the model
and effectively handle time series data with damped
trends, we introduce the Smoothing Coefficient Updater
(SC-Updater). When handling a total of k types of time
series data, the SC-Updater estimates the optimal smoothing

VOLUME 13, 2025 54181

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

Algorithm 2 AMES-RNN With Non-Seasonal and
Additive Trend ES Model

1: procedure TS Forecast
2: init Ypre[t]← zeros_like(YT [t])
3: init B̂F [t]← zeros_like(ŶF [t])
4: for i ∈ {1, 2, .., k} do
5:

Y (i)
E [t]←

[
y(i)[t − LE + 1], . . . , y(i)[t − 1], y(i)[t]

]
6: λ̂*(i)[t]← SC-Updater-i(Y (i)

E [t], Infofuture[t])
7:

Y (i)
T [t]←

[
y(i)[t − LT + 1], . . . , y(i)[t − 1], y(i)[t]

]
8: ŷ(i)[t + 1|t]← ES(Y (i)

T [t], λ̂*(i)[t])
9: Y (i)

pre[t]← Y (i)
T [t]⊖ ŷ(i)[t + 1|t]

10: end for
11: B̂F [t]← RNN(Ypre[t], Infofuture[t])
12: for i ∈ {1, 2, .., k}doŶ (i)

F [t]← B̂(i)F [t]⊕ ŷ(i)[t+1|t]
13: return ŶF [t]
14: end procedure

TABLE 2. Additional notations in Figure 2 and Algorithm 2.

coefficient set λ∗(i)[t] (i ∈ {1, 2, .., k}) online for each
type of time series data. Basically, λ̂∗(i)[t] is initially set
to the constant coefficient set λ

(i)
0 , which provides adequate

prediction accuracy overall, but it is adjusted by d λ̂∗(i)[t] =
(d α̂∗(i)[t], d β̂∗(i)[t], d φ̂∗(i)[t]) at each time step if there is a
different set that offers improved prediction accuracy.

Figure 3 illustrates the overall architecture of the
SC-Updater-i. Each SC-Updater-i is designed as a regression
model that utilizes recurrent neural networks to predict
λ̂∗(i)[t] by synthesizing past and present information.
In SC-Updater-i, each smoothing coefficient is estimated
within a finite range, and the ranges are determined as

FIGURE 3. A structure of SC-Updater-i .

follows. Referring to (2a), the valid range of α(i) expands
as φ(i) decreases. Hence, the range of α(i) that maintains
the stability of the ES model regardless of φ(i)

∈ (0, 1] is
0 < α(i) < 2, which is the case when φ(i)

= 1. Next,
we establish the lower bound for β(i). For this, we first
rearrange the inequality for φ(i) in (2c), which results in the
following inequality.

0 < φ(i)
≤ 1 ⇒ −1 < φ(i)

− 1 ≤ 0 (6)

To ensure model stability, the condition α(i) > 0 must be
satisfied as above. Then, referring to this and (2b), the lower
bound of β(i) is obtained.

−α(i) < α(i)(φ(i)
− 1) ≤ 0 ⇒ 0 < β(i) (7)

Combining all of these, we finally have the following
constraint equations for smoothing coefficients that ensures
the stability of the ES model.

0 < α(i) < 2 (8a)

0 < β(i) (8b)

β(i) < (φ(i)
+ 1)(2− α(i)) (8c)

0 < φ(i)
≤ 1 (8d)

Here, we note that, in comparison to the region for smoothing
coefficients defined by (3), the region defined by (8) is much
larger while still ensuring the stability of the ES model.

Since each smoothing coefficient is bounded within
a specific range, as described in (8), a tanh() layer is
incorporated at the end of the network as shown in Figure 3.
Through the recurrent neural network, a total of three values
d α̂

(i)
norm[t], d β̂

(i)
norm[t], d φ̂

(i)
norm[t] in the range of [−1, 1] are

obtained. Then, each d ξ̂
(i)
norm[t] (ξ ∈ {α, β, φ}) is transformed

to exist within the actual range of each smoothing coefficient
change [dξ

(i)
min, dξ

(i)
max]. Here, the information about minimum

and maximum values of each d ξ̂
(i)
norm[t] are obtained during

the dataset generation process for training SC-Updater. As a

54182 VOLUME 13, 2025

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

FIGURE 4. Time step range for extracting data samples to train both
SC-Updater and Trend Predictor from ηth time series data in the case of
LT > LE and F > 1.

result, estimated smoothing coefficient changes d λ̂∗(i)[t]
are obtained. Finally, by element-wise adding the default
smoothing coefficient set λ

(i)
0 to d λ̂∗(i)[t], the predicted

λ̂∗(i)[t] is calculated.

B. DATASET GENERATION FOR SC-UPDATER TRAINING
To train the SC-Updater, a dataset is required. For this,
we utilize the sliding window technique, which is commonly
used when developing deep learning-based prediction mod-
els [45]. Let Ntrain be the number of time series data in the
training dataset, where each time series data is indexed by
η ∈ {1, 2, ..,Ntrain}. Subsequently, let Lη be the length of ηth
time series data, and τη be the time index within the ηth time
series data (τη = 1, 2, ..,Lη). To extract data samples for
SC-Updater training from a given ηth time series data, the
input window and output window sizes are set to LE and 1,
respectively. Then, the amount of coefficient change at time
step τη, denoted by dλ∗(i)[τη], is determined by solving the
optimization problem in (9).

min
dλ∗(i)[τη]

∣∣∣ŷ(i)[τη + 1|τη]− y(i)[τη + 1]
∣∣∣

s.t. λ∗(i)[τη] = λ
(i)
0 + dλ∗(i)[τη]

λ∗(i)[τη] satisfies (8)

ŷ(i)[τη + 1|τη] = ES(Y (i)
E [τη], λ∗(i)[τη]) (9)

where τη ∈
[
max(LE ,LT),Lη−F

]
. Note that this range for

τη is defined as such in order to generate a dataset that
is valid for training both the SC-Updater and the Trend
Predictor. An illustration for the valid range of τη is shown in
Figure 4.
Through this optimization problem, the dλ∗(i)[τη] that

most accurately predicts the first future value for each input
window is found. Once dλ∗(i)[τη] is obtained for all input
windows generated from ηth time series data, a non-causal
moving average (MA) filter is applied to smooth out the
changes in dλ∗(i)[τη], thereby more clearly capturing the
changing pattern of the smoothing coefficients as shown in
Figure 5. This MA-filtered dλ∗(i)[τη] is used as a label for
the input window Y (i)

E [τη].

FIGURE 5. An example of smoothing coefficient comparison before and
after applying non-causal MA filter.

C. LOSS FUNCTION FOR SC-UPDATER TRAINING
We aim to train the SC-Updater to estimate the smoothing
coefficients as accurately as possible while maintaining the
stability of the ES model. To this end, the loss function
is designed using the difference between dλ∗(i)[τη] and
d λ̂∗(i)[τη] and (8c), where d λ̂∗(i)[τη] is the value predicted
by SC-Updater-i for dλ∗(i)[τη]. To enable the model to
accurately estimate the smoothing coefficient set, one of
several error measurement metrics, such as Mean Absolute
Error (MAE), Mean Square Error (MSE), or Root Mean
Square Error (RMSE), can be employed to design the
loss function. Each metric offers its own advantages as
a loss function: MAE is relatively robust to outliers,
MSE aids efficient convergence to minima by leveraging
gradually decreasing gradients, and RMSE penalizes errors
less severely than MSE [46]. As an example, if MSE is
employed, the loss function for the ηth time series is designed
as (10).

Loss(i)1,τη
=

∑
ξ∈{α,β,φ}

(dξ∗(i)[τη]− d ξ̂∗(i)[τη])2 + StabLoss(i)τη

(10)

The second term StabLoss(i)τη is for maintaining the stability
of the ES model, and it becomes 0 if λ̂∗(i)[τη] satisfies (8c).
Otherwise, the value of StabLoss(i)τη increases as the difference
between the left- and right-hand sides of (8c) increases. Note
that the other inequalities in (8) are not utilized for StabLoss(i)τη

design, as these conditions are sufficiently satisfied using the
tanh() layer in the SC-Updater-i.

D. PREPARATION OF TREND PREDICTOR TRAINING
The Trend Predictor also requires a dataset and a loss
function for training. To this end, a sliding window strategy is
employed similarly to the dataset preparation process of the
SC-Updater. By setting the input and output window sizes
to LT and F , the input and output windows at time step τη,
denoted by Y (i)

T [τη] and Y
(i)
F [τη] respectively, are extracted

from the ηth time series data in the training dataset. Then, the
pre-processed windows Y (i)

pre[τη] and B
(i)
F [τη] are calculated

VOLUME 13, 2025 54183

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

FIGURE 6. Tracks for driving time series data collection.

by (11).

Y (i)
pre[τη] = Y (i)

T [τη]⊖ ŷ(i)[τη + 1|τη]

B(i)F [τη] = Y (i)
F [τη]⊖ ŷ(i)[τη + 1|τη] (11)

where τη ∈
[
max(LE ,LT),Lη−F

]
, and ŷ(i)[τη + 1|τη] is the

first future value estimated by the ES model configured with
the already trained SC-Updater-i. It is worth mentioning that
since the SC-Updater operates independently of the Trend
Predictor, the trained SC-Updater can be utilized during the
dataset preparation process for the Trend Predictor.

Then, from Y (i)
pre[τη] =

[
b(i)[τη − LT + 1], .., b(i)[τη −

1], b(i)[τη]
]
for all data type i calculated in (11), the input data

for the Trend Predictor Yin[τη] is constructed as (12).

Yin[τη] =
[
bτη−LT+1, ..,bτη−j, ..,bτη

]
(12)

where bτη−j =
[
b(1)[τη− j], .., b(i)[τη− j], .., b(k)[τη− j]

]
for

j ∈ {0, 1, ..,LT − 1}.
The training of the Trend Predictor aims to estimate the

trend component as accurately as possible. For this, the loss
function is designed using the difference between B̂(i)F [τη] =[
b̂(i)[τη + 1|τη], .., b̂(i)[τη + F |τη]

]
and B(i)F [τη] =

[
b(i)[τη +

1], .., b(i)[τη+F]
]
for i ∈ {1, 2, .., k}, and an example of such

loss function is shown in (13).

Loss2,τη =

k∑
i=1

F∑
f=1

(b̂(i)[τη + f |τη]− b(i)[τη + f])2 (13)

MSE is utilized in (13) and, as explained in Section IV-C,
other error measurement metrics are also possible to be used.

E. OTHER ENHANCEMENTS
Apart from smoothing coefficient adaptation, several other
enhancements are also incorporated to further improve the
prediction accuracy. First, to reduce potential errors in the
prediction process, ŷ(i)[t + 1|t] is used instead of l(i)[t] as
indicated in lines 9 and 12 of Algorithm 2, where ŷ(i)[t + 1|t]
is computed using (1). Second, if there is available data
that can hint at the future, denoted as Infofuture[t], it is
fused with the input time series data Y (i)

E [t] and Ypre[t]
(referred to as ‘‘Input Fusion’’ in Figures 2 and 3). This
fused data is then transmitted as the input of the RNN
models, thereby utilizing the future informationwhenmaking
predictions. As an example of data fusion, if Infofuture[t] is
in the form of a sequence of length r , it is concatenated as[
Y (i)
E [t], Infofuture[t]

]
∈ RLE+r and

[
Yin[t], Infofuture[t]

]
∈

RkLT+r , whereYin[t] is generated in the form of (12). Finally,
there is no restriction on the selection of RNN models. That
is, any RNN model, such as vanilla RNN, GRU, or LSTM,
can be employed when configuring both the SC-Updater and
the Trend Predictor.

V. EXPERIMENTS
This section presents the prediction accuracy results of
the time series forecasters. The prediction performance

54184 VOLUME 13, 2025

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

FIGURE 7. An illustration of future-implying data and input data fusion
method used in this experiment.

was evaluated on vehicle driving data, which have the
non-seasonal and additive trend characteristics.

A. EXPERIMENTAL SETUP
The driving data were collected using IPG CarMaker vehicle
simulation software which mimics realistic vehicle move-
ments. IPG CarMaker provides a simulation environment
that can configure various driving tracks, and we designed
tracks with various curvatures so that diverse forms of time
series data are present in the driving data in this experiment.
Figure 6 illustrates the overall shapes of the tracks used in the
experiments and a summary of information for each track.
The dataset for training the SC-Updater and Trend Predictor
was obtained using the data collected from driving on the
training tracks, and the model performance was evaluated
using the data from the test tracks.

The vehicle was controlled by IPG Driver, a virtual driver
model included in IPG CarMaker, and was set to drive along
the center of the lane on each track. The target data for
prediction are the steering angle and pedal position, which
are typical input signals used in actual vehicle control. Note
that for the pedal position data, the throttle pedal and brake
pedal exist as separate control units, but these two signals
were combined under the assumption that the driver operates
only one pedal at a time. Additionally, for each time step, road
curvature information up to 30 meters ahead, recorded at 1m
intervals regardless of the current vehicle speed, was provided
in the form of sequence as future-implying information. All
data were collected at a rate of 10 Hz, and signs (+/−)
were assigned to distinguish driving behaviors. For example,
‘+’ indicates left direction for the steering angle and road
curvature data and acceleration for the pedal position data.
Figure 7 shows the future-implying information used in this
simulation and the process of fusing it when generating input
data for SC-Updater-i and Trend Predictor.
When collecting the driving data for each track, to obtain

diverse data reflecting various factors that can influence

FIGURE 8. An example of acquired driving data for each trial drive run in
the same driving direction and road segment1.

driving behavior in real-world environments, we adjusted
several parameters that affect the driving behavior of the IPG
Driver. Table 3 summarizes the parameters we changed when
generating the training and test datasets. For each training
track, 10 trial driving runs were conducted in one direction
and another 10 in the opposite direction, resulting in a total of
20 trials per track. Similarly, for each test track, 5 trial driving
runs were conducted in both directions, totaling 10 trials per
track. In every trial conducted on both training and test tracks,
all parameter values were randomly set within their specified
ranges listed in Table 3, and Figure 8 illustrates the driving
data profiles for each trial under the same driving direction
and road segment.

Additionally, to mimic sensor noise occurring in an actual
environment, we added zero-mean Gaussian noise to the
collected driving data. For the steering wheel angle data
in this experiment, reflecting the fact that modern vehicles
already have a measurement accuracy of 0.1 deg [49],
we applied Gaussian noise with a 99.9% probability of
noise occurrence within the range of [-0.1 deg, 0.1 deg].
Similarly, for the pedal position and forward path curvature
measurements, we employed Gaussian noise with a 99.9%
probability of noise occurrence within the range of [-0.5, 0.5]
and [-1/25 m-1, 1/25 m-1] respectively, and these ranges were
set heuristically.

To find the smoothing coefficient set of the ES model that
minimizes the difference between ŷ(i)[t + 1|t] and y(i)[t + 1],
we utilized fmincon(), which is the optimization tool
for nonlinear multivariable functions in MATLAB. However,
since fmincon() finds a local minimum, it may not
find the optimal coefficient set depending on the initial
point. To address this issue, when determining the fixed

1Note: Pedal position has no units, and its absolute value ranges from
0 and 100, representing fully released and fully pressed, respectively. This
description applies to all subsequent contents of the manuscript.

VOLUME 13, 2025 54185

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

TABLE 3. Simulation parameters that were changed randomly when collecting the driving data.

TABLE 4. Network model options.

coefficient set λ
(i)
0 used in MES-LSTM, we also employed

GlobalSearch(), a built-in MATLAB tool designed to
find the global optimum. The optimal coefficient set λ∗(i)[t]
for each input window required for training SC-Updater was
found using only fmincon(), with λ

(i)
0 as the initial point.

Since the fixed set λ
(i)
0 is determined as the global optimum,

we considered that a local search would be sufficient to find
λ∗(i)[t] that corresponds to variations of λ

(i)
0 .

The performance of deep learning models is affected
by several factors including the network architecture and
hyperparameter settings [50]. Therefore, to find the model
that provides the most accurate predictions, we applied
various model training configurations. Table 4 lists the
options used for developing and training the network model
in this experiment. For fair comparisons, all models for
each combination were trained using Adam optimizer for
15 epochs with a batch size of 10. Both SC-Updater and
Trend Predictor were implemented using PyTorch, and the
network training was performed on a computer with an Intel
i7-11700K CPU, an NVIDIA RTX 3080 Ti GPU, and 64 GB
of RAM.

Figure 9 illustrates the process of selecting the Trend
Predictor that showed the best prediction results for the test
dataset among all possible combinations in Table 4, and the
method is as follows. LetC denote the number of combinable
model configurations from Table 4. Also, let Ntest be the
number of time series data in the test dataset, where each
time series data is indexed by n ∈ {1, 2, ..,Ntest}. Given the
nth time series data in the test dataset, first, the multistep
predicted time series data generated by the cth model

FIGURE 9. A method to select the best model configuration using MAE.

(c ∈ {1, 2, ..,C}) at each time step, where the forecast
horizon is F , were collected. Then, the MAE was calculated
from each predicted data using (14), which measures the
overall multistep prediction accuracy. The reason for using
MAE is that it shows relatively less distortion in the error
calculation than other evaluation metrics such as MSE or
RMSE.

MAE(i)
c [t] =

1
F

F∑
f=1

∣∣ŷ(i)c [t + f |t]− y(i)[t + f]
∣∣ (14)

where i denotes a particular data type (i ∈ {1, 2, .., k}). Here,
the subscript ·c is used to indicate the result obtained from cth
model. The MAE values calculated according to (14) at each
time step t within the nth time series data were collected for
all n ∈ {1, 2, ..,Ntest} as (15).

M(i)
c =

Ntest⋃
n=1

{MAE(i)
c [t] | 20 ≤ t ≤ Ln − F} (15)

where Ln is the length of the nth time series data. In order
to produce an MAE collection of the same size regardless
of the input window size prepared in this experiment, t is
set to start from 20, which is the longest input window
size. Using this MAE collection, the specific percentile of
the MAE was calculated. In this experiment, we used the
99th percentile, representing the approximate maximum error
(for convenience, we denote it as MAE(i)

99,c in the following

description). Based on the MAE(i)
99,c values, we assigned

scores for each data type as indicated by the red boxes in

54186 VOLUME 13, 2025

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

FIGURE 10. All smoothing coefficient sets estimated by each SC-Updater
for the entire test dataset.

Figure 9. Let MAE(i)
99,min and MAE(i)

99,max denote the lowest

and highest values among {MAE(i)
99,c | c = 1, 2, ..,C},

respectively. We set 100 points to the result with MAE(i)
99,min

(best) and 0 points to the result with MAE(i)
99,max (worst). The

score for cth model was calculated using linear interpolation
as (16).

Score(i)c = 100×
MAE(i)

99,max −MAE(i)
99,c

MAE(i)
99,max −MAE(i)

99,min

(16)

Once scores were assigned for all data types, a total score was
calculated for each combination. The combination with the
highest total score was selected as the best model.

The process of selecting the best SC-Updater was similar to
the method described above, but there were two differences.
First, since the SC-Updater is designed to accurately predict
y(i)[t + 1], we set F = 1 in (14). Second, the best
SC-Updater-i was selected individually for each data type.
That is, the process of calculating the total score was omitted
when selecting the best SC-Updater-i.

B. VERIFICATION OF ES MODEL STABILITY CONDITION
To verify that the trained SC-Updater estimates smoothing
coefficient set that satisfies the stability conditions of the
ES model, we checked whether the estimated values of the

SC-Updater λ̂∗ = (α̂∗, β̂∗, φ̂∗) were within the inequalities
in (8). Figure 10 visualizes the smoothing coefficient sets
estimated by the SC-Updater for each driving data type on
the entire test dataset using a scatter plot.

First, the satisfaction of inequalities (8a), (8b), and (8d) can
be confirmed through plots 1⃝ and 2⃝ in each subfigure. Here,
plot 2⃝ corresponds to the top view of plot 1⃝, and the green
box in plot 2⃝ is a zoomed-in view around φ = 1 to check
if φ̂∗ ever exceeds 1. Plot 1⃝ clearly shows that β̂∗ is always
positive, which indicates that (8b) is satisfied. Also, through
plot 2⃝, we can confirm that all α̂∗ and φ̂∗ are within the range
defined by (8a) and (8d).

Next, the satisfaction of inequality (8c) can be verified
through plot 3⃝. For reference, the display range of α̂∗ in
plot 3⃝ is reduced to [0, 1.2], as all α̂∗ were within this
range in this experiment, as illustrated in plot 2⃝. To easily
check whether (8c) was satisfied, we utilized the value M =
(φ̂∗+1)(2− α̂∗)− β̂∗ shown in plot 3⃝. This value represents
the difference between the left- and right-hand sides of (8c),
where M > 0 indicates that (8c) is met. As shown in the
figure, all λ̂∗ satisfy M > 0. To sum up these results, since
all inequalities in (8) were satisfied, we confirmed that the
proposed SC-Updater can estimate smoothing coefficients
that satisfy the stability condition of the ES model.

C. PREDICTION ACCURACY COMPARISON
The AMES-RNN introduces several changes compared to
MES-LSTM. These changes include (i) substitution of l[t]
with ŷ[t + 1|t], (ii) expansion of the smoothing coefficients
range to (8), (iii) the use of SC-Updater, and (iv) the
use of future-implying data. To check the effect of each
modification, we measured the prediction error by adding
each change one by one to the MES-LSTM. The prepared
predictor types for comparison are summarized in Table 5.
Here, the predictors referred to as Type 1 and Type 2
in Table 5 are incremental models towards AMES-RNN.
Specifically, Type 1 is a modified model of MES-LSTM,
replacing l(i)[t] with ŷ(i)[t + 1|t] in lines 7 and 10 of
Algorithm 1. Type 2 is a modified model of Type 1, where the
optimal invariant smoothing coefficient set λ(i)

0 is determined
within the range defined by (8) instead of (3), and used in
configuring the ES model.

The overall prediction performance of each predictor
type was assessed using the 90th and 99th percentiles of
the MAE distribution, which represent the typical error
level observed in most predictions and the approximate
maximum error, respectively. Table 6 presents the prediction
performance metrics for each model type in forecasting
vehicle control signals. The results indicate that the overall
prediction accuracy was improved as each modification was
applied, and ultimately, the AMES-RNN+ showed the best
performance.

First, we can check the effect of using ŷ[t + 1|t]
by comparing MES-LSTM and Type 1. Referring to the
calculation of ŷ[t+1|t] in (1), when using l[t], the difference
ydiff[t + 1|t] = ŷ[t + 1|t] − l[t] = φb[t] + noise[t] was

VOLUME 13, 2025 54187

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

TABLE 5. Descriptions of each time series forecaster type and corresponding best model option.

TABLE 6. Comparison of 90th and 99th percentiles of MAE distribution.

TABLE 7. Statistics of one-step forecast errors for each ES model type.

added as an offset to the trend component to be predicted
by Trend Predictor. That is, the Trend Predictor needed to
predict not only the future trend component but also the offset.
On the other hand, since ŷ[t + 1|t] is used in Type 1, the
Trend Predictor can relatively focus on the task of predicting
the future trend component. For this reason, the prediction
accuracy was improved. This is clearly demonstrated in the
prediction result of the model denoted by ‘‘Type 1*’’ in the
last row of Table 6. Type 1* is a non-causal version of Type 1,
where the actual y[t+1] is used instead of ŷ[t+1|t] estimated
by the ES model. When the actual y[t + 1] was used, the
prediction accuracy was clearly improved, as the offset value
of the future trend component to be predicted by the Trend
Predictor always became zero.

FIGURE 11. An example of path curvature and vehicle steering wheel
angle data along the path (Note: Both data were normalized to clearly
display their overall shapes).

Next, we can observe that the prediction accuracy was
improved as the range (8) and the utilization of the
SC-Updater were sequentially applied. This is because
the smoothing coefficients that estimate ŷ[t + 1|t] more
accurately were employed as each improvement was applied.
Specifically, by replacing with (8), the optimal λ0 was found
in a wider range of smoothing coefficients. Additionally,
with the addition of SC-Updater, the smoothing coefficient
set that enabled the ES model to estimate ŷ[t + 1|t] more
accurately than when using λ0 was applied at each time step.
The improvement in the estimation accuracy of ŷ[t + 1|t]
due to these enhancements can be confirmed in Table 7. The
table presents the prediction error statistics for each ESmodel
type on the test data. As shown in the table, all statistical
metrics for prediction error tended to decrease in the order of
ES models used in Type 1, Type 2, and AMES-RNN. These
indicate that the estimation accuracy of y[t + 1] was further
improved.

Finally, the effect of using future-implying data was
confirmed by comparing AMES-RNN with AMES-RNN+.
By using the short-range forward road curvature profile data
as additional input data, the prediction accuracy of both types
of driving data was improved. In particular, the prediction
for steering wheel angle showed significant improvement
due to the relatively clear correlation between road curvature

54188 VOLUME 13, 2025

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

FIGURE 12. Box plot comparison of multistep prediction accuracy with
results from all test tracks.

and steering wheel angle, as illustrated in Figure 11. This
correlation contributes to reducing future uncertainty in
predicting steering wheel angle data. Hence, the overall
performance of the prediction model was improved. Through
a comprehensive comparison of the accuracy test results for
these five models, we confirmed that the proposed method
can enhance the prediction accuracy.

Figure 12 shows the prediction accuracy by forecast step
for the conventionalMES-LSTM, the proposedAMES-RNN,
and the case where future-implying data was additionally
utilized. The comparison between the first and second results
highlights that various improvements in the utilization of the
ES model have led to a significant enhancement in future
time series prediction accuracy compared to MES-LSTM.
Also, in the third result, it is noticeable that the prediction
accuracy of steering wheel angle was substantially improved
by additionally using future-implying data.

D. COMPUTATIONAL EFFICIENCY
As online processing is another important factor in vehicle
system implementation, this subsection presents the com-
putational efficiency of AMES-RNN and AMES-RNN+
to evaluate whether the models can perform time series
forecasting online. In this experiment, we measured the
amount of memory consumed for model loading, FLOPs
(FLoating point OPerations), and the average elapsed time
required to make a 6-step forecast. Memory consumption was
measured only once when the model was loaded, and the
other twometrics weremeasuredwhenever a new observation
was received using PyTorch Profiler. The observation consists
of two driving data types (pedal position and steering wheel
angle), which were measured at a rate of 10 Hz. All models

TABLE 8. Computational cost of the best models for each time series
forecaster type.

were implemented on a typical computer with an Intel i7-
11700K CPU, NVIDIA RTX 3080 Ti GPU, and 64GB of
RAM. The results are summarized in Table 8. Values reported
in the table is based on the inference phase of each time
series forecaster, which is configured with the best model
option in Table 5. For reference, the results of MES-LSTM
are also presented to show the increase in computational cost
of the AMES-RNN compared to MES-LSTM. Also, if the
descriptions are applied to both AMES-RNN and AMES-
RNN+, we collectively refer to them as ‘‘AMES-RNNs’’ for
simplicity.

As the SC-Updaters are used, AMES-RNNs require more
memory and computation than MES-LSTM. Nevertheless,
each of the AMES-RNNs used in this experiment require less
than 35 MB of memory, and perform only about 35 × 103

FLOPs for a single execution of a multistep forecast. Since
most modern computing devices are equipped with at least
several gigabytes (GB) of memory and can process more
than 109 FLOPs per second, these computational resource
requirements for performing online prediction can be easily
met. Indeed, even for AMES-RNN+, which showed the
longest execution time, the average computation time was
less than 13 ms. This indicates that predictions can be
sufficiently completed before receiving the next observation
under the condition of 100 ms sampling interval. Along with
these results, we demonstrated that AMES-RNNs can be
utilized for online prediction.

VI. CONCLUSION
We propose AMES-RNN, a hybrid time series prediction
model, for multi-step forecasting of multivariate time series
data with non-seasonal and additive trend characteristics.
The proposed model is based on MES-LSTM, and several
improvements are applied to enhance prediction accuracy.
First, we employ an RNN-based regression model to online
estimate smoothing coefficients of the ESmodel that provides
accurate predictions while maintaining the stability of the ES
model. Second, we improve the input data preprocessing and
output data postprocessing procedures for the RNN-based
future trend component predictor. Finally, future-implying
data is additionally provided as input data. To verify the
effect of these enhancements on prediction performance,

VOLUME 13, 2025 54189

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

we conducted multistep prediction accuracy tests on pedal
position and steering wheel angle data acquired from the
IPG CarMaker vehicle simulation software. As a result of
analyzing the 90th and 99th percentiles of the prediction
errors collected from tests where 6-step forecasts were
performed at each time step, the prediction accuracy was
improved by 23.0% and 32.4% for pedal position, and by
55.1% and 51.7% for steering wheel angle, respectively.
Through these results, we confirmed that AMES-RNN
provides superior prediction performance compared to MES-
LSTM. In addition, we demonstrated that AMES-RNN
requires only a small amount of computation and memory,
which is sufficiently low for modern computing devices to
handle, making it suitable for use as an online predictor in
vehicles.

Many previous studies have demonstrated improvements
in various vehicle functionalities by utilizing predicted future
states of the vehicle. Considering these studies alongside the
enhanced prediction accuracy presented in this paper, the
proposed AMES-RNN has significant potential to improve
the performance of such vehicle-related functions. Currently,
we are conducting research to enhance vehicle control
performance by utilizing AMES-RNN, and we are dedicated
to demonstrating that it can contribute to enabling safer and
more efficient vehicle operations. As part of our ongonig
work, we will further validate the model performance
using data collected from real-world driving environments,
which contain various forms of noise, and explore other
future-implying data (e.g., eye-gaze data, traffic interaction,
etc.) that may improve the prediction accuracy under various
driving conditions.

REFERENCES
[1] S. Haben, M. Voss, and W. Holderbaum, ‘‘Time series forecasting:

Core concepts and definitions,’’ in Core Concepts and Methods in Load
Forecasting. Cham, Switzerland: Springer, 2023, pp. 55–66.

[2] X. Zhou, W. Bai, Y. Ren, Z. Yang, Z. Wang, B. Lo, and E. M.
Yeatman, ‘‘An LSTM-based bilateral active estimation model for robotic
teleoperation with varying time delay,’’ in Proc. Int. Conf. Adv. Robot.
Mechatronics (ICARM), Guilin, China, Jul. 2022, pp. 725–730.

[3] S. B. Kamtam, Q. Lu, F. Bouali, O. C. L. Haas, and S. Birrell, ‘‘Network
latency in teleoperation of connected and autonomous vehicles: A review
of trends, challenges, and mitigation strategies,’’ Sensors, vol. 24, no. 12,
p. 3957, Jun. 2024.

[4] A. S. Bharatpur. (Jan. 2022). A Literature Review on Time Series
Forecasting Methods. Accessed: Oct. 16, 2024. [Online]. Available:
https://www.researchgate.net/publication/357786404

[5] L. Cascone, S. Sadiq, S. Ullah, S. Mirjalili, H. U. R. Siddiqui, and
M. Umer, ‘‘Predicting household electric power consumption using multi-
step time series with convolutional LSTM,’’ Big Data Res., vol. 31,
Feb. 2023, Art. no. 100360.

[6] B. Gülmez, ‘‘Stock price prediction with optimized deep LSTM network
with artificial rabbits optimization algorithm,’’ Exp. Syst. Appl., vol. 227,
Oct. 2023, Art. no. 120346.

[7] Z. Xu, J. Yuan, L. Yu, G. Wang, and M. Zhu, ‘‘Machine learning-based
traffic flow prediction and intelligent traffic management,’’ Int. J. Comput.
Sci. Inf. Technol., vol. 2, no. 1, pp. 18–27, Mar. 2024.

[8] G. U. Yule, ‘‘On a method of investigating periodicities disturbed series,
with special reference to Wolfer’s sunspot numbers,’’ Philos. Trans. Roy.
Soc. London. Ser. A, Containing Papers Math. Phys. Character, vol. 226,
pp. 267–298, Jan. 1927.

[9] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

[10] C. C. Holt, ‘‘Forecasting seasonals and trends by exponentially weighted
moving averages,’’ Int. J. Forecasting, vol. 20, no. 1, pp. 5–10, Jan. 2004.

[11] P. Farajiparvar, H. Ying, and A. Pandya, ‘‘A brief survey of telerobotic time
delay mitigation,’’ Frontiers Robot. AI, vol. 7, Dec. 2020, Art. no. 578805.

[12] A. Casolaro, V. Capone, G. Iannuzzo, and F. Camastra, ‘‘Deep learning
for time series forecasting: Advances and open problems,’’ Information,
vol. 14, no. 11, p. 598, Nov. 2023.

[13] S. S. W. Fatima and A. Rahimi, ‘‘A review of time-series forecasting
algorithms for industrial manufacturing systems,’’Machines, vol. 12, no. 6,
p. 380, Jun. 2024.

[14] P. Lara-Benítez, M. Carranza-García, and J. C. Riquelme, ‘‘An experimen-
tal review on deep learning architectures for time series forecasting,’’ Int.
J. Neural Syst., vol. 31, no. 3, Mar. 2021, Art. no. 2130001.

[15] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun,
‘‘Transformers in time series: A survey,’’ in Proc. 32nd Int. Joint Conf.
Artif. Intell., Macau, China, Aug. 2023, pp. 6778–6786.

[16] B. Lim and S. Zohren, ‘‘Time-series forecasting with deep learning: A
survey,’’ Philos. Trans. A Math. Phys. Eng. Sci., vol. 379, no. 2194,
Feb. 2021, Art. no. 20200209.

[17] E. Spiliotis, ‘‘Time series forecasting with statistical, machine learning,
and deep learning methods: Past, present, and future,’’ in Forecasting
With Artificial Intelligence: Theory and Applications, 1st ed., Cham,
Switzerland: Springer, 2023, pp. 49–75.

[18] T. Kim, J. Kim, Y. Tae, C. Park, J. -H. Choi, and J. Choo, ‘‘Reversible
instance normalization for accurate time-series forecasting against dis-
tribution shift,’’ in Proc. Int. Conf. Learn. Represent. (ICLR), 2021,
pp. 1–25.

[19] Y. Liu, H. Wu, J. Wang, and M. Long, ‘‘Non-stationary transformers:
Exploring the stationarity in time series forecasting,’’ in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), New Orleans, LA, USA, Jan. 2022,
pp. 9881–9893.

[20] Y. Chen and K. Wang, ‘‘Prediction of satellite time series data based on
long short term memory-autoregressive integrated moving average model
(LSTM-ARIMA),’’ in Proc. IEEE 4th Int. Conf. Signal Image Process.
(ICSIP), Wuxi, China, Jul. 2019, pp. 308–312.

[21] A. S. Azad, R. Sokkalingam, H. Daud, S. K. Adhikary, H. Khurshid,
S. N. A. Mazlan, and M. B. A. Rabbani, ‘‘Water level prediction through
hybrid SARIMA and ANNmodels based on time series analysis: Red hills
reservoir case study,’’ Sustainability, vol. 14, no. 3, p. 1843, Feb. 2022.

[22] X. Xu, X. Jin, D. Xiao, C. Ma, and S. C. Wong, ‘‘A hybrid autoregressive
fractionally integrated moving average and nonlinear autoregressive neural
network model for short-term traffic flow prediction,’’ J. Intell. Transp.
Syst., vol. 27, no. 1, pp. 1–18, Jan. 2023.

[23] J. Guo, H. He, and C. Sun, ‘‘ARIMA-based road gradient and
vehicle velocity prediction for hybrid electric vehicle energy man-
agement,’’ IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5309–5320,
Jun. 2019.

[24] Y. Jeong, S. Kim, and K. Yi, ‘‘Surround vehicle motion prediction
using LSTM-RNN for motion planning of autonomous vehicles at multi-
lane turn intersections,’’ IEEE Open J. Intell. Transp. Syst., vol. 1,
pp. 2–14, 2020.

[25] A. Ezen-Can, ‘‘A comparison of LSTM and BERT for small corpus,’’ 2020,
arXiv:2009.05451.

[26] D. Wang and C. Chen, ‘‘Spatiotemporal self-attention-based LSTNet for
multivariate time series prediction,’’ Int. J. Intell. Syst., vol. 2023, no. 1,
pp. 1–16, Jan. 2023.

[27] B. Peng et al., ‘‘RWKV: Reinventing RNNs for the transformer era,’’ 2023,
arXiv:2305.13048.

[28] T. Choudhari and A. Maji, ‘‘Modeling driver’s braking and steering
behavior along horizontal curves of two-lane rural highways for ADAS
applications,’’ Traffic Injury Prevention, vol. 23, no. 7, pp. 404–409,
Oct. 2022.

[29] H. Zhang and R. Fu, ‘‘A hybrid approach for turning intention prediction
based on time series forecasting and deep learning,’’ Sensors, vol. 20,
no. 17, p. 4887, Aug. 2020.

[30] L. Cao, Y. Luo, Y. Wang, J. Chen, and Y. He, ‘‘Vehicle sideslip
trajectory prediction based on time-series analysis and multi-physical
model fusion,’’ J. Intell. Connected Vehicles, vol. 6, no. 3, pp. 161–172,
Sep. 2023.

[31] W. Jo, H. Park, and S. Lee, ‘‘V2X based lateral acceleration prediction
for connected and automated vehicle,’’ in Proc. Int. Conf. Inf. Commun.
Technol. Converg. (ICTC), Oct. 2021, pp. 1675–1678.

54190 VOLUME 13, 2025

J. H. Seo, K.-D. Kim: RNN-Based Adaptive Hybrid Time Series Forecasting Model

[32] S. Alsanwy, H. Asadi, M. R. C. Qazani, M. Al-Ashmori, S. Mohamed,
D. Nahavandi, A. A. Alqumsan, S. Al-Serri, S.M. Jalali, and S. Nahavandi,
‘‘Prediction of vehicle motion signals for motion simulators using long
short-term memory networks,’’ in Proc. IEEE Int. Conf. Syst., Man,
Cybern. (SMC), Prague, Czech Republic, Oct. 2022, pp. 34–39.

[33] G. P. Zhang, ‘‘Time series forecasting using a hybrid ARIMA and neural
network model,’’ Neurocomputing, vol. 50, pp. 159–175, Jan. 2003.

[34] M. Alizadeh, S. Rahimi, and J. Ma, ‘‘A hybrid ARIMA–WNN approach to
model vehicle operating behavior and detect unhealthy states,’’ Exp. Syst.
Appl., vol. 194, May 2022, Art. no. 116515.

[35] W. Wang, B. Ma, X. Guo, Y. Chen, and Y. Xu, ‘‘A hybrid ARIMA-LSTM
model for short-term vehicle speed prediction,’’ Energies, vol. 17, no. 15,
p. 3736, Jul. 2024.

[36] R. N. Putri, M. Usman, and E. Virginia, ‘‘Modeling autoregressive
integrated moving average (ARIMA) and forecasting of PT Unilever
Indonesia Tbk share prices during the COVID-19 pandemic period,’’ J.
Phys., Conf., vol. 1751, no. 1, Jan. 2021, Art. no. 012027.

[37] S. Smyl, ‘‘A hybrid method of exponential smoothing and recurrent neural
networks for time series forecasting,’’ Int. J. Forecasting, vol. 36, no. 1,
pp. 75–85, Jan. 2020.

[38] T. Mathonsi and T. L. van Zyl, ‘‘A statistics and deep learning hybrid
method for multivariate time series forecasting and mortality modeling,’’
Forecasting, vol. 4, no. 1, pp. 1–25, Dec. 2021.

[39] G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi, ‘‘ETSformer:
Exponential smoothing transformers for time-series forecasting,’’ 2022,
arXiv:2202.01381.

[40] S. Zhang, R. Bai, R. He, Z. Meng, Y. Chang, Y. Zhi, and N. Sun, ‘‘Research
on vehicle trajectory prediction methods in urban main road scenarios,’’
IEEE Trans. Intell. Transp. Syst., vol. 25, no. 11, pp. 16392–16408,
Nov. 2024, doi: 10.1109/TITS.2024.3419037.

[41] X. Fan, F. Wang, D. Song, Y. Lu, and J. Liu, ‘‘GazMon: Eye gazing
enabled driving behavior monitoring and prediction,’’ IEEE Trans. Mobile
Comput., vol. 20, no. 4, pp. 1420–1433, Apr. 2021.

[42] Z. Wang, R. Zheng, T. Kaizuka, and K. Nakano, ‘‘Relationship between
gaze behavior and steering performance for driver–automation shared
control: A driving simulator study,’’ IEEE Trans. Intell. Vehicles, vol. 4,
no. 1, pp. 154–166, Mar. 2019.

[43] Y. Fu, H.Wang, and N. Virani, ‘‘Maskedmulti-step multivariate time series
forecasting with future information,’’ 2022, arXiv:2209.14413.

[44] R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting
With Exponential Smoothing: The State Space Approach. Berlin, Germany:
Springer, 2008.

[45] A. Mystakidis, E. Ntozi, K. Afentoulis, P. Koukaras, P. Gkaidatzis,
D. Ioannidis, C. Tjortjis, and D. Tzovaras, ‘‘Energy generation forecasting:
Elevating performance with machine and deep learning,’’ Computing,
vol. 105, no. 8, pp. 1623–1645, Aug. 2023.

[46] A. Jadon, A. Patil, and S. Jadon, ‘‘A comprehensive survey of regression-
based loss functions for time series forecasting,’’ in Data Management,
Analytics & Innovation. Singapore: Springer, 2024, pp. 117–147.

[47] A. Novikov, I. Novikov, and A. Shevtsova, ‘‘Study of the impact of type
and condition of the road surface on parameters of signalized intersection,’’
Transp. Res. Proc., vol. 36, pp. 548–555, Jan. 2018.

[48] National Weather Service. Beaufort Wind Scale. Accessed: Jan. 21, 2025.
[Online]. Available: https://www.weather.gov/mfl/beaufort

[49] M. Pietruch, A. Wetula, and A. Mlyniec, ‘‘Influence of the accuracy
and CAN frame period of the steering wheel angle sensor (SAS) on
the trajectory of a steer-by-wire-equipped car,’’ IEEE Access, vol. 10,
pp. 106110–106116, 2022.

[50] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

JI HWAN SEO received the B.S. degree in
transdisciplinary studies from Daegu Gyeongbuk
Institute of Science and Technology (DGIST),
Daegu, South Korea, in 2019, where he is currently
pursuing the Ph.D. degree with the Department
of Electrical Engineering and Computer Science.
His research interests include motion planning and
path tracking for autonomous driving platforms,
as well as state prediction of vehicles, with a focus
on improving the safety, reliability, and comfort.

KYOUNG-DAE KIM (Member, IEEE) received
the Ph.D. degree in electrical and computer engi-
neering from the University of Illinois at Urbana–
Champaign, Champaign, IL, USA, in 2011. He is
currently an Associate Professor with the Depart-
ment of Electrical Engineering and Computer
Science, Daegu Gyeongbuk Institute of Science
and Technology (DGIST). Prior to joining DGIST,
he was an Assistant Professor with the Department
of Electrical and Computer Engineering, Univer-

sity of Denver, USA. He was also a Postdoctoral Research Associate
with the Department of Electrical and Computer Engineering, Texas A&M
University, USA. His research interests include developing theories, tools,
and software frameworks to improve the reliability and autonomy of
cyber-physical systems and their application to real systems, such as smart
transportation systems and collaborative robotic systems.

VOLUME 13, 2025 54191

http://dx.doi.org/10.1109/TITS.2024.3419037

