l.)

Check for
Updates

Storage Abstractions for SSDs: The Past, Present, and Future

XIANGQUN ZHANG, Syracuse University, Syracuse, United States
JANKI BHIMANI, Florida International University, Miami, United States
SHUYI PEI, Samsung Semiconductor Inc, San Jose, United States

EUN]JI LEE, Soongsil University, Seoul, Korea (the Republic of)
SUNG]JIN LEE, DGIST, Daegu, Korea (the Republic of)

YOON JAE SEONG, FADU Inc., Seoul, Korea (the Republic of)

EUI JIN KIM, FADU Inc., Seoul, Korea (the Republic of)

CHANGHO CHOI, Samsung Semiconductor Inc, San Jose, United States
EYEE HYUN NAM, FADU Inc., Seoul, Korea (the Republic of)
JONGMOO CHOI, Dankook University, Yongin, Korea (the Republic of)
BRYAN S. KIM, Syracuse University, Syracuse, United States

This article traces the evolution of SSD (solid-state drive) interfaces, examining the transition from the block
storage paradigm inherited from hard disk drives to SSD-specific standards customized to flash memory. Early
SSDs conformed to the block abstraction for compatibility with the existing software storage stack, but studies
and deployments show that this limits the performance potential for SSDs. As a result, new SSD-specific
interface standards emerged to not only capitalize on the low latency and abundant internal parallelism of
SSDs, but also include new command sets that diverge from the longstanding block abstraction.

We first describe flash memory technology in the context of the block storage abstraction and the compo-
nents within an SSD that provide the block storage illusion. We then describe the genealogy and relationships
among academic research and industry standardization efforts for SSDs, along with some of their rise and
fall in popularity. We classify these works into four evolving branches: (1) extending block abstraction with
host-SSD hints/directives; (2) enhancing host-level control over SSDs; (3) offloading host-level management to
SSDs; and (4) making SSDs byte-addressable. By dissecting these trajectories, the article also sheds light on
the emerging challenges and opportunities, providing a roadmap for future research and development in SSD
technologies.

CCS Concepts: « Computer systems organization — Firmware; « Software and its engineering —
Secondary storage; File systems management; « Information systems — Flash memory;

This paper is supported in part by NSF grants 2008453, 2323100, 2338457, and 2402328.

Authors’ Contact Information: Xiangqun Zhang, Syracuse University, Syracuse, New York, United States; e-mail: xzhang84@
syr.edu; Janki Bhimani, Florida International University, Miami, Florida, United States; e-mail: jphimani@fiu.edu; Shuyi
Pei, Samsung Semiconductor Inc, San Jose, California, United States; e-mail: shuyi.pei@samsung.com; Eunji Lee, Soongsil
University, Seoul, Korea (the Republic of); e-mail: ejlee@ssu.ac.kr; Sungjin Lee, DGIST, Daegu, Korea (the Republic of); e-mail:
sungjin.lee@dgist.ac.kr; Yoon Jae Seong, FADU Inc., Seoul, Korea (the Republic of); e-mail: yjseong@fadutec.com; Eui Jin
Kim, FADU Inc., Seoul, Korea (the Republic of); e-mail: euijin.kim@fadutec.com; Changho Choi, Samsung Semiconductor Inc,
San Jose, California, United States; e-mail: changho.c@samsung.com; Eyee Hyun Nam, FADU Inc., Seoul, Korea (the Republic
of); e-mail: ehnam@fadutec.com; Jongmoo Choi, Dankook University, Yongin, Gyeonggi, Korea (the Republic of); e-mail:
choijm@dankook.ac.kr; Bryan S. Kim, Syracuse University, Syracuse, New York, United States; e-mail: bkim01@syr.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2025 Copyright held by the owner/author(s).

ACM 1553-3077/2025/01-ART2

https://doi.org/10.1145/3708992

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

HTTPS://ORCID.ORG/0009-0008-8971-0549
HTTPS://ORCID.ORG/0000-0002-4421-9923
HTTPS://ORCID.ORG/0000-0002-8649-4253
HTTPS://ORCID.ORG/0000-0001-5916-2301
HTTPS://ORCID.ORG/0000-0002-9753-2286
HTTPS://ORCID.ORG/0009-0000-2685-5136
HTTPS://ORCID.ORG/0009-0007-3737-5593
HTTPS://ORCID.ORG/0000-0002-4377-5418
HTTPS://ORCID.ORG/0009-0005-7076-676X
HTTPS://ORCID.ORG/0000-0003-2042-6327
HTTPS://ORCID.ORG/0000-0002-3689-3985
https://doi.org/10.1145/3708992
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3708992&domain=pdf&date_stamp=2025-01-15

2:2 X. Zhang et al.

Additional Key Words and Phrases: SSD, garbage collection, flash translation layer, data placement scheme,
zoned namespace, multi-stream, flexible data placement, computational storage, byte-addressable SSD

ACM Reference Format:

Xiangqun Zhang, Janki Bhimani, Shuyi Pei, Eunji Lee, Sungjin Lee, Yoon Jae Seong, Eui Jin Kim, Changho Choi,
Eyee Hyun Nam, Jongmoo Choi, and Bryan S. Kim. 2025. Storage Abstractions for SSDs: The Past, Present,
and Future. ACM Trans. Storage 21, 1, Article 2 (January 2025), 44 pages. https://doi.org/10.1145/3708992

1 Introduction

Modern computers use abstractions for interoperability between the host and its peripherals [25].
Storage, as the basis of the memory hierarchy, also requires an abstraction layer for host-storage
communications. This abstraction layer allows the host to use storage devices without regard
to its underlying implementation. Over the past decades, the fundamental design of the storage
abstraction has remained relatively consistent: The device exposes an address range, and the host
system issues read/write requests within that range. Subsequently, the storage device executes
the requests and returns the results back to the host. This simple interface between the storage
device and the host system is sufficient for data storage purposes. It aged well from floppy to hard
drive and finally was passed down to the SSD.

However, new developments and findings in the field of storage device demand enhancements
to the existing storage abstraction. SSDs are fundamentally different from magnetic disks such
as floppies and hard disk drives. First, by using NAND flash, SSDs achieve high throughput
by eliminating moving parts and exploiting internal parallelism. However, NAND flash does
not support in-place updates, which means that garbage collection is required. Although
the existing storage abstraction works on SSDs, it does not provide a method to reduce
garbage collection overhead with host-SSD coordination. Second, the increasing speed of SSDs
shifted the latency source in the storage stack. The storage device is not dominating the latency
anymore; instead, the host also contributes about half of the total latency [170]. The internal
bandwidth of the SSD is also larger than the external bandwidth between the host and the
SSDs [136], which means that data transfer between the host and the SSDs poses a major
limitation of utilizing SSDs to their full potential. Last but not least, the recent emergence of
Compute Express Link (CXL) allows researchers to reimagine integrating SSDs into the memory
hierarchy by directly using SSDs as part of the main memory. However, the main memory is
byte-addressable while the traditional storage abstraction sees secondary storage in units of
sectors [25]. Together, these three points warrant new enhancements to the existing storage
abstraction.

Thankfully, both academia and industry are well aware of limitations in the traditional storage
abstraction. Many new features, enhancements, and host-device co-designs have been created
to address the shortcomings of the existing storage abstraction. In this article, we survey the
SSD device abstraction and enhancements, exploring their backgrounds and designs that enable
SSDs to better communicate with the host. We will also examine their relationships, applications,
standardization efforts, and fluctuations in popularity over time. We categorize these abstraction
enhancements into four categories:

(1) extending block abstraction with host-SSD hints/directives. This includes TRIM, Multi-stream,
and Flexible Data Placement (FDP);

(2) enhancing host-level control over SSDs. This includes Open-channel (OC) SSD and Zoned
Namespaces (ZNS) SSD;

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://doi.org/10.1145/3708992

Storage Abstractions for SSDs: The Past, Present, and Future 2:3

*[135]
Comp. Stor.
2001
[Life or Death at Block-Level [143]
0SDI 04

[60, 88, 148]

08SD [107] o
MSST 13, Cmgg‘ =
{ 3
* [127,151] [5]
0OCSSD. NVMe
2014 2014

X-FIL [87]
SIGMOD 13

[wisal
Multi-stream
2014

|AppMgmiFlash [106)]
FAST 16

165, 80]
Comp. Stor.
2016

[158] 38, 165] 18,91 [10] 9
Multi-stream 0CssD Linux Kernel NVMe L
— 20 2017 017 2017

17
18

T 138,164]
2B-SSD [29]
Ml tream 2R
3 |
196, 111,159, 161] *[35] [13] *[11] *[12,89)
Multi'stream N5 NVMe oL KV-55D
2019 o | 2019 2019
T T

2019
[14] 15,74, 116, 129]
CXL KV-55D
2020 2020

99, 108, 154]
Comp. Stor.
2021

[136]
Comp. Stor.
2019

[43]
Comp. Stor.
2020

[153]
Multi-stream
2020

136, 66, 117] 146, 168]
ZNs Multi-stream
| 2021

[27,149]
Linux Kernel
2021

133, 85,98, 133]
KV-58D

2021

[

FDP [19]
2022

[119,170]
Comp. Stor.
2022

1]
(68, 128, 163]
Comp. Stor.

[34]
Multi-stream
2022

[691
Linux Kernel
2022

130, 48, 75, 81, 102]
ZNS

202

|

132, 67,97,103, 112, 115,123,132, 152]
ZNS

2023

Fig. 1. The genealogy tree. Papers published in the same year are placed on the same row. Different colors
indicate different categories (Gray indicates no specific category). Y indicates the root of a given category.
A detailed version showing every paper as an independent node can be found in the Appendix as Figure 12.

(3) offloading host-level management to SSDs. This includes Key-value (KV) SSD and
computational storage;
(4) making SSDs byte-addressable, along with their use in CXL,
which we present along with their standardization history in Figure 1. Last, we will conclude our
article with our view on the possible future directions for extensions to storage abstractions.
Our main contributions in this survey include:
(1) A comprehensive overview of enhancements to the traditional storage abstraction.
(2) Categorization of different enhancements based on their characteristics.
(3) Visualization of the relationship between different enhancements and their related work.
(4) Identification of directions and challenges for current and future enhancements to storage
abstractions.

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:4 X. Zhang et al.

The rest of this survey is organized as follows: Section 2 provides a background on SSD and stor-
age abstractions. Section 3 through Section 6 discuss storage abstraction enhancements, including
those that providing extra hints/directives to SSD (Section 3), moving SSD responsibilities to the
host (Section 4) and vice versa (Section 5), and making SSD byte-addressable (Section 6). Section 7
is our view on the future development of SSD storage abstractions, and Section 8 concludes this
survey.

2 Abstraction Layers for Host-SSD Communication

Making SSDs work on the host computer is not an easy task: Multiple layers are involved, and they
should seamlessly coordinate with each other to form a storage stack with high throughput and
low latency. We abstract the storage stack into three layers: The operating system serves as the
top layer, the communication protocol as the middle layer, and the SSD itself as the bottom layer.
The operating system provides storage abstractions to the applications running on top of it, so the
applications do not need to be concerned about the underlying storage details when running. The
communication protocol is in charge of the communication between the operating system and
the SSD, which ensures the interoperability between different hosts and SSDs. When receiving
requests from the host, The SSD firmware has to perform operations fulfilling those requests. In
this section, we will discuss different abstraction layers that coordinate the host and SSD along
with their evolutions layer-by-layer.

2.1 Linux Block Layer (bio)

Storage devices come in different shapes and sizes, ranging from legacy tapes and floppy disks to
contemporary hard disk drives and solid state drives, each characterized by its distinct underlying
mechanisms. Despite this diversity, most mass storage devices expose their storage capacity to
the operating system and support two primary operations: read and write. The operating system
should be able to execute read and write requests within the specified address space regardless
of the actual type and implementation of the device. Linux addresses this requirement through
the implementation of the bio layer. The bio layer serves as an interface that bridges the gap
between the operating system and various types of mass storage devices. By providing a consistent
interface, irrespective of the device’s type or implementation, the bio layer ensures interoperability
[42]. This enables host applications to issue I/O requests independent of the storage device’s
implementation details. Despite the overarching purpose of the bio layer, it is crucial for the
operating system to acknowledge the inherent diversity among storage devices in terms of their
physical attributes and internal mechanisms. Consequently, the bio layer must exhibit adaptability
to cater to the unique specifications of different devices.

To take advantage of all the features that a storage device provides, the bio layer has been
extended for additional operations and fields tailored to numerous features of different storage
devices. Listing 1 shows the evolution of the bio layer over the years, with the initial version of the
bio layer released in 2001 on the left and a later version released in 2021 on the right. The initial
bio layer was designed with two operations only: read and write. However, to pursue improved I/O
performance for a variety of devices, the bio layer has undergone many enhancements. Notable
additions include the discard operation (also known as TRIM) [143], introduced to the bio layer
to provide an optional hint for improved I/O performance [26]. Other enhancements, including
Multi-stream and Zoned Namespaces, are also added to the bio layer [9, 27]. The bio layer also
underwent a major redesign for a multi-queue design named blk-mq, which scales with the number
of host CPU cores and addresses the performance bottleneck at the bio layer due to the higher
performance of the storage device that comes with the era of SSDs [37]. We present an overview of
storage enhancement changes to the Linux bio layer using yellow boxes in Figure 1. In summary,

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:5

REQ_OP_ZONE_RESET
REQ_OP_ZONE_RESET_ALL

// include/linux/bio.h, v2.5.1 // include/linux/blk_types.h, v5.15
struct bio { struct bio {
/7 ... /] ...
/* bottom bits READ/WRITE, top bits priority */ /* bottom bits REQ_OP, top bits req_flags. */
unsigned long bi_rw; unsigned int bi_opf’;
/] ... /7 ...
} unsigned short bi_write_hint; // Multi-stream
/] ...
}

/7 ... /] ...

/* enum req_opf {

* bio bi_rw flags REQ_OP_READ =0,

* REQ_OP_WRITE =1,

* bit @ -- read (not set) or write (set) REQ_OP_FLUSH =2,

* bit 1 -- rw-ahead when set REQ_OP_DISCARD =3,

* bit 2 -- barrier REQ_OP_SECURE_ERASE = 5,

*/ REQ_OP_WRITE_SAME =7,
#define BIO_RW Q REQ_OP_WRITE_ZEROES =9,
#define BIO_RW_AHEAD 1 REQ_OP_ZONE_OPEN =10,
#define BIO_RW_BARRIER 2 REQ_OP_ZONE_CLOSE =11,

// (END OF THE BIO_* DEFINITION) REQ_OP_ZONE_FINISH =12,

// ... REQ_OP_ZONE_APPEND =13,

REQ_OP_DRV_IN = 34,
REQ_OP_DRV_OUT = 35,
REQ_OP_LAST,

3

/] ...

Listing 1. The evolution of the bio layer from the initial version from Kernel v2.5.1 in 2001 (left) and Kernel
v5.15 in 2021 (right) with discard, Multi-stream, and Zoned Namespaces support. More operations and
abstraction enhancements, as defined by BIO_* and REQ_OP_x, have been supported over the years.

the bio layer functions as the fundamental interface for all mass storage devices for the Linux
kernel since v2.5.1, offering both a universal and flexible framework to adapt to the general and
distinct characteristics of different storage devices, enabling enhancements to storage abstractions.

2.2 Communication Protocols

The host and the SSD must “speak” the same “language” to make them interoperable. Protocols,
such as SATA and NVMe, are created to enable the host and the SSD to understand requests and
responses from each other. Serial AT Attachment (SATA) is a bus interface developed to connect
mass storage devices to a host system. Introduced in 2001, it serves as a high-speed serial link
replacement for parallel ATA (PATA) attachment of mass storage devices [155]. SATA quickly
became the dominant bus interface for mass storage devices [2], particularly hard disk drives, due
to its improved speed compared to PATA. During the past two decades, SATA has undergone three
major versions: SATA 1.0, 2.0, and 3.0 [121]. The primary enhancement in each major version
focuses on the data transfer speed. While minor versions like SATA 3.1 exist, they do not focus on
improving transfer speed [121]. As the SATA workgroup only planned for three major versions up
to SATA 3 with a maximum transfer speed of 6 Gb/s [155], an alternative method of connecting
SSDs to the host computer is imperative to exceed the speed limitations imposed by SATA.

NVM Express, commonly known as NVMe, serves as a communication interface bridging the
connection between a host system and a non-volatile memory subsystem. By utilizing PCle as its
underlying bus interface, NVMe can achieve about 1 GB/s throughput even using only one single
PCle 3.0 lane with the ability to scale up to a maximum data transfer speed of nearly 16 GB/s when
utilizing all 16 lanes when it was first introduced in 2011 [3]. Consequently, NVMe with PCle has
emerged as the predominant interface for SSDs. NVMe has undergone iterations over the years
like SATA, incorporating clarifications and introducing new features [3, 13, 17] with the expansion

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:6 X. Zhang et al.

Channel 1 1 X
—P[Chip 1
_P[Chip 2

N

s.s s
Channel 2 '[ulu Chipg u
lelle pl}
e e ell
[,_[, Chip 4 |,
Tt L
Controller Channel s | LN —
_’[c c Chip5 ¢
KK KTl
—P[o o Chip6 1 1
1 5-6

Channel 4 1
_’[Chip 7
_>[Chip 8

I
X0 O ~—OT - 0T Cc W

Fig. 2. The overall structure of a traditional SSD.

to include support for physical layers beyond PCle [125, 126]. Given NVMe’s established status as
the de facto standard for SSDs, any proposed enhancements to SSD storage abstractions must be
ratified and accepted into the NVMe standard for universal recognition. Figure 1 illustrates the
ratification of new storage abstraction enhancements into SATA (in sea-green boxes) and NVMe
(in orchid-colored boxes), which we will also discuss in future sections.

2.3 Solid State Drive (SSD)

Upon receiving a SATA/NVMe request from the host, the SSD handles the request according to
the type of operation. SSD leverages NAND flash chips as its underlying storage medium, and a
read/write request can be striped and handled by several flash chips concurrently, resulting in high
throughput by exploiting internal parallelism [30]. The widespread adoption of SSDs led to the
evolution of their upper layers, including the creation of bio blk-mqand NVMe.

However, NAND flash chips do not support in-place updates. The smallest unit of write is a page,
whereas the smallest reclaim unit is a multi-page erase block. In practice, SSDs exploit internal
parallelism by grouping erase blocks from each chip into a superblock, as shown in Figure 2.
When handling a write request, the SSD sequentially places incoming data pages chip-by-chip
in a superblock. A new superblock will be chosen if and only if the previous superblock is full.
Updating existing data requires placing new data pages elsewhere on the SSD and invalidating
corresponding old data pages. To reclaim space from invalid data, the SSD has to perform garbage
collection (GC). A superblock will be chosen as the victim: Any valid data in the victim block
will be relocated. This process causes write amplification (WA), which can be measured by the
write amplification factor (WAF). The SSD also needs to erase the victim block after relocating
all valid pages, which is orders of magnitude slower than reading or writing a single page [54].
In summary, internal data movement and block erase together contribute to the long SSD tail
latency [157].

Therefore, reducing GC overhead has been a central focus of SSD research, but the lack
of predictability hinders optimization. Traditional storage abstraction does not provide direct
control over GC triggering, awareness of GC events, and data placement to reduce GC overhead.
Consequently, enhancements to storage abstractions are imperative for SSDs to collaborate

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:7

effectively with hosts and achieve their full potential. Some examples on this front include
Multi-stream, Zoned Namespaces, and Flexible Data Placement. By exchanging more information
between the SSD and the host, garbage collection overhead can be significantly reduced [19, 36, 86].

In summary, SSD dominates the current storage market, thanks to its performance by leveraging
multiple NAND flash chips. However, NAND flash is also a double-edged sword, which requires
data relocation and block erase during the garbage collection process, since NAND flash does not
support in-place updates. To overcome the performance loss due to garbage collection, the host and
the SSD should communicate and coordinate to reduce the overhead caused by garbage collection.

2.4 Storage Stack Summary

We identified the three layers of the storage stack in this section: the operating system layer (most
importantly bio), the communication protocol via a selected physical layer, and the SSD itself. Any
of these three layers can become a bottleneck for the whole storage stack. Therefore, it is crucial to
identify and remove performance bottlenecks from all three layers.

Since the communication protocol, being the middle layer, is built upon the underlying industry-
standard physical bus (e.g., NVMe over PCle), prior works primarily focused on the host layer and
the SSD layer when introducing new performance improvements. By reducing the data returned to
the host after a request, the time for data transfer can be reduced, because the storage stack on
the host can be heavy, which includes the application, the filesystem, the bio layer, and the device
driver. However, the SSD releases more bandwidth and internal CPU resources to handle host
requests by reducing the frequency of garbage collection. The communication protocol depends
on the other two layers and would be modified if the host and the SSD require additional fields to
interchange information. We will discuss the various enhancements to storage abstractions yielding
better performance by achieving the goals above in the following sections.

Enhancements to Storage Abstractions
We categorize storage abstraction enhancements into four categories:

(1) Extending block abstraction with host-SSD hints/directives.
(2) Enhancing host-level control over SSDs.

(3) Offloading host-level management to SSDs.

(4) Making SSDs byte-addressable.

These enhancements improve performance and/or provide new possibilities for SSDs from different
perspectives, which includes garbage collection reduction, data movement reduction, and/or
host-SSD co-design.

3 Host-SSD Hints/Directives

In this section, we focus on the hints and directives provided to the SSD from the host. We define
hint as an optional data entry field that the SSD can optionally utilize or ignore. The SSD can utilize
the given hints for hopefully better performance, but it can also safely ignore such hints if the
SSD does not know how to utilize such hints. For example, an SSD that supports TRIM hint can
sometimes ignore the hint if the given range is too small [147, 150]. However, we define directive
as a command that SSD should follow. The SSD is expected to perform the operation by utilizing
the information sent by the host, as every existing feature built upon directives is designed to
follow the orders given by the directives [19, 86, 120].l To summarize, hints are more optional than

1Developers may sometimes call the directive values (e.g., Multi-stream stream IDs) to be passed as “write hints” [105, 110].
We will also call these values “write hints” or “lifetime hints” in this article to avoid any confusion.

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:8 X. Zhang et al.

directives: A device can safely ignore hints but is expected to follow directives to the maximum
extent.

3.1 Discard/TRIM

First proposed in the paper by Sivathanu et al. [143], the design of the TRIM operation is simple but
effective: The host system tells the SSD using the dataset management command [17, 121] about
which logical address now contains invalid data due to file deletion. This essentially reduces the
number of valid pages relocated in the SSD in the garbage collection process. Otherwise, the SSD
will not know that a logical address range contains deleted data and will relocate the corresponding
physical pages during garbage collection, causing extra GC overhead [1]. Since the TRIM command
indicates the invalidity of the data, it is also used to securely erase data by physically removing the
data from the SSD immediately after the data is invalidated [55].

Unlike most other categories in this survey, there are very limited design choices and extensions
for TRIM; one example, though, is the frequency to send TRIM requests to limit the number of I/O
requests [32]. Only a few prior works focused on TRIM policies and implications [73, 83, 93, 104].
Nevertheless, the effectiveness and (relative) simplicity of TRIM [86] encouraged most modern
operating systems and storage protocols to adopt TRIM as a part of them. This includes Microsoft
Windows since Windows 7 [122], Linux since kernel version 2.6.28-rc1 [26], macOS since Lion
[144], SATA since 2007 [1], and NVMe since version 1.0 [3].

Despite the simplicity of TRIM, it took years to improve TRIM policies in the Linux kernel. The
most intuitive time to issue TRIM requests is right after when the filesystem knows a location is
freed up due to deletion and overwrite. This is called online TRIM (also known as synchronous TRIM
[50, 147]). However, early SATA protocol does not support queued TRIM requests. To issue a TRIM
request, the operating system has to ensure that the current I/O queue is empty. This can cause
significant performance degradation, since TRIM is blocked by and can also block other I/O requests
[45, 50, 150]. To minimize the performance impact caused by TRIM, the operating system needs to
perform TRIM when there are no outstanding I/O requests in the I/O queue. One approach is to keep
track of all discardable segments on the host side and send a batch of TRIM requests when there are
no outstanding I/O requests (e.g., once a week, when the system is idle). This approach is called
batched TRIM [52, 92, 114]. Due to its simplicity, it is widely supported by different filesystems such
as ext3/4 [51] and F2FS [92].

However, batched TRIM is not real-time, as the user is responsible for choosing an adequate
frequency (e.g., once per week). If the SSD is near full, then TRIM helps on SSD performance, since it
frees more internal space for data relocation after garbage collection, which reduces the possibility
of triggering GC every time after a write [62, 73]. If the user is unaware that the next batched TRIM
is scheduled in the far future when the SSD is near full due to excessive use, then the efficiency of
the SSD can be impacted due to excessive GCs. With the introduction of queueable TRIM in SATA
3.1 [139] and later in NVMe [17], TRIM requests can also be sent into queues without blocking
or being blocked by other I/O requests. This means online TRIM is finally becoming practical,
and the operating system can issue online TRIM requests to SSDs without blocking other I/O
requests.

Although online TRIM provides real-time information to the SSD about the freed space, this
could severely impact SSD performance, since it takes a long time to handle TRIM requests [62, 84].
To mitigate this issue, some Linux filesystems now support asynchronous TRIM so TRIM requests
will only be issued to SSDs after there are enough ranges of discardable spaces [145]. Unlike
batched TRIM, asynchronous TRIM is more flexible, because it is designed to send TRIM requests
more frequently [146]. It also prevents excessive, fragmented TRIM requests that can sometimes
be ignored by SSDs [145] or cause SSD performance degradation [147]. With its balance between

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:9

Write Pointer Map

Stream Superblock

Channel 1 T N T
—b[Chip 1

Controller

8) if a superblock (e.g., 5) is full.

Write Pointer Map

Stream Superblock

]
]
]
| l
]
]
]

Fig. 3. The overall structure of a Multi-stream SSD.

TRIM frequency and efficiency, asynchronous TRIM has recently become the default TRIM choice for
filesystems like Btrfs [147], marking the most recent improvement for TRIM.

3.2 Multi-stream

3.2.1 From Manual to Automatic. Multi-stream [86] is a directive that allows hosts to inform SSD
of the physical placement preference of different data. It has been observed that data with similar
characteristics may be invalidated at the same time; by grouping data with similar characteristics
into the same superblock, data in the same superblock tend to be bimodal, i.e., being all valid or all
invalid. If all picked garbage collection victims contain mostly or entirely invalid data, then the write
amplification can be kept low. Data attached with different stream IDs based on host-calculated
write hints [9, 110] will be written to different superblocks as shown in Figure 3. To summarize, the
host calculates write hints based on the data characteristics and uses these write hints as stream ID
directives when writing the data to the SSD [13]. When the superblock associated with the stream
ID is full, another free superblock will be assigned to this stream ID to ensure different superblocks
will not mix data with different stream IDs. Multi-stream thus provides the bridge for the host
to communicate with the SSD regarding the data characteristics known by the host. A series of
works has spun off from the original Multi-stream paper, providing different enhancements, and
Multi-stream was ratified into NVMe 1.3 [10] and supported by the Linux kernel since v4.13-rc1 [9].
Figure 4 shows the relationship between different Multi-stream related papers. Table 1 summarizes
different Multi-stream related papers along with some of their most important characteristics.

One critical shortcoming of the original Multi-stream paper is that it requires manual assignment
of the stream IDs. If an application would like to exploit the benefit provided by Multi-stream,
then it has to be rewritten so the stream ID can be assigned to each write request. For example, an
update to RocksDB was necessary to fully exploit the benefits provided by Multi-stream [110]. The
requirement of manually assigning stream IDs limited the adoption of Multi-stream. To mitigate
this problem, Yang et al. proposed AutoStream [158] for automatic assignment of stream IDs. It is
the first paper to enable automatic assignment of stream IDs, paving the way for subsequent papers
in this field. AutoStream is implemented on the device driver level, since some applications may
bypass the block I/O layer, and the SSD may have limited computational resources for stream ID
calculation. AutoStream provided two different algorithms, multi-queue (MQ) and sequentiality,
frequency, and recency (SFR).

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:10

Multi-stream % [86]
HotStorage ‘14

X. Zhang et al.

lAutostream [158] |
SYSTOR 17

OpenChannelSSD [7]
2015
=

FStream [134]
FAST "1

H =

vStream [164]

HotStorage ‘18

DIR-FIL [153]
DAC 20

Linux Kernel v4.15-rc1 [8]
F2ES supported write hints
2017

Linux Kernel v4.13-rc1 [9]
supported Multi-stream

NVMel.3 [10]
supported Multi-stream
2017

{

1]

{ {

PCStream [96]
FAST 19

IStoneNeedle [161]
HotStorage '19

DStream [111]

WARCIP [159]
ITC-CSCC 19 5

FileStream [165]
HotStorage ‘21

ML-DT [46]
SYSTOR ‘21

ZNS % [35]
VAULT '19
[

ZNS Eval [36]
ATC 21

FIOS [34] FDP [19]
ToS 22 2022

FS Journal In ZNS [45]
JMIS 22

Future NVMe [22]
ratifies Compuatational Storage/ FDP
2024

Fig. 4. Multi-stream related works.

Table 1. A Summary of Multi-stream and Its Related Works

Name Location On/Offline Algorithm Description
Multi-stream [86] Host N/A Manual Provides an interface to tag data with a stream ID.
Requires manual assignment of stream IDs.
AutoStream [158] Host Online MQ, SFR Assigns stream ID using access frequency,
recency, and sequentiality automatically.
FStream [134] Host Online N/A Provides different streams for different filesystem
metadata and different files.
vStream [164] SSD Online K-means Groups many manually assigned virtual streams
to a few physical streams.
PCStream [96] Host Online K-means Assigns stream ID based on program context (PC)
automatically, extended from their HotStorage
work [95].
DStream [111] SSD Online K-means Groups hot and cold data streams into a dynamic
number of physical streams.
StoneNeedle [161] Host Online LSTM, PCC, Assigns stream ID based on data hotness
K-means prediction based on LSTM and PCC.
WARCIP [159] Both Online K-means Adjusts the stream granularity and learn from the
feedback of the SSD dynamically.
DTR-FTL [153] SSD Online DTR Assigns superblock using expected data lifetime
and block erase count.
FileStream [168] Host Online K-means++ Assigns stream ID using the ratio between update
frequency and file size.
ML-DT [46] SSD Offline TCN, SVM, Assigns superblock based on pre-trained machine
LSTM,RF learning models.
FIOS [34] Host Online K-means Assigns stream ID using access frequency,
PCC sequentiality, and block correlations.

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:11

For both methods, the address space is split into chunks of a given size to reduce the overhead
caused by AutoStream. The MQ method has multiple queues corresponding to different hotness
in logarithmic scale. All chunks initially have a hotness of 1 and will eventually be promoted to
queues for higher hotness if they have enough accesses in a certain period. After each promotion,
all head chunks in each queue will be checked to see if they should be demoted. If a certain number
of accesses were made to other chunks but not the queue head chunk, then the head chunk will be
demoted to the lower queue.

The SFR method is based on sequentiality, frequency, and recency. If a write request starts
from the end address of the previous write request, then it will use the same stream ID from the

previous write request. For other cases, the recency weight for the chunk will be calculated using

time since prev access/decay period . . .
2 P [decayp , where the decay period is a user-controlled variable. The new access

count c,,,, of the chunk will be recalculated as ((c,;q4 + 1) /recency weight). The stream ID will be
calculated using the logarithm of the new access count. FIOS [34] later extended this method using
PCC to calculate the correlations of different chunks.

3.2.2 Finding the Layer in Charge. AutoStream rekindles the research interest of Multi-stream
in academia after three years without any published paper on Multi-stream. It also marks the shift
from manual stream ID assignment to automatic, which reduces the development overhead of
application developers. Several approaches were created in different layers to automate the stream
ID assignment process; possible layers to implement stream assignment include the filesystem
[134], device driver [158], runtime [96], and SSD itself [153].

FStream [134] provided automatic stream ID assignment by separating different filesystem
metadata. For example, ext4 has journal, inode, and other miscellaneous information. FStream
separates those metadata into different stream IDs with the ability to assign distinct streams to files
with specific names or extensions. FileStream [168] inherited the design choice of working on the
file level. Unlike most of the work in this category, which attaches a stream ID to each single write
request, FileStream calculates the stream ID based on the file. It attaches related information to the
file inode, which is stored in the VFS layer. Files with the same parent path and file extension are
considered the same type of files. The FileStream mapper aims to reduce the mixture of different
file types and the lifetime difference of different files, and the remapper will group files with similar
characteristics using the K-means++ algorithm into a limited number of stream IDs based on the
mapper results.

vStream [164] is the only work that requires manual stream ID assignment in this category after
the original Multi-stream paper. However, it proposed a new concept called virtual streams so writes
from different sources can have their own streams. Multi-stream SSDs only allow for a limited
number of concurrent streams, which is not sufficient for a large number of tenants. Different
Multi-stream SSDs may provide different numbers of streams, which requires developer attention if
the stream IDs are assigned by the application. The problem intensifies when different applications
use the same stream ID for different purposes, which renders streams useless. By providing a large
number of virtual streams (i.e., 2" _1in vStream), the problem can be mitigated, since there are
enough (virtual) streams for different applications and different purposes. A remapper in the SSD
will map the virtual streams into a limited number of physical streams using the K-means algorithm
to group virtual streams with similar characteristics to the same physical streams, marking the first
of several works in this category using K-means to cluster several entities (e.g., files, streams) into
a limited number of streams.

Both WARCIP [159] and DStream [111] later proposed having a variable number of clusters
when using K-means. WARCIP separates the address space into chunks, similar to AutoStream.
It clusters chunks with similar lifetimes into the same cluster using K-means, where each cluster

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:12 X. Zhang et al.

corresponds to a stream. However, the number of clusters can change depending on demand. If
a cluster becomes too busy, i.e., too many requests have been put into a single cluster, then the
cluster will be split into two. In contrast, WARCIP may merge two clusters if a cluster does not
receive enough write requests in a period. The SSD will also provide feedback to the host if the host
falsely clusters long-lived data into clusters intended for short-lived data. Together, these features
ensure that each cluster minimizes the write interval of different write requests in each stream
for a better WAF. DStream, however, shows that the SSD internal metadata writes may increase if
there are too many streams. It counts the number of updates for each logical page, which will be
used as the standard of hotness; however, when using K-means to group pages into clusters, it may
combine the two closest clusters into one if incoming data has a farther distance than the distance
between the two clusters and vice versa.

PCStream [95, 96] used program context (PC) instead of block address or file information
when assigning stream IDs. The program context is defined as the call stack when a write request
is issued. By knowing the PC, one can identify which series of function calls ultimately caused the
write request, which tells the origin of the data. For applications written in Java, the PC lies in JVM,
which the authors have modified to support PCStream for Java applications. Since data from the
same origin can be considered to have the same characteristics, it makes sense to place data from
the same origin to the same stream. PCStream then uses K-means to cluster multiple different PCs
with similar characteristics into the same stream, since the number of stream IDs is limited.

DTR-FTL [153] is a scheme implemented in the FTL layer, which means that the host does not
directly send stream IDs to the SSD. The two components, lifetime-rating addressing and time-
aware garbage collector, work inside the SSD and decide which erase unit a write request should
be assigned to. The lifetime-rating addressing strategy assigns hot data to superblocks with higher
Program/Erase (P/E) cycles, since blocks with higher P/E cycles have a shorter data retention time,
and cold data will stay on the SSD for a longer time. However, the time-aware garbage collector
interpolates the expected valid pages left in the superblock. Let T},,.,, indicate the average data inval-
idation time of a given superblock. After T4y, half of the pages in the superblock became invalid,
leaving the other half valid. The algorithm chooses the block with the smallest number of expected
valid pages calculated by interpolation. During the GC process, the relocated valid pages will be
placed into a superblock with a retention time that matches the expected lifetime left for those pages.

3.2.3 Machine Learning Model Approaches. With the increasing popularity of machine learning
models, some approaches leverage machine learning for stream ID assignment. StoneNeedle [161]
started applying complex machine learning algorithms to assign stream IDs. It extracts useful
workload features to calculate hotness, which is later processed using PCC to determine the
correlation between hotness and features. Long short-term memory (LSTM) is then used to
learn the characteristics for stream ID prediction. A similar approach is later adopted by ML-DT
[46]. One major difference is that the training process is offline, which means that it cannot adapt
to different workloads on the fly. This is because the training process for machine learning models
is too heavy to be placed in SSD, since SSD has limited computational power. However, ML-DT
utilizes multiple machine learning algorithms, including temporal convolutional network
(TCN), LSTM, support vector machine (SVM), and random forest (RF). The authors concluded
that TCN is the best model with the best accuracy and the lowest resource requirement in SSD. It is
also worth noting that this work is heavily influenced by Multi-stream and its related work (which
can be seen from the Evaluation section of the paper), but it does not directly use the Multi-stream
interface between the host and the SSD. Rather, the trained model will be placed inside the SSD
and used to assign different superblocks internally.

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:13

// RocksDB

// db/flush_job.cc

Status FlushJob::WriteLevel@Table() {
/] ...
auto write_hint = cfd_->CalculateSSTWriteHint(0);
/7 ...

3

// db/compaction/compaction_job.cc
void CompactionJob::Prepare() {
/7 ...
write_hint_ = cfd->CalculateSSTWriteHint
(c->output_level());
/] ...
3
Status CompactionJob::0OpenCompactionOutputFile
(SubcompactionState* sub_compact,
CompactionOutputs& outputs) {
/] ...
writable_file->SetWritelLifeTimeHint(write_hint_);
/7 ...
3

// env/io_posix.cc
void PosixWritableFile::SetWriteLifeTimeHint

// ZenFS for ZNS Eval
// fs/io_zenfs.cc
I0Status ZoneFile::SetWriteLifeTimeHint
(Env: :WriteLifeTimeHint lifetime) {
lifetime_ = lifetime;
return IOStatus::0K();

void ZonedWritableFile::SetWriteLifeTimeHint
(Env::WriteLifeTimeHint hint) {
zoneFile_->SetWriteLifeTimeHint(hint);

}

I0Status ZoneFile: :Append

(voidx data, int data_size, int valid_size) {
/] ...
active_zone_ = zbd_->AllocateZone(lifetime_);
/7 ...

3

(Env: :WriteLifeTimeHint hint) {

/7 ...

if (fentl(fd_, F_SET_RW_HINT, &hint) == 0) {
write_hint_ = hint;

3

/7 ...

}

Listing 2. Code from RocksDB (left) and ZenFS (right). The RocksDB code for calculating write_hint_ (not
shown) and using this value as desired stream ID (shown here) was added for Multi-stream support [110].
ZenFS uses the same algorithm and I/O path for calculating and passing write_hint_ to the device [70].

3.2.4 The Fall of Multi-stream. Despite the promising results of prior works above, the Linux
kernel removed Multi-stream support in the bio layer and the default NVMe driver in 2022 due to
the low adoption rate [69]. To quote the commit message, “No vendor ever really shipped working
support for this, and they are not interested in supporting it... No known applications use these
functions.” One possible reason is the emergence of Zoned Namespaces SSD, which we will discuss
in Section 4.2. However, the removal of Multi-stream and write hints from the bio layer received
backlash from some vendors, including Samsung [105], Micron [130], and Western Digial [140].
They mentioned that the write hints in the bio layer was used by UFS [53], which is a common
standard for host/flash communication used in smartphones [72]. The write amplification can be
significantly reduced when using F2FS with write hints. Despite the support from the vendors to
keep write hints and Multi-stream in the Linux kernel for UFS, the kernel maintainers still decided
to remove the relevant code, stating the lack of Multi-stream interface implementation on UFS in
the Linux kernel to support the vendors’ claims [28]. The support for Multi-stream and write hints
was ultimately removed in the Linux kernel v5.18-rc1 [69].

Although Multi-stream eventually faded out from the history, there are several legacies left by
Multi-stream. The authors of FileStream mentioned that they would like to apply their scheme
to Zoned Namespaces SSD. The ZNS Evaluation paper [36] used the same algorithm and I/O
path for assigning stream IDs to ZNS zones in RocksDB [70, 110]. Listing 2 shows the rele-
vant code. Using the method SetWriteLifeTimeHint, RocksDB sets the write hint for a given
file depending on its type (e.g., SSTable of different levels, WAL), which is calculated using the
CalculateSSTWriteHint method. When writing a file, the write hint will be passed, using the
fcntl operation F_SET_RW_HINT (added to the Linux kernel with Multi-stream [9]), as the stream

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:14 X. Zhang et al.

Channel 1 N
Chip 1
u-u 21 1

L T
B

" :Reclaim Group ’I

;

Channel 2
»2/|2| Chip3 |1]||1
142 56

:

> Chip 4
Controller

® —o S5 o I

Channel 3 N Chip5

® —o 3 o I

.

Uy u-u 1

» n n Chip6 n n

imi iHi

Channel 4 'Reclaim Group 2
» wnip /7

1 alla

2a allo
> Chip 8

.

Fig. 5. The overall structure of an FDP-enabled SSD.

ID when the underlying SSD supports Multi-stream. The F_SET_RW_HINT operation is one of the
few parts that survived from the removal of Multi-stream code, since it is used in ZenFS and
ultimately ZNS SSD; the same write hint field is used to determine the zone to write to, which
requires the F_SET_RW_HINT operation. This shows that there are some possibilities to reapply
schemes in the Multi-stream category to ZNS SSDs, and it is possible to see some of the schemes
built for Multi-stream SSDs appear in ZNS.

3.3 Flexible Data Placement (FDP)

Flexible Data Placement can be considered as an enhanced version of Multi-stream in some sense.
The underlying concept of FDP is very similar to Multi-stream: By passing directives of desired data
placement location when writing data to the SSD, the SSD can place data with similar invalidation
timeframes into the same erase unit, which reduces write amplification caused by valid data
relocation during garbage collection. However, FDP provides more flexibility than Multi-stream.
We summarize these flexibilities into two main points: the ability to change garbage collection
units and the ability to provide feedback to the host.

Traditional SSDs perform garbage collection on a superblock level, which is a collection of
blocks from all chips. Traditional SSDs do not provide any details about this information, and the
garbage collection unit is also nonconfigurable by the host. FDP provides the ability for hosts to
configure the garbage collection unit based on the capability of the SSD. An FDP-enabled SSD
provides the host with a list of possible FDP configurations, which tells the possible granularities
of the garbage collection unit supported by the SSD as shown in Figure 5. The granularity is
defined by the reclaim unit (RU), which can be as small as a single erase block on a die or
as big as a superblock. The reclaim units are then organized into reclaim groups (RGs); each
can contain as little as one reclaim unit or as many as all reclaim units [137]. The SSD provides
a list of reclaim unit handles (RUHs); each points to a reclaim unit in every single reclaim
group. After choosing a configuration, the host can choose to place data in different garbage
collection units by providing desired RUH and RG, ensuring that data with different RUHs and
RGs will not be mixed, similar to Multi-stream. When an RU pointed by an RUH is full, the SSD
automatically chooses another RU in the same RG to that RUH. Furthermore, the host can also
allow or disallow data isolation after garbage collection within a reclaim group, i.e., if data from the
same reclaim group but from different reclaim units can be mixed together after garbage collection

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:15

Table 2. A Summary of Prior Works that Can Be Potentially Improved with FDP

Name Category Description

WARCIP [159] WATF Reduction Provides a feedback mechanism for SSDs to inform the
effectiveness of data separation.

PLAN [167] WAF Reduction Uses differently sized GC units for sequential and random
workloads for lower GC overhead.

OPS-Iso [94] Perf. Isolation Limits GC activity caused by a tenant to itself to prevent
interference between tenants.

VSSD [47] Perf. Isolation Provides virtual SSDs to different users (tenants) and uses a
fair scheduler for fairness between different tenants.

FlashBlox [71] Perf. Isolation = Provides virtual SSDs with customizable SSD-internal
resources, including channels and dies, depending on the
tenant demand.

CostPI [113] Perf. Isolation = Provides virtual SSDs with further customizable SSD-internal
resources such as data cache and mapping table cache.

DC-Store [100] Perf. Isolation Provides virtual SSDs to different containers using NVMe set
on a real SSD with statically assigned hardware resources.

The genealogy tree is not provided, as papers in each category show a linear, chronological relation.

[120]. These features more flexible than Multi-stream and ZNS when choosing data placement
locations.

Additionally, traditional SSDs do not provide any garbage collection-related statistics or feedbacks
to the host. This is the same for Multi-stream SSDs: Although the host can choose to place data by
attaching a stream ID, the host does not know the effectiveness of such information; in other words,
the host cannot identify if providing the given stream ID helps in reducing write amplification. FDP
addresses this issue by providing statistics and events related to garbage collection. The host can
now query the exact number of bytes written by the host or the SSD, which is enough for the host
to calculate the exact write amplification factor. FDP also supports event logging; some notable
examples include [120]:

— If the reclaim unit has changed for a write frontier (e.g., due to garbage collection);

— If the reclaim unit is underutilized (i.e., not written to full in a time period);

— If the reclaim unit was not written to full when the host changes a write frontier to another
reclaim unit.

These features allow the host to learn about the internal states of the SSD with respect to garbage
collection, and the host can then adapt accordingly to achieve lower write amplification.

Although FDP has been recently ratified and accepted by NVMe, it still takes time for FDP to
be applied and researched, since the new NVMe version with FDP support is yet to be released.
However, we identify two paper categories closely related to FDP. The first category is related to
those FDP features on reducing WAF, and the second category is SSD performance isolation. A
summary of the papers can be found in Table 2.

3.3.1 WAF-reducing FDP Features. One feature provided by FDP is the ability to provide feedback
to the host regarding data placement and its effectiveness, so the host can dynamically change how
data should be placed physically. WARCIP [159], which we discussed in the Multi-stream section
(Section 3.2), provides similar feedback mechanism from the SSD to the host; the host dynamically
merges and splits streams according to the utilization of each stream provided by the SSD feedback
mechanism.

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:16 X. Zhang et al.

The second paper is PLAN [167], which utilizes some concepts in FDP, including dynamic garbage
collection unit granularities and shows that SSDs with superblocks exploiting all chips do not
show the best performance when performing random writes. The performance can be improved
by dynamically assigning erase units with different sizes by adjusting the number of chips used
based on write characteristics. PLAN shows the feasibility and effectiveness potential of FDP if RUs
(i-e., erase units) with different sizes are used. However, PLAN is designed entirely within the SSD
firmware, which means that it can only infer the necessary information from the request heuristics.
With FDP, the host can directly control the organization of reclaim units from the information that
the host has, which is more comprehensive than what the SSD sees. This leads to a lower write
amplification factor and a better SSD performance due to more informed decisions.

3.3.2 Performance Isolation. 1t is expected for SSDs to have multiple tenants. In a single computer,
several programs may run concurrently and issue I/O requests; in a large data center, an SSD may
be shared by multiple tenants, such as containers, virtual machines, and users. It is important to
ensure that the I/O requests of one tenant do not disturb other tenants; otherwise, the performance
of other tenants may be affected [100]. Since FDP provides an interface for choosing RUs that can
potentially sit on top of different channels and chips for data placement, using FDP to achieve
performance isolation is feasible. The host can take over the task of identifying different tenants
and provide better performance isolation results with the FDP interface. Below are five papers we
believe are most related to FDP with the potential to be improved using FDP.

The first paper that may be potentially improved with FDP is OPS-Iso [94], which shows that
whole-SSD GC causes disturbance between different tenants, because one tenant could trigger GC
and affect the I/O performance of others. As a mitigation, the paper separates the GC activities
of different tenants so the GC triggered by a tenant will not affect others, since the GC activity is
limited to the chips used by that tenant. Another paper from 2015, VSSD [47], provides different
virtual SSDs (vSSDs) to different users and uses a fair scheduler to provide service to them. A later
work, FlashBlox [71], provides vSSDs in different granularities (i.e., channel-isolated, chip-isolated,
etc.), which is very similar to FDP. CostPI [113] from ICPP 2019 provides more isolation for other
parts of SSD internals, including mapping table cache and data cache, in addition to the chip
isolation used in its prior works. Last, DC-Store [100] provides performance and resource isolation
for containers. It implements NVMe sets on a real SSD and statically assigns internal SSD resources
to segregate different tenants physically. These prior works can be implemented with FDP support
to provide better performance isolation with tenant identification on the host side and garbage
collection segregation in the SSD. To conclude, we hope that more research can be done after FDP
is integrated into the NVMe standard.

4 Enhancing Host Control over SSD

In this section, we will mainly discuss the design in which the host system has more control over
the SSD. Traditional SSDs are considered “blackboxes,” and the SSD exposes limited information
to the host. The host only knows some key characteristics of the block device, most importantly,
the device capacity. Other characteristics (e.g., TRIM support) are considered optional. Internal
activities, such as garbage collection and wear leveling, are not exposed to the host at all.

However, the SSD types in this section expose more information to the host. The host takes over
some of the SSD’s responsibilities. Unlike the SSD types in the previous section, the SSD types
in this section are not compatible with the traditional SSDs, which means that a code change is
required at some level. There are several candidates, including the application layer, the filesystem
layer, or the driver layer. The choices are paper-specific, and we will discuss the choices in detail in
the rest of the section.

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:17

Channel 1 1 X 1
—P[Chip 1

® 30N

® > 0N

Chip 2

|

|

,[?_g Chip 3]

L ol 1
Cha"&’[Chip5 | ||]
|

|

]

Controller

ZT1Z
—D[o o Chip6
n-=n
Channel 4 Sl
_F[Chip 7
1411
7448
_F[Chip 8

® 3 0N

® 3 0N

- w
1

N W

Fig. 6. The overall structure of a Zoned-namespaces (ZNS) SSD.

4.1 Open-channel (OC) SSD

To overcome the opacity of traditional SSDs, Open-channel SSD is created to provide a transparent
SSD from the host point of view. An Open-channel SSD moves most SSD responsibilities to the
host, including metadata management, write buffering, and wear leveling [38]. Users can directly
place data on the desired channels [127, 151]. However, the flexibility of the Open-channel SSD
is a double-edged sword. The application has to be aware of the existence of the Open-channel
SSD, and the developers have to manage most SSD responsibilities, further limiting its application.
The Open-channel SSD protocol was never ratified by the NVMe standard or widely adopted
by industry [64], and it was eventually abandoned by the maintainers and substituted by Zoned
Namespaces [7].

4.2 Zoned Namespaces (ZNS) SSD

4.2.1 Overview. Similar to Open-channel SSDs, ZNS SSDs also transfer some SSD responsibilities
to the host. It was inspired by shingled magnetic recording (SMR) HDDs, where the storage
device is organized into a series of zones [35]. Figure 6 shows the overall structure of a ZNS SSD.
When handling a write request, the host system has to choose a zone to write to, and the incoming
data has to be sequentially appended to the zone, which can span several channels and dies, but
not necessarily all channels and dies, as opposed to traditional SSDs [30, 167]. Furthermore, unlike
Multi-stream SSD, where the placement information (given as the form as stream ID) is considered
optional, the host has to explicitly choose a zone to write to. The host must also manage the garbage
collection of ZNS SSDs by choosing a victim zone to perform GC. In summary, ZNS SSDs expose
their superblocks as zones to the host in some sense, and the host has to choose a zone to write to
when issuing a write request and a zone to erase when the number of available zones falls under a
certain range. In the rest of the section, we will first focus on the efforts to support ZNS on the
host side, then discuss the research works shown in the genealogy tree (Figure 7). A summary of
the research work related to ZNS can be found in Table 3.

4.2.2 Bringing Host Support to ZNS SSDs. When compared to Open-channel SSDs, ZNS SSDs
require fewer responsibilities to be moved from the host [117]. This makes the development of

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:18 X. Zhang et al.

0ssD [107]
MSST 13
Multi-stream % [56]
HotStorage ‘14

OpenChannelSSD [7]
2015

|AppMgmtFlash [106]
FAST 16

FStream [134]
FAST "18

ZNS % [35]
VAULT 19

| |

locks2Rocks [117] Linux Kernel v5.9-rcl [27]
HotStorage 21

|

2.0 [17]
ratified ZNS and KV-5SD
2021

ZNS+ [66] S
Rl supported NVMe ZNS

Jul 2021

ZNS Eval [36]
ATC 21

CAZA [102]
otStorage 22

FS Journal In ZNS [48] FDP [19]
lewar JMIS 22 2022

LL-compaction [81]
HotStorage 22

ZNS Parallelism [30]| | Small Zone RocksDB [75]
HotStorage 22 Middleware 22

[LifetimeKV [112]| [Persimmon [132] | WALTZ [103] RAIZN [97]
1CCD 23 1CCD 23, VLDB'23 ASPLOS 2023

ZoneKV [115] DockerZNS [67]| |ZapRAID [152] | | eZNS [123] KV-CSD [125]
DAC 23 NVMSA 23 APSys 23 0SDI'23 CLUSTER ‘23

ZNSwap [32]
ToS 23

Fig. 7. Zoned-namespaces (ZNS) related works.

ZNS-aware applications easier. The existing code for Multi-stream SSD can be used directly by
applying stream ID as the zone number. The existing code in the kernel can also be recycled
similarly. Listing 2 shows an example of recycling the Multi-stream stream ID assignment algorithm
and the datapath by ZNS. The modification in RocksDB was intended for Multi-stream, but was
directly used by ZenFS, the storage backend extension for RocksDB ZNS SSD support [36]. ZenFS is
backed by a simple filesystem named ZoneFS, which exposes each zone as a file [59]; each file stores
its corresponding zone information in its inode [56]. The desired zone number will be selected using
the RocksDB based on the type of data (e.g., SSTable level) by rehashing the stream ID calculation
logic from Multi-stream. RocksDB then passes the zone number to ZenFS as its middle layer, which
ultimately uses ZoneFS as the backing filesystem. By writing to different files, each representing
a zone, RocksDB can effectively separate data with different characteristics into different
GC units.

However, ZoneFS has its limitations: The files representing different zones can only be written
sequentially [59], requiring developers to write additional code to make their applications ZNS-
compatible. Some traditional filesystems, including F2FS and Btrfs, now support ZNS SSDs as a
backend so applications can run with ZNS SSDs without modification. Both filesystems can adapt
to ZNS SSDs relatively easily due to their underlying design concepts. F2FS is a log-structured
filesystem, which means that all write requests are placed sequentially; in other words, F2FS aligns
intrinsically with the design concept of ZNS SSDs. However, it still requires conventional zones
(i.e., with random write support) or other conventional devices to place filesystem metadata due to
its design [58].

However, Btrfs is designed based on Copy-on-Write (CoW) to place the newer version of data
in a new location instead of performing the in-place update, which also aligns with the design
concept of ZNS SSDs. Since the only Btrfs metadata that requires a fixed location is the filesystem
superblocks (not to be confused with the superblocks in SSDs we described in previous sections),
two zones are reserved for filesystem superblocks. The latest filesystem superblock will be appended
to the previous version. When one zone is full, the filesystem superblock will be written to the
other zone, and the previous zone will be reset and used when the new zone is full. The latest
filesystem superblock can always be easily retrieved by checking the last write pointer location,
since it is always appended to the previous filesystem superblock [57].

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:19

Table 3. A Summary of ZNS and Its Related Works

Name Changes Target App. Description

ZNS [35] Proposal N/A Proposes a new SSD type and storage abstraction named Zoned
Namespaces SSD.

ZNS+ [66] Filesystem, General Proposes a new extension to the ZNS interface with support of

Protocol, SSD

offloading data copy to SSD and threaded logging.

Blocks2Rocks Filesystem, Filesystem, Proposes a new extension to ZNS SSD protocol to store

[117] Protocol, SSD KV DB variable-sized “rocks” without fragmentation or
read-modify-write.

ZNS Eval [36] Filesystem, KV DB Evaluates ZNS SSD against traditional block-interface SSD

App., SSD (including Multi-stream SSD) under key-value database workloads.

CAZA [102] Filesystem KV DB Places SSTables having overlapped key ranges to the same zone
instead of putting SSTables of the same level to the same zone.

ZNS Parallelism Scheduler General Identifies conflicting zones that degrade performance when

[30] writing concurrently and reschedules requests in I/O scheduler.

LL-compaction LevelDB KV DB Splits SSTables when creating so short-lived key ranges will not

[81] mix with long-lived key ranges.

Small Zone Filesystem KV DB Exploits internal parallelism on small-zone ZNS SSDs by striping

RocksDB [75] SSTable to different zones when writing.

FS Journalin Kernel Filesystem Separates journal and data for legacy filesystems, e.g., ext4, on

ZNS [48] ZNS SSDs similar to FStream [134].

DockerZNS Kernel Docker Provides a solution to use ZNS SSDs for Docker images with QoS

[67] support and performance isolation.

Persimmon Filesystem General Makes F2FS more ZNS-native by keeping metadata and

[132] checkpoints append-only.

RAIZN [97] Kernel General Provides a software RAID with ZNS SSDs and expose as a large
ZNS volume.

ZapRAID [152] Driver Universal Provides a software RAID with ZNS SSDs and expose as a volume
with random read/write support.

eZNS [123] Driver General Assigns variable non-conflicting zones into logical v-zones to
maximize internal parallelism utilization and throughput.

WALTZ [103] Filesystem KV DB Reduces KV DB latency by writing to other zones instead of
asking for zone utilization when a zone is full.

LifetimeKV Filesystem, KV DB Minimizes SSTable lifetime variety in a level by minimizing

[112] App. inter-level key overlap and compacting long-lived SSTables.

ZNSwap [32] Kernel Linux Swap Provides an efficient way to use ZNS SSDs for Linux Swap space.
Extended from their FAST 2022 work [31].

ZoneKV [115] RocksDB KV DB Skips the 4-level write hint limitation left by Multi-stream, which

limited SSTables of L, and beyond being written to different zones.

In summary, ZNS SSDs can be supported in two ways: application being ZNS-aware or filesystem
with ZNS support. The first approach provides more flexibility for applications to control data
placement, but this could be time-consuming for developers and eventually hinder the adoption of
ZNS SSDs. To mitigate the issue, filesystems can be designed to be ZNS compatible so applications
can run with ZNS SSDs smoothly without being aware of the underlying SSD type.

4.2.3 Improving Performance on KV Database. Early research on ZNS focused on combining
key-value databases with ZNS SSDs. The policy of writing key-value database files is the central
topic for these works. ZoneKV [115] tackles a problem inherited from Multi-stream. The write
hint brought in by Linux kernel and RocksDB has only four levels of temperature, namely, SHORT,
MEDIUM, LONG, and EXTREME [9, 110]. ZoneKV sets the lifetime to 1 for L, and L;, 2 for L,, and 3

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:20 X. Zhang et al.

for Ly SSTables, which is the same for RocksDB [110]. However, RocksDB sets the lifetime of all
SSTables of L, and beyond to 4 due to the limitation, while ZoneKV sets the lifetime of L; SSTables
to i, bypassing the limit of 4.

CAZA [102] from HotStorage 2022 improves the algorithm brought in by Multi-stream and
used by the ZNS evaluation paper [36]: Instead of allocating zones by using compaction level only,
RocksDB can leverage the SSTable information to make better zone choices. By the definition of
SSTable compaction, when a compaction happens, several SSTables with overlapping key ranges
will be invalidated together and compacted into a single, new SSTable. This indicates that SSTables
with overlapping range should be written to the same zone. If an SSTable has no key overlap, then
a new zone is allocated for the SSTable. However, as of February 2024, the improvement brought
by CAZA to the CalculateSSTWriteHint function is not reflected in the RocksDB codebase [23].
LL-compaction [81], also from HotStorage 2022, provides another zone selection algorithm for KV
databases. It focuses on keeping zones dedicated for each compaction level, but the SSTables are
split into fine-grained key ranges so key ranges that will be compacted soon will not be mixed
with other SSTables in the same zone. However, it does not work on some databases like RocksDB,
because they employ a priority-driven SSTable selection algorithm with extra factors, including age
and number of deleted items, when choosing SSTables to compact. LifetimeKV [112] also notices the
possibility of having short-lived SSTables after compaction similar to LL-compaction. It proposes
two mitigations: First, a newly generated SSTable should not have an overlapping key range with
upper-level SSTables, so when an upper-level SSTable is chosen for compaction, the new SSTable
aforementioned will not be selected for compaction, increasing its potential lifetime to match with
other SSTables in the same level; second, an SSTable in a level will be prioritized to be chosen for
compaction if it has stayed too long in the level, which reduces the possibility of having multiple
SSTables with long lifetime variety at the same level.

WALTZ [103] tackles the KV database performance problem by looking at the problem in another
way. Instead of mainly improving the method of placing SSTables like the aforementioned works,
WALTZ identifies the usage of the zone report command as a source of performance degradation
when a zone is full. When writing to a zone fails (e.g., the zone is almost full), a zone report request
for checking the current write pointer location will be sent to check the remaining free space in
the zone. This causes extra latency due to the communication overhead between the host and the
SSD. Instead of checking SSD for write pointer information, WALTZ utilizes other zones to write
the data so the long latency caused by the zone report command can be eliminated.

4.24 Exploiting ZNS Internal Parallelism. Don’t Forget ZNS Parallelism [30] from HotStorage
2022 brings up another topic of ZNS SSD: internal parallelism. Modern SSDs rely on internal
parallelism for their blazing speed, but this information is not shared with the host system for
traditional SSDs. Interestingly, ZNS SSDs also do not share this information with the host system
even though ZNS SSDs are more transparent than traditional SSDs. If a host writes to more than
one zone concurrently, then there is a chance that the host is unknowingly writing to the same
chip, causing performance degradation. However, some ZNS SSDs expose large zones (e.g., 2.18
GB), while others expose small zones (e.g., 96 MB and utilizing a single flash chip). The SSD may
assign a higher degree of parallelism to larger zones, while small zones may not be assigned with
a high degree of parallelism. It is possible to write to multiple small zones simultaneously, but
again, without knowing the zone-to-chip mapping, the host could unknowingly write to two zones
mapped to the same chips. The paper proposed an algorithm to identify zones that are mapped
to the same chips: By checking if writing to all combinations of two zones causes performance
degradation, the algorithm is able to identify these conflict groups (CGs) of zones. The system
I/O scheduler is then modified to schedule I/O requests so data writing to the same CG will not be

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:21

written at the same time for the maximum performance. A later work, eZNS [123], extends the idea
by automatically assigning zones that do not conflict with each other into logical zones (v-zones),
which contain a variable number of zones. The number of zones in a v-zone can shrink or expand,
depending on the workload requirement to maximize the performance of each v-zone.

Small Zone RocksDB [75] also focuses on exploiting parallelism on small zone ZNS SSDs. However,
instead of implementing its solution in the I/O scheduler, it is a work focusing only on RocksDB
and ZenFS. For ZNS SSDs with small zones, the size of an SSTable is much larger than the zone
size. Instead of writing SSTables sequentially zone by zone, the paper proposes striping them
sequentially to multiple different zones to exploit parallelism; however, each zone will still be used
to save SSTables of a single compaction level.

4.25 Improving ZNS Internals. There are other works that focus more than bringing ZNS support
to key-value databases. ZNS+ [66] identified some potential problems for the vanilla ZNS SSD and
host-SSD protocol. When garbage collection is performed, any valid data in the victim zone should
be relocated, similar to the garbage collection process in a traditional SSD. However, in a traditional
SSD, garbage collection is triggered internally in the SSD. The relocation traffic is not observable by
the host but does not require host attention either. ZNS SSD, however, requires the host to manage
the garbage collection process. The host has to relocate the valid data from the victim zone, which
incurs extra overhead by reading the valid data in the victim zone to the host and then writing
them back to the SSD. This process causes data to move not only once but twice between the host
and SSD.

To remove the external data movement between the host and the SSD during the garbage collec-
tion process, ZNS+ proposed an extension to the ZNS protocol so the data relocation process will
be internal to the SSD. The simple NVMe copyback function is extended, named zone_compaction,
to accept noncontiguous address ranges for valid data relocation. This is for F2FS with threaded
logging, where there can be direct overwrites to dirty segments, which is supported by adding
TL_opened to the ZNS+ protocol. The SSD should also show its internal mapping information to
the host: The host then knows which chunk (the smallest unit of copyback) of data is stored on
which physical chip. When performing copyback, the host should relocate data from one chip to
the same chip to prevent inter-chip traffic. However, to the best of our knowledge, this proposed
extension to ZNS is not a part of the NVMe ZNS protocol as of February 2024.

Another work, Blocks2Rocks [117], also proposed changes to the ZNS interface. With the trend
of increasing SSD page size (e.g., commonly around 16 KB as of the writing of this survey), updating
a small unit of data, e.g., 4 KB, causes overhead due to read-modify-write. The SSD has to invalidate
the old physical page and then write the page to a new location. Blocks2Rocks proposed an extension
to support small “rocks,” which can be as small as 16 bytes, on ZNS SSD. The NVMe command set
specification stated that a block size of 512 bytes is not supported [21], which shows the necessity
for protocol modifications. The author proposed saving small rocks on in-SSD NVRAM, which
requires about the size of one page per active ZNS zone. This space is used to buffer the rocks
written to the SSD, which will be transferred to the flash chip for consistency when the buffer is
full. However, similar to ZNS+, this work was not ratified into the NVMe protocol.

4.2.6 Bring ZNS to New Use Cases. Although the design of ZNS and KV databases is well
orchestrated for each other, and the earliest evaluation focuses on KV databases for ZNS-related
papers, there are efforts to utilize ZNS SSDs for other kinds of workload. ZNSwap [31, 32] uses
ZNS SSDs for Linux swap space. When a memory page is swapped out, it will be written to the
SSD. The paper provides different policies on choosing a zone to write to for swapped-out pages.
After choosing a zone, the location of the page will be written to the page table entry, which will
also be updated if the page is relocated during future GC processes. DockerZNS [67] leverages ZNS

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:22 X. Zhang et al.

SSDs for Docker images, which may require different QoS and segregation, and there may be noisy
neighbors. It provides a number of zones for each Docker image and stripes the image to several
zones based on its QoS requirement, which is done by knowing the performance a single small zone
can provide. The paper also first identifies the conflict groups of zones [30] so the zones used for
the same image will not use the same chips, ensuring maximum utilization of internal parallelism.

There are also works on improving current filesystems for ZNS. FS Journal in ZNS [48]
works on separating filesystem metadata and user data, similar to FStream but on ZNS SSDs.
Persimmon [132] changes F2FS so it is more ZNS-native by changing the metadata to append-only
and improving the checkpoint logic. As we discussed earlier in the section, the original F2FS
design expects metadata and checkpoints to be in a known address range, which means that
updating metadata and checkpointing lead to in-place overwrites, causing incompatibility with
ZNS design goals. Persimmon assigns dedicated zones for frequently updated metadata for easy
cleaning, which eliminates in-place updates of filesystem metadata. It also writes checkpoints
at the end of each zone for easier garbage collection, since checkpoints will not spill to other
zones.

Beyond filesystems, RAID is also a fundamental service for applications. RAIZN [97] provides
RAID support for ZNS SSDs and exposes an SSD interface compatible with ZNS-aware applications
and filesystems. ZapRAID [152], however, exposes a block-level volume with random read/write
support. In summary, these papers together strive for more fundamental improvements for better
application performance running on top of them, and we hope future works can show the benefit
of using ZNS SSDs for general use cases in different environments, including servers and even
smartphones.

5 Offloading Host Responsibility to SSD

In this section, we will discuss papers that move host responsibilities to the SSD. Traditionally,
an SSD accepts I/O request and provides storage as its only feature. However, moving some jobs
from the host to the SSD has some benefits. The first benefit is to reduce the latency caused by
the heavy I/O stack in the operating system. Since the operating system I/O stack includes many
layers, including driver, bio, and filesystem, it makes sense to reduce the number and sizes of I/O
requests. If the data can be processed within the SSD, then the data size to be moved from SSD to
host can be reduced, which results in a shorter time in the data transfer process [136, 171]. The
second benefit is to prevent stacking logs on another layer of logs. Some applications, especially
key-value databases, utilize a log-like manner when writing data, which is similar to how SSDs
write data internally. By integrating the key-value database into the SSD, the performance can be
improved by removing one log layer.

5.1 Computational Storage on SSDs

5.1.1 Prelude. The concept of computational storage predates the era of SSDs. Active Disks
[135] was published in 2001, marking one of the first instances of a computational storage system.
The paper identifies that HDDs have processors and RAM just like a normal computer, which means
that they can also process data like standalone computers. By processing data inside multiple HDDs
before sending them to the host, the performance of Active Disks scales better than using a single
host processing data from all HDDs. However, because of the limited computational power of HDDs
at the time, the performance of a computational storage system with only one HDD is limited;
the system only works better when multiple HDDs are working together. Thankfully, modern
SSDs have better computational powers than HDDs, as one can expect based on the Moore’s
Law. SSDs like Samsung PM1725 have dual-core processors with a frequency of 750 MHz [80].
A single SSD can also easily surpass the throughput of the HDD array presented in Active Disks by

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:23

Ch L1 I
Requests anne [Chip 1]
funci(req1, LBA_Range1) -
—>[Chip 2]
siis. sls.
func2(req2, LBA_Range2) Channel 2 ollsl chip s [a[[e]
[p P PP
func3(req3, LBA_Range3) e_e elle
r r r r
Host —»[b b Chipd | o]
0s Controller Channets fIoHE NI
== —[e (12 crins [2][2]
Responses Kok 1L
Processed result for req1 ? g Chip 6 ; L] ;]
Channel 4 N 1
Processed result for req2 Chip7 ||]
FPGA - H
Processed result for req3 (Optional) ’ Chip8 | |]

Fig. 8. The overall structure of a Computational Storage-enabled SSD.

exploiting its internal parallelism, which means computational storage can be achieved by using a
single SSD.

The structure of a typical computational storage-enabled SSD is shown in Figure 8. The SSD
allows a series of functions (also known as tasklets) to be run on SSDs, and the data to be returned to
the host will be processed first before sending back to the host. Not only are fewer data transferred to
the host, but the host can also immediately use the processed data without the need to process them
on the host again. Some works may also use extra FPGA instead of SSD processors for computing.
However, reprogramming the SSD firmware or the FPGA is usually challenging. Most commercially
available SSDs are blackboxes without the ability to reprogram their firmware, whereas attaching
FPGA to SSDs also requires nontrivial efforts. Therefore, many works aim to make coding for
computational storage easier and more general without the need to reprogram the firmware or use
FPGA. The relationship between different prior works can be found in Figure 9, and the summary
of the related papers can be found in Table 4.

5.1.2 SmartSSD-based Approaches. SmartSSD [88] is the first work to allow an SSD to be
easily programmed for different computational tasks. Users can write C code on the host, then
cross-compile it to ARM-architecture binary, and finally embed the program (named tasklet) to
the SSD firmware. The tasklet is then executed to perform the given task, after which the host
polls for results. This requires modification of the SATA protocol with additional vendor-specific
commands. The target application scenario for the original SmartSSD is the Hadoop MapReduce
type of workload, but it also enabled the ability for arbitrary tasks to be run on SSD for near
data processing. QuerySmartSSD [60] leverages the ability to create tasklets and perform query
processing, showing better performance and lower energy consumption compared to a traditional
SSD. YourSQL [80] is also based on SmartSSD and provides early filtering of SQL query results,
which drastically reduces the number of I/Os. However, SmartSSD has a limitation: The tasklet
loading process is not dynamic, meaning that a tasklet can only be loaded to the SSD internals
offline. Biscuit [65] further enhanced the ability of the original SmartSSD with dynamic task
loading and unloading, which means that users can dynamically load their tasks on SSD instead
of coupling the task code into the SSD firmware. It also supports the C++ 11 standard and libraries
with a few exceptions, providing more flexibility for developers to write and deploy their tasklets.

5.1.3 FPGA-assisted Platforms. INSIDER [136] builds a general computational storage platform
using FPGA to accelerate in-storage computing tasks. It provides a POSIX-like file I/O APIs to the

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:24 X. Zhang et al.

Active Disks [135]
Computer ‘01
J
|Active Flash [148] SmartSSD [88] QuerySmartSSD [60]
FAST'13 | MSST '13 3 C
l =
YourSQL [80] Biscuit [65]
VLDB 16 ISCA '16
INSIDER [136] ZNS * [35]
ATC 19 VAULT '19
PolarDB Comp. Storage [43]
FAST 20
RecSSD [154] HW Virt Comp. Storage [99] ||| GLIST [108]
ASPLOS 21 ATC 21 ATC 21
GenStore [119] XRP [170]
ASPLOS 22 0SDI 22
KV-CSD [128] LambdalO [163]| | Delilah [68] Cache in Hand [101]
CLUSTER 23 FAST 23 DaMoN '23 HotStorage ‘23

Future NVMe [22]
ratifies Compuatational Storage/FDP
2024

Fig. 9. Computational Storage related works.

user. Users can register tasks and bind them to real files. When reading/writing such real files, the
user will be able to read the corresponding virtual files with the results processed by the bounded
tasks. Users can also choose to program in C++ or Verilog, depending on the users’ needs.

So far, all works we discussed above assume the host is a single physical machine. However,
modern cloud infrastructures may use virtual machines to provide the service to different clients.
The Hardware-based Virtualization Mechanism for Computational Storage Devices [99] provides
the ability to share a single computational storage system using the standard single-root I/O
virtualization (SR-IOV) layer. It also features an architecture that decouples SSD and FPGA,
which allows scaling the number of SSDs in the same system.

5.1.4 Special Use Cases. Some works focus on a special use case rather than developing a
general platform. PolarDB Meets Computational Storage [43] is a paper focusing on bringing
distributed databases with SQL support to computational storage. To achieve this task, the storage
engine, the distributed filesystem PolarFS, and the computational storage driver have to be modified.
The storage engine passes additional information, including data offset, table schema, and scan
conditions of the SQL query, to the PolarFS. Based on those information, PolarFS brings data from
different drives, and the computational storage driver will optimize the scan conditions and split
them into smaller subtasks before they are passed to the drives for better resource utilization. The
underlying block structure is also changed to simplify the FPGA implementation of data scan.

RecSSD [154] focuses on integrating recommender systems on computational storage. However,
its operators are embedded in SSD FTL, which means that it lacks the ability to dynamically
load/unload different recommender models. Another work, GLIST [108] (short for Graph Learning
In-STorage), target on graph learning, which is also used for recommender systems but can also be
used in other use cases. To overcome this issue, GLIST provides a set of APIs to directly operate on
the graph components (e.g., edge, vertex) and is able to directly analyze graphs using pre-trained

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:25

Table 4. A Summary of Computational Storage and Its Related Works

Name Type Target App. Description
Active Disks - . The first publication in the category. Based on an array of
135 s, 1t shows the potential of computational storage.
Application Mixed HDDs. it sh he p ial of putational g
Active Flash Models energy consumption when using computational
[145] Application Scientific SSDs. A prototype is also available for common scientific
functions.

SmartSSD The first ggneral-purpose compgtational SSD platform.
[85] Platform MapReduce Though designed for MapReduce, it allows general tasklets
on SSDs.

QuerySmartSSD - Uses SmartSSD for query processing. Shows SmartSSD

60 can be used for applications other than MapReduce.
Application SQL DB b d for applicati her than MapRed
YourSQL Uses SmartSSD for early filtering. This significantly re-
[80] Application SQL DB duces the number of I/Os in certain workloads like SQL
JOIN.
Biscuit Extends SmartSSD with the ability of loading tasks online
Platform General
[65] and C++ 11 support.
INSIDER Platform General Provides a computational storage platform with a set of
136 s and the ability to program in C++ and Verilog.
APIs and the ability to prog in C d Verilog
PolarDB Comp. Application PolarDB Leverages FPGA for scan conditions on PolarDB with
Storage [43] PP multiple drives.
HW Virt Comp. Platform General Provides the ability to share the computational storage
Storage [99] system by several virtual machines.
RecSSD Provides the ability to embed recommender-related oper-
[154] Platform Recommender ators in SSD FTL; reduces unused data between host and
SSD.
GLIST Provides a set of APIs to operate graphs and graph com-
[108] Platform Graph ponents and analyze graphs using pre-trained models.
GenStore Provides an in-storage processing system for genome se-
119 Platform Gene Analysis quence analysis to reduce data movement between host
[119] and SSD.
XRP Platform General Integrates eBPF functions into NVMe drivers for data pro-
[170] cessing. Processes tasks closer to data but not in storage.
LambdalO Platform General Provides a platform for using extended eBPF for storage
163 named s in computational s with verifications.
d sBPF i putational SSDs with verificati
Delilah Platform General Similar to LambdalO, but with ordinary eBPF and without
[68] eBPF program verification.
KV-CSD - Uses Linux-based SoC as the computational power and
[128] Application KV DB ZNS SSD to provide a KV-SSD-like interface to the host.

models, which can be dynamically loaded by the host. This addresses the limitation of RecSSD and
allows the final result to be sent to the host without the need for large data movements outside the

SSD.

GenStore [119] brings computational SSD into genome sequence analysis. It also filters out
unwanted data to reduce the data size to be transferred from SSDs to the host. GenStore has
two modes: accelerator mode and regular mode. the accelerator mode allows the SSD to perform
in-storage processing while the regular mode allows the SSD to be used as a regular SSD.

KV-CSD [128] has a unique combination of two worlds: computational storage on ZNS SSDs. By
using a Linux-based SoC and implementing the key-value store in the SoC, KV-CSD has a similar
architecture to KV-SSDs, where a host-level application uses the device as a key-value database.

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:26 X. Zhang et al.

5.1.5 Energy Concerns. Many papers in the field of computational storage discuss their energy
efficiency compared to traditional computer systems [60, 80, 88]. ActiveFlash [39, 148] focuses on
modeling the energy consumption of computational SSDs. The authors also created a prototype
using OpenSSD with common scientific data processing functions in SSD, including max, mean,
standard deviation, and linear progression.

5.1.6 Toward a Standardized Computational SSD Design. We have observed a dozen prior works
that focused on computational storage with SSDs. However, there was no industry standardization
effort that allows users to create tasklets without regard to the underlying storage device.
Thankfully, the NVMe standard is now looking into the possibility of using eBPF for computational
storage [68]. This can be traced back to XRP [170, 171], which shows the ability to use eBPF in
NVMe drivers. The paper shows that given the increasing speed of storage devices, the upper
layers above the SSD in the host now account for almost 50% of the total overhead, of which the
filesystem accounts for 80% of the overhead. The closest layer to the SSD, being the NVMe driver,
only accounts for about 2% of the total overhead. This means moving the data processing location
to the NVMe driver can significantly reduce latency by about 50%. The BPF function, which is saved
in a pointer in the bio request, will be invoked when an NVMe request completes. Although this
work should not be categorized as computational storage, this work shows close relationships with
two later works, LambdalO [163] and Delilah [68], both of which use BPF functions for in-storage
processing.

LambdalO [163] argues that using eBPF has limitations to general in-storage computing ar-
chitecture, because eBPF requires a static verifier. eBPF does not support pointer access and
dynamic-length loops, which are common but error-prone features. The authors present A-10 and
sBPF, where s stands for storage. The A-I0 part provides a set of APIs by extending common file
APIs, allowing users to provide functions to perform in SSD. sBPF addresses the limitation of no
pointer accesses and dynamic-length loops in the standard eBPF. The combination of these two
provides a platform for developers to develop in-storage computing functions using familiar frame-
works. Delilah [68] is a similar work but has more limitations, e.g., no verification of the provided
eBPF programs. Last, recent NVMe technical proposal TP4091 about computational storage was
created for a unified computational storage stack [68], and Samsung created a new generation of
SmartSSD based on TP4091 [124]. We sincerely hope that the interface for computational storage
on SSDs can be fully standardized in the near future.

5.2 Key-value (KV) SSD

Key-value SSDs provide a key-value interface instead of the traditional block interface. The host
directly communicates with the SSD with a key-value interface similar to how applications use
key-value databases. The SSD internally functions as a key-value database, and the FTL is in charge
of the mapping management from keys to values, as shown in Figure 10 [89]. In some sense, KV-SSD
can be considered as a special kind of computational storage, since the SSD is designed to handle
one task only [166]. Figure 11 shows the relationship between KV-SSD-related works, and Table 5
shows the summary of KV-SSD-related works.

5.2.1 Prelude. Before the standardized KV-SSD [89], there are some other papers focusing on
creating SSDs with better database support on the hardware level. One of the earliest attempts is
the X-FTL [87], which exposes a standard SSD interface but with extended SATA and filesystem
operations. A transaction ID can be provided to the read/write request for consistency, and two
new operations, commit () and abort(), are provided with transaction ID as the argument. The
FTL is also extended with an extra mapping table to record which pages are for which transaction,
which works like a list of SQLite rollback journals, and the page mapping from the extra mapping

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future

2:27

Fig. 11. Key-value SSD related works.

Channel 1 I
—»[Chip 1]
PUT(key1, value1) H
—»[Chip 2]
PUT(key2, value2 sfls sts
(key2, value2) Channel 2 alle Chip3 v u]
[p P PP
GET(key1) elle elle
r r r r
Host —>|b , Chip4 b_b]
L L L L
o8 Controuer Channel 3 of]o o o
== —[e (12 crins [2][2]
Responses eI 1L
Status: SUCCESS '[‘1’_2 ShiplS ;_;]
applng Channel 4 [T Chi I]
Status: SUCCESS Kevl Ch o, Die1, H ®7 4
ey Blk 3, Pg5 1
Value of key1: value1 veyy Ch3,Dies, | _’| (| m |l]
ey Blk 7, Pg 4
Fig. 10. The overall structure of a Key-value (KV) SSD.
X-FTL [87]
SIGMOD '13
KAML [79]
HPCA 17
KV-Storage [12]
KV-SSD * [89]
SYSTOR ‘19 SNIA AvL0
PinK [74] KVMD [129] | StripeFinder [116] gﬁ"z‘gf [11?
ATC 20 FAST 20 HotStorage 20 o
| (;

) NVMe 2.0 [17]
KV-SiPC [33] KVRAID [133] GPUKYV [85] KEVIN [98] NVMeKVSSD [16] -
SYSTOR 21 SYSTOR 21 SAC 21 0SDI 21 2021 it n‘;%;i‘d IUHEED

ISKEVA [169]
LCTES 2022
Dotori [61]
VLDB 23

table will reflect on the normal mapping table when the transaction is committed or discarded in
case the transaction is aborted. However, X-FTL still requires a modified version of SQLite running
on top of the host to communicate with the underlying modified filesystem and device.

Although X-FTL works on improving SSDs for better SQLite support, later works focus on key-
value databases. This is because key-value databases have some responsibilities that overlap with
SSD FTL: Namespace management manages the mapping from a key to a value, which is similar to

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:28 X. Zhang et al.

Table 5. A Summary of KV-SSD and Its Related Works

Name Description

Extends the SATA protocol and filesystem for better SQLite transactional support on

X-FTL [87] sap

KAML [79] Provides a new, key-value-based interface for the SSD; applications can directly use
the SSD as a key-value database.

LOCS [151] Uses Open-channel SSD for LevelDB. The paper provides policies to improve perfor-

mance when performing I/O requests.
Allows a leaner I/O stack for LevelDB by using an Open-channel SSD with a custom
user library and driver.
Provides a leaner I/O stack than KAML by posing the key-value APIs directly from
the device. The first vendor’s attempt to create a key-value SSD.
Solves the long tail latency caused by bloom filters because of its probabilistic nature.
PinK [74] Instead of using bloom filters, PinK pins top several levels in the DRAM for faster
access speed.
Provides the ability to use several KV-SSDs for better performance and reliability.
Similar to RAID in traditional block-interface SSDs.
Improves the overhead caused by the erasure coding approach in KVMD. However, the
StripeFinder [116] paper claims that it is better to use replication instead of erasure coding for workloads
with many small objects.
Extends the use case of KV-SSD to OpenMP applications by translating OpenMP API
KV-SiPC [33] calls into KV-SSD operation calls. It also dynamically changes the number of parallel
compute threads and parallel data access threads based on CPU and SSD utilization.
Uses KV-SSD as the foundation for a general filesystem. Translates file I/O-related sys-
KEVIN [98] tem calls into KV-SSD operations and extends KV-SSD interface for better transaction
support.

FlashKV [165]

KV-SSD [89]

KVMD [129]

Allows direct peer-to-peer access between GPU and KV-SSD when the workload is
GPUKYV [385] performed on GPU instead of CPU. Reduces I/O overhead due to the data movement
from KV-SSD to GPU via user space.
Stores small key-value objects by packing them together to reduce the overhead caused
by an excessive number of keys associated with small key-value objects.
Extracts video features in FTL and saves the information to KV-SSD, with the extra
ISKEVA [169] support of filtering data within the SSD to reduce the data to be transferred to host
when performing a query.
Provides extra KV-SSD features, including transactions, versioning, snapshots, and
Dotori [61] range queries; the paper also proposed OAK-tree, a new way of organizing B+-trees
tailored for KV-SSDs.

KVRAID [133]

the FTL mapping table, which maps a logical address to a physical address; Meanwhile, key-value
databases use a log-like writing mechanism, which is similar to how SSDs perform data writes and
updates. It is a natural move to remove the extra layer of overhead for better performance [160].

KAML [79] later extended similar mechanisms to key-value databases. KAML SSD is the short-
hand for key-addressable, multi-log SSD, which well summarizes the characteristics of KAML. A
library, libkaml, provides a list of APIs similar to what traditional key-value databases usually
provide, including the support for read, update, update, commit, and abort. Different namespaces
are also supported, which can be considered as tables or files based on demand. 1ibkaml then
communicates with the device driver and the device to find out the value data page(s) a key is
associated with. A key is 64-bit in size, but the data size for the value can vary. This approach
removes the requirement of running a database on the host, as applications can directly use the
SSD as a key-value database.

Two papers, LOCS [151] and FlashKV [165], couple key-value databases with Open-channel SSDs
for better performance. Both are based on LevelDB and provide custom user libraries to support

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:29

the key-value database running on top of the host. The libraries cooperate with the Open-channel
driver in the kernel to save the actual data on SSD. The main difference between the two is that
LOCS utilizes file-level parallelism, whereas FlashKV leverages channel-level parallelism, which
shows better read performance when only a single SSTable is accessed [165]. KAML, LOCS, and
FlashKV together build the foundation before the first vendor attempt of creating a KV-SSD [89],
which provides an even leaner I/O stack than KAML; and unlike LOCS and FlashKV, users do not
need to write their own management policies and FTL.

5.2.2 Internal Performance Improvements. The creation of KV-SSD allows the SSD to be used
directly as a key-value database. However, there is more space for improvement. PinK [74] identifies
the probabilistic nature of bloom filters and improves performance by pinning the top levels of
LSM-trees. Since bloom filters are probabilistic, it improves the average latency, but it does not
improve the tail latency. Reconstructing the bloom filter also results in high CPU overhead, which
is less of a problem on a computer with faster CPUs, but it is a more serious problem on KV-SSDs.
Instead of using the bloom filter, PinK pins the highest several levels of LSM-trees in the KV-SSD
DRAM, which is feasible because the inquiry overhead is bounded by O(h — 1), where h is the
height of the LSM tree, which is bounded; the size of the top levels of LSM trees, which keep the
hottest keys, are also relatively small, as argued by the authors. The tail latency can be improved
with these two optimizations tailored for KV-SSDs.

5.2.3 Other KV-SSD Usage Scenarios. Although KV-SSDs are for key-value stores intuitively,
KEVIN [98] takes a step further by leveraging KV-SSD for a more general use case: It builds a
filesystem to be used by any type of application, hence named key-value indexed solid-state drive.
By extending the KV-SSD interface with transaction support, the KV-SSD can be used to achieve
consistency at the hardware level. Common system calls regarding file/folder creation, e.g., mkdir (),
creat(),unlink(),and readdir (), are translated into KV-SSD operations including GET (), SET(),
DELETE(), and ITERATE(), so existing applications do not need to change their code.

While some papers try to generalize the use cases of KV-SSDs, others focus on bringing KV-SSDs
to other specific use cases. One use case is programs based on OpenMP with high concurrency.
It is not uncommon to have high concurrency for key-value databases. For example, Facebook
shows that they have billions of GET() requests in a period of 14 days, which translates to at least
800 queries per second [44]. Therefore, a key-value system should be able to handle a vast number
of requests concurrently. KV-SiPC [33] provides an approach to address OpenMP workloads
with several program threads. Existing applications do not need to modify their code to migrate
from traditional block-interface SSDs to KV-SSDs for their applications. KV-SiPC changes the
OpenMP internals so it uses the key-value APIs for upper-level applications, and it also adapts
the number of parallel compute threads and parallel data access threads based on CPU and SSD
utilization.

The existence of KV-SSD reduces the level of the I/O stack from the host to the SSD. However,
most papers assume that the workload is running on the CPU. If the workload runs on another
device (e.g., GPU), then there is another I/O stack to transfer data to the target device. To further
reduce the number of levels in the I/O stack, GPUKV [85] is proposed to allow direct communication
between the GPU and the storage. Instead of bringing data from the KV-SSD to the host OS and
then from the host OS to the GPU, GPUKYV creates the data path from KV-SSD to GPU directly
using the PCle peer-to-peer feature without going through the user space. This approach removes
the heavy user space I/O stack for GPU workloads.

Another work, ISKEVA [169], uses KV-SSD as an engine for video metadata. Videos may have
metadata associated with the video file itself, and extra features may be added to the file (e.g., if
an object exists in a video). A feature extractor is integrated into the SSD FTL, and the extracted

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:30 X. Zhang et al.

features are saved in the KV-SSD. The KV-SSD with ISKEVA supports extra query flags for data
filtering so only filtered results will be returned to the host, eliminating the requirement of the
host to perform feature extraction and result filtering.

5.2.4 Feature Improvements. Although the creation of KV-SSD led to the first KV-SSD standard
[12, 74, 89], interface improvements are brought up for more features. KVMD [129] allows the
creation of an array of KV-SSD devices, similar to RAID in traditional block-interface SSDs. However,
since data is stored in key-value mappings in KV-SSDs, it is replicated/erasure-coded based on
the key of the value. The value of a key can be mapped to several devices for better reliability
and performance. However, the approach of using erasure coding for reliability in KVMD causes
significant data replication. This is because the erasure coding must be made on the key-value
namespace, and the value sizes are usually only several times greater than the key sizes (e.g., smaller
than 6:1 and sometimes about 1:1, as reported by Facebook [44]), causing a lot of extra overhead for
the data stored. StripeFinder [116] aims to enhance spatial efficiency when using erasure coding.
By sharing as much metadata across different keys, it achieves a lower spatial overhead with a
value-to-key ratio around 12:1 compared to KVMD. However, the author concludes that even with
StripeFinder, the overhead of using erasure coding remains significant for realistic workloads, and
it is better to just use replication in this case. KVRAID [133] further addresses the issue. Since small
and large data objects have similar IOPS, but the metadata overhead associated with smaller data
objects is greater than larger data objects, KVRAID packs several small logical data objects from the
host into a large physical data object to mitigate the metadata overhead. The data will be written to
the device when a sufficient number of objects are accumulated in SSD DRAM; however, to bound
the I/0O latency, there is also a timeout mechanism where the currently accumulated data will be
written to the device despite the number of objects accumulated. This approach efficiently stores
small objects (i.e., 128 to 4,096 bytes) on KV-SSD arrays.

Dotori [61] provides more features to the KV-SSD, including transactions, versioning, snapshots,
and range queries. It also provides better indexing support for KV-SSD by using their proposed
OAK-tree, a B+-tree tailored for KV-SSDs. The authors also call for the standardization of these
features by implementing them in SSD (instead of on-host like Dotori) and extending the KV-
SSD interface. Features like transactions are already used by some prior works (e.g., KEVIN [98]),
showing the usefulness of these features for extended KV-SSD use cases.

6 CXL and Byte-addressable SSD

With the increasing adoptions of data-intensive applications, including large language models and
data analytics, the memory capacity has become a significant bottleneck for such workloads due to
high DRAM price and the limited number of DIMM slots for DRAM [24]. This problem, known as
the memory wall, causes extra memory management overhead for developers when developing their
models and applications [162]. Recently, a new emerging technology named Compute Express
Link (CXL) provides a new unified architecture to overcome the limitations caused by the memory
wall. By directly accessing PCle-attached SSDs with load/store instructions, the CPU can directly
use SSDs as a part of the main memory [11]. A significant challenge for CXL-enabled SSD is
the ability to be byte-addressable [82]. The granularity for memory access is bytes, whereas the
granularity for SSD access is based on the traditional block abstraction. This granularity mismatch
causes traffic amplification due to the SSD read/write granularity in the read-modify-write cycle
[162].

Thankfully, Samsung created a new type of SSD named 2B-SSD with two different allowed access
granularities: Byte and Block [29]. With the ability to allow direct byte-level access using SSD
internal DRAM, the traffic amplification caused by the granularity mismatch of NAND flash and

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:31

Table 6. Comparison between Several Related SSD Interface Enhancements for Data Placement[64, 131]

[Traditional Multi-stream FDP ZNS OoC
Backward Compatibility v v v X X
Random Writes Allowed v v v X (v in part) v
Data Placement SSD SSD/Host directive SSD/Host directive Host to zone Host to channel
Garbage Collection SSD SSD SSD Host Host
Wear Leveling SSD SSD SSD SSD Host
Error Correction SSD SSD SSD SSD SSD
Host Change Needed N/A Minor Some Major Significant

DRAM can be reduced [162]. Although the development of CXL is still at an early stage, both
academia and industry show interest in combining CXL and byte-addressable SSDs [82, 101, 162].
In summary, The dual of byte-addressable SSD and CXL marks a new page for SSD and storage
abstraction. The block interface in the storage abstraction for the past decades has been overthrown,
and the use of SSD has been extended to overcome the capacity limit of main memory. We hope
future research can lead to even more exciting use cases of byte-addressable SSDs.

7 The Future

So far, we have discussed several enhancements to storage abstractions, including TRIM, Multi-
stream, FDP, Open-channel SSD, ZNS, computational storage, KV-SSD, and byte-addressable SSD.
TRIM is widely adopted by modern SSDs. Multi-stream and Open-channel SSD are now obsolete in
practice. ZNS, computational storage, and KV-SSD are established research areas. FDP and byte-
addressable SSD with CXL are on the rise. In this section, we would like to provide our thoughts
on the following questions:

— What can we learn from the (partially) failed attempts?

— What can we do to further the research in well-established research areas?

— What should we do to ensure the success of existing and new storage abstraction
enhancements?

7.1 Learning from (Partially) Failed Attempts

We have discussed two partially failed enhancements in the survey, namely, Multi-stream and
Open-channel SSD. These two enhancements were not able to gain widespread acceptance in
academia, the open-source community, or industry. Interestingly, both are at the two different
extremes of complexity, as shown in Table 6. Multi-stream only requires a single lifetime hint based
on the workload characteristics from the host, whereas Open-channel SSD requires an extensive
modification on the host layer to determine the location of data placement. We believe the lesson
here is that if an enhancement to the storage abstraction requires user intervention to enable, then
it should provide a balanced flexibility for users to control.

However, TRIM is an even simpler enhancement compared to Multi-stream, but the adoption of
TRIM is widespread. One possible reason is that the responsible layer for issuing TRIM requests is
more clear. TRIM should be issued when an LBA is considered invalid. It can be assumed that most
users use their storage device with a filesystem, and the filesystem knows if an LBA is invalid, since
this is part of the filesystem’s responsibility [143]. Application developers do not need to implement
TRIM support on their side. SSDs with TRIM enabled show significantly improved performance,
albeit the concept of TRIM is simple [86]. Multi-stream, however, can be implemented in layers
including the application layer [86], the file system layer [134], and the driver layer [158]. There is
no unified consensus on which layer is responsible for implementing write hints. Nevertheless,
this problem is partially solved in smartphones, where the device vendor has tighter control of

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:32 X. Zhang et al.

the whole system than computers [90]. The underlying storage is also tightly coupled with the
device and the system: Almost every hardware component is unremovable, so the smartphone
vendors can directly provide drivers tailored for the device, e.g., storage driver with write hints.
Although the adoption rate of Multi-stream is almost zero on computers, it has more popularity on
smartphones, as vendors have reported [105, 130, 140].

It is also worth noting that Multi-stream and Open-channel, despite their low adoption rates, also
show their impact on FDP and ZNS. We see many similarities between Multi-stream and FDP, and
FDP can be somehow considered as the successor of Multi-stream [137]; the initial ZNS evaluation
paper rehashes policies and code from Multi-stream [36]. ZNS is also the direct successor of Open-
channel SSD, as announced on the Open-channel SSD official website [7]. FDP also provides the
flexibility of data placement similar to Open-channel SSD without the extra management overhead
[137]. In summary, although Multi-stream and Open-channel are obsolete, they show their influence
on enhancements to come.

Lessons Learned: An enhancement should balance simplicity and configurability. The layer
for implementing the enhancement should be clearly defined, and the enhancement should be
transparent from the application developer’s point of view. A new enhancement is more likely
to succeed in a tightly controlled environment, e.g., smartphones and enterprise systems, where
the controller of the system (i.e., smartphone vendor and data center administrator) can apply the
enhancement between the application layer and the storage device with enough justification to
design related code and apply the enhancements. Last, the sunset of an enhancement can be the
sunrise of a better enhancement in the future.

7.2 Expanding Research Scopes for Well-established Enhancements

We consider ZNS, KV-SSD, and computational storage to be well-established research areas. ZNS
and KV-SSD have been developed and researched for about half a decade, whereas computational
storage has been researched for decades, since the HDD era. Further expanding research scopes for
these areas can be challenging but rewarding.

We identify two possible methods to expand the research scope: the first is to apply existing
methods from other research areas. For example, applying methods used in Multi-stream to ZNS
could lead to new discoveries [36]. Another possible way is to discover new use cases for an
existing technology. An example would be applying ZNS to cases other than key-value databases.
ZNS has a close connection to key-value databases since its birth [36], and our survey shows the
most common topic for ZNS-related paper is also key-value databases [75, 81, 102, 103, 112, 115].
However, researchers are applying ZNS SSDs to more scenarios, including Linux swap space [32]
and general filesystem [132]. A possible future direction can be integrating ZNS SSDs or KV-SSDs
with CXL, since CXL is on the rise. Last, an enhancement must be standardized to be adopted by
users. If an enhancement is well-studied but yet to be standardized (e.g., computational storage),
then a retrospective review can be helpful for a better design of the standard.

7.3 Ensuring Future Success of Established and New Enhancements

An established enhancement must continuously adapt to the ever-changing demands to keep
competitiveness. Any enhancement may have its limitations, and it is essential to address them
in time; otherwise, people may shift to new or other enhancements. One effective approach is
to learn from the experiences and challenges of similar enhancements. For example, we have
discussed the limitations and similarities of Zoned Namespace (ZNS) compared to Multi-stream
technology. ZNS zones are designed to be append-only and lack random write support. Although
some ZNS SSDs provide conventional zones that support random writes [58, 59], this provision has
proven insufficient. To address this, the new NVMe technical proposal, TP4076, has been ratified to

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:33

allow random-writable regions within otherwise sequential-write-only zones [41]. Additionally,
TP4093 has been ratified to enable the passing of lifetime hints to ZNS zone writes [142], efficiently
integrating Multi-stream functionality within ZNS zones.

Established enhancements can also be extended to complement other protocols or storage
technologies to attract a broader user base. Multi-stream technology, for instance, has gained
traction in the UFS domain, with smartphone storage vendors expressing interest [105, 130, 140]
although it was not able to gain enough attention on the NVMe end. Meanwhile, zoned storage
has garnered attention in the UFS domain and was officially incorporated into the UFS standard in
November 2023 [63, 77]. A paper named ZMS from Samsung discusses the I/O stack of applying
ZNS to mobile storage with the UFS interface [72]. It is important to note that the concept of ZNS
SSDs was originally developed from Shingled Magnetic Recording (SMR) HDDs. In summary,
learning from existing technologies can lead to the development of new extensions to storage
abstractions, which could subsequently be adopted by other sectors to achieve a broader impact.

Conversely, a new enhancement must demonstrate sufficient demand to be successful, with
demand primarily driven by SSD users rather than vendors. Retrospectively, both Multi-stream and
Open-channel SSDs were vendor-controlled: Multi-stream by Samsung [86] and Open-channel SSD
by CNEX Labs [38]. Despite their demonstrated benefits, the real demand for these enhancements
was uncertain at the time of their creation, and the number of developers willing to integrate these
enhancements into their applications was unknown. In contrast, the Flexible Data Placement
(FDP) and Compute Express Link (CXL) technologies were developed based on clear user
demand. FDP was created by Google and Meta [137], while the CXL consortium includes major
industry players such as Google, Meta, Microsoft, Dell, HP, Nvidia, and Alibaba [49]. These
enhancements have secured their markets since their inception, leading to a higher likelihood of
future success.

Exploring the potential for storage abstraction extensions to enter consumer markets can also
drive increased demand. Zoned storage, for instance, has been successfully integrated into the UFS
standard, which is predominantly used in smartphones. FDP and CXL can adopt similar strategies
to target consumer markets. For FDP, gaining filesystem support is a prerequisite to ensure seamless
integration without requiring user or application-side configuration. An FDP-enabled SSD with
filesystem support should exhibit similar or better write amplification factor (WAF) and SSD
longevity compared to FStream [134], a worthy pursuit given the declining trend of maximum
SSD program-erase cycles [91, 118]. CXL may also find applications in personal computers or
even smartphones, especially as interest grows in on-device machine learning model training
[76, 141, 156]. The limited resources of personal computers or smartphones present a significant
opportunity for CXL to overcome the memory wall on these devices.

With backing from both creators and users, FDP and CXL hold significant potential from their
inception. However, numerous questions remain before their widespread adoption can be realized.
Addressing these questions can provide valuable insights for other researchers in the field. For
instance, conducting feasibility studies can identify the best use cases for these new enhancements
[82, 162]. Another approach is to analyze similar past enhancements and apply those insights to the
current context. Comparing related enhancements can also help determine if the new enhancement
offers greater benefits. By thoroughly studying feasibility, benefits, and demand, we hope that FDP
and CXL will achieve widespread industry adoption in the near future.

7.4 Future Vision for SSD Abstraction Enhancements

While the article has extensively covered the past and present SSD interface enhancements, envi-
sioning the future of SSD technology is equally crucial. We would like to end this article with the
following potential advancements that could shape the next generation of SSDs. We hope these

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

2:34 X. Zhang et al.

directions can kickstart research interests and provide better storage interfaces and abstractions in
the future.

7.4.1 Learning from Universal Flash Storage. UFS has been a critical interface for mobile and
embedded storage solutions. Mobile and embedded devices are more energy-aware than traditional
computers, which means UFS has to be energy-efficient. While focusing on performance improve-
ments, new UFS standards also aim for lower power consumption. For example, UFS 4.0 has a power
efficiency that is reportedly 46% better than UFS 3.1 while doubling the read performance [138].
Although our article mostly focuses on the storage interface for traditional computers (especially
NVMe), we are seeing more interactions between UFS and NVMe where one learns from the other
(e.g., integrating Multi-stream and ZNS support on UFS). As UFES is mostly used for mobile devices,
it has to be power-smart; storage protocols for traditional computers may also learn from UFS in
the future in light of more concerns about energy efficiency.

7.4.2 Integrating Other Enhancements with Compute Express Link. CXL breaks the memory wall
by utilizing SSDs as main memory. Although CXL is now a popular topic, there are still many
questions to answer. SSDs have internal activities such as garbage collection and wear leveling,
which occupy internal bandwidth and CPU resources [78, 167]. Without the communication
between the CXL components and the SSD, CXL performance may be severely impacted by these
SSD-internal tasks. SSDs are inherently slower than DRAMs already, and researchers should do
anything they can to make SSDs faster when being used as main memory. A possible direction is
to have special storage abstraction extensions so CXL components may coordinate with SSDs to
prevent these internal tasks when possible. A similar design has been done for SSD RAID systems
[109], and we believe such a design will be strongly beneficial for better CXL performance. CXL
also supports different interleave granularities and interleave ways when placing data within an
address range [20]. Researching the impact of different interleave granularities/ways is also needed,
since they can result in tradeoffs similar to what one can see from the design of cache systems.

Another possible research direction is to directly integrate SmartSSDs with CXL. CXL Consortium
defined three different types of CXL devices; the CXL Type 2 (T2) devices are considered to be
accelerator-like devices with their own memory that hosts can access [40]. This is coincidentally
similar to SmartSSDs, which have the ability to perform calculations on the data they store. The
host can then offload some time-insensitive tasks to the CXL-enabled SmartSSD when needed.

Flexible Data Placement and Zoned Namespace Storage may also help on CXL. We have
discussed the advantages brought by ZNSwap, which uses ZNS SSDs for memory swap space
[31, 32]. By placing data carefully, FDP and ZNS devices should perform better than traditional SSDs.
Performance isolation between different tenants may also be achieved with FDP. Considering a CXL
memory pool shared by multiple tenants, separating data from different tenants will be beneficial
for better garbage collection efficiency and performance isolation between different tenants.
This could be a huge task, because CXL systems can be complex, and there may also be different
design choices (e.g., segregation by program context [96], process, or (virtual) machine). Still, this
approach should be able to improve performance and reduce disturbances from noisy neighbors
nonetheless.

8 Conclusion

In this survey, we discussed the shortcomings of the traditional storage abstraction and explored
several enhancements that address them. We categorized them into four different categories, each
with a different philosophy. For each enhancement, we discussed its history and relationships with
other enhancements from various perspectives, including source code interpretation and design
concept comparison, along with the ecosystem and research efforts made by both industry and

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

Storage Abstractions for SSDs: The Past, Present, and Future 2:35

academia. Finally, we identified the future for existing and emerging enhancements by reflecting on
partially failed attempts and proposing possible new research directions. We hope this article lays
a cornerstone for exploring the current landscape and inspires future research on enhancements to
the SSD storage abstraction.

References
[1] 2007. Notification of Deleted Data Proposal for ATA8-ACS2. Retrieved from https://t13.org/system/files/Documents/
2007/e07154r0-Notification%20for%20Deleted%20Data%20Proposal %20for%20ATA- ACS2_2.doc
[2] 2009. Serial ATA: Meeting Storage Needs Today and Tomorrow. Retrieved from https://web.archive.org/web/
20120417133358/http://www.serialata.org/documents/SATA-Rev-30-Presentation.pdf
[3] 2011. NVMe 1.0. Retrieved from https://nvmexpress.org/wp-content/uploads/NVM-Express-1_0Oe.pdf
[4] 2012. NVMe 1.1. Retrieved from https://nvmexpress.org/wp-content/uploads/NVM-Express-1_1b-1.pdf
[5] 2014. NVMe 1.2. Retrieved from https://nvmexpress.org/wp-content/uploads/NVM-Express-1_2a.pdf
[6] 2015. lightnvm: Support for Open-Channel SSDs. Retrieved from https://github.com/torvalds/linux/commit/
cd9e9808d18fe7107c306f6e71c8be7230ee42bd
[7] 2015. OpenChannelSSD. Retrieved from http://lightnvm.io
[8] 2017. f2fs: apply write hints to select the type of segments for buffered write. Retrieved from https://github.com/
torvalds/linux/commit/a02cd4229e298aadbe8f5cf286edee8058d87116
[9] 2017. Merge branch “for-4.13/block” of git://git.kernel.dk/linux-block. Retrieved from https://github.com/torvalds/
linux/commit/c6b1e36c8fa04a6680c44fe0321d0370400e90b6
[10] 2017. NVMe 1.3. Retrieved from https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.
pdf
[11] 2019. Compute Express Link. Retrieved from https://docs.wixstatic.com/ugd/0c1418_
d9878707bbb7427786b70c3c91d5fbd1.pdf
[12] 2019. Key Value Storage API Specification Version 1.0. Retrieved from https://www.snia.org/sites/default/files/
technical-work/kvsapi/release/SNIA-Key-Value-Storage- API-v1.0.pdf
[13] 2019. NVMe 1.4. Retrieved from https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.
pdf
[14] 2020. Compute Express Link. Retrieved from https://www.computeexpresslink.org/ files/ugd/0c1418_
14¢5283e7f3e40f9b2955¢7d0f60bebe.pdf
[15] 2020. Key Value Storage API Specification Version 1.1. Retrieved from https://www.snia.org/sites/default/files/
technical-work/kvsapi/release/SNIA-Key-Value-Storage- API-v1.1.pdf
[16] 2021. NVM Express Key-Value Command Set Specification 1.0. Retrieved from https://nvmexpress.org/wp-content/
uploads/NVM-Express-Key-Value-Command-Set-Specification-1.0-2021.06.02-Ratified- 1.pdf
[17] 2021. NVM Express® Base Specification 2.0. Retrieved from https://nvmexpress.org/wp-content/uploads/NVM-
Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
[18] 2022. Compute Express Link. Retrieved from https://www.computeexpresslink.org/ files/ugd/0c1418_
a8713008916044ae9604405d10a7773b.pdf
[19] 2022. Hyperscale Innovation: Flexible Data Placement Mode (FDP). Retrieved from https://nvmexpress.org/wp-
content/uploads/Hyperscale-Innovation-Flexible-Data-Placement-Mode-FDP.pdf
[20] 2023. Compute Express Link. Retrieved from https://www.computeexpresslink.org/_files/ugd/0c1418_
6ede12bda4d34ffeb879¢3700dde389.pdf
[21] 2023. NVM-Express-NVM-Command-Set-Specification-1.0d-2023.12.28-Ratified.pdf. Retrieved from
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0d-2023.12.28-
Ratified.pdf
[22] 2024. Retrieved from https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-
Ratified-5.pdf
[23] 2024. rocksdb/db/column_family.cc at daf06f1361140bb4ca9304b27b0aa36ef5842f56 - facebook/rocksdb. Retrieved
from https://github.com/facebook/rocksdb/blob/daf06f1361140bb4ca9304b27b0aa36ef5842f56/db/column_family.cc
[24] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong, and Wen-mei
Hwu. 2019. FlatFlash: Exploiting the byte-accessibility of SSDs within a unified memory-storage hierarchy. In
Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS’19). Association for Computing Machinery, 971-985. DOI : https://doi.org/10.1145/3297858.3304061
[25] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. 2023. Operating Systems: Three Easy Pieces (1.10 ed.).

Arpaci-Dusseau Books.

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://t13.org/system/files/Documents/2007/e07154r0-Notification%20for%20Deleted%20Data%20Proposal%20for%20ATA-ACS2_2.doc
https://t13.org/system/files/Documents/2007/e07154r0-Notification%20for%20Deleted%20Data%20Proposal%20for%20ATA-ACS2_2.doc
https://web.archive.org/web/20120417133358/http://www.serialata.org/documents/SATA-Rev-30-Presentation.pdf
https://web.archive.org/web/20120417133358/http://www.serialata.org/documents/SATA-Rev-30-Presentation.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_0e.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_1b-1.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_2a.pdf
https://github.com/torvalds/linux/commit/cd9e9808d18fe7107c306f6e71c8be7230ee42b4
https://github.com/torvalds/linux/commit/cd9e9808d18fe7107c306f6e71c8be7230ee42b4
http://lightnvm.io
https://github.com/torvalds/linux/commit/a02cd4229e298aadbe8f5cf286edee8058d87116
https://github.com/torvalds/linux/commit/a02cd4229e298aadbe8f5cf286edee8058d87116
https://github.com/torvalds/linux/commit/c6b1e36c8fa04a6680c44fe0321d0370400e90b6
https://github.com/torvalds/linux/commit/c6b1e36c8fa04a6680c44fe0321d0370400e90b6
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3a-20171024_ratified.pdf
https://docs.wixstatic.com/ugd/0c1418_d9878707bbb7427786b70c3c91d5fbd1.pdf
https://docs.wixstatic.com/ugd/0c1418_d9878707bbb7427786b70c3c91d5fbd1.pdf
https://www.snia.org/sites/default/files/technical-work/kvsapi/release/SNIA-Key-Value-Storage-API-v1.0.pdf
https://www.snia.org/sites/default/files/technical-work/kvsapi/release/SNIA-Key-Value-Storage-API-v1.0.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4-2019.06.10-Ratified.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.snia.org/sites/default/files/technical-work/kvsapi/release/SNIA-Key-Value-Storage-API-v1.1.pdf
https://www.snia.org/sites/default/files/technical-work/kvsapi/release/SNIA-Key-Value-Storage-API-v1.1.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Key-Value-Command-Set-Specification-1.0-2021.06.02-Ratified-1.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Key-Value-Command-Set-Specification-1.0-2021.06.02-Ratified-1.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_a8713008916044ae9604405d10a7773b.pdf
https://nvmexpress.org/wp-content/uploads/Hyperscale-Innovation-Flexible-Data-Placement-Mode-FDP.pdf
https://nvmexpress.org/wp-content/uploads/Hyperscale-Innovation-Flexible-Data-Placement-Mode-FDP.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_6ede12bda4d34ffeb879c3700dde38f9.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_6ede12bda4d34ffeb879c3700dde38f9.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0d-2023.12.28-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-NVM-Command-Set-Specification-1.0d-2023.12.28-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-Base-Specification-2_0-2021.06.02-Ratified-5.pdf
https://github.com/facebook/rocksdb/blob/daf06f1361140bb4ca9304b27b0aa36ef5842f56/db/column_family.cc
https://doi.org/10.1145/3297858.3304061

2:36 X. Zhang et al.

[26] Jens Axboe. 2008. Add “discard” request handling - torvalds/linux@fb2dce8. Retrieved from https://github.com/
torvalds/linux/commit/fb2dce862d9f9a68e6b9374579056ec9ecal2a63

[27] Jens Axboe. 2021. Merge branch “nvme-5.9” of git://git.infradead.org/nvme into for-5.9/.... Retrieved from https:
//github.com/torvalds/linux/commit/80ee071b18660c56d3f7a7ab67793b78a96baae5

[28] Jens Axboe. 2022. Re: [EXT] Re: [PATCH 2/2] block: remove the per-bio/request write hint. - Jens Axboe. Retrieved
from https://lore kernel.org/all/800fa121-5da2-e4c0-d756-991f007f0ad4@kernel.dk/

[29] Duck-Ho Bae, Insoon Jo, Youra Adel Choi, Joo-Young Hwang, Sangyeun Cho, Dong-Gi Lee, and Jacheon Jeong.
2018. 2B-SSD: The case for dual, byte-and block-addressable solid-state drives. In Proceedings of the ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA’18). IEEE, 425-438. Retrieved from https:
//ieeexplore.ieee.org/abstract/document/8416845

[30] Hanyeoreum Bae, Jiseon Kim, Miryeong Kwon, and Myoungsoo Jung. 2022. What you can’t forget: Exploiting
parallelism for zoned namespaces. In Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage’22). Association for Computing Machinery, 79-85. DOI : https://doi.org/10.1145/3538643.3539744

[31] ShaiBergman, Niklas Cassel, Matias Bjorling, and Mark Silberstein. 2022. ZNSwap: un-block your swap. In Proceedings
of the USENIX Annual Technical Conference (ATC’22). USENIX Association, 1-18. Retrieved from https://www.usenix.
org/conference/atc22/presentation/bergman

[32] Shai Bergman, Niklas Cassel, Matias Bjerling, and Mark Silberstein. 2023. ZNSwap: Un-block your swap. ACM Trans.
Stor. 19, 2, Article 12 (03 2023), 25 pages. DOIL : https://doi.org/10.1145/3582434

[33] Janki Bhimani, Jingpei Yang, Ningfang Mi, Changho Choi, Manoj Saha, and Adnan Maruf. 2021. Fine-grained control
of concurrency within KV-SSDs. In Proceedings of the 14th ACM International Conference on Systems and Storage
(SYSTOR’21). Association for Computing Machinery, Article 4, 12 pages. DOI : https://doi.org/10.1145/3456727.3463777

[34] Janki Bhimani, Zhengyu Yang, Jingpei Yang, Adnan Maruf, Ningfang Mi, Rajinikanth Pandurangan, Changho Choi,
and Vijay Balakrishnan. 2022. Automatic stream identification to improve flash endurance in data centers. ACM
Trans. Stor. 18, 2, Article 17 (04 2022), 29 pages. DOI : https://doi.org/10.1145/3470007

[35] Matias Bjerling. 2019. From open-channel SSDs to zoned namespaces (VAULT’19). USENIX Association. Retrieved
from https://www.usenix.org/conference/vault19/presentation/bjorling

[36] Matias Bjerling, Abutalib Aghayev, Hans Holmberg, Aravind Ramesh, Damien Le Moal, Gregory R. Ganger, and
George Amvrosiadis. 2021. ZNS: Avoiding the block interface tax for flash-based SSDs. In Proceedings of the USENIX
Annual Technical Conference (ATC’21). USENIX Association, 689-703. Retrieved from https://www.usenix.org/
conference/atc21/presentation/bjorling

[37] Matias Bjerling, Jens Axboe, David Nellans, and Philippe Bonnet. 2013. Linux block IO: Introducing multi-queue
SSD access on multi-core systems. In Proceedings of the 6th International Systems and Storage Conference (SYSTOR’13).
Association for Computing Machinery, Article 22, 10 pages. DOI : https://doi.org/10.1145/2485732.2485740

[38] Matias Bjerling, Javier Gonzalez, and Philippe Bonnet. 2017. LightNVM: The Linux open-channel SSD subsystem. In
Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17). USENIX Association, 359-374.
Retrieved from https://www.usenix.org/conference/fast17/technical- sessions/presentation/bjorling

[39] Simona Boboila, Youngjae Kim, Sudharshan S. Vazhkudai, Peter Desnoyers, and Galen M. Shipman. 2012. Active Flash:
Out-of-core data analytics on flash storage. In 2012 IEEE 28th Symposium on Mass Storage Systems and Technologies
(MSST). 1-12. DOI : https://doi.org/10.1109/MSST.2012.6232366

[40] Kurtis Bowman. 2023. Compute Express Link (CXL) Device Ecosystem and Usage Models. Retrieved from https:
//computeexpresslink.org/wp-content/uploads/2023/12/CXL_FMS-Panel-2023_FINAL.pdf

[41] Judy Brock, Bill Martin, Javier Gonzalez, Klaus B. Jensen, Fred Knight, Yoni Shternhell, Matias Bjorling, and Paul
Suhler. 2022. TP4076a Zoned Random Write Area 2022.01.19 Ratified. Retrieved from https://nvmexpress.org/wp-
content/uploads/NVM-Express-2.0-Ratified-TPs_20230111.zip

[42] Neil Brown. 2017. A block layer introduction part 1: The bio layer [LWN.net]. Retrieved from https://lwn.net/
Articles/736534/

[43] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Lingiang Ouyang, Peng Wang, Yijing Wang, Ray
Kuan et al. 2020. POLARDB meets computational storage: Efficiently support analytical workloads in cloud-native
relational database. In Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST’20). USENIX
Association, 29-41. Retrieved from https://www.usenix.org/conference/fast20/presentation/cao-wei

[44] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H. C. Du. 2020. Characterizing, modeling, and benchmarking
RocksDB key-value workloads at Facebook. In Proceedings of the 18th USENIX Conference on File and Storage
Technologies (FAST’20). USENIX Association, 209-223. Retrieved from https://www.usenix.org/conference/fast20/
presentation/cao-zhichao

[45] Marc Carino. 2013. [PATCH v3 0/3] Introduce new SATA queued commands - Marc C. Retrieved from https:
//lore.kernel.org/all/1376023752-3105- 1- git-send-email-marc.ceeeee @gmail.com/

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://github.com/torvalds/linux/commit/fb2dce862d9f9a68e6b9374579056ec9eca02a63
https://github.com/torvalds/linux/commit/fb2dce862d9f9a68e6b9374579056ec9eca02a63
https://github.com/torvalds/linux/commit/80ee071b18660c56d3f7a7ab67793b78a96baae5
https://github.com/torvalds/linux/commit/80ee071b18660c56d3f7a7ab67793b78a96baae5
https://lore.kernel.org/all/800fa121-5da2-e4c0-d756-991f007f0ad4@kernel.dk/
https://ieeexplore.ieee.org/abstract/document/8416845
https://ieeexplore.ieee.org/abstract/document/8416845
https://doi.org/10.1145/3538643.3539744
https://www.usenix.org/conference/atc22/presentation/bergman
https://www.usenix.org/conference/atc22/presentation/bergman
https://doi.org/10.1145/3582434
https://doi.org/10.1145/3456727.3463777
https://doi.org/10.1145/3470007
https://www.usenix.org/conference/vault19/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://www.usenix.org/conference/atc21/presentation/bjorling
https://doi.org/10.1145/2485732.2485740
https://www.usenix.org/conference/fast17/technical-sessions/presentation/bjorling
https://doi.org/10.1109/MSST.2012.6232366
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL_FMS-Panel-2023_FINAL.pdf
https://computeexpresslink.org/wp-content/uploads/2023/12/CXL_FMS-Panel-2023_FINAL.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_20230111.zip
https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_20230111.zip
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://www.usenix.org/conference/fast20/presentation/cao-wei
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://www.usenix.org/conference/fast20/presentation/cao-zhichao
https://lore.kernel.org/all/1376023752-3105-1-git-send-email-marc.ceeeee@gmail.com/
https://lore.kernel.org/all/1376023752-3105-1-git-send-email-marc.ceeeee@gmail.com/

Storage Abstractions for SSDs: The Past, Present, and Future 2:37

(46

(47
(48
(49
[50
[51
[52
53
[54
[55

(56

60

(61

(62
(63
(64

(65

(66

[67

(68

[69

[70

] Chandranil Chakraborttii and Heiner Litz. 2021. Reducing write amplification in flash by death-time prediction of
logical block addresses. In Proceedings of the 14th ACM International Conference on Systems and Storage (SYSTOR’21).
Association for Computing Machinery, Article 11, 12 pages. DOI : https://doi.org/10.1145/3456727.3463784

] Da-Wei Chang, Hsin-Hung Chen, and Wei-Jian Su. 2015. VSSD: Performance isolation in a solid-state drive. ACM
Trans. Des. Autom. Electron. Syst. 20, 4, Article 51 (09 2015), 33 pages. DOI : https://doi.org/10.1145/2755560

] Young-in Choi and Sungyong Ahn. 2022. Separating the file system journal to reduce write amplification of garbage
collection on ZNS SSDs. J. Multim. Inf. Syst. 9, 4 (2022), 261-268. DOI : https://doi.org/10.33851/JMIS.2022.9.4.261

] CXL Consortium. 2023. Our Members - Compute Express Link. Retrieved from https://computeexpresslink.org/our-
members/

] Jonathan Corbet. 2010. The best way to throw blocks away [LWN.net]. Retrieved from https://lwn.net/Articles/
417809/

] Lukas Czerner. 2010. [PATCH 0/3 v. 8] Ext3/Ext4 Batched discard support - Lukas Czerner. Retrieved from https:
//lore kernel.org/linux-ext4/1285342559-16424- 1-git-send-email-lczerner@redhat.com/

] Lukas Czerner. 2010. [PATCH 1/3] Add ioctl FITRIM. - Lukas Czerner. Retrieved from https://lore.kernel.org/linux-
ext4/1281094276-11377-2-git-send-email-lczerner@redhat.com/

] Emily Desjardins. 2011. JEDEC Announces Publication of Universal Flash Storage (UFS) Standard | JEDEC. Retrieved
from https://www.jedec.org/news/pressreleases/jedec-announces-publication-universal-flash-storage-ufs-standard

] Peter Desnoyers. 2014. Analytic models of SSD write performance. ACM Trans. Stor. 10, 2, Article 8 (03 2014), 25 pages.
DOI: https://doi.org/10.1145/2577384

] Sarah M. Diesburg and An-I Andy Wang. 2010. A survey of confidential data storage and deletion methods. ACM
Comput. Surv. 43, 1, Article 2 (12 2010), 37 pages. DOI : https://doi.org/10.1145/1824795.1824797

] Western Digital. 2023. linux/fs/zonefs/zonefs.h at f2661062f16b2de5d7b6a5c42a9a5c96326b8454 - torvalds/linux. Re-

trieved from https://github.com/torvalds/linux/blob/f2661062f16b2de5d7b6a5c42a9a5c96326b8454/fs/zonefs/zonefs.

h#L126

Western Digital. 2024. btrfs | Zoned Storage. Retrieved from https://zonedstorage.io/docs/filesystems/btrfs

Western Digital. 2024. f2fs | Zoned Storage. Retrieved from https://zonedstorage.io/docs/filesystems/f2fs

Western Digital. 2024. ZoneFS | Zoned Storage. Retrieved from https://zonedstorage.io/docs/filesystems/zonefs

Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun Park, and David J. DeWitt. 2013. Query

processing on smart SSDs: Opportunities and challenges. In Proceedings of the ACM SIGMOD International Conference

on Management of Data (SIGMOD’13). Association for Computing Machinery, 1221-1230. DOI : https://doi.org/10.

1145/2463676.2465295

] Carl Dufty, Jachoon Shim, Sang-Hoon Kim, and Jin-Soo Kim. 2023. Dotori: A key-value SSD based KV store. Proc.
VLDB Endow. 16, 6 (02 2023), 1560-1572. DOI : https://doi.org/10.14778/3583140.3583167

] Jake Edge. 2019. Issues around discard [LWN.net]. Retrieved from https://lwn.net/Articles/787272/

] Jake Edge. 2023. Zoned storage and filesystems [LWN.net]. Retrieved from https://lwn.net/Articles/932748/

] Javier Gonzalez. 2023. FDP and ZNS for NAND Data Placement: Landscape, Trade-Offs, and Direction. In Proceedings
of the Flash Memory Summit. Retrieved from https://www.flashmemorysummit.com/English/Conference/Program
at_a_Glance_Tue.html

] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon, Jeong-Uk Kang, Moonsang
Kwon, Chanho Yoon, Sangyeun Cho et al. 2016. Biscuit: A framework for near-data processing of big data workloads.
In Proceedings of the 43rd International Symposium on Computer Architecture (ISCA’16). IEEE Press, 153-165. DOI : https:
//doi.org/10.1109/ISCA.2016.23

] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooyoung Hwang. 2021. ZNS+: Advanced zoned namespace
interface for supporting in-storage zone compaction. In Proceedings of the 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’21). USENIX Association, 147-162. Retrieved from https://www.usenix.
org/conference/osdi21/presentation/han

] Yejin Han, Myunghoon Oh, Jaedong Lee, Seehwan Yoo, Bryan S. Kim, and Jongmoo Choi. 2023. Achieving per-
formance isolation in Docker environments with ZNS SSDs. In Proceedings of the IEEE 12th Non-volatile Memory
Systems and Applications Symposium (NVMSA’23). 25-31. DOI : https://doi.org/10.1109/NVMSA58981.2023.00016

] Niclas Hedam, Morten Tychsen Clausen, Philippe Bonnet, Sangjin Lee, and Ken Friis Larsen. 2023. Delilah: eBPF-

offload on computational storage. In Proceedings of the 19th International Workshop on Data Management on New

Hardware (DaMoN’23). 70-76. Retrieved from https://dl.acm.org/doi/abs/10.1145/3592980.3595319

Christoph Hellwig. 2022. Merge tag “for-5.18/write-streams-2022-03-18” of git://git.kernel.dk/.... Retrieved from

https://github.com/torvalds/linux/commit/561593a048d7d6915889706f4b503a65435c033a

] Hans Holmberg. 2021. Initial commmit for ZenFS - westerndigitalcorporation/zenfs@7f8e885. Retrieved from
https://github.com/westerndigitalcorporation/zenfs/commit/7f8e885d670205cfdc91a8b2b34ca5b492f42d43

]
]
]
]

—

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://doi.org/10.1145/3456727.3463784
https://doi.org/10.1145/2755560
https://doi.org/10.33851/JMIS.2022.9.4.261
https://computeexpresslink.org/our-members/
https://computeexpresslink.org/our-members/
https://lwn.net/Articles/417809/
https://lwn.net/Articles/417809/
https://lore.kernel.org/linux-ext4/1285342559-16424-1-git-send-email-lczerner@redhat.com/
https://lore.kernel.org/linux-ext4/1285342559-16424-1-git-send-email-lczerner@redhat.com/
https://lore.kernel.org/linux-ext4/1281094276-11377-2-git-send-email-lczerner@redhat.com/
https://lore.kernel.org/linux-ext4/1281094276-11377-2-git-send-email-lczerner@redhat.com/
https://www.jedec.org/news/pressreleases/jedec-announces-publication-universal-flash-storage-ufs-standard
https://doi.org/10.1145/2577384
https://doi.org/10.1145/1824795.1824797
https://github.com/torvalds/linux/blob/f2661062f16b2de5d7b6a5c42a9a5c96326b8454/fs/zonefs/zonefs.h#L126
https://github.com/torvalds/linux/blob/f2661062f16b2de5d7b6a5c42a9a5c96326b8454/fs/zonefs/zonefs.h#L126
https://zonedstorage.io/docs/filesystems/btrfs
https://zonedstorage.io/docs/filesystems/f2fs
https://zonedstorage.io/docs/filesystems/zonefs
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.14778/3583140.3583167
https://lwn.net/Articles/787272/
https://lwn.net/Articles/932748/
https://www.flashmemorysummit.com/English/Conference/Program_at_a_Glance_Tue.html
https://www.flashmemorysummit.com/English/Conference/Program_at_a_Glance_Tue.html
https://doi.org/10.1109/ISCA.2016.23
https://doi.org/10.1109/ISCA.2016.23
https://www.usenix.org/conference/osdi21/presentation/han
https://www.usenix.org/conference/osdi21/presentation/han
https://doi.org/10.1109/NVMSA58981.2023.00016
https://dl.acm.org/doi/abs/10.1145/3592980.3595319
https://github.com/torvalds/linux/commit/561593a048d7d6915889706f4b503a65435c033a
https://github.com/westerndigitalcorporation/zenfs/commit/7f8e885d670205cfdc91a8b2b34ca5b492f42d43

2:38 X. Zhang et al.

[71] Jian Huang, Anirudh Badam, Laura Caulfield, Suman Nath, Sudipta Sengupta, Bikash Sharma, and Moinuddin K.
Qureshi. 2017. FlashBlox: Achieving both performance isolation and uniform lifetime for virtualized SSDs. In
Proceedings of the 15th USENIX Conference on File and Storage Technologies (FAST’17). USENIX Association, 375-390.
Retrieved from https://www.usenix.org/conference/fast17/technical- sessions/presentation/huang

[72] Joo-Young Hwang, Seokhwan Kim, Daejun Park, Yong-Gil Song, Junyoung Han, Seunghyun Choi, Sangyeun Cho,
and Youjip Won. 2024. ZMS: Zone abstraction for mobile flash storage. In Proceedings of the USENIX Annual Technical
Conference (ATC’24). USENIX Association, 173-189. Retrieved from https://www.usenix.org/conference/atc24/
presentation/hwang

[73] Choulseung Hyun, Jongmoo Choi, Donghee Lee, and Sam H. Noh. 2011. To TRIM or not to TRIM: Judicious trimming
for solid state drives. In Poster presentation in the 23rd ACM Symposium on Operating Systems Principles (SIGOPS’11).
Retrieved from https://sigops.org/s/conferences/sosp/2011/posters/summaries/sosp11-final16.pdf

[74] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind, and Sungjin Lee. 2020. PinK: High-speed in-storage key-value
store with bounded tails. In Proceedings of the USENIX Annual Technical Conference (ATC’20). USENIX Association,
173-187. Retrieved from https://www.usenix.org/conference/atc20/presentation/im

[75] Minwoo Im, Kyungsu Kang, and Heonyoung Yeom. 2022. Accelerating RocksDB for small-zone ZNS SSDs by parallel
1/O mechanism. In Proceedings of the 23rd International Middleware Conference Industrial Track (Middleware’22).
Association for Computing Machinery, 15-21. DOI : https://doi.org/10.1145/3564695.3564774

[76] Apple Inc. 2024. Introducing Apple’s On-device and Server Foundation Models - Apple Machine Learning Research.
Retrieved from https://machinelearning.apple.com/research/introducing-apple-foundation-models

[77] JEDEC. 2023. Zoned Storage for UFS | JEDEC. Retrieved from https://www.jedec.org/standards-documents/docs/
jesd220-5

[78] Ziyang Jiao, Janki Bhimani, and Bryan S. Kim. 2022. Wear leveling in SSDs considered harmful. In Proceedings of the
14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’22). Association for Computing Machinery,
72-78. DOI: https://doi.org/10.1145/3538643.3539750

[79] Yangin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven Swanson. 2017. KAML: A flexible, high-
performance key-value SSD. In Proceedings of the IEEE International Symposium on High Performance Computer
Architecture (HPCA’17). 373-384. DOI : https://doi.org/10.1109/HPCA.2017.15

[80] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho, Daniel D. G. Lee, and Jaeheon Jeong. 2016.
YourSQL: A high-performance database system leveraging in-storage computing. Proc. VLDB Endow. 9, 12 (08 2016),
924-935. DOI : https://doi.org/10.14778/2994509.2994512

[81] Jeeyoon Jung and Dongkun Shin. 2022. Lifetime-leveling LSM-tree compaction for ZNS SSD. In Proceedings of the
14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’22). Association for Computing Machinery,
100-105. DOI : https://doi.org/10.1145/3538643.3539741

[82] Myoungsoo Jung. 2022. Hello bytes, bye blocks: PCle storage meets compute express link for memory expansion
(CXL-SSD). In Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’22).
Association for Computing Machinery, 45-51. DOI : https://doi.org/10.1145/3538643.3539745

[83] Myoungsoo Jung and Mahmut Kandemir. 2013. Revisiting widely held SSD expectations and rethinking system-level
implications. SIGMETRICS Perform. Eval. Rev. 41, 1 (06 2013), 203-216. DOI : https://doi.org/10.1145/2494232.2465548

[84] Myoungsoo Jung and Mahmut Kandemir. 2013. Revisiting widely held SSD expectations and rethinking system-level
implications. In Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’13). Association for Computing Machinery, 203-216. DOIL : https://doi.org/10.1145/
2465529.2465548

[85] Min-Gyo Jung, Chang-Gyu Lee, Donggyu Park, Sungyong Park, Jungki Noh, Woosuk Chung, Kyoung Park, and
Youngjae Kim. 2021. GPUKV: An integrated framework with KVSSD and GPU through P2P communication support.
In Proceedings of the 36th Annual ACM Symposium on Applied Computing (SAC’21). Association for Computing
Machinery, 1156-1164. DOI : https://doi.org/10.1145/3412841.3441990

[86] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The multi-streamed solid-state drive. In
Proceedings of the 6th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’14). USENIX Association.
Retrieved from https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/kang

[87] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh, and Changwoo Min. 2013. X-FTL: Transactional
FTL for SQLite databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’13). Association for Computing Machinery, 97-108. DOI : https://doi.org/10.1145/2463676.2465326

[88] Yangwook Kang, Yang-suk Kee, Ethan L. Miller, and Chanik Park. 2013. Enabling cost-effective data processing with
smart SSD. In Proceedings of the IEEE 29th Symposium on Mass Storage Systems and Technologies (MSST’13). 1-12.
DOI:https://doi.org/10.1109/MSST.2013.6558444

[89] Yangwook Kang, Rekha Pitchumani, Pratik Mishra, Yang-suk Kee, Francisco Londono, Sangyoon Oh, Jongyeol Lee,
and Daniel D. G. Lee. 2019. Towards building a high-performance, scale-in key-value storage system. In Proceedings

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://www.usenix.org/conference/fast17/technical-sessions/presentation/huang
https://www.usenix.org/conference/atc24/presentation/hwang
https://www.usenix.org/conference/atc24/presentation/hwang
https://sigops.org/s/conferences/sosp/2011/posters/summaries/sosp11-final16.pdf
https://www.usenix.org/conference/atc20/presentation/im
https://doi.org/10.1145/3564695.3564774
https://machinelearning.apple.com/research/introducing-apple-foundation-models
https://www.jedec.org/standards-documents/docs/jesd220-5
https://www.jedec.org/standards-documents/docs/jesd220-5
https://doi.org/10.1145/3538643.3539750
https://doi.org/10.1109/HPCA.2017.15
https://doi.org/10.14778/2994509.2994512
https://doi.org/10.1145/3538643.3539741
https://doi.org/10.1145/3538643.3539745
https://doi.org/10.1145/2494232.2465548
https://doi.org/10.1145/2465529.2465548
https://doi.org/10.1145/2465529.2465548
https://doi.org/10.1145/3412841.3441990
https://www.usenix.org/conference/hotstorage14/workshop-program/presentation/kang
https://doi.org/10.1145/2463676.2465326
https://doi.org/10.1109/MSST.2013.6558444

Storage Abstractions for SSDs: The Past, Present, and Future 2:39

[92]
(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

of the 12th ACM International Conference on Systems and Storage (SYSTOR’19). Association for Computing Machinery,
144-154. DOI : https://doi.org/10.1145/3319647.3325831

Yunji Kang and Dongkun Shin. 2021. mStream: Stream management for mobile file system using Android file contexts.
In Proceedings of the 36th Annual ACM Symposium on Applied Computing (SAC’21). Association for Computing
Machinery, 1203-1208. DOI : https://doi.org/10.1145/3412841.3442115

Bryan S. Kim, Jongmoo Choi, and Sang Lyul Min. 2019. Design tradeoffs for SSD reliability. In Proceedings of the
17th USENIX Conference on File and Storage Technologies (FAST’19). USENIX Association, 281-294. Retrieved from
https://www.usenix.org/conference/fast19/presentation/kim-bryan

Jaegeuk Kim. 2015. [PATCH 5/5] f2fs: introduce a batched trim - Jaegeuk Kim. Retrieved from https://lore.kernel.
org/all/1422401503-4769-5-git-send- email-jaegeuk@kernel.org/

Joohyun Kim, Haesung Kim, Seongjin Lee, and Youjip Won. 2010. FTL design for TRIM command. In Proceedings of
the 5th International Workshop on Software Support for Portable Storage (IWSSPS’10). 7-12.

Jaeho Kim, Donghee Lee, and Sam H. Noh. 2015. Towards SLO complying SSDs through OPS isolation. In Proceedings
of the 13th USENIX Conference on File and Storage Technologies (FAST’15). USENIX Association, 183-189. Retrieved
from https://www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho

Taejin Kim, Sangwook Shane Hahn, Sungjin Lee, Jooyoung Hwang, Jongyoul Lee, and Jihong Kim. 2018. PCStream:
Automatic stream allocation using program contexts. In Proceedings of the 10th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage’18). USENIX Association. Retrieved from https://www.usenix.org/conference/
hotstorage18/presentation/kim-taejin

Taejin Kim, Duwon Hong, Sangwook Shane Hahn, Myoungjun Chun, Sungjin Lee, Jooyoung Hwang, Jongyoul Lee,
and Jihong Kim. 2019. Fully automatic stream management for multi-streamed SSDs using program contexts. In
Proceedings of the 17th USENIX Conference on File and Storage Technologies (FAST’19). USENIX Association, 295-308.
Retrieved from https://www.usenix.org/conference/fast19/presentation/kim-taejin

Thomas Kim, Jekyeom Jeon, Nikhil Arora, Huaicheng Li, Michael Kaminsky, David G. Andersen, Gregory R. Ganger,
George Amvrosiadis, and Matias Bjerling. 2023. RAIZN: Redundant array of independent zoned namespaces. In
Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS’23). Association for Computing Machinery, 660-673. DOI : https://doi.org/10.
1145/3575693.3575746

Jinhyung Koo, Junsu Im, Jooyoung Song, Juhyung Park, Eunji Lee, Bryan S. Kim, and Sungjin Lee. 2021. Modernizing
file system through in-storage indexing. In Proceedings of the 15th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’21). USENIX Association, 75-92. Retrieved from https://www.usenix.org/conference/
osdi21/presentation/koo

Dongup Kwon, Dongryeong Kim, Junehyuk Boo, Wonsik Lee, and Jangwoo Kim. 2021. A fast and flexible hardware-
based virtualization mechanism for computational storage devices. In Proceedings of the USENIX Annual Technical
Conference (ATC’21). USENIX Association, 729-743. Retrieved from https://www.usenix.org/conference/atc21/
presentation/kwon

Miryeong Kwon, Donghyun Gouk, Changrim Lee, Byounggeun Kim, Jooyoung Hwang, and Myoungsoo Jung. 2020.
DC-Store: Eliminating noisy neighbor containers using deterministic I/O performance and resource isolation. In
Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX Association, 183-191.
Retrieved from https://www.usenix.org/conference/fast20/presentation/kwon

Miryeong Kwon, Sangwon Lee, and Myoungsoo Jung. 2023. Cache in hand: Expander-driven CXL prefetcher for
next generation CXL-SSD. In Proceedings of the 15th ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage’23). Association for Computing Machinery, 24-30. DOI : https://doi.org/10.1145/3599691.3603406
Hee-Rock Lee, Chang-Gyu Lee, Seungjin Lee, and Youngjae Kim. 2022. Compaction-aware zone allocation for LSM
based key-value store on ZNS SSDs. In Proceedings of the 14th ACM Workshop on Hot Topics in Storage and File
Systems (HotStorage’22). Association for Computing Machinery, 93-99. DOI : https://doi.org/10.1145/3538643.3539743
Jongsung Lee, Donguk Kim, and Jae W. Lee. 2023. WALTZ: Leveraging zone append to tighten the tail latency of
LSM tree on ZNS SSD. Proc. VLDB Endow. 16, 11 (07 2023), 2884-2896. DOI : https://doi.org/10.14778/3611479.3611495
Kitae Lee, Dong Hyun Kang, Daeho Jeong, and Young Ik Eom. 2018. Lazy TRIM: Optimizing the journaling overhead
caused by TRIM commands on Ext4 file system. In Proceedings of the IEEE International Conference on Consumer
Electronics (ICCE’18). 1-3. DOI : https://doi.org/10.1109/ICCE.2018.8326258

Manjong Lee. 2022. Re: [PATCH 2/2] block: remove the per-bio/request write hint. - Manjong Lee. Retrieved from
https://lore.kernel.org/all/20220309133119.6915- 1-mj0123.lee@samsung.com/

Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim, and Arvind. 2016. Application-managed flash. In
Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST’16). USENIX Association, 339-353.
Retrieved from https://www.usenix.org/conference/fast16/technical-sessions/presentation/lee

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://doi.org/10.1145/3319647.3325831
https://doi.org/10.1145/3412841.3442115
https://www.usenix.org/conference/fast19/presentation/kim-bryan
https://lore.kernel.org/all/1422401503-4769-5-git-send-email-jaegeuk@kernel.org/
https://lore.kernel.org/all/1422401503-4769-5-git-send-email-jaegeuk@kernel.org/
https://www.usenix.org/conference/fast15/technical-sessions/presentation/kim_jaeho
https://www.usenix.org/conference/hotstorage18/presentation/kim-taejin
https://www.usenix.org/conference/hotstorage18/presentation/kim-taejin
https://www.usenix.org/conference/fast19/presentation/kim-taejin
https://doi.org/10.1145/3575693.3575746
https://doi.org/10.1145/3575693.3575746
https://www.usenix.org/conference/osdi21/presentation/koo
https://www.usenix.org/conference/osdi21/presentation/koo
https://www.usenix.org/conference/atc21/presentation/kwon
https://www.usenix.org/conference/atc21/presentation/kwon
https://www.usenix.org/conference/fast20/presentation/kwon
https://doi.org/10.1145/3599691.3603406
https://doi.org/10.1145/3538643.3539743
https://doi.org/10.14778/3611479.3611495
https://doi.org/10.1109/ICCE.2018.8326258
https://lore.kernel.org/all/20220309133119.6915-1-mj0123.lee@samsung.com/
https://www.usenix.org/conference/fast16/technical-sessions/presentation/lee

2:40 X. Zhang et al.

[107] Young-Sik Lee, Sang-Hoon Kim, Jin-Soo Kim, Jaesoo Lee, Chanik Park, and Seungryoul Maeng. 2013. OSSD: A
case for object-based solid state drives. In Proceedings of the IEEE 29th Symposium on Mass Storage Systems and
Technologies (MSST’13). 1-13. DOIL : https://doi.org/10.1109/MSST.2013.6558448

[108] Cangyuan Li, Ying Wang, Cheng Liu, Shengwen Liang, Huawei Li, and Xiaowei Li. 2021. GLIST: Towards in-storage
graph learning. In Proceedings of the USENIX Annual Technical Conference (ATC’21). USENIX Association, 225-238.
Retrieved from https://www.usenix.org/conference/atc21/presentation/li-cangyuan

[109] Huaicheng Li, Martin L. Putra, Ronald Shi, Xing Lin, Gregory R. Ganger, and Haryadi S. Gunawi. 2021. IODA:
A host/device co-design for strong predictability contract on modern flash storage. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (SOSP’21). Association for Computing Machinery,
263-279. DOI: https://doi.org/10.1145/3477132.3483573

[110] Shaohua Li. 2017. Stream - facebook/rocksdb@eefd75a. Retrieved from https://github.com/facebook/rocksdb/commit/
eefd75a228fc2c50174c0a306918c73ded22ace7

[111] Sangwoo Lim and Dongkun Shin. 2019. DStream: Dynamic memory resizing for multi-streamed SSDs. In Proceedings
of the 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC’19).
1-4. DOI : https://doi.org/10.1109/ITC-CSCC.2019.8793432

[112] Biyong Liu, Yuan Xia, Xueliang Wei, and Wei Tong. 2023. LifetimeKV: Narrowing the lifetime gap of SSTs in
LSMT-based KV stores for ZNS SSDs. In Proceedings of the IEEE 41st International Conference on Computer Design
(ICCD’23). 300-307. DOI : https://doi.org/10.1109/ICCD58817.2023.00053

[113] Jiahao Liu, Fang Wang, and Dan Feng. 2019. CostPI: Cost-effective performance isolation for shared NVMe SSDs.
In Proceedings of the 48th International Conference on Parallel Processing (ICPP’19). Association for Computing
Machinery, Article 25, 10 pages. DOI : https://doi.org/10.1145/3337821.3337879

[114] Canonical Ltd. 2019. Ubuntu Manpage: fstrim - discard unused blocks on a mounted filesystem. Retrieved from
https://manpages.ubuntu.com/manpages/xenial/en/man8/fstrim.8.html

[115] Mingchen Lu, Peiquan Jin, Xiaoliang Wang, Yongping Luo, and Kuankuan Guo. 2023. ZoneKV: A space-efficient
key-value store for ZNS SSDs. In Proceedings of the 60th ACM/IEEE Design Automation Conference (DAC’23). 1-6.
DOI:https://doi.org/10.1109/DAC56929.2023.10247926

[116] Umesh Maheshwari. 2020. StripeFinder: Erasure coding of small objects over key-value storage devices (an uphill
battle). In Proceedings of the 12th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’20). USENIX
Association. Retrieved from https://www.usenix.org/conference/hotstorage20/presentation/maheshwari

[117] Umesh Maheshwari. 2021. From blocks to rocks: A natural extension of zoned namespaces. In Proceedings of the 13th
ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’21). Association for Computing Machinery,
21-27. DOI: https://doi.org/10.1145/3465332.3470870

[118] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and Bianca Schroeder. 2020. A study of SSD reliability in large
scale enterprise storage deployments. In Proceedings of the 18th USENIX Conference on File and Storage Technologies
(FAST’20). USENIX Association, 137-149. Retrieved from https://www.usenix.org/conference/fast20/presentation/
maneas

[119] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali,
Can Firtina, Haiyu Mao, Nour Almadhoun Alserr et al. 2022. GenStore: A high-performance in-storage processing
system for genome sequence analysis. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’22). Association for Computing Machinery,
635-654. DOI : https://doi.org/10.1145/3503222.3507702

[120] Bill Martin, Judy Brock, Dan Helmick, Robert Moss, Mike Allison, Benjamin Lim, Jiwon Chang, Ross Stenfort,
Young Ahn, Wei Zhang et al. 2022. TP4146 Flexible Data Placement 2022.11.30 Ratified. Retrieved from https:
//mvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_20230111.zip

[121] SATA-IO Board Members. 2011. Serial ATA International Organization: Serial ATA Revision 3.1. Retrieved from
https://sata-io.org/system/files/specifications/Serial ATA_Revision_3_1_Gold.pdf

[122] Inc. Micron Technology. 2019. What is Trim? | Crucial.com. Retrieved from https://www.crucial.com/articles/about-
ssd/what-is-trim

[123] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind Krishnamurthy. 2023. eZNS: An elastic zoned namespace for
commodity ZNS SSDs. In Proceedings of the 17th USENIX Symposium on Operating Systems Design and Implementation
(OSDr’23). USENIX Association, 461-477. Retrieved from https://www.usenix.org/conference/osdi23/presentation/
min

[124] Samsung MSL. 2023. SmartSSD2.0 — Samsung — Memory Solutions Lab. Retrieved from https://samsungmsl.com/
smartssd2/

[125] NVM Express, Inc. 2022. NVM Express RDMA Transport Specification 1.0b. Retrieved from https://nvmexpress.org/
wp-content/uploads/NVM-Express-RDMA-Transport-Specification-1.0b-2022.10.04-Ratified.pdf

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://doi.org/10.1109/MSST.2013.6558448
https://www.usenix.org/conference/atc21/presentation/li-cangyuan
https://doi.org/10.1145/3477132.3483573
https://github.com/facebook/rocksdb/commit/eefd75a228fc2c50174c0a306918c73ded22ace7
https://github.com/facebook/rocksdb/commit/eefd75a228fc2c50174c0a306918c73ded22ace7
https://doi.org/10.1109/ITC-CSCC.2019.8793432
https://doi.org/10.1109/ICCD58817.2023.00053
https://doi.org/10.1145/3337821.3337879
https://manpages.ubuntu.com/manpages/xenial/en/man8/fstrim.8.html
https://doi.org/10.1109/DAC56929.2023.10247926
https://www.usenix.org/conference/hotstorage20/presentation/maheshwari
https://doi.org/10.1145/3465332.3470870
https://www.usenix.org/conference/fast20/presentation/maneas
https://www.usenix.org/conference/fast20/presentation/maneas
https://doi.org/10.1145/3503222.3507702
https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_20230111.zip
https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_20230111.zip
https://sata-io.org/system/files/specifications/SerialATA_Revision_3_1_Gold.pdf
https://www.crucial.com/articles/about-ssd/what-is-trim
https://www.crucial.com/articles/about-ssd/what-is-trim
https://www.usenix.org/conference/osdi23/presentation/min
https://www.usenix.org/conference/osdi23/presentation/min
https://samsungmsl.com/smartssd2/
https://samsungmsl.com/smartssd2/
https://nvmexpress.org/wp-content/uploads/NVM-Express-RDMA-Transport-Specification-1.0b-2022.10.04-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-RDMA-Transport-Specification-1.0b-2022.10.04-Ratified.pdf

Storage Abstractions for SSDs: The Past, Present, and Future 2:41

[126]

NVM Express, Inc. 2022. NVM Express TCP Transport Specification 1.0c. Retrieved from https://nvmexpress.org/wp-
content/uploads/NVM-Express-TCP-Transport-Specification-1.0c-2022.10.03-Ratified.pdf

[127] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang, and Yuanzheng Wang. 2014. SDF: Software-defined

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]
[138]
[139]

[140]

[141]

[142]

[143]

flash for web-scale internet storage systems. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’14). Association for Computing Machinery,
471-484. DOI : https://doi.org/10.1145/2541940.2541959

Inhyuk Park, Qing Zheng, Dominic Manno, Soonyeal Yang, Jason Lee, David Bonnie, Bradley Settlemyer, Youngjae
Kim, Woosuk Chung, and Gary Grider. 2023. KV-CSD: A hardware-accelerated key-value store for data-intensive
applications. In Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’23). 132-144.
DOI: https://doi.org/10.1109/CLUSTER52292.2023.00019

Rekha Pitchumani and Yang-Suk Kee. 2020. Hybrid data reliability for emerging key-value storage devices. In
Proceedings of the 18th USENIX Conference on File and Storage Technologies (FAST 20). USENIX Association, 309-322.
Retrieved from https://www.usenix.org/conference/fast20/presentation/pitchumani

Luca Porzio. 2022. RE: [EXT] Re: [PATCH 2/2] block: remove the per-bio/request write hint. - Luca Porzio (Iporzio).
Retrieved from https://lore kernel.org/all/CO3PR08MB797524 ACBF04B861D48 AF612DC0B9@CO3PR0OSMB7975.
namprd08.prod.outlook.com/

Devashish Purandare, Pete Wilcox, Heiner Litz, and Shel Finkelstein. 2022. Append is near: Log-based data manage-
ment on ZNS SSDs. In Proceedings of the 12th Annual Conference on Innovative Data Systems Research (CIDR’22).
Retrieved from https://par.nsf.gov/biblio/10315205

Devashish R. Purandare, Sam Schmidt, and Ethan L. Miller. 2023. Persimmon: An append-only ZNS-first filesystem.
In Proceedings of the IEEE 41st International Conference on Computer Design (ICCD’23). 308-315. DOI : https://doi.org/
10.1109/ICCD58817.2023.00054

Mian Qin, A. L. Narasimha Reddy, Paul V. Gratz, Rekha Pitchumani, and Yang Seok Ki. 2021. KVRAID: High
performance, write efficient, update friendly erasure coding scheme for KV-SSDs. In Proceedings of the 14th ACM
International Conference on Systems and Storage (SYSTOR’21). Association for Computing Machinery. DOI : https:
//doi.org/10.1145/3456727.3463781

Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty, Jooyoung Hwang, Sangyeun Cho, Daniel D.
G. Lee, and Jaeheon Jeong. 2018. FStream: Managing flash streams in the file system. In Proceedings of the 16th
USENILX Conference on File and Storage Technologies (FAST’18). USENIX Association, 257-264. Retrieved from
https://www.usenix.org/conference/fast18/presentation/rho

E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle. 2001. Active disks for large-scale data processing. Computer 34, 6
(2001), 68—74. DOI : https://doi.org/10.1109/2.928624

Zhenyuan Ruan, Tong He, and Jason Cong. 2019. INSIDER: Designing in-storage computing system for emerging
high-performance drive. In Proceedings of the USENIX Annual Technical Conference (ATC’19). USENIX Association,
379-394. Retrieved from https://www.usenix.org/conference/atc19/presentation/ruan

Chris Sabol, Ross Stenfort, and Mike Allison. 2023. Flexible Data Placement FDP Overview - NVM Express. Retrieved
from https://www.youtube.com/watch?v=BENgm5a17ws

Samsung Semiconductors. 2023. UFS 4.0 | Universal Flash Storage | Samsung Semiconductor Global. Retrieved from
https://semiconductor.samsung.com/estorage/ufs/ufs-4-0/

Rachel Shaver. 2011. Retrieved from https://sata-io.org/system/files/member-downloads/SATA-IORevision31_
PRfinal_0.pdf

Avi Shchislowski. 2022. RE: [EXT] Re: [PATCH 2/2] block: remove the per-bio/request write hint. - Avi Shchis-
lowski. Retrieved from https://lore.kernel.org/all/SN6PR04MB3872231050F8585FFC6824C59A0F9@SN6PR04MB3872.
namprd04.prod.outlook.com/

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Re, Ion Stoica, and Ce Zhang. 2023. FlexGen: High-throughput generative inference of large lan-
guage models with a single GPU. In Proceedings of the 40th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 31094-31116. Retrieved from https:
//proceedings.mlr.press/v202/sheng23a.html

Yoni Shternhell and Matias Bjerling. 2022. TP4093a Zone Relative Data Lifetime Hint 2022.08.14 Ratified. Retrieved
from https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_20230111.zip

Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2004.
Life or death at block-level. In Proceedings of the USENIX Symposium on Operating Systems Design and Implementation
(OSDI’04). 26-26. Retrieved from https://www.usenix.org/legacy/event/osdi04/tech/full_papers/sivathanu/sivathanu.
pdf

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://nvmexpress.org/wp-content/uploads/NVM-Express-TCP-Transport-Specification-1.0c-2022.10.03-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-TCP-Transport-Specification-1.0c-2022.10.03-Ratified.pdf
https://doi.org/10.1145/2541940.2541959
https://doi.org/10.1109/CLUSTER52292.2023.00019
https://www.usenix.org/conference/fast20/presentation/pitchumani
https://lore.kernel.org/all/CO3PR08MB797524ACBF04B861D48AF612DC0B9@CO3PR08MB7975.namprd08.prod.outlook.com/
https://lore.kernel.org/all/CO3PR08MB797524ACBF04B861D48AF612DC0B9@CO3PR08MB7975.namprd08.prod.outlook.com/
https://par.nsf.gov/biblio/10315205
https://doi.org/10.1109/ICCD58817.2023.00054
https://doi.org/10.1109/ICCD58817.2023.00054
https://doi.org/10.1145/3456727.3463781
https://doi.org/10.1145/3456727.3463781
https://www.usenix.org/conference/fast18/presentation/rho
https://doi.org/10.1109/2.928624
https://www.usenix.org/conference/atc19/presentation/ruan
https://www.youtube.com/watch?v=BENgm5a17ws
https://semiconductor.samsung.com/estorage/ufs/ufs-4-0/
https://sata-io.org/system/files/member-downloads/SATA-IORevision31_PRfinal_0.pdf
https://sata-io.org/system/files/member-downloads/SATA-IORevision31_PRfinal_0.pdf
https://lore.kernel.org/all/SN6PR04MB3872231050F8585FFC6824C59A0F9@SN6PR04MB3872.namprd04.prod.outlook.com/
https://lore.kernel.org/all/SN6PR04MB3872231050F8585FFC6824C59A0F9@SN6PR04MB3872.namprd04.prod.outlook.com/
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://nvmexpress.org/wp-content/uploads/NVM-Express-2.0-Ratified-TPs_20230111.zip
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/sivathanu/sivathanu.pdf
https://www.usenix.org/legacy/event/osdi04/tech/full_papers/sivathanu/sivathanu.pdf

2:42 X. Zhang et al.

[144] Eric Slivka. 2011. Mac OS X Lion Roundup: Recovery Partitions, TRIM Support, Core 2 Duo Minimum, Focus on
Security - MacRumors. Retrieved from https://www.macrumors.com/2011/02/25/mac-os-x-lion-roundup-recovery-
partitions-trim-support-core-2-duo-minimum-focus-on-security/

[145] David Sterba. 2020. Merge tag “for-5.6-tag” of git://git.kernel.org/pub/scm/linux/kernel;... - torvalds/linux@81a046b.
Retrieved from https://github.com/torvalds/linux/commit/81a046b18b331ed6192e6fd9ff6d12a1f18058cf

[146] David Sterba. 2022. Re: Using async discard by default with SSDs? - David Sterba. Retrieved from https://lore kernel.
org/linux-btrfs/20220726213628.GO13489@twin.jikos.cz/

[147] David Sterba. 2023. Trim/discard — BTRFS documentation. Retrieved from https://btrfs.readthedocs.io/en/latest/
Trim.html

[148] Devesh Tiwari, Simona Boboila, Sudharshan Vazhkudai, Youngjae Kim, Xiaosong Ma, Peter Desnoyers, and Yan
Solihin. 2013. Active flash: Towards energy-efficient, in-situ data analytics on extreme-scale machines. In Proceedings
of the 11th USENIX Conference on File and Storage Technologies (FAST’13). USENIX Association, 119-132. Retrieved
from https://www.usenix.org/conference/fast13/technical-sessions/presentation/tiwari

[149] Linus Torvalds. 2021. Merge tag “cxl-for-5.12” of git://git.kernel.org/pub/scm/linux/kernel.... Retrieved from https:
//github.com/torvalds/linux/commit/825d1508750c0cad13e5da564d47a6d59c7612d6

[150] Theodore Ts’o. 2016. Solved - SSD Trim Maintenance | The FreeBSD Forums. Retrieved from https://forums.freebsd.
org/threads/ssd-trim-maintenance.56951/#post-328912

[151] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang, and Jason Cong. 2014. An efficient
design and implementation of LSM-tree based key-value store on open-channel SSD. In Proceedings of the 9th
European Conference on Computer Systems (EuroSys’14). Association for Computing Machinery, Article 16, 14 pages.
DOI:https://doi.org/10.1145/2592798.2592804

[152] Qiuping Wang and Patrick P. C. Lee. 2023. ZapRAID: Toward high-performance RAID for ZNS SSDs via zone append.
In Proceedings of the 14th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys’23). Association for Computing
Machinery, 24-29. DOI : https://doi.org/10.1145/3609510.3609810

[153] Wei-Lin Wang, Tseng-Yi Chen, Yuan-Hao Chang, Hsin-Wen Wei, and Wei-Kuan Shih. 2020. How to cut out expired
data with nearly zero overhead for solid-state drives. In Proceedings of the 57th ACM/IEEE Design Automation
Conference (DAC’20). 1-6. DOI : https://doi.org/10.1109/DAC18072.2020.9218610

[154] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu, David Brooks, and Gu-Yeon Wei. 2021.
RecSSD: Near data processing for solid state drive based recommendation inference. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’21).
Association for Computing Machinery, 717-729. DOI : https://doi.org/10.1145/3445814.3446763

[155] SerialATA Workgroup. 2001. Serial ATA: High Speed Serialized AT Attachment Revision 1.0. Retrieved from
https://www.seagate.com/support/disc/manuals/sata/sata_im.pdf

[156] Zheng Xu and Yanxiang Zhang. 2024. Advances in private training for production on-device language mod-
els. Retrieved from https://research.google/blog/advances-in-private-training-for-production-on-device-language-
models/

[157] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sundararaman, Andrew A. Chien, and
Haryadi S. Gunawi. 2017. Tiny-tail flash: Near-perfect elimination of garbage collection tail latencies in NAND SSDs.
ACM Trans. Stor. 13, 3, Article 22 (10 2017), 26 pages. DOI : https://doi.org/10.1145/3121133

[158] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi, and Vijay Balakrishnan. 2017. AutoStream: Automatic stream
management for multi-streamed SSDs. In Proceedings of the 10th ACM International Systems and Storage Conference
(SYSTOR’17). Association for Computing Machinery, Article 3, 11 pages. DOI : https://doi.org/10.1145/3078468.3078469

[159] Jing Yang, Shuyi Pei, and Qing Yang. 2019. WARCIP: Write amplification reduction by clustering I/O pages. In
Proceedings of the 12th ACM International Conference on Systems and Storage (SYSTOR’19). Association for Computing
Machinery, 155-166. DOI : https://doi.org/10.1145/3319647.3325840

[160] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, and Swaminathan Sundararaman. 2014. Don’t stack your log
on my log. In Proceedings of the 2nd Workshop on Interactions of NVM/Flash with Operating Systems and Workloads
(INFLOW’14). USENIX Association. Retrieved from https://www.usenix.org/conference/inflow14/workshop-program/
presentation/yang

[161] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun, Wenwen Chen, Zhonggang Chen, Wei Xia, Junke Li, and
Kihyoun Kwon. 2019. Reducing garbage collection overhead in SSD based on workload prediction. In Proceedings of
the 11th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’19). USENIX Association. Retrieved
from https://www.usenix.org/conference/hotstorage19/presentation/yang

[162] Shao-Peng Yang, Minjae Kim, Sanghyun Nam, Juhyung Park, Jin yong Choi, Eyee Hyun Nam, Eunji Lee, Sungjin Lee,
and Bryan S. Kim. 2023. Overcoming the memory wall with CXL-enabled SSDs. In Proceedings of the USENIX Annual
Technical Conference (ATC’23). USENIX Association, 601-617. Retrieved from https://www.usenix.org/conference/
atc23/presentation/yang-shao-peng

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://www.macrumors.com/2011/02/25/mac-os-x-lion-roundup-recovery-partitions-trim-support-core-2-duo-minimum-focus-on-security/
https://www.macrumors.com/2011/02/25/mac-os-x-lion-roundup-recovery-partitions-trim-support-core-2-duo-minimum-focus-on-security/
https://github.com/torvalds/linux/commit/81a046b18b331ed6192e6fd9ff6d12a1f18058cf
https://lore.kernel.org/linux-btrfs/20220726213628.GO13489@twin.jikos.cz/
https://lore.kernel.org/linux-btrfs/20220726213628.GO13489@twin.jikos.cz/
https://btrfs.readthedocs.io/en/latest/Trim.html
https://btrfs.readthedocs.io/en/latest/Trim.html
https://www.usenix.org/conference/fast13/technical-sessions/presentation/tiwari
https://github.com/torvalds/linux/commit/825d1508750c0cad13e5da564d47a6d59c7612d6
https://github.com/torvalds/linux/commit/825d1508750c0cad13e5da564d47a6d59c7612d6
https://forums.freebsd.org/threads/ssd-trim-maintenance.56951/#post-328912
https://forums.freebsd.org/threads/ssd-trim-maintenance.56951/#post-328912
https://doi.org/10.1145/2592798.2592804
https://doi.org/10.1145/3609510.3609810
https://doi.org/10.1109/DAC18072.2020.9218610
https://doi.org/10.1145/3445814.3446763
https://www.seagate.com/support/disc/manuals/sata/sata_im.pdf
https://research.google/blog/advances-in-private-training-for-production-on-device-language-models/
https://research.google/blog/advances-in-private-training-for-production-on-device-language-models/
https://doi.org/10.1145/3121133
https://doi.org/10.1145/3078468.3078469
https://doi.org/10.1145/3319647.3325840
https://www.usenix.org/conference/inflow14/workshop-program/presentation/yang
https://www.usenix.org/conference/inflow14/workshop-program/presentation/yang
https://www.usenix.org/conference/hotstorage19/presentation/yang
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng
https://www.usenix.org/conference/atc23/presentation/yang-shao-peng

Storage Abstractions for SSDs: The Past, Present, and Future 2:43

[163]

[164]

Zhe Yang, Youyou Lu, Xiaojian Liao, Youmin Chen, Junru Li, Siyu He, and Jiwu Shu. 2023. A-IO: A unified IO stack
for computational storage. In Proceedings of the 21st USENIX Conference on File and Storage Technologies (FAST’23).
USENIX Association, 347-362. Retrieved from https://www.usenix.org/conference/fast23/presentation/yang-zhe
Hwanjin Yong, Kisik Jeong, Joonwon Lee, and Jin-Soo Kim. 2018. vStream: Virtual stream management for multi-
streamed SSDs. In Proceedings of the 10th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’18).
USENIX Association. Retrieved from https://www.usenix.org/conference/hotstorage18/presentation/yong

[165] Jiacheng Zhang, Youyou Lu, Jiwu Shu, and Xiongjun Qin. 2017. FlashKV: Accelerating KV performance with open-

channel SSDs. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 139 (09 2017), 19 pages. DOI : https://doi.org/10.1145/
3126545

[166] Jian Zhang, Yujie Ren, and Sudarsun Kannan. 2022. FusionFS: Fusing I/O operations using CISCOps in firmware file

[167]

[168]

[169]

[170]

[171]

systems. In Proceedings of the 20th USENIX Conference on File and Storage Technologies (FAST’22). USENIX Association,
297-312. Retrieved from https://www.usenix.org/conference/fast22/presentation/zhang-jian

Xiangqun Zhang, Shuyi Pei, Jongmoo Choi, and Bryan S. Kim. 2023. Excessive SSD-internal parallelism considered
harmful. In Proceedings of the 15th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’23). Association
for Computing Machinery, 65-72. DOI : https://doi.org/10.1145/3599691.3603412

Yugqi Zhang, Ni Xue, and Yangxu Zhou. 2021. Automatic I/O stream management based on file characteristics. In
Proceedings of the 13th ACM Workshop on Hot Topics in Storage and File Systems (HotStorage’21). Association for
Computing Machinery, 14-20. DOI : https://doi.org/10.1145/3465332.3470879

Yi Zheng, Joshua Fixelle, Nagadastagiri Challapalle, Pingyi Huo, Zhaoyan Shen, Zili Shao, Mircea Stan, and Vijaykr-
ishnan Narayanan. 2022. ISKEVA: in-SSD key-value database engine for video analytics applications. In Proceedings
of the 23rd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES’22). Association for Computing Machinery, 50-60. DOI : https://doi.org/10.1145/3519941.3535068

Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao, Evan Mesterhazy, Michael Makris, Junfeng
Yang, Amy Tai, Ryan Stutsman et al. 2022. XRP: In-kernel storage functions with eBPF. In Proceedings of the 16th
USENILX Symposium on Operating Systems Design and Implementation (OSDI’22). USENIX Association, 375-393.
Retrieved from https://www.usenix.org/conference/osdi22/presentation/zhong

Yuhong Zhong, Hongyi Wang, Yu Jian Wu, Asaf Cidon, Ryan Stutsman, Amy Tai, and Junfeng Yang. 2021. BPF
for storage: An exokernel-inspired approach. In Proceedings of the Workshop on Hot Topics in Operating Systems
(Hot0S’21). Association for Computing Machinery, 128-135. DOI : https://doi.org/10.1145/3458336.3465290

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

https://www.usenix.org/conference/fast23/presentation/yang-zhe
https://www.usenix.org/conference/hotstorage18/presentation/yong
https://doi.org/10.1145/3126545
https://doi.org/10.1145/3126545
https://www.usenix.org/conference/fast22/presentation/zhang-jian
https://doi.org/10.1145/3599691.3603412
https://doi.org/10.1145/3465332.3470879
https://doi.org/10.1145/3519941.3535068
https://www.usenix.org/conference/osdi22/presentation/zhong
https://doi.org/10.1145/3458336.3465290

2:44 X. Zhang et al.

Appendix

E=DIE

eiadis |
T
it e o 0

@‘

Fig. 12. Complete genealogy tree of the surveyed papers (Figure 1).

Received 13 November 2023; revised 1 August 2024; accepted 4 October 2024

ACM Trans. Storage, Vol. 21, No. 1, Article 2. Publication date: January 2025.

