J. reine angew. Math. 824 (2025), 203-251 Journal fiir die reine und angewandte Mathematik
DOI 10.1515/crelle-2025-0027 © the author(s) 2025

On the singular loci of higher secant varieties
of Veronese embeddings

By Katsuhisa Furukawa at Saitama and Kangjin Han at Daegu

Abstract. The k-th secant variety of a projective variety X € PV denoted by oy (X),
is defined to be the closure of the union of (k — 1)-planes spanned by k points on X. In
this paper, we examine the k-th secant variety oy (vz(P")) C PV of the image of the d-uple
Veronese embedding vy of P to PV with N = (" Zd) — 1, and focus on the singular locus of
o (vg (P™)), which is only known for k < 3. To study the singularity for arbitrary k, d, n, we
define the m-subsecant locus of o (vg (P")) to be the union of oy (vg (P™)) with any m-plane
P™ C IP". By investigating the projective geometry of moving embedded tangent spaces along
subvarieties and using known results on the secant defectivity and the identifiability of sym-
metric tensors, we determine whether the m-subsecant locus is contained in the singular locus
of o3 (vg (P™)) or not. Depending on the value of k, these subsecant loci show an interesting
trichotomy between generic smoothness, non-trivial singularity, and trivial singularity. In many
cases, they can be used as a new source for the singularity of the k-th secant variety of vy (IP")
other than the trivial one, the (k — 1)-th secant variety of v, (IP"). We also consider the case of
the fourth secant variety of vy (IP") by applying main results and computing conormal space
via a certain type of Young flattening. Finally, we present some generalizations and discussions
for further developments.

1. Introduction

Throughout the paper, we work over C, the field of complex numbers. Let X € PV be
an embedded projective variety. The k-th secant variety of X is defined as

(1.1) oX)=[(J (r1.....x) cPV,
X1sees Xk EX
where (x1,...,x) C PV denotes the linear span of the points x1, ..., x; and the overline

means the Zariski closure. In particular, o1(X) = X and 0,(X) is often simply called the
secant or secant line variety of X in the literature.
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The construction of secant varieties (or more generally, join construction of subvarieties)
is not only one of the most famous methods in classical algebraic geometry, but also a very
popular subject in recent years, especially in connection with fields of research such as tensor
rank and decomposition, algebraic statistics, data science, geometric complexity theory, and so
on (see [22,23] for more details).

Despite of a rather long history and the popularity, most of the fundamental questions on
the higher secant varieties oy (X) still remain open even for many well-known base varieties X .
For instance, one can ask the secant defectivity question, which concerns the dimension of
0% (X). We say that oy (X) is secant defective (or simply defective) if the dimension of oy (X)
is less than the expected one, min{N, k - dim(X) + k — 1}. It is classically known that higher
secant varieties of curves are non-defective (e.g. [29, Corollary 1.2.3]). Due to the famous
theorem of Alexander—Hirschowitz [2], we know the dimensions of higher secant varieties
of all Veronese varieties. In other research, there are only a few cases where the dimension
theorem for oy (X) is fully determined (see [29, 30] for references). Questions about defining
equations of k-th secant varieties have also only been answered for very small k of a few cases
and seem still far from understanding the essence of the sources for the equations (see also
[22, Chapter 5] for a reference).

In this paper, we concentrate on the case of X = vy (P") C P¥, the Veronese variety,
which is the image of the Veronese embedding vy: P" < PV with N = (":;d) — 1. In par-
ticular, we study the singular locus of oy (v;(IP")), an arbitrary higher secant variety of the
Veronese variety.

The knowledge on singularities of higher secant varieties is fundamental and very impor-
tant for its own sake in the study of algebraic geometry and also can be useful for problems in
applications. For example, it can be used as a key condition to establish the identifiability of
structured tensors (e.g. the introduction in [7] and references therein).

For any irreducible variety X C P/, it is classically well known that

(1.2) 0—1(X) C Sing(o (X))

unless oy (X) fills up the whole linear span (X) (see [29, Proposition 1.2.2]). In the paper, we
say that a point p € 03 (X) is a non-trivial singular point if p ¢ o3 _1(X) and o3 (X) is singular
at p, while the points belonging to oy _1(X) are called trivial singular points.

There are some known results on the singular loci of k-th secant varieties oy (X '), mostly
for very small k. The equality in (1.2) holds for determinantal varieties defined by minors of
a generic matrix. It is completely described for the second secant variety of the Segre product
of projective spaces in [28]. It has recently been generalized to the case of 03 (X ), where X is
a Segre—Veronese embedding by [21] and X is a Grassmannian by [13]. For the third secant
variety of the Grassmannian G (2, 6), the dimension and some other properties of the singularity
have been studied in [1].

For the case of Veronese varieties, it is classical that Sing(oy (vg (P™"))) = ok_1(vg (P"))
holds both for the binary case (i.e., n = 1) and for the case of quadratic forms (i.e., d = 2) (see
e.g. [19, Chapter 1]). For k = 2, it was proved in [20] that the above equality holds also for
any d,n. In these cases, the k-th secant variety has only the trivial singularity. For k = 3,
the singular locus was completely determined by the second author in [16]; in particular, the
non-trivial singularity occurs if and only if d = 4 and n > 3.

In the present paper, we explore the singular locus of any higher secant variety of the
Veronese variety, and introduce a new main origin for the singularity other than the trivial
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singularity. We call this the “subsecant locus”. As in our main results, these loci show an inter-
esting trichotomy phenomenon among generic smoothness, non-trivial singularity, and trivial
singularity.

For any given point p € oy (vg (IP")), there exists an m-plane (i.e., m-dimensional linear
subvariety) P of P” with | <m < k — 1 such that p € o} (v (P™)); it immediately follows
for a general p, and even if p is in the boundary of the closure in (1.1), it is also true by
considering (1,d — 1)-symmetric flattening (see Section 3 for details). So, from now on, we
say that oy (vg (P™)) C ox (vg (P")) is an m-subsecant variety of oy (vg(P")) if m <k — 1
and m < n, and simply call it a subsecant variety in case there is no confusion. We also define
the m-subsecant locus of o (vg (P")),

(1.3) Sk (m) or S gm: P = | ) ox(va (™).
PmCPn

It naturally forms an increasing sequence of loci in the k-th secant variety as

Tra(1) CZgg(2) C--- C Ty g(min{k — 1,n} — 1) C ox(vg (P"))
= X q(min{k —1,n}).

In particular, we have that X ;(min{k — 1,n} — 1) is the union of all proper subsecant vari-
eties, which we call the maximum subsecant locus of the given k-th secant variety oy (vg (P")).
Any point of oy (vg (P")) outside the maximum subsecant locus and the previous secant vari-
ety or_1(vg(P™)) is called a point of the full-secant locus. Note that, for k = 3 of [16],
when d = 4 and n > 3, the singular locus of o3(vgz(P")) is given as the maximum subse-
cant locus X3 4(1), which is the only case where the singularity pattern of the third secant
varieties becomes exceptional, while for all the other d, n, the singularity is just the trivial one,
02 (vg (P™)) (see Remark 4 (a)). Most of the previously known results on singular loci of secant
varieties can be understood in this viewpoint (see Remark 37).
Thus a basic question for our concern could be stated as follows: for given k, d, m, n,

when is o (v (IP")) singular at points of an m-subsecant locus X g (1m)?

In principle, it is somewhat straightforward (despite the computational complexity) to
check the singularity, once a complete set of equations for a higher secant variety is attained.
But, as mentioned above, not much is known about the defining equations and they seem quite
far from being fully understood at this moment, even for the Veronese case (see [11,24] for the
state of the art). Due to the lack of knowledge on the equations for the higher secant variety, it
is very difficult to determine the singular locus in general.

In this paper, without further understanding on the equations (!), we introduce a geometric
way to pursue it for this kind of problems, which is based on a careful study on the behavior
of embedded tangent spaces moving along a locus in the Veronese variety. For the case m = 1,
we first present the following result for the 1-subsecant locus X 4 (1) = Upicpn 0k (Vg (P))
of o (vz (P™)), which is a generalization of [16, Theorem 2.1] (i.e., k = 3 case) to any higher
k-th secant varieties of Veronese varieties.

Theorem 1. Let vg: P" — PN be the d-uple Veronese embedding withn > 2, d > 3,
and N = ("Zd) — 1. Assume k > 3. For (k,d,n) # (3,4, 2), the following holds.

W) Ifk < %, then oy (vg (P™)) is smooth at every point in Ly g (1) \ ox—1(vg (P™)).
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(i) Ifk = %, then Ty 4(1) C Sing(og (vg (P"))) but Xy 4 (1) & og—1(vqg (P™)) (i.e., non-
trivial singularity). This case occurs only if d is even.

(iii) Ifk > d;r3, then Ty 4 (1) C ox—1(vg (P")) (i.e., trivial singularity, unless we have that
ok (vg(P™)) = PV).

For (k,d,n) = (3,4,2), it holds that
(iv) 03(v4(P?)) is smooth at every point in $3.4(1) \ 02(v4(P?)).

Concerning singular points of arbitrary oy (vg (IP™)) originated from subsecant loci, we
prove the following general theorems on the m-subsecant locus Xy 4 (m) withm > 2and k > 4
as the main results.

Theorem 2. Let vy:P* — PV be the d-uple Veronese embedding withn > 3, d > 3,
and N = (";d) — 1. Let k = 4 and let P™ C P" be an m-plane with2 < m < min{k — 1, n}.
Assume that (d,m) ¢ & = {(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(5,2),(6,2)}.

For (k,d,n) # (4,3, 3), setting

(m+a’)
w= il

m+1
we have the following.
(i) Ifk < p, then oy (vg (P™)) is smooth at a general point in Xy g (m) \ o1 (vg (P™)).

(i) Ifk = w, then Xy 4(m) C Sing(og (vg(P"))) but Ty q(m) & og—1(vqa (P")) (i.e., non-
trivial singularity).

(iii) If k > p, then g 4(m) C og—1(vg (P™)) (i.e., trivial singularity, unless we have that
or(vg (P™)) = PV).

For (k,d,n) = (4,3, 3), it holds that
(iv) 04(v3(IP3)) is smooth at every point in £4.3(2) \ 03(v3(P3)).

Theorem 3. In the same situation as Theorem 2, for
(d,m) € & =1{(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(5,2), (6, 2)},

if k is in one of the ranges named (1), (ii), (iii) in Table 1, then the following property corre-
sponding to the name of the range holds.

(i) ox(vg(P™)) is smooth at a general point in Xy g(m) \ ox—1(vg (P™)).
(ii) Xg,q(m) C Sing(og (vg (P™))) but Xy q(m) & og—1(va(P™)).
(i) Zg,q(m) C og—1(vg (P")).

To understand the reason for considering the conditions that (d,m) is in & or not, we
discuss the secant defectivity and the generic identifiability of an m-subsecant variety

or(vg(P™)) C ox (vg (P™)).

Set PA = (v (P™)) c PN with g = (mntd) — 1, where oy (vg (P™)) C P# is of dimension
atmost km + k — 1.



Furukawa and Han, Singular loci of higher secant of Veronese embeddings 207

(mrdy .
(d,m) e @ (ii) (iii)
3,3) 5 k <5 None 6 <k
(3,49 7 k<6 k=18 9<k
(3,5) 283 k<8 k=910 11 <k
4,2) 5 k<4 k=56 7<k

(4,3) 35/4 k<7 k=28,910 11<k
4,49 14 k<13 k=14,15 16<k
5,2 7 k <7 None 8 <k
(6,2) 28/3 k<8 k=0910 11 <k

Table 1. (Non-)singularity of Xz 4 (m) in Theorem 3

By [2], the codimension of oy (vz (P™)) in P# is greater than max{8 — (km + k — 1), 0}
(i.e., ox (vg (P™)) does not fill P# and is secant defective) if and only if d = 2and 2 < k < m,
or (k,d,m) = (7,3,4), (5,4,2), (9,4,3), (14,4,4); indeed, in the latter case, the four k-th
secant varieties oy (v (P")) are hypersurfaces of PA. Except these defective cases, we have
o (vg(P™)) = PP if km + k — 1 > B, or equivalently k > (m;n"d)/(m + 1).

We say a point a € PP is k-identifiable if there is a unique k-tuple of points xi, . .., Xk
in vy (P™) such that a € (x1,...,x;). We also say that o (vg(P™)) is generically identi-
fiable if a general point a € oy (vg(P™)) is k-identifiable. From [14, Theorem 1], a gen-
eral point a € PP is k-identifiable (or oy (vz(P™)) is generically identifiable in the case of
or (vg(P™)) = PP)if and onlyifm=1andk =(d +1)/2,0r (k,d,m) = (5,3,3), (7,5,2).
From [8, Theorem 1.1], when oy (vg (P™)) < P# is not secant defective, ox (vg (P™)) is not
generically identifiable if and only if (k,d,m) = (9, 3,5), (8,4, 3), (9,6,2).

Remark 4. We make some remarks on the theorems above.

(a) In the case of k = 3 and n > 3, Theorem 1 (ii) holds if and only if d = 4, and then
Sing(o3(v4(P")) is equal to | Jpi1 cpn (v4(P1)) = 33 4(1) since 03 (v4(Pl)) = (v4(P')) and
02(v4(P™)) C Upicpn (va(P1)) (see also Corollary 32). This gives a geometric description
of the only exceptional case for the singular loci of the third secant varieties in [16].

(b) Theorem 1 (i) is stronger than Theorems 2 (i) and 3 (i), since it claims smoothness for
“every point” in the m-subsecant locus Xy 4 (m) outside ox_;(vg (P")). The “general point”
condition in Theorems 2 (i) and 3 (i) cannot be deleted (see Example 27). We also note that the
ranges of k of (i) and (ii) are slightly different between Theorems 1 and 2. If m = 1 and d
is even, then the case k = [(m;;d) /(m + 1)] = (d + 2)/2 is Theorem 1 (ii), which is similar
to Theorem 2 (ii); for this k, oy (vg (P1)) is not generically identifiable. However, if d is odd,
then the case k = (m;;d)/(m + 1) = (d 4+ 1)/2 belongs to Theorem 1 (i).

(c) Theorems 1 (i), 2 (i), and 3 (i) correspond to the k-identifiable case of a general point
a € or(vg (P™)). From the viewpoint of the secant fiber in incidence (2.1), this means that the
fiber p~!(a) under the projection p consists of only one element up to permuting x;. On the
other hand, Theorems 1 (ii), 2 (ii), and 3 (ii) correspond to the case of generic non-identifiability
of the subsecant variety oy (vg (P")) with the situation of o1 (vg (P™)) & P8 = (v (P™)),
except (k,d,m,n) = (3,4,1,2), (4,3,2,3). This non-identifiability of a general point @ in
ok (vg (P™)) occurs if dim p~1(a) > 0, or if dim p~!(a) = 0 and #p~!(a) > 2 (modulo per-
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mutation). For m = 1, only the former occurs when k = (d + 2)/2. For m > 2, the former
corresponds to the case where k is the ceiling of (m,;td)/(m + 1) ¢ N with oy (vg (P™)) = PA,
to the case where oy (vg (P™)) € P# is defective, or to the case where oy _1 (vg (P™)) - PA is
defective (i.e., (k,d,m) = (8,3,4), (6,4,2), (10,4,3), (15,4, 4)), and the latter corresponds
to the case where k is the number (m;:d) /(m + 1) € N with ox (vg(P™)) = P# except for
(k,d,m) = (5,3,3), (7.5,2), or to the case (k,d,m) = (9,3,5), (8,4,3), (9,6,2).

(d) (k,d,m,n) = (3,4,1,2), (4,3,2,3) (i.e., Theorems 1 (iv) and 2 (iv)), a posteriori,
turn out to be the only two exceptional cases which do not follow this trichotomy pattern;
in other words, though k belongs to the range of (ii) and the generic non-identifiability of
ok (vg (P™)) holds, X 4 (m) does not provide non-trivial singular points (see also Remark 24).
Indeed, in [11], we show that if (k,d,n) = (3,4,2), (4,3, 3), then oy (vg (P")) is a del Pezzo
k-th secant variety, that is, a k-th secant variety of next-ro-minimal degree. In this sense, these
two cases also belong to a special class with respect to the degrees of higher secant varieties.
(For basic definitions and results on such varieties, see [9, 10].)

As an application of our main results for X4 4(2) and X4 4(1), we obtain the following
result on the singularity of the fourth secant variety of any Veronese variety.

Theorem 5 (Singular locus for o4(vg (P™))). Letvg:P" — PN be the d-uple Veronese
embedding withn > 3,d > 3, and N = (”zd) — 1. Then the following holds.
(i) 04(vg(P™)) is smooth at every point outside X4 4(2) U 03(vg (P")).
(ii) Ifd > 4, a general pointin X4 4(2) \ 03(vg(IP")) is also a smooth point of o4(vg (P™)).
When d = 3 and n = 3, all points in X4 4(2) \ 03(vg(P")) are smooth. If d = 3 and
n >4, then X4 4(2) C Sing(04(vg(P"))) but X4 4(2) Z 03(vg(P")) (i.e., non-trivial
singularity).
(iii) Ford > 17, all pointsin X4 4(1) \ 03(vg(P")) C 04(vg (P")) are smooth. When d = 6,
X4,q4(1) C Sing(o4(vg (P™))) but X4 4(1) & 03(vg(P™)) (i.e., non-trivial singularity).
When d <5, £4.4(1) C 03(vg(P")) (i.e., trivial singularity).

For a projective variety X C PV, we denote by Vertex(X) the set of vertices of X. Then
X is a cone if and only if Vertex(X) # @.

Example 6 (Cases with a nice description). The smallest case for the singular locus
of o4(vz (PP")) beyond the classical results for d =2 orn = 11is (d,n) = (3,2), but in this
case, there is nothing to check because o4(v3(P?)) fills up the ambient space P° and then
Sing(04(v3(P?))) = 0. In the case (d,n) = (3,3), by Theorem 5 (i) and (ii), we have

Sing(04(v3(P?))) = 03(v3(P?)).

For the case (d,n) = (3.,4), if V denotes a 5-dimensional C-vector space with P4 = PV,
Theorem 5 tells us that the singular locus of the fourth secant variety of v3(PV) in P3% is
precisely the locus of cubic hypersurfaces in five variables which are cones with the vertex
dimension at least 1 as follows:

Sing(04(v3(PV))) = 03(v3(PV)) U Z4,3(2; PV)
=3V U{ | osa®)} = |J (va(P?)

P2CPV P2CPV
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= {f € PS3V | the cubic hypersurface X C PV defined by f
is a cone with dim Vertex(X) > 1},

which is just the maximum subsecant locus 24 3(2; PV), an irreducible 15-dimensional locus
in the 19-dimensional variety a4 (v3(IPV')). By the same argument, we can obtain

Sing(o4(v3(P"))) = X4.3(2;P") foranyn > 4.

Such a simple description of the singular locus can be attained in a few more cases (see
Corollary 32 for details).

The paper is structured as follows. In Section 2, as preparation, we first recall some
preliminaries on k-th secant varieties and corresponding incidences. Then, using projective
techniques, such as Terracini’s lemma, the trisecant lemma, descriptions of embedding tangent
spaces, and tangential projections, we reveal several geometric properties of m-subsecant vari-
eties in higher secant varieties of Veronese varieties, which are crucial for the proof of the main
theorems. In Section 3, as an illustration of the whole picture and our main ideas, we treat the
case m = 1 and prove Theorem 1. In Section 4, we deal with the general case (i.e., m > 2) and
prove Theorem 2 and Theorem 3 to generalize the ideas used in the previous section. We would
like to remark that this can be done because the dimension theorem [2] and the generic identi-
fiability question [8, 14] were settled for the case of Veronese varieties. In Section 5, we focus
on the singular locus of the fourth secant variety and prove Theorem 5 by dividing the case into
two parts: “full-secant locus points (i.e., m = 3)” treated in Theorem 29 via Young flattening
and conormal space computation and “the subsecant locus” by Corollary 30. Finally, we make
some generalizations and remarks on the material for further developments in Section 6.

2. Some geometric properties of subsecant varieties

2.1. Projection from the incidence to the secant variety. For a (reduced and irreduc-
ible) variety X, we denote X X --- x X, the (usual) product of k copies of X, by (X)¥. We
denote the k-fold symmetric product of X, (X)*/S,, by Symk (X).

For the d-uple Veronese embedding v;: P"* — PV with N = ("Zd) — 1, we regard the

incidence variety I = I () C PN x (IP’”)k to be the Zariski closure of
Q2.1 1°= 181) ={(a,x].....xp) |a € (x1,....,xg) and dim(xy,...,xg) =k — 1},

where we write x; = vg(x}) for x| € P". Taking the first projection p: I — PV, we have
p(I) = o (vg (P™)) (see also [29, Definition 1.1.3], [30, Chapter I, §1, Chapter V]). For any
a € ox(vg(P™)), p~(a) is often called the secant fiber of a. Note that I is invariant under
permuting factors on (P”)¥ from the definition so that both p and ¢; maps factor through
PN x Symk (P™).

We also have dim / = nk + k — 1 by considering general fibers of ¢: I — (P")*. For
each 1 <i <k, let ¢;:I — (P")¥ — P" be the composition of ¢ and the projection to the
i-th factor (P")¥ — P”. Then the following commutative diagram is obtained:

PMk — 5 pn,
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Remark 7. We have some remarks on the incidence variety I C PN x (P™)k.

(a) 1° can be viewed as a P¥~1-bundle over a non-empty open subset U of (P™)k,
consisting of k-tuples of points with the expected spanning dimension, so that / is irreducible.
Further, for g~ (U) = I N (P" x U), we have I° = ¢~1(U) since both are irreducible closed
subsets in PV x U having the same dimension. So, for any (a, X7, ,x,’c) e I\ 1° and for
xi = vg(x]), dim(xy,...,xg) <k —1 (in other words, there is no (a, x],... ,x,/c) el \1°
such that dim({xy,...,x;) = k — L buta ¢ (x1,..., xx)). Finally, note that the Euclidean clo-
sure of 79 also coincides with I in this case (see e.g. [23, Theorem 3.1.6.1]).

(b) In the case of dim oy (vz (P")) = nk + k — 1,itholds p(I \ I°) # o (vg(P™)), and
then p~!(a) C I for general a € oy (vg (P™)). In addition, if k < ("+Z_1), then setting

D ={(x}.....xp) € B | dim((vg—1 (x}). ... va—1(x}))) < k — 1},

we have dim(/ N (PY x D)) < dim(/), and hence p(I N (PN x D)) # ox (vg (P™)).

(¢) (Alternative incidences for the k-th secant variety) In the literature, instead of (X )k,
other spaces such as the symmetric product Symk (X) (e.g. in [8]), the Hilbert scheme of
degree k 0-dimensional subschemes Hilbz (X) (e.g. in [5]), and the Grassmannian G(k — 1, N)
(e.g. in [27]) have also been used in the incidence to consider the k-th secant variety of
X c PV,

Remark 8. Letus fix an m-plane L = P C P" and consider the d -uple Veronese em-
bedding of P, vg: L = P™ — P# with g = (mntd) — 1. We often use the following notation.
(a) Let L C P" be any (n —m — 1)-plane not intersecting L. Changing homogeneous

coordinates g, 11, . .., tm, U1, U2, ..., Up on P" withm’ =n —m, we may assume that L C P”
is the zero set of uy,...,u, and L C P" is the zero set of fg, . .., t,. For any xlf € P, say
r /. L ! . ot n
xl—[xlso--xl’mxl,m_,’_l-.Xl,n]EP )
then we set y; = [x] o :+--:x/ , :0:---:0]. Thus y; gives a point of the m-plane if x/ is not

of the form [0 : ---: 0 : % : --- : x]. By abuse of notation, we denote by y’ both corresponding
points in P and in IP”. Further, considering linear projections 7r1: P”* --> P™ from the center
L (eliminating the u-variables), and 75: PV --> PA (eliminating all the monomials of degree
d which involve u-variables), we have a natural commuting diagram as v; o 7wy = 7 0 vy,

pr <4, pN
(2.2) - |72
) v

v

pm Y, pB,

In particular, when d = 2 andn = m + 1 (i.e., m’ = 1), then 7y is an (inner) projection from
one point a € P” and 7, corresponds to a tangential projection of PV from Ty, @)v2(P™).

(b) On the affine open subset {fg # 0}, the d-uple Veronese embedding vg: P"* — PV
is parameterized by monomials in mono(z, u] <4, where mono[t, u]<, (resp. mono[f]<.) is de-
fined to be the set of monomialsin Clt1, ..., 6y, U1, ..., Uy] (tesp.in C[ty, ..., t;]) of degree
at most e for an integer e.

Let us study the behavior of some points in the boundary of /, which belong to / but do
not belong to 19, as follows.
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Lemma9. Let L = P™ C P" be any m-plane with m < n, and consider
P? = (vy(L)) c PV.

Forvg: L = P™ < PP et us take Iy C PA x (P™)K to be the closure of the set of points

(a,x(,....x;) € PA x (P™)* such thata € (x1,...,xx) and dim(xy, ..., xg) =k — 1 (i.e.,
the incidence variety of the same kind as I = 1) in (2.1)). In this setting, one of the following
conditions holds for any (a,x/,...,x;) € I \ 19 witha € PB:

(@) a € p(m \ Iy, or
(ii) there is a subset C C (P™)* of dimension > 0 such that {a} x C C L)

Proof. Let {W;} be the irreducible components of 7 \ 7°. For each j, we take
(2.3) (@j. Xy, X)) € W PV x (P,

Let L C P" be a general (n — m — 1)-plane such that all x i ¢ L and LN L = @. For the
linear projection m1: P" --»> ]P’m from the center L, as in Remark 8 with diagram (2.2), we
have a natural linear projection mp: PV --» PPA and then define the projections

p1: PN x (P, -5 PN x (P™*,  p: PN x (P™)* -5 PP x (P™)F,
where p2(p1(1)) = I(y). Taking two Segre embeddings
Seg;: PN x (P")* < P!, Seg,: PN x (P™)* — P2,

we may regard p; as the restriction of a linear projection mg: P/t ——> P22 whose center R is
a certain linear subvariety of P/1. Let Pl ¢ Pl x P2 be the graph of g, which coincides
with the blowing-up of P!t with respectto R. Let ry: P!t — P! and rp: P!t — P2 be projec-
tions. Then we have the following commutative diagram:

1
rll K
(2.4) Ph ____TR___3 ph

SegII ]Segz

PN x (P)k L1, PN x (pm)k P2, pB x (Pm)k,

Under I ¢ PV x (IP’”)k > Pll, taking RN I in IP’II, we have codim(R N 1, 1) > 2, as fol-
lows. For the center L of 7r1:P" --> P™, we set

LG) = {(x},....x) € PM* | x e L}.

We consider the projection §: PV x (P")k — (P")K. Then a point z € PV x (P")* belongs
to the indeterminacy locus of p;p if and only if §(z) € i(i) for some i with 1 <i < k. Since
7Rr|1(= 7R o Seg,|r) coincides with Seg, o p1|r, and since R N I is the indeterminacy locus
of mgr|r, we have

k
RNI = q—l(U Z(z’)),

i=1
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where ¢ is equal to |7: I — (P™)X. In particular, since the dimension of the fibers of ¢| 70 is
constant, and since codim(i(i), (P™)k) = m + 1, it follows that codim(RNI%1)=m+1.
Now, let {Qs} be the irreducible components of R N I. Then codim(Qys, /) = m + 1 in the
case Qs N 1% # 0, ie., Qg ¢ I\ I°. In order to consider the remaining case Qs C I \ 19,
we use the irrAeducible components {W;} of I \ 1°. For (a;, x}’l, .. ,x;.’k) € W, givenin (2.3),
since xj’.’l. ¢ L, it follows W; ¢ R for any j.

If an irreducible component Qg of R N I satisfies Qs C I \ 19, then there is some j
such that Oy C RN W; & W; € I, and then codim(Qy, I) > 2. As aresult, in any case, each

irreducible component of R N I is of codimension m + 1 or at least 2, which implies that
codim(RN1,1)> 2.

Now, let (a,x],...,x;) € '\ 1° satisfy a € P, where dim(x,...,x;) <k —1 for
Xj = Vg (xlf) as in Remark 7 (a) (note that we do not know a € (x1,...,x;)). We regard
(a,xi,... ,xl/c) as a point of P/t under the embedding I C Pl

If(a,x’l,...,x,/c) ¢ R, then

pr(a,xy.....x;) = (a,y1,.... 1)

is determined in p; (1) C PN x (P™)*, where y; € P™ is the image of x] under P" — P™.
Since a € ]P’ﬂ,
p2(pr(@, Xl Xp)) = (@ Vo V)

is determined and is contained in /(,,). Then dim(yy, ..., yx) <k — 1 for y; = vg(y]) € PA,
which means (a, yi,.... 1) € Igm) \ I((:n)'
Assume (a, X}, ...,X;) € R. We consider the blowing-up P! of P! with respect to R,

and the projections ry, r» in diagram (2.4). Note that, for the strict transformation S C P!t of
PN x (P™")* ¢ P!, two composite morphisms

s 2 PN L pryk s PN and s 25 pN « (pmyk —, pN

coincide since it holds on an open subset of S. Let E C P! be the exceptional divisor, and let
I c P!t be the strict transformation of I € P%t. Then r>(I) = p1(I). Let

Er=rYa.x.....xp)n(END)

be the fiber of ENT — RN I at (a,x},... , X3.)- It follows from codim(R N 7, 1) > 2 that
dim(E;) > 1. Since rl_l(z) ~ rz(rl_l(z)) C P2 for each z € P!, we have dim(r2(E1)) > 1.
Since the image of r2(E;) under PV x (P)k — PV is {a}, there is C C (P™)¥ of positive
dimension such that r>(E1) = {a} x C ¢ PV x (Pm)k. Since a € P# and

p2(r2(E1)) C p2(r2(I)) = pa(p1(1)) = I(my.

we have {a} x C = pa({a} x C) C I(p). o

Lemma 10 (Non-triviality of subsecant varieties). For an m-plane L = P™ C P", we
have

ok (v4 (L)) Nog—1(vg(P")) C og—1(va(L)).
In particular, o3, (vg (L)) € ox—1(vg (P™)) unless ox_1(vg (L)) = o (vg(L)).

Proof. Let a € op(vg (L)) Nog_1(vg(P?)) (note that a can be in the boundary of
0% —1(vg (P™))). For a general point by € o3 _1(vg(P")), we take an irreducible curve C in
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0%—1(vg(P™)) suchthata, by € C. Let wo: PV ——> PP be the linear projection in Remark 8 (a),
and let C' = 71,(C) C PA. Since a € PA, we have a = m2(a) € C'.
Since by is general, for a general point b € C, we have

be(xy,...,xp_1) withxy,...,xp_1 € vg(P").

Take x; € P with x; = vg(x]). Setting y; = m2(x;), we have y; = vg(y;) with y/ € L for
eachi = 1,...,k — 1 as in Remark 8 (a). Then m5(b) € (y1,...,Vk—1) C 0k—_1(vg(L)). As
aresult,a € C' C or_1(vg (L)) and the assertion follows. |

Remark 11. We have some consequences of Lemma 10.
(a) (Border rank preserving pair) For any P C P” and for any k, d > 0, by Lemma 10,
we can derive

(2.5) ox(vg(P")) N (vg (P™)) = ox (vg (P™))

as a set. Since one inclusion is obvious, let us prove oy (vg (P")) N (vg (P™)) C op (vg (P™)).
Suppose that it does not hold. Then there exists a form f € or(vg (P")) N (vg (P™)) with
[ €0k, (vg(P™)) \ ok (vg (P™)) for some kg > k. Then f € oy, (vg (P™)) N ogy—1(vg (P™))
so that f* € og,—1(vq (P™)) by Lemma 10. Similarly, repeating the same “descent” argument,
we have f € oy (vg (P™)), which is a contradiction. Thus the equality in (2.5) is true.

In other words, for any d-th Veronese embedding X = v (PP") and the linear span
L = (v; (P™)) of any sub-Veronese variety v, (IP™), we showed that (X, L) is a border rank
preserving pair for any k, d > 0 in the terminology of [22, Definition 5.7.3.1] (we would also
like to note that [6, Theorem 1.1] can imply the same result for any d > k in case of P™ C P").

(b) (Every X 4 (m) is closed) Recall that the symmetric subspace variety Suby, (S dy)
(see [22, Section 7.1.3]) is defined as

{f € PS4V | there exists W C V such that dimW =m + 1, f € IP’SdW}.

Let n = dim PV. For any m < n, we have Sub,,(S¢V) = Upmcpy (va (P™)). Now, we
show that Xy 4 (m) is the intersection of the whole k-th secant oy (v (PV')) and the symmetric
subspace variety Sub,, (S¢ V) set-theoretically. See that

01 (g (PV)) N Subm(SV) = o wa BV N | (va(P™)

PmcPV
= | (ox@a®V)) 0 (va(P™)))
PmCPV
= U ox(vg(P™)) (= Zg,q(m)) by (2.5).
PmcPV

Therefore, we obtain that X 4 (m) = o (vg (PV)) N Suby, (S 4Y) as a set and in particular
every m-subsecant Xy 4 (m) is a Zariski-closed locus in oy (vg (PV)).

2.2. General secant fiber of a subsecant variety, entry locus, and its Veronese image.
We take another incidence variety J C P x (Z)* for an m-dimensional projective variety
7 C PP to be the Zariski closure of

(2.6) JO = {(a,x1,...,xk) | a € {x1,...,xg) and dim{xy,...,xx) =k — 1},



214 Furukawa and Han, Singular loci of higher secant of Veronese embeddings

with the projections
p:J —or(Z) C PA, qi:J — (Z)k — Z,

where (Z)¥ — Z is the projection to the i -th factor for 1 <i < k. Thendim J = mk + k — 1
for any k < dim(Z) 4 1 by considering general fibers of J — (Z)k.

For a € 0y (Z), the scheme-theoretic image ¢; (p~!(a)) in Z is called the (k-th) entry
locus of Z with respect to a in the literature. It is known that, for a general a € o3 (Z), the
locus g; (p~'(a)) is equidimensional, and moreover, if Z is smooth and in the characteristic 0,
then p~1(a) is smooth so that g; (p~!(a)) is reduced (see [29, Definition 1.4.5]).

Let Z,X C PN be projective varieties of dimensions m,n. Let Z C X and Z C ]P’ﬂ,
where P# is a B-plane of PV (ie., Z is degenerate in PV). Now, a general point a € Z
does not have to be general in X any longer. If 8 < km + k — 1, then the projection p has
positive-dimensional fibers.

We begin with a consequence of Terracini’s lemma in our setting and add two more
lemmas concerning “the entry locus” g; (p~1(a)).

Lemma 12. Assume that o3, (Z) ¢ Sing(0x(X)). Let F be an irreducible component of
p~Ya) for a general point a € oy (Z) in incidence (2.6). Then, for a general point x € g; (F)
with 1 < i <k, we have Tx(X) C Ta(0x (X)) where Tx(X) C PN means the embedded tan-
gent space to X at x.

Proof. Since 03 (Z) \ Sing(oy (X)) is non-empty open in 0% (Z) and a is general, it is
a smooth point of o3 (X ); hence the embedded tangent space T, (0% (X)) is defined. In addition,

a is contained in the (k — 1)-plane (x1, ..., x;) for general x1, ..., x; € Z with x; = x. Then
the assertion follows by Terracini’s lemma (cf. [29, Corollary 1.4.2], [30, Chapter II, 1.10,
Chapter V, 1.4]). O

Lemma 13. For a projective variety Z, let (Z) = PA and consider the incidence J as
(2.6) with k > 2. Suppose that the (k — 1)-secant of Z is not defective and not equal to PA.
Then, for a general point (a,x1, ..., xi) € J and for any irreducible component F of p~'(a)
containing (a, x1,...,X), gi|p: F — q; (F) is generically finite.

Proof.  For simplicity, we set i = 1. First, since (a, x1, ..., X;) is a general point of the
incidence J, we may assume that a is a general point of 0% (Z) and x1, ..., x; are k general
points on Z.

Let erI:IP'B --> PA=1 be the linear projection from x;. Since Z is non-degenerate
in P and o3_,(Z) # P#, the map Txy oy, (z) 1s generically finite onto its image (other-
wise, a general point x; is contained in Vertex(ox_1(Z)), a linear subvariety of o;_1(Z),
a contradiction).

Let J' € PA x (Z)k~1 be the incidence for the (k — 1)-secant of Z, i.e., the closure of

(b, T F) | b€ (... . %) and dim(Fa,... %) = k — 2).

Since 0y _1(Z) is not secant defective, the first projection py/: J' — ox_1(Z) is generically
finite. Hence the composite map

2.7 P =Tx ©pJ J - Tx, (O—k—l(z))

is generically finite.
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Let J; = ql_l(xl) C J.Then
TTx, °P|11:J1 — ”xl(ok—l(z))

is dominant (this is because, for general b € o0j_1(Z), we take a general point ¢ € (x1, b) and
k — 1 points X5, ..., X, € Z such that b € (X3, ..., Xg); then (¢, x1,X2,...,Xr) € J1, whose
image under 7y, o p is 7y, (¢) = 7y, (b)). Since (a, x1,...,x;) € Jp is general in J and by
the dominance of 7y, o p|s,, we may consider o = 7y, (a) as a general point in 7y, (0x—1(Z)).

Let F be an irreducible component of p~!(a) containing (a, x1, X2, ..., Xg), and sup-
pose that g1 | F has general fibers of positive dimensions. Then the fiber of g1 |F at x; € q1(F),
F N Jy, is of positive dimension, which means that we have (a, x1, X2, ...,X;) € F N Jp for
fixed a, x1 and moving (X2, ..., X} ) with positive dimension.

For general (a, x1,X2,...,X;) € F N J1, we have the intersection point b(X2, ..., Xx)
of the line {a, x1) and the hyperplane (%5, ..., X) in (x1, X2, ..., %) = PF~1. Note that

7Tx1 (b(f2’ e ’xk)) = nXI (Cl) = .

The k-tuple (b(X2,...,Xr), X2, ..., Xr) moves with positive dimension since so does (k — 1)-
tuple (X2, ..., Xx). In other words, the following locus is of positive dimension:

{(b(Ra,.... %) %2, ... X)) | (@.x1.5%2,....5) e FNJ1} Cp Ya) C T,

which contradicts that p, given in (2.7), is generally finite. ]

Lemma 14. For a projective variety Z C (Z) = PA, suppose that oj._1(Z) is a hyper-
surface in PP and o (Z) = PP. Then we have qi(p~Y(a)) = Z for a general point a € o3 (Z).
In particular, there is an irreducible component F of p~'(a) such that q;(F) = Z.

Proof. Since p~!(a) is invariant under permuting x;-factors, we set i = 1 for sim-
plicity. Take a general a € o} (Z) = PA. Since Vertex(ox_;(Z)) is a linear subvariety of
ox—1(Z2) < P# and Z is non-degenerate in P#, Vertex(o;,_;(Z)) N Z C Z. This implies that,
for general x € Z, dim(x, 03_1(Z)) > dim(ox_1(Z)) so that (x, 0x_1(Z)) = P#. Thus any
given general point a € PA sits on a line (x,b) for any general x € Z and for some gen-
eral b € 0 _1(Z). Taking k — 1 points X5, ...,X; € Z such that b € (X»,...,X;), we have
(a,x,%X2,...,%Xx) € p~Ya), which means g1 (p~1(a)) = Z. o

Now let us focus on the case
Z = vg(P™y ¢ PA=(")-1,

the image of the d -uple Veronese embedding of P™. Here we prove a very useful proposition,
which is of independent interest itself. In Proposition 15, we consider the entry locus of a gen-
eral point in Z and estimate the dimension of the linear span of its image under (d — 1)-uple
Veronese embedding vg_1: P — pBa—1=""")-1,

Proposition 15. Let Z = vy (P™) C PP withd > 3,2 <m <k —2, and

ﬂ:(m+d)—l<km+k—1.
m
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Assume dim(o,_1(Z)) = (k — )m + k — 2 < B (in other words, the (k — 1)-th secant of Z is
not defective and not equal to PP), where (k — ))m + k < (m;d) Let J C PP x (Z)¥ be the
Zariski closure of incidence (2.6), let (a,x1,...,x;) € J be a general point, and let F C J
be an irreducible component of p~'(a) containing (a, x1, . .., xx). Then the following holds.

O Ifk—Dm+k< (m;;d) then we have
dim(vg_1(A)) > k + (km + k — 1) —dim oy (Z)

for the preimage A C P™ of ¢;(F)U{x1,...,xx} C Z under vy : P™ ~ Z and for
each1 <i <k.

Gi) If (k — Om +k = ("), then q;(F) = Z. In addition, if (d,m) # (3,2), then
dim(vg_; (P™)) > k + m.

Remark 16. (a) Two inequalities
d d
B = (m+ )—1 <km+k—1 and (k—Dm+k< (’"“L )
m m

are equivalent to

m+d m+d
P e T
m+1 m+1
this occurs if and only if
m+d m+d
w ¢N and k= ’Vw-‘
m+1 m+1

(b) In Proposition 15 (ii), if (d,m) = (3, 2), then the condition (k — I)m + k = (’";;d)
gives k = 4. In this case, ¢; (F) = Z is still true (e.g., by Lemma 13), but
dim(vg_1 (P™)) = dim(va(P?)) = 5

is k + m — 1, not greater than or equal to k + m.

To prove Proposition 15, we settle two lemmas, Lemmas 17 and 19; the former one is
technical and the latter geometric.

Lemma 17. Let d,m,k be integers suchthatd >3 and2 <m <k — 2.
@) If (k—Dm +k < (") <km +k, then ("t*7Y) —1—2m —k > 0.
Gi) If (k — Dm +k = (") and (d,m) # (3,2), then ("""~ =1 —m —k > 0.
Gii) 1f ("F9) = km + k, then ("TY) —1—m —k > 0.

Note that Lemma 17 (iii) is applied in a discussion of the proof of Theorem 2 (ii), though
it is not used in this section.
To show the lemma, we need some calculations as follows.

Remark 18. (a)Letm =2 and km + k > (m;n'rd). Then (k — )m + k < (m;;d) does
not occur. Otherwise, we have

3k_2<(m+d):w<3

k7
m 2
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and then w = 3k —

1. Considering the congruence modulo 3, we have
(d+2)(d+1)=6k—2=1 (mod 3).
Then the possible values of (d + 2)(d + 1) are

2:-1=2 (d =0),
d+2)d+1)=10.2=0 d=1),
1.0=0 (d=2),

modulo 3, which is absurd.
(b) For d = 3,4, 5, we calculate numbers m satisfying the conditions

() _ T m+d
w1 FN k_{m—-l—l—" and ("‘“’“”“( m )

For d = 3, the smallest m is 5. For d = 4, the smallest m is 3 and the next smallest m is 7. For
d = 5, the smallest m is 9. The explicit values of § = (m+n‘f_1) — (1 + k + 2m) for them are
obtained as follows:

(d,m,k,8) = (3,5,10,0), (4,3,9,4), (4,7,42,63), (5,9,201,495).

Proof of Lemma 17. (i) From Remark 18 (a), we may assume m > 3. Let

8=(m+d_1)—(l+k+2m).
m

m-+d-—1 B d m-+d
m " m+d\ m )

m+d
m

8:(m+d_1)—(1+k+2m)
m

(d((k —D)m +k + 1) — (m + d)(1 + k + 2m)).

Since

using (k — )m + k + 1 < ("), we have

>

“m+d

Setting k = m + a with a > 2, we have

(2.8) di(k—1)ym+k+1)—m+d)(1+k+2m)
=mk(d —1)—3d —1—2m)
=m((m+a)d—-1)—3d —1—2m)
>m((m+2)(d—1)—3d —1—2m)
=m(dm—3m—d —3)=m((d —3)(m —1)—6).
Then § > 0 holds in the following three cases: d > 6andm > 3;d =5andm > 4;0ord =4

and m > 7. In addition, in Remark 18 (b) (see also Remark 16 (a)), we explicitly check that
8 > 0if d = 4 and m < 6, and that there is no k in our range if d = 5 and m = 3.
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On the other hand, when d = 3, (2.8) implies
d((k—1m+k+1)—m+d)(1+k+2m)=mQ2(m+a)—10—2m) = m(2a — 10).
Hence § > O holdsifd =3 anda > 5. Ford =3 and k = m + a witha = 2, 3, 4, we have
m? —m — 2k _ m(m—3)—2a

2 B 2
if m > 5. In addition, in Remark 18 (b), we explicitly check that there is no k in our range if

d =3andm < 4.
(i) Let § = (mtff_l) — (1 +k +m). Asin (i), using (k — )m + k = (m;:d), we have

5= >0

8=(m+d—1)_(1+k+m)=L(d((k—l)m+k)—(m+d)(1+k+m))’
n m+d

and
d(tk —1)ym+k)—(m+d)1 +k +m) =km(d —1) —2dm —m —m? —d
> (m+2)ym(d —1)—2dm —m —m?* —d
=(d-2)(m*>—1)—2—3m.
If d > 3 and m > 4, then since (d —2)(m? —1) =2 —3m > m(m —3) —3 > 1, itholds § > 0.

If d > 4 and m = 3, then since (d —2)(m? — 1) —2 —3m > 5, it similarly holds § > 0. On
the other hand, if d = 3 and m = 3, then (k — 1)m + k = (m;:d) implies

_ (d+3)(d+2)d+1)
N 3!

this case does not occur since k cannot be an integer. If d > 4 and m = 2, then
(d+2)(d+1

—

4k —3 = 20;

3k—2=

In this case, § = w —k — 3 >0, because of
3((a’-i-l)d 3(d+1)d_(d+2)(d+1)_
2 2 2
(iii) Next, we assume (mntd) = km + k. Then

—k—3)z 11=d?>-12>4.

5=(m+d_1)—(1+k+m)=L(d(km+k)—(m+d)(1+k+m)).
m m-+d

Usingk =m+a=(m+ 1)+ (a — 1) witha > 2, we have
dlkm4+k)y—m+d)(1+k +m)

=(d—-Dkm—-—m+d)((m+1)
=d-1Dmm+1)+d—-1Dma@a—1)—(m+d)(m-+1)
=m+D)(d-1ym—-—m+d)+d—-1)m@a—1)
=m+D({(d—-2)m—=1)=2)+ (d — 1)m(a —1).

Ifd > 3,m > 2, and (d, m) # (3,2), then we have § > 0. If (d, m) = (3, 2), then since

m+D(d—-2)m—1)—2)+(d—1m@a@—-1)=-3+4a—-1)>1,

we also have § > 0. D



Furukawa and Han, Singular loci of higher secant of Veronese embeddings 219

The next lemma concerns a general fact on linear sections of Veronese varieties, which
is of independent interest itself.

Lemma19. Letk,m > 2. Letx{,... ,x,’c € P™ be k general points, let
Ve: P — phe=(" )1
be the e-uple Veronese embedding of P™, and let M = (v (x]), ve(X3), ..., ve(x})) C PPe.
Then, for any k-plane R C PPe containing the (k — 1)-plane M, the following holds.

(1) Assume k < Be — m, and assume that there is a curve C C R N v (P™) passing through
Ve (x]). Then it holds that

(2.9) R C (ve(xh), -, ve(xp). To, ) ve (B™).
(ii) Assume e > 3 and k < B, —2m. Then we have
dimy, (x/) (R N ve(P™)) =0,
where the left-hand side means dimension of component(s) passing through v(x}). In

particular, the set of a point {v.(x})} is an irreducible component of R N ve(P™).

(iii) Assume e =2 and k — 1 < By —2m. Assume that there is a curve C C R N vy (P™)
such that v (x}) € C. Then, for any irreducible subset D C R N v2(IP™), it holds that
D Cva({x],x))) for some | =2, ... k, where va({x},X;)) is a conic curve in PA2
given as the image of the line (x, x;) C P™,

Proof. Let C C R N v.(P™) be a curve passing through v, (x]). Let

T = Ty () (xf ) PP - PP
be the linear projection from the (k — 2)-plane (ve(x3), ..., ve(x;)). If kK < Be — m, then the
generalized trisecant lemma [29, Proposition 1.4.3] implies

M N ve(Pm) = {Ue(xll)s Ue(Xé), cee ve(xllc)}'

In particular, dim(M N ve(P™)) =0 and C ¢ M. We have 7(v.(x})) € 7(C) C PAe—k+1
because of v, (x]) € C.If C is contracted to a point under 7, then 7(C) = m(ve(x])), which
means that C C M, a contradiction. Hence 77 (C) must be a curve.

For the k-plane R C PPAe which contains the (k — 2)-dimensional center of 7, the image
7(R) is a line in PPe=%*+1 Thus 7(C) = 7(R). Moreover, it follows

n(C)=mn(R) = Tn(ve(xi))n(R) c Tn(ve(x’l))”(ve(Pm))7

where, by generic smoothness, the right-hand side is equal to 77 (Ty, (x|)ve (P™)) since xypePm™
is general. It follows that R is contained in the preimage of 7w (Ty, (x/)ve (P™)), which implies
inclusion (2.9) of (i).

The condition k < 8, —m holds if k or kK — 1 is at most S, — 2m. Next, we consider
a tangential projection

: —m—1
ﬂTue(x/l)ve(IP’m)'Pﬂe s ]Pﬂe m
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from the m-plane Ty, (x|)ve(P™) C PAe, and its restriction & = anve(xi)ve(]pm)|ve(pm) on
ve (P™). Note that the Veronese variety v, (P"") and any embedded tangent space to v, (IP™)
intersect only at one point; in particular, ve(P™) N Ty, (x1)ve(P™) = {ve (DY If R C PA
satisfies (2.9), we have

(2.10) T(RNve(P™)) C 7 (0e(P™) N (T (ve(x3)), ..., T(velxy))).

By Terracini’s lemma, for general z € v, (P™), the linear variety (Ty, (x)ve(P™), Tzve (P™))
coincides with an embedded tangent space to 0, (ve (P"")) and is of dimension dim o (ve (P™)).
Then

T e xt e () (Tz0e (P™)) = Tr () T (ve (P™)) € PP

is of dimension dim o3 (ve (P™)) — m — 1. It follows
(2.11) dim 7 (ve (P™)) = dim 0 (v (P™)) —m — 1.

Let e > 3 and k < B, — 2m. Suppose that dimy, (x/)(R N ve(P™)) > 0, which means
the existence of a curve C satisfying condition (i). Since

codim (7 (ve (P™)), PPe=™1) — (k — 1) > (Be —2m — 1) — (k — 1) > 0,

again the trisecant lemma implies that the right-hand side in (2.10) is only the set of £k — 1
points 77 (ve(x3)), ..., T (ve(x;)). Thus each irreducible subset D C R N v, (IP™) satisfies

2.12) (D) = 7 (ve(x]))

forsome/ = 2, ..., k. (Atleast, taking D = C, we exactly have (2.12).) From e > 3, we have
dim o3 (ve (P™)) = 2m + 1 (i.e., non-defective). In this case, by (2.11), dim 77 (v (P™)) = m,
i.e., the map 7 must be generically finite. Then we reach a contradiction since v, (x;) is a
general point. This implies that dimy, (x/) (R N ve(P™)) = 0.

Finally, we consider the case of ¢ = 2. Then dim oz (v2(P™)) = 2m for m > 2 (i.e.,
defective), and by (2.11), dim 7 (v2(P™)) = m — 1. This means that the tangential projection
7:v2(P™) ——» 7 (v (P™)) has fibers of dimension 1. Moreover, as in Remark 8 (a), we know

that

—m+2)m+D 4 (mt+Dm _ 4
- 2 2

.pB2 __y Pph—m—1=
”Tuz(x’l)vz(P’”)'P > P

satisfies the commutative diagram
v (m+2)(m+1) _
Pm 2, P 2 1
I
| WTUZ(X’I Yyvp (IP777)
v
pm—1 . ¥2 P

(m+1)m_1
2 b

(m+l)m_l .
2

where 7y P --> P™=1 is the linear projection from x7, and vy: Pl s P is

the Veronese embedding of P~ 1. Then
dim(7 (v2(P™))) = dim(vo(P™" 1)) = m — 1.
Ifk—1< By —2m,then

codim( (v2(P™)), P71y — (k — 1) = (B2 —2m) — (k — 1) = 0
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hence the trisecant lemma implies 7 (D) = 7 (v, (x;)) for some [ = 2,...,k as we discussed
for (2.12).
In the diagram above, for any y" € (x,x;) C P™ with y" # x{, we have

T(2(y") = va(mmx) () = v2(mwx; (x)) = 7 (v2(x)));
indeed,
771 (@ (2(x))) = va({x]. x))).

Since 7(D) = 7 (va(x))), we have D C va({x], x})). O
We give one calculation before proving Proposition 15.

Remark 20. Ford = 3 and m # 2, if

(m+d)
N«OZmL_i_l¢N and k= [po]

(as under the conditions of Proposition 15 and Remark 16 (a)), then (km + k — 1) — Bz # 1.
The reason is as follows. First, we may write (o = (m + 3)(m + 2)/6 = M/3 for some M € N
since (m + 3)(m + 2) is divisible by 2. In addition, dividing M by 3 with remainder, we have
M = 3Q + R for a quotient Q and a remainder R. Since 9 = M/3 ¢ N, R must be 1 or 2.
In this setting, k = [M/3] = Q + 1. It follows that (km + k — 1) — B4 is equal to

m+3
3

B (m + 3)(m +2))

mm+m—( ;

)=m+n@

=mtn(e+n-(e+5))=m+n- 55

If(km+k—-1)—4=1,then3=(m+1)(3—R).Since3—Rislor2and m € N, we
getm = 2.

Proof of Proposition 15. (i) For simplicity, we set i = 1; then
x1 € q1(F) C Z =vq(P™).
For s = dim 0y (Z), an irreducible component F of p~!(a) is of dimension
dmJ —s=(km+k—1)—s.

From Lemma 13, we have dimq(F) = (km +k — 1) —s.
Let g1 (F)" C P™ be the preimage of g1 (F) C Z under vy : P™ ~ Z, and let

A=qi(F) U{xy,...,x ) CP™
Let vg_q: P™ — PPa—1 be the (d — 1)-uple Veronese embedding. Then the (k — 1)-plane
(Va—1 (X)), ... vg—1(xp)) € PP

is contained in the linear variety

(Va—1(A)) = (Va—1(q1(F)) U{vg_1(x})..... vg—1(x)})
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and is of codimension ¢ = dim{(vy_1(A4)) — (k — 1). By Lemma 17 (i), B4_1 —2m — k > 0.
So, by the generalized trisecant lemma,

va—1(P™) N (vg—1(x7), .- va-1(x3)) = {va—1(x1). ., va—1(xp)}.
In particular,
Va—1(q1(F)) N (vg_1(x]). ..., va—1(xp)) C {vg—1(x}). ..., vg-1(xp)}-
Since dim g1 (F)’ > 1, we may take a point y’ € ¢1(F)’ such that
Va—1(0") & (Va—1(x}). ... va—1(xp))-
Assume d > 4. Applying Lemma 19 (ii) to
R = (vg_1(x])....,va-1(x3). vg—1(¥")) C (va—1(A)),

we have
dimy,_, (x})(RNvg—1(P™)) = 0.

In particular, we have dimy,,_, (x)(R N vg—1(q1(F )’)) = 0. Regarding it as an intersection
of two irreducible subvarieties in (v;_1(A)), we deduce that every irreducible component of
R Nvy_1(q1(F)") is of dimension at least dim(vy_;(¢1(F)")) — (c — 1). Hence

dim({vg—1(A))) = k + dim(vg—1(q1(F)") = k + (km +k —1) —s.

Next, let us consider the case of d = 3. For [ = 2,...,k, since vz((x’l,x;)) c PP s
a conic, it follows that (va({x], x;))) is a 2-plane, which is equal to (va(x}), v2(x)),z) for
some z € PP2. Then

(206D, .. va(xp), v2((x], X)) = (V2(x)), . .., va(xp), 2)

is a linear subvariety of dimension at most k. Since v2(q1(F)") N (va(x]), ..., v2(x})) is
empty or is a set of points, the intersection

v2(q1(F)") N (v2(x)). ... v2(xp), v2({x7. x7)))
is of dimension at most 1. On the other hand, since m # 2 by Remark 18 (a), we have
dimq(F) = (km +k—-1)—8>2
as in Remark 20. For the union

W= U v2(q1(F)) N {v2(x)). ... v2(xp). v2((x]. 7)) € PP,
1=2,....,k

we see that ¢1(F)' \ vy (W) # 0 and may take y’ € q1(F)" \ vy (W).
Let R = (va(x7), ..., v2(xp), v2(y")) C (v2(A4)) and suppose that

dimy, (<) (R N v2(q1(FY)) > 0,
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that is to say, there is a curve C C R Nv2(q1(F)’) containing vp(x}). Taking D = C and
applying Lemma 19 (iii), we have C = vz ({x}, x;)) for some [ > 1.If

dim(va(x)), . ... v2(xp). v2((x]. x7))) = &,

then R = (va(x}),...,v2(xy), v2({x], x7))), contradicting the definition of W and our choice
of y’. Else, if
dim(va(x}), ... v2(xp). v2((x1. X)) = k — 1,

then C = va({x7, x;)) C v2(q1(F)") N (v2(x)), ..., v2(x})), also contradicting that the inter-
section is of dimension at most 0.
Hence dimy, (x}) (R N v2(q1 (F)")) = 0. Then, in the same way as above, we have

dim({(v2(A))) >k + (km +k —1) —s.

(i1) In the case when
d
(k—1)m+k=(m+ )
m

we have km + k — 1 — s > m. It follows from Lemma 13 and P ~ Z that¢; (F) = Z.From
Lemma 17 (ii), if (d,m) # (3,2), then we have that PP<—1 = (v;_,(P™)) is of dimension at
least k + m. o

We end this subsection by making one more important remark on the case when
o (va (P™) & PP
is secant defective, which will be used in the proof of Theorem 3 (ii).

Remark 21 (Estimate in defective cases). For four defective cases
(k,d,m)=1(7,3,4), (5,4,2), (9,4,3), (14,4, 4),
similarly to Proposition 15, we can have an estimation
dim(vg—1(4)) = k + 6,

where A = v;l(ql( p~Ya))) C P™, the preimage of the entry locus of a, and § is the secant
defect of o (vg (P™)); here A is §-equidimensional, the k general points x/, ..., x;, € P are
contained in A, and it is well known that § = 2 when (k,d,m) = (9,4,3) and § = 1 in all the
other defective cases.
For three cases
(k,d,m) = (5,4,2), (9,4,3), (14,4,4),

we see that B;_1 — 2m > k and
Va—1(A) N (vg—1(x)). ... vg—1(xp)) C{vg—1(x]), ... . vg_1(xp)}
by the trisecant lemma so that we may take y’ € A such that

va—1(0") ¢ (va—1(x]). ... . va—1(xp)).
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By Lemma 19 (ii), we get
dimvd_l(x/l)(R Nvg_1(P™)) =0,

where
R = (vg_1(x}).....vg-1(x3). vg—1 (»")).

Thus, by the intersection argument in (v;_1(A)) (similar to Proposition 15 (i)), we derive the
estimation
dim(vg_1(A)) > dim R + dimvg_;(A) = k + 6.

For the remaining case (k,d,m) = (7,3,4), it holds B4_1 —2m =k — 1, and we still
can claim that
dim((v2(A)) >k +6=7+1=38

as follows. For the 6-dimensional subspace M = (v2(x])....,v2(x5)) C (v2(4)), the trise-
cant lemma implies

M Nvy(A) C M Ny (PY) = {va(x)), ..., v2(x5)},

the O-dimensional intersection. Then dim({v2(A4))) > 7 (otherwise, we get M = (v(A)) so
that M N vy(A) = v2(A), a contradiction). Suppose that

dim((v2(4))) = 7.

and set R = (v2(A)). We take the irreducible components of the 1-equidimensional closed
set Aas A = szl A;. Note that v2(A4;) C R Nva(P™). Since x] € A, there is a curve Aj,
containing x}. Taking C = v2(4},) and applying Lemma 19 (iii), for any j with 1 < j <,
we have v2(4;) = vz((x’l,x;/_)) for some /; = 2,... k. This is equivalent to A; = (x7, x;i),
a line in P#; in particular, x} € Aj. In the same way, A; must contain x/, ..., x5. But this is
a contradiction, because these points are chosen as seven general points in P4, Thus it follows
that dim({v2(A))) > 8.

2.3. Estimate for the linear span of tangents moving along a subsecant variety. First,
we give the following explicit description of the embedded tangent space T,vy (P") C PV to
vg (P™) at a point x in vy (P") or vy (P"). Note that it is related to computations of Gauss
maps (see [12]).

Recall that mono[f] <, denotes the set of monomials f € C[tq, ..., ;] with deg f <e.
Then 1 € mono[f]<. as the monomial of degree 0. As mentioned in Remark 8, as chang-
ing homogeneous coordinates tg, 11, ..., Ly, U1, U2, ..., Uy on P" with m’ = n — m, we may
assume that P™ is the zero set of u1, . .., U,. On the affine open subset {f9 # 0}, the Veronese
embedding vg:P" — PV is parameterized by monomials of C[t1,...,tm. U1, ..., Um/] of
degree at most d. So it is expressed as

(2.13) [mono[t]<g : u1 - MoONO[t]<g—1 :*** : Up - MONO[t] <41 : *],
where u; - mono[t]<;_; means
{ui f | femonolt]<g—1} = (u; 1 uity tujty i+ uiz,‘,ll_l),

and “x” means the remaining monomials.
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Let x = vg(x’) with x” € {tg # 0} C P". Then Tyvg (P") C PV coincides with the

(2.14) n-plane spanned by the (n + 1) points corresponding to the row vectors of
T [ mono[t] <4 uq-monoft]<qg—1 L. U,y -monoft] <q—1 o]
|
vy /oty (mono[t]<a)e;  ui-(monoltl<g—1)ry -+ upyy-(monoltl<g—1)r | *
|
wa/tm | (X") = | (monoltl<a)y  wr-(monoltl<a— )i -+ pr-(monoll<a— )i, 1 * | (x)
vy /ou (0] mono[t]<z—1 - (0] | o*
|
|
| 0vg /ou,, | | (e} 0 e mono[t]<g—1 Lok ]

using (2.13), where (mono[t]<. ), means {0 f/0¢; | f € monol[t]<.} and O is a zero matrix with
suitable size.

In particular, in case of x’ € P™ = {u; = --- = uy,y = 0}, we see that the matrix is of
the form
mono[t] <4 (¢} - 0 : o]
|
(mono[t]<a) sy o) - 0 e
. |
(2.15) (mono[t]<a) iy 0 0 e (x/).
(0] mono[tl<g—1 ... (¢} | (0]
|
|
| (e} 0 ... mono[t]<qg—1 ) ]

As a consequence, we settle a key proposition which estimates a lower bound of the
dimension of the linear span of moving embedded tangent spaces along a subset of a given P,

Proposition 22. Let vy: P" — PN be the d-uple Veronese embedding. For an m-plane
P™ C P", for a (possibly reducible) subset A C P™, and for a linear variety A C (vg (P™)),
the dimension of the linear variety

(Au U Tx(vd(IP’”))>CIP’N

xevg(A)

is greater than or equal to
(2.16) dim(A Uvg(A)) + (n —m){1 4+ dim(vg—_1 ,(A4))},

where Ve g P™ — p("n)-1 is the e-uple Veronese embedding of P™.

Proof. For a given A C P™, we consider
By =vgq(A), By = (0vg/0u1)(A), ..., By = (0vg/0um)(A)

as subsets in PV, where B; is embedded by the parameterization of the (m + 1 + i )-th row of
the matrix of (2.14) for 1 < i < m’. Note that, for the homogeneous coordinates [wg : -+ : W]
on PV corresponding to (2.13), (vg (P™)) = PA=("2)=1 is the zero set of WB41s---» WN,
and A U By is contained in the set.



226 Furukawa and Han, Singular loci of higher secant of Veronese embeddings

Since A C {u1 = -+ = uyy = 0}, it follows from (2.15) that the linear variety
(2.17) (AU By, By,...,By) Cc PV

is of dimension dim({A U Bg)) + dim({(B1)) + - -+ + dim({By)) + m’.
Again, by (2.15), we see that By > v4(A) and B; >~ vg_1 ,,(A) for 1 <i <m’. As the
linear variety (2.17) is contained in (A U |, ¢, 2(4) Tx(vg (P™))), we have the assertion. O

3. Caseof m =1

3.1. Symmetric flattening and conormal space computation. For the proof of Theo-
rem 1, we begin with some preliminaries on equations for secant varieties and conormal space
computation via known sets of equations, whereas we mainly adopt the geometric viewpoint
and techniques for the m > 2 case in Section 4.

Let V be an (n + 1)-dimensional C-vector space C(xq,x1,...,x,). Let £ € SV be
a homogeneous polynomial of degree d (or d-form) and let [ f] be the corresponding point
in PS?V. In this paper, we frequently abuse notation, denoting both a d-form in S 4y and
the point in PS?V just by f. For the Veronese variety vz (PV), we have a natural one-to-
one correspondence between points of the ambient space (v (IPV)) and equivalent classes of
degree d-forms in S = C|[xg, X1, ..., x,]. First of all, let us recall some notions related to this
correspondence.

Given a form f of degree d, the minimum number of linear forms /; needed to write f
as a sum of d-th powers is the so-called (Waring) rank of f and we denote it by rank( /). Note
that one can define rank([ f]) by rank( /'), because this rank is invariant under nonzero scaling.
The (Waring) border rank is given by the same notion in the limiting sense. In other words, if
there is a family { fc | € > O} of polynomials with constant rank r and lim¢_¢ f¢ = f, then
we say that f has border rank at most r. The minimum such r is called the border rank of f
and we denote it again by rank( f). Note that, by definition, o (vz(PV')) is the variety of
homogeneous polynomials f of degree d with border rank rank( /) < k.

Now, we recall that some part of defining equations for o (vz (PV')) comes from so-
called symmetric flattenings. Consider the polynomial ring S = S*V = C|xo,...,x,] and
consider another polynomial ring T = S*V* = C|yo,..., yu], where V* is the dual C-vector
space of V. Define the differential action of 7" on S as follows: forany g € T;_,, f € Sg, we
setg- f = g(00,01,...,0n) f € Sa, where 0; = 9/0x;. Let us take bases for S, and T;_, as

1
io! -+ in!
with|I| =ip+ - +ip=a,|J| = jo+ -+ jn =d—a.F0ragivenf=Z|I|=db1-XI

in S, we have a linear map

¢d—a,a(f): Tg—g —> Sa, g8 f

for any a with 1 <a < d — 1, which can be represented by the following (
matrix:

X! = xé)o---xi” and YJzyéo---y,{”,

a+n) x (d—a+n)_

n n

br,J with by ;= br4y,
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in the bases defined above. We call this “the (d — a, a)-symmetric flattening (or catalecticant)
matrix” of f. It is easy to see that the transpose ¢4, 4 ()T is equal to bad—alf)

It is obvious that if f has (border) rank 1, then any symmetric flattening ¢4, 4(f) has
rank 1. By subadditivity of matrix rank, we also know that rank ¢4_, ,(f) < r ifrank(f) <r.
So we obtain a set of defining equations coming from (k + 1)-minors of the matrix ¢4, 4( /)
for oy (v (PV)). For some small values of k, it is known that these minors are sufficient to cut
the variety o (vg (PV')) scheme-theoretically (see [24, Theorem 3.2.1]).

Let us recall some more basic terms and facts. Let Z C PW be a (reduced and irre-
ducible) variety and Z its affine cone in W. Consider a (closed) point p € Z and call p the
corresponding point in PWW. We denote the affine tangent space to Z at p in W by TpZ and
we define the (affine) conormal space to Z at p, ]VI;"Z as the annihilator (pr )L c W*. Since
dim NP*Z +dim7,7Z = dim W and dim Z < dim7,Z — 1, we get that

(3.1) dim Ny Z < codim(Z,PW)

and the equality holds if and only if Z is smooth at p. This conormal space is quite useful to
study the (embedded) tangent space T, Z.

For any given form f € SV, we call @ € T; apolar to f if the differentiation 0 - f
gives zero (i.e., 0 € ker¢; 4—;(f)). And we define the apolar ideal f+cTas

ft={erT |0 -f =0}

It is straightforward to see that £ is indeed an ideal of T'. Moreover, it is well known that the
quotient ring Ty =T/ f L is an Artinian Gorenstein algebra with socle degree d (see e.g.
[19, Chapter 1]). In terms of this apolar ideal, we have a useful description of (a part of)
conormal space as follows.

Proposition 23. Suppose that f € SV corresponds to a (closed) point [ f] of
0k (va (PV)) \ 0g—1(va (PV)).
Then, for any a with 1 < a < L%J withrank ¢g_, 4(f) = k, we have
Ni10ka(PV)) 2 (/Da (f Ha-a

as a subspace of Ty = S4V*.

Proof. Let X C PW be any variety. For any linear embedding W < A ® B and the
induced embedding
X CcPW — P(A® B),

it is well known that, for any [ f] € 03 (X) C P(A ® B), considering oy (X) as a subvariety of
P(A ® B), we have
Nipou(X) 2 ker(f) ® im(f)" = Nfyj0p(Seg(PA x P B))

in A* ® B* provided that X C 0,(Seg(PA x PB)), X € 0,—1(Seg(PA x PB)) and f has
rank k - p as a linear map in Hom(A4*, B) (see e.g. [24, Section 2.5]). Here Seg(PA x P B)
means the Segre variety in P(4 ® B).
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Further, since X C PW C P(A4 ® B), then as a subvariety of PW, it holds that
Ni01(X) 2 m(ker(f) ® im(f)1) = Niyy(0p(Seg(PA x P B)) NPW),

where 7: A* ® B* — W* is the dual map of the given inclusion W < A ® B.
The assertion is immediate when we apply this fact to a partial polarization

SV < SV ® S99y,

because X = vy (PV) is contained in Seg(PS4V x PS4=4V) c P(S?V ® S974V) (i.e.,
p = 1 case) and
rank¢d—a,a(f) = k?

ket ¢g—a.a(f) = (fDd-a
im(¢g—qa(fN = (fDa D

3.2. Proof of Theorem 1. Now we study singularity and non-singularity of the subse-
cant variety o (vz (P1)) C o (vg (P™)) in each range of k, d as in Theorem 1.

Proof of Theorem 1. (i) Let f be any form belonging to o (vz(P1)) \ ox_1(vg (P™)).
Set X = v (P") C PV, the Veronese variety. Consider f as a polynomial in C[xg, x1] as
in Section 3.1. Then, by [19, Theorem 1.44], we know that T//f is an Artinian Gorenstein
algebra with socle degree d and that £ is a complete intersection of two homogeneous poly-
nomials F, G, each of degree a and b (a < b) witha + b = d + 2, as an ideal of C|yo, y1],
where the Hilbert function of 7/ f 1 is

(3.2) 1,2,....,.a—1l,a,...,a,a—1,...,2,1).

We claim that rank ¢x 4 (f) = k (i.e., a = k). If a < k, then by shape (3.2), we see that
rank ¢; 4 (f) < k forall ¢. In particular, all k-minors of ¢; z_,( f) vanish for any 7. As the k-
minors of catalecticant ¢, 4, foreachk —1 <t <d — (k — 1) give the ideal of o3 _; (v4 (P )
(e.g. [19, Theorem 1.45]), this implies f € ox_(vg(P!)) C ox—1(vg (P™)), which is a con-
tradiction. Hence we have that f+ = (F, G, y,,..., yn) asanideal in T = C[yg, ¥1..... V]
for some polynomial F of degree k and G of degree (d — k + 2) in C[yo, y1].

Now, let us show that oy (X) is smooth at f by computing the dimension of conormal
space. In general, by (3.1), we have

n+d . S
(3.3) ( i ) —kn —k > dimc Njp0x (X)),
where the left-hand side is given by the expected codimension of the k-th secant variety. By
Proposition 23, we also have

(3.4) dime Nfjox(X) > dime (fF D) - (f k.

Thus f is a smooth point of oy (X) if the lower bound for the dimension of conormal space in
(3.4) is equal to the expected codimension in (3.3).

Since k < % by the assumption, note that d — k > k unless d is odd and k = %,
where d — k = % <k.
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(a)If d isodd and k = %, then we have

e (fDa-xk
= (F,y2,- s ¥k " (25 -+ Yn)d—k
= (({iyj 12<i,j <nDagUF -{ya,....,yn) - {pd 7K1 yd= =2y . yi=k=1y
= Clyo. yiveee nla N8 v ne vy 0 ey 8T

d—k—1 . d—k-2

UF {ya,...on) - Ipd F L yd = 2y p Ry,

where U means the “disjoint union” of sets of forms of degree d.
So we obtain

dim N0 (X) = dime (f )i - (F D a—k

:(n;d)—(d+1)—d(n—1)+(n—l)(d—k)

(note that k = %)

d
=(n; )—kn—k,

which tells us that o3 (X)) is smooth at f.

(b) When d is odd and k < % or d is even, we have k < d — k and

O Dk = Foyaoo oy (Foyae...¥n)d—k
= ({yiyj12=<i,j <n}a
UF {ya.....yn}- 08 * 08 2y R
U Ayg 26 v TR,

Thus, by a dimension counting similar to case (a), we see that

dim N’ 05 (X) = (” Z d) —@d+1)—dmn—1)+ 0 —1)(d—k)+ (d —2k + 1)

d

which coincides with the expected codimension as desired. Thus £ is a smooth point of oy (X).
(ii) First note that dim o (vg(P')) = min{2k — 1,d} and the incidence / has dimen-
sion 2k — 1. In the case d < 2k — 2, each fiber of p: [ — P9 is of dimension at least 1, so
for a general a € oy (vg (P1)), it holds ¢; (p~(a)) = vg(P') for some i with 1 <i <k in
incidence (2.6) in Section 2.2.
Now, letn >3,k =3o0orn > 2,k >4 and d = 2k — 2. Suppose

ok (va(P1)) ¢ Sing(ox (va (P™))).

Then a general point
a € o (va(Ph) = P4

is a smooth point of oy (v4(P")). Since g; (p~'(a)) = vy (P') for some i, it follows from
Lemma 12 that, for M = T,o0y (vq (P")), we have the inclusion Ty (v (P"?)) C M for a gen-
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eral x € vy (P1), and then the inclusion holds for any x € vy (PP!). This is because, for the
Gauss map y: vy (P") — G(n, PY) sending y(z) = T, (vg(P")) (a morphism since vy (P")
is smooth), considering the closed set Gps = {W € G(n,PN) | W c M}, wehave y(U) C Gy
for a certain non-empty open subset U C vy (P1), and then y (v (P!)) C Gyps. Therefore,

(3.5) [ U Tea®")) C Taorwa (™).
xevy (P)
Takingm =1, A =0, and A = Plin Proposition 22, the number (2.16), a lower bound for
dimension of left-hand side of (3.5), is equal to dn. Thus we have
Rk —2n=dn <k(mn+1)—1 (=dimTgor(vg(P"))),

which is equivalent to the formula n < (k — 1)/(k — 2). It follows that n <2 if k = 3, and
n = 1if k > 4, contrary to our assumption.
Finally, since

0k—1(vg(P) S ok (vg(P')) whend > 2k —2

(note that dim oy _; (vz (P')) = 2k — 3 < d), the o3 (vg (P1)) is a non-trivial singular locus of
0% (vg (P™)), which means that o3 (vg (P1)) ¢ o—; (vg (P™)), by Lemma 10.
(iii) By assumption, dim og_; (vg (P1)) = min{2k — 3,d} = d, that is to say,

0%—1(va(P)) = 01 (v4(P1)) = (vg(P)) = P
hence the assertion follows.

(iv) For (n, k) = (2, 3), smoothness of all points in o3(vg (P1)) \ 02(vg (P?)) ford > 4
was already proved in [16, Theorem 2.14]. This is included for completeness. m)

Remark 24. Part (iv) is the exception to the trichotomy in Theorem 1. Under the con-
dition (k,d,m,n) = (3,4, 1,2) of (iv), the arithmetic deduced from the inclusion assumption
(3.5) of moving tangents in the proof does not make any contradiction. The situation is similar
in the other exceptional case to the trichotomy, (k,d,m,n) = (4, 3,2, 3) (Theorem 2 (iv)).

4. Proof of main results

In this section, we prove Theorems 2 and 3. We will first discuss the non-singularity result
and then the results for the singular loci.

4.1. Generic smoothness. We begin with a lemma which deals with a secant fiber of
a general point in an m-subsecant variety vy (P™) in vg (P") C PV,

Lemma 25. Assume
dimoyg(vg(P*")) =nk +k —1 and dimog(vg(P™)) = mk +k —1

(ie., vg(P") and vy (P™) are non-defective). Let k < (m+md_1)' Fix L =P™ C P” to be an
m-plane, and take a € oy (vg(L)) to be a general point. In the incidence I C PN x (P™)k
with the first projection p: 1 — PN as in (2.1), we then have the following inclusion scheme-
theoretically: p~(a) C {a} x (L)¥.



Furukawa and Han, Singular loci of higher secant of Veronese embeddings 231

Proof. (i) Consider any (a, x{,...,x;) € p~Y(a) C I.Let Iy C PV x (L)X be an-
other incidence as in Lemma 9. Since a € o3 (v4(L)) is general, it follows a ¢ oj_1(vg (L))
anda ¢ p(Iom) \ I(Om)) by Remark 7 (b). Since dim oy (v4 (L)) = mk + k — 1, the secant fiber
of I () — P at a also consists of finite points. So, by Lemma 9, we have (a, Xp.... ,x}c) elf.
From Lemma 10, it is also true that a ¢ o3 _1(vg (P")). Thus we may write

k
a= Zcixi for some ¢; € C,
i=1
regarding a and x; = vg4(x;) as vectors in the affine space CN+1 wherec; # Oforl <i <k.
As in Remark 8, set y/ =[x/ ,:---:x/, :0:---:0]. For y; = vg(y]), diagram (2.2)

implies

k

a= Zciyi, where y; #0for1 <i <k.
i=1

For the affine open subset Vo = {top # 0} C P", we may assume x; € V for all i. Since
vg:P" — PN is parameterized on Vg by monolz, Ul<g,and a € (vg(L)), it holds that

k k
0= ci-{(uy-monolt]<g—1)(x)} =D i+ x] 0y - {monoft]<q—1 (¥},

i=1 i=1

where for Mono = u; - mono[t]<;—;, mono[t]<4—1 and pt = x;, y/, the symbol {Mono(pt)}
means the vector obtained by evaluating monomials in Mono at the value of pt.
Since k < (m+n‘f 1), applying Remark 7 (b) to o (v4 (L)), we may assume

4.1 dim(vg—1(y1) - va—1(yp)) =k =1,

which gives ¢; -xlf’m_H = 0; thus we have xlf’m_H = 0 for all 1 <i <k (more precisely, the
linear independence of (4.1) means a k-minor of the corresponding matrix is nonzero, and
ci xl{’m 41 = 0 is obtained by multiplying the inverse of the k x k submatrix). Similarly, we
can obtain xlf, ;= 0 for each j > m and for all 1 <i <k, which gives the linear defining
equations for (L)¥ in (P")*. Hence Xisoo., Xy € L

(ii) Let U C (P™)* be the open subset used in Remark 7, where 19 is the P¥~!-bundle

over U. We define a morphism &: Pc1xU - PN xU by

k
(et iep)s (K)o, x})) = (Zcivd(x;),(x’l,...,x,;)).

i=1

Note that, by the linear independence of vy (x}),. .., vgq(x;) for (x],...,x;) € U,

k k
Y civg(x) =Y Gvg(x]) e PV
i=1 i=1
if and only if (cy :---:¢ck) = (C1 :---: Ck) € PX1. Then ®(P*~1 x U) = I°, and more-
over, we have the isomorphism PX~1 x U ~ 9 under ®.
Let Uy = U N (Vo)k c (P™)K, where (Vp)¥ is an affine variety and its affine coordinates
ringis A = C [{xl’ j }]. In addition, for each k-minor £ of the matrix whose i -th column consists
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of monomials of m variables xl s+ Xj , Of degrees at most d — 1, we set (Vo)k {& # 0},
an open subset of (Vg)¥ whose coordlnates ring is Ag. Let W C {c1 # 0} C IP’k ! be the
affine open subset such that all the coordinates ¢y, ..., ¢ are nonzero, where the coordinates
ring of W is Clca, ..., Cklcymci by regarding ¢ = 1.

We may assume p~'(a) C 19N ({a} x (Vo)¥). To consider the scheme-theoretic struc-
ture of p~!(a), for the composite morphism ®; = p o ®: P*=1 x Uy — PV, we take the fiber

o7 (a) c P x Uy c P71 x (V).

Since a ¢ o;_1(vg (P™)), Cbl_l (a) C W x (Vo)X Since a is general in oy (v (L)), and by (4.1),
d>1_1 (a) is contained in the union of affine open subsets W x (Vo)lg with all k-minors &.
We take
Fe = @7 (@) N (W x (Vo))

for each £, and consider the ideal /(Fg) in Ag[ca. ..., Ckley-cy > the affine coordinates ring of
W x (Vo)k For B = (m+d) — 1, we may write

a=(1 :a(l):---:a(ﬂ):o:---:O)e (vg (L)) c PV

with a®, ..., a® e C and a®® =0 if £ > B. Then the expression a = Zf;l ci - vg(x))
means that

k k
a® Zci g (x)H©@ — Zci g (x)® e I(Fg) forl<{ <N,
i=1 i=1

where vg (x] ) is the £-th coordinate of vy (x!) € PN . In particular,

k

Zc,- cug(xhH® e I(Fg) forl > B.
i=1

Using the discussion of (i), we have x; . € I(Fg) forall 1 <i <k and j > m, which means
that I(Fg) contains the defining ideal of (P < (L) n (W x (Vo)k) Thus, scheme-theo-
retically, it follows Fg C P*=1 % (Uy N (L)*) for any &, and hence

®7 (@) c PF71 x (Uy N (L)F).

Therefore, p~1(a) C {a} x (L)¥. O

Remark 26. We recall some known results on the k-the secant variety and its incidence
in terms of k-fold symmetric product of P”.

(a) It is known that Symk (IP™) is non-singular at (x{,...,x;) if x] # x whenever i # j.
Thus the subset of all distinct k-points of P” is a smooth open subscheme of Sym* (P™)
(see e.g. [4, Lemma 7.1.4]). Then we also consider the incidence variety in this set-
ting as T cPV x Symk (P™), where T corresponds to [ in (2.1) under the natural map
PN x (PM)* — PN x Sym*(P") and p: T — ok (vz(P™)) C PV is the first projection.

(b) Assume k(n + 1) < ("+d) Then we know from [8, Theorem 1.1] that the projection
p: T — op(vg (P™)) is birational except for (k,d,n) = (9,6,2), (8,4,3), (9,3,5), be-
cause it is a dominant and generically injective morphism.
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Now, we are ready to prove Theorem 2 (i) and Theorem 3 (i).

Proof of Theorem 2 (i) and Theorem 3 (i). For an m-plane P C IP” with m > 2, we take
the m-subsecant variety Z = o (vg (P™)) of Y = o (vg (P")). From [2], for d > 3, Z does
not fill (Z) and is secant defective if and only if

(k,d,m) = (7,3,4), (5,4,2), (9,4,3), (14,4,4).

Thus, by the assumptions of Theorems 2 and 3, we know that

d
dimY = nk +k — 1, dimZ=mk+k—1§dim(Z)=(m+ )—1,
m

that is, Y, Z are non-defective. In this case, Z = (Z) if and only if
(m+d )

k=-~""¢cN.
m—+1

In particular, under the assumption k < p of Theorem 2 (i), we have Z € (Z).

If Z < (Z), then since (k,d,m) = (9,3,5), (8,4,3), (9,6,2) are excluded from Theo-
rem 2 and Table 1 (i), it follows from [8, Theorem 1.1] that Z is generically identifiable. If
Z = (Z), then (k,d,m) = (5,3,3), (7,5,2) of Table 1 (i) only occur, and in these cases, it
follows from [14, Theorem 1] that Z is generically identifiable.

Let a € Z be a general point and consider p: I — Y. Note that k < for each
(k, d,m) of our range, an assumption of Lemma 25. Applying Lemma 25, Remark 26 (b), and
the generic 1dent1ﬁab111ty of Z, we may assume that the scheme-theoretic fiber p 1(a) is one
point X = (a, X}, .. xk) eln (PN x Symk (L)) and x is a non-singular point in T, because
X is contained in a smooth Zariski open subset of I (e, a projective bundle over a smooth
open base; see Remarks 7 (a) and 26 (a)).

Now, we restrict the projective morphism p: I —Yontoa non-empty affine open neigh-
borhood a € W = Spec A C Y and another open subset x € U = Spec B C T, and take the
injective ring homomorphism A < B corresponding to p|y: U — W. Also, let m, (resp. my)
be the maximal ideal of a in A (resp. of x in B). Note that we may take U so that p|y: U — W
is a finite morphism (cf. [18, Chapter II, Example 3.22 (d)]).

Since A/mg = B/my ~ C and p~!(a) ~ Spec(B ®4 A/mg) ~ Spec(B/myB) is iso-
morphic to one simple point Spec B/my, we have myB = my in B. Let By, = B ®4 Am,,
whose member can be expressed as b/s withb € B, s € A\ my. We have mgy By, = mxBi,
in By,,, and then

(Am, + mgBm,)/MaBm, >~ Am,/MaAm, =~ Bm,/MaBm,.

(")

which implies Ay, + mgBm, = Bm, + maBm, = Bm, as Am,-module. By the Nakayama
lemma (see e.g. [26, Corollary of Theorem 2.2]), it follows A,,, = By, . In particular, By, is
a local ring, whose maximal ideal is my B,,,,. Thus we have

Ama = Bma = (Bmu)mmea = Bmx’

which implies that a is a smooth pointin Y. ]

We present an example which shows that one cannot extend this generic smoothness
result to an arbitrary point in the locus oz (vg (P™)) \ 0% _1 (v (P")).
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Example 27 (Singularity can occur at a special point in Theorem 3 (i)). Let
V=Ci{x,y,z,w) D W =C{x,y,z)
and let f = x2y? + z* be a form of degree 4. Then f represents a point in

04(v4(PW)) \ 03(v4(PV)).

Note that rank ¢ »(f) = 4 > 3, where ¢4 4—4: Sy — SV @ S92V is the symmetric
flattening. Theorem 3 (i) shows that a general form in o4(v4(PW)) \ 03(v4(PV)) is a smooth
point. But here we show that f is a singular point of o4(v4(PV)). We know that the form
fp = x?y? has Waring rank 3 so that fp = €] + {5 + {3 for some ¢; € C[x, y];. By [16,
Theorem 2.1], fp is also a singular point of 03(v4(PV)). Since f € ( fp, z*), by Terracini’s
lemma, we see that T,4v4(PV) C Troa(va(PV)) and Ty, v4(PV) C Trog(va(PV)) forany i.
Further, because 03(v4(P1)) = (v4(P!)) and fp has 1-dimensional secant fiber in its inci-
dence, one can move {; along this P!. Thus we have

(42) Troaa®V) 2 (| Tetva(®V), Toova(PV)).
{;eP!
Note that, using parameterization (2.13), we can estimate the dimension of the right-hand side
of (4.2). Take an affine open subset {[1 : 7 : u; : u»]} of P3 and (with a change of coordinates)

let z* be [1:0:1:1] and let £; € P! be represented by [1:¢:0:0] for t € C. Then, by
(2.14), the embedded tangent space to v4(P V) at [1 : ¢ : uy : up] is given as the row span of

| | |
1 ¢t t2 3 ¢* :ul uit urt? ouged :uz usrt uxt? uot3 : u

1

1 2t 3t2 4133 Ui 2uqt 3u1t23 u> 2ust 3u2t23 u?
3 1 ¢ 12 £3 3 321,41 2u it 3u?
l 1t 2 3 2un
On [l :¢:0:0] (forallt € C), this matrix turns into the shape
1t 2 13 143 3 3
1 2t 3t2 4t33 3 3 o]
1ot 2 13, 1 ’
3 31 t 12 t*i
andat[l:0:1:1],itis equal to
S
1 3 1 3 1 3 1
o e
‘ ‘ ‘
‘ ‘ ‘

which shows that dim(UQePl Teava(PV)) = 12, dim Tz4v4(PV) = 3, and
( U Tg;tv4(IP’V)> N Ty4va(PV) = 0.
L;eP!
Thus, by (4.2), we obtain dim T ro4(v4(PV)) > 16 = 12 + 3 + 1, greater than the expected

dimension. Hence f is a singular point of o4(v4(PV)), whereas o4(v4(PV)) is smooth at
a general point of o4(v4(PW)).
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4.2. Singularity. In this subsection, we will prove parts (ii) and (iii) both in Theorem 2
and Theorem 3, which show the singularity of the m-subsecant loci X 4 (m) in the k-th secant
variety ox (vg (P")). As X 4(m) is the union of all the m-subsecant varieties o (v4 (P™)) in
o (vg (P™)) as (1.3), it is enough to prove the statements for any oy (v (P")) C or(vg (P")).

Proof of Theorem 2 (ii) and Theorem 3 (ii). As we noted above, it is enough here to show
that oy (vg (P™)) C Sing(og (vg (P™))) and oy (vg (P™)) & o)1 (vg (P™)) for each m-subse-
cant variety oy (vg (P™)) C o (vg (P™)).

We will first prove that oy (v (P™)) C Sing(o (vg (P"))) under the condition in Theo-
rem 2 with

(m+d)
m

im ¢N,
m+1
next for Theorem 3 with (k, d,m) # (9,3,5), (8,4, 3), (9, 6,2), and finally for
+d
(")
m—+1
or (k,d,m) = (9,3,5), (8,4,3), (9,6,2). Basically, we use the same idea for the proof, but
a detailed way of estimation will be slightly different according to each case (due to secant
defectivity and non-identifiability). The non-triviality of the singular locus, i.e.,

ox (g (P™)) & o1 (vg(P")),

can be directly obtained at the end by Lemma 10.

Take a general point (a, x1, ..., xg) in the incidence J as (2.6) for Z = vy (P™) Cc PA
and take an irreducible component F of p~!(a) containing (a,x1,...,xg). Then it follows
that a € oy (vg (P™)) is a general (so smooth) point in o (vg (P™)).

Suppose o (vg (P™)) ¢ Sing(oy (vz (P"))). Then we may assume that a is also a smooth
point in oy (v (P™)). In particular, we have

Ta(ox (vg (P™))) C Ta(ox(va(P™))).

Terracini’s lemma implies Ty, vy (P") C Tyox (vg (P™*)) fori =1,...,k, and Lemma 12 im-
plies Tx(vg (P"*)) C Ty (o (vg (P™))) for a general point x € g; (F). Thus we have

43 (Talx@a®™ MU |J  Ta@a®")) C Ta(or(va(P"))).
x€q; (F)U{x1,....xr}

e N

First of all, let us consider Theorem 2 (ii) with

m+d
RPN
m+ 1
Set
L {(’";,t”’)]
m—+1
Then

d d
IB:(WH— )—1<km—|—k—1 and (k—l)m+k§(m+ )
m m

as in Remark 16. We have P# = T, (o4 (vg (P™))) since oy (vg (P™)) fills up the whole P#.
It is enough to discuss the following three cases:
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@l) (k—Dm+k < (™F9),
@2) (k—Dm+k = (") and (d,m) # (3,2),
@3) (k — m +k = ("F9) and (d,m) = (3,2).
For case (al) (i.e., (k — I)m + k < (m;n"d)), we take A = v;l(qi(F) U{xi,....xg})in
P™ and A = PA. From Proposition 15 (i), we get dim(vg_1 m(A) 2k +(km+k—-1)—p
for the (d — 1)-uple Veronese embedding vg_; ,, of P™. From Proposition 22, the dimension
of the left-hand side in (4.3) is greater than or equal to the number (2.16), which is
dim(A U vg(A)) + (n —m){1 + dim(vg_q ,(A))}
>B+m—m)(1+k+ (km+k—1)—p).

From inclusion (4.3), we obtain
B+m—my(1+k+(km+k—1)—p)<kn+k—1,

which implies (n —m)(1 + (km + k — 1) — ) < (km 4+ k — 1) — B. This is a contradiction,
because n > m and (km +k — 1) — 8 > 0.

Now, assume (k — )m +k = (m;;d) (equivalently, km + k — 1 — 8 = m). Then, in
the same way as above, using Proposition 15 (ii) and taking

A=P" =v;(Z) and A = (vg(P™) = PP,
we have
(4.4) B+ (n—m)(1 +dim(vg_1 n(P™)) <kn+k—1.

For (d,m) # (3,2) (i.e., case (a2)), Proposition 15 implies that dim{vg_1 ,, (P™)) > k + m.
Then (n —m)(m + 1) <km + k — 1 — = m, contrary to n > m.
For (d,m) = (3,2) (i.e., case (a3)), we get B = 9, dim(vg_1 , (P™)) = 5, and
(m+d)
k= [_m ] 4

m+1
The condition (k, d,n) # (4,3, 3) implies n > 4. Then we also have a contradiction since (4.4)
does not hold. Hence we show that oy (vg (P")) C Sing(ox (vq (P"))).

Secondly, let us regard Theorem 3 (ii). For (k,d,m) = (10,3, 5), (10, 6,2), we have
the same result as Theorem 2 since o (vg (P™)) = P# and it satisfies (al), (a2) respectively.
Then, except for (k,d,m) = (9,3,5), (8,4,3), (9,6,2), the remaining part of Theorem 3 (ii)
consists of the following two cases:

(bl) (k,d,m) = (7,3,4), (5,4,2), (9,4,3), (14,4,4) (i.e., the case of op(vy(P™)) being
defective),

(b2) (k,d,m) = (8,3,4), (6,4,2), (10,4, 3), (15,4,4) (i.e., just after the defective case).
By the same reason, we also have inclusion (4.3) for these cases provided that
o (va(P™)) ¢ Sing(oy (vg (P™))).

For case (bl), i.e., the defective case, it is known that all the oy (v (P™)) are hyper-
surfaces in P# (see [2]). So, taking A = v;l(qi (p~(a))) C P™ corresponding to the entry
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locus of a, by Proposition 22, an inclusion of the same kind as (4.3) implies
(4.5) B—14+1n—m)(1l+dim{vg_;(A)) <kn+k—1,

where B is equal to km + k — § and § is the secant defect of o (vz (P™)). Inequality (4.5) is

equivalent to
8 8

< < <1
T 1+dim(vg_1(4)—k ~ 146 '
which contradicts n — m > 1, because dim{vy_1(A)) > k + § by Remark 21.

For case (b2), i.e., just after the defective case (bl), the k-th secant variety oy (vg (P™))
fills up PA, and hence T, (0k (vg (P™))) = P#. Then we can also get a contradiction in a simi-
lar way, as follows. Since the (k — 1)-secant variety oy _1 (vg (P™)) is a hypersurface in P4, by
Lemma 14, we have ¢; (F) = vy (P™) for an irreducible component F of p~!(a) for general
a € PP so that we can take A = P”. By Proposition 22, inclusion (4.3) implies

m+d—1)

n—m

ot 0=t + it @) = ("0 ) <1 ("
<kn+k-1,
which fails to hold in (b2); more precisely, for
(k,d,m) = (8,3,4), (6,4,2), (10,4,3), (15,4, 4),

the value (m+d) —1+(n- m)(m+d_1) — (kn 4+ k — 1) is equal to

m m

Tn —33, 4n — 11, 10n — 35, 20n — 85,

respectively, which must be greater than 0 because of the condition n > m + 1. Thus we obtain

ok (vg (P™)) C Sing(og (vg (P™))).
Now, we discuss the following two cases:

cl) k= (’";;d)/(m + 1) € N of Theorem 2; since we exclude (k,d,m) = (5,3,3), (7.5,2),
a general point a € P# = oy (v (P™)) is not k-identifiable and the secant fiber p~!(a)
consists of two or more points (see [14, Theorem 1]);

(c2) (k,d,m) =1(9,3,5), (8,4,3), (9,6,2) of Theorem 3; then a general point
a € ox (vg (P™)) G PP

is not k-identifiable and p~'(a) consists of two points (see [8, Theorem 1.1]).

In these cases, even though they do not have positive-dimensional secant fibers, we can still get
a proof by contradiction using a different estimate, as follows.
Similarly, suppose that

ok (va(P™)) ¢ Sing(ox (vg (P")))

and take a general point a € o (vz (P™)) so that a is a smooth point in both oy (v4 (P™)) and
o (vg (P")). We take k general points x1,...,x; € vg(P™) with a € (x1,...,x;). By the
non-identifiability, we have another set of k points yq, ..., yx € vz (P™) witha € (y1,..., Y&)
such that (a, x1,...,x%) and (a, y1,..., yi) are distinct in the secant fiber

p~ ) c I c PP x (vg(P™)F
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(modulo permutation on (vg (P™))¥). Let x; € P™ (resp. yj’.) be the preimage of x;, that is,
vg(x]) = x; (resp. of y; with vd(yj/-) = yj).

Setting A = {x],... ,x,’c, Vieooos y,’c}, we have an inclusion, similar to (4.3),
(4.6) (Taor@a®™M U | Te(wa(®™)) € Talor(va(B"))).
x€vy(A)

For the (d — 1)-uple Veronese embedding

d—1
Va—1 = Vi, P™ > PPt with By = (m - ) —1,
dim{vg_(x}),...,vg—1(x})) = k — I'since x{, ..., x; are general in P™. The (k — 1)-plane
(Vg—1(x7),.... Ud—l(x]/(» is contained in (vg_j ,,(A)). On the other hand, the codimension

of vg_1(P™) C PPa—1 that is, (m+n‘f_1) — 1 —m, is greater than or equal to k; this follows
from Lemma 17 (iii) in case (c1), and from explicit calculations in case (c2).

Then we have dim(vg_; ,,,(A)) > k, as follows. Otherwise, dim(vg_; ,,(A4)) <k —1
implies (vg_1,m(A4)) = (vg—1(x}), ..., vg_1(x})). Since y{,...,y, € A C P™, it follows

vd—l(yi)’ e vd—l(y]/c) € (vd—l(xll)’ .. -’vd—l(x;c)) N vd—l(Pm)’

where the right-hand side must be {vg_1(x]). ..., vz—1 (x,/c)} because of the generalized trise-
cant lemma [29, Proposition 1.4.3], which gives a contradiction.
Again by (4.6) and Proposition 22, we get

kn+k—1>dim(Tgox(vg(P™)) U vy (A)) + (n —m){l +dim(vg_; ,(A))}
> dim Tgox (vg(P™) + (n —m)(1 + k) =km+k -1+ (n—m)(1 + k)
=kn+k+mn—m-—1),

which is a contradiction since n —m — 1 > 0. Thus, in these generic non-identifiable cases, it
also holds that oy (vg (P™)) C Sing(og (vg (P"))).
Note that, for
(k,d,m) = (10, 3,5), (9,4, 3), (10,6, 2),

i.e., just after the non-identifiable case (c2), the singularity is already shown in the second
part of this proof, where (k,d,m) = (9,4,3) is also in the defective case (bl). The case
(k,d,m) = (5,3,3), (7,5,2), which is excluded from (c1), belongs to Theorem 3 (i); in this
sense, the non-trivial singularity does not appear for (d,m) = (3, 3), (5, 2).

Finally, since ox—1(vg(P™)) & ox(vg(P™)) for the k of the range in this part (i),
o (vg (P™)) is a non-trivial singular locus, which means oy (vg (P™)) & or_1(vg (P™)), by
Lemma 10. ]

We finish this section by proving Theorems 2 (iii) and 3 (iii) and Theorem 2 (iv).

Proof of Theorem 2 (iii) and Theorem 3 (iii). By the conditions in part (iii) of these two

theorems, we see that
(m+d )
k—1 > [L—‘

m+1
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if o (v (P™)) is never defective, or

(m+d)
k—1> {L—‘ +1
m+1
if (d,m) €{(3,4),(4,2),(4,3),(4,4)}, the defective list of Alexander—Hirschowitz. In any
case, we have ox_1 (vg (P™)) = (v (P™)). Hence

0k (vg(P™)) = og—1(vg(P™)) C o1 (va (P"))

and the assertion follows. O

Proof of Theorem 2 (iv). This is shown in [11] by explicitly giving the defining equa-
tions of o4 (v3(P3)). |

5. Case of fourth secant variety of Veronese embedding

In this section, we aim to prove Theorem 5 as an investigation of the singular loci of
the fourth secant variety (i.e., k = 4) of any Veronese variety. This theorem consists of one
part dealing with the (non-)singularity of points in full-secant loci (i.e., m = 3) and the other
part for points in the maximum subsecant loci X4 4(min{k — 1,n} —1). So we will obtain
Theorem 5 by proving Theorem 29 (Theorem 5 (i)) and Corollary 30 (Theorem 5 (ii) and (iii)).

5.1. Equations by Young flattening. In [24], another source of equations for secant
varieties of Veronese varieties was introduced via the so-called Young flattening. Here we
briefly review the construction of a certain type of Young flattening and use it to compute
the conormal space of a given form.

LetV =C*"landd =d; +dr+ 1.For1 <a <n, we consider a map

a a+1
YFY 4,087V > SV @82y e Avie \V

do,n*

which is obtained by first embedding SV < § diy @ S22V @ V via co-multiplication, then
tensoring with Id € A* V ® A V*, and finally skew-symmetrizing and permuting.

Forany f € SV, we identify YFg, (f)eSy sty NV ® /\‘hLl V as
a linear map

,da,n

(5.1) Sdlv*®/a\v—>s"2V®a/+\lV
Letay, ..., ("F1) give a basis of A® V. For a decomposable w? € SV, YFg, 4,., maps as
w? > dlc!l;,z!wd‘ Qw2 ® (ZIIW;‘ ® (ar A w)),
and if we take zg, ..., z,, a basis of V' (now, we have that w = ZCJ‘ZJ' € V for some ¢; and
ay = zj; A --+ A zj, for some distinct iy, ..., i4), then we have
dl &

a dy __ . dl d2 ) Y
YFg, 4, (W) = ! Zc] Z Wt W ® (ziy Ao Aziy)
J=0 ipeia# ] ® (ziy A-o- A zZiy A Zj),
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which shows YFg, 4, , (w¥) has rank (%) as the linear map (note that the rank does not
depend on the choice of w and just consider the case w = zg). Further, for k < (”zd ) with
d’ = min{dy,d,}, it is also immediate to see that rank(YFg, 4, ,(f)) = k( ) for a general k
sum of d-th power [ = Zl_l wd

Thus, from k (}) + 1 minors of the matrix YFJ, 4, ,,(f), we obtain a set of equations for
o (vg (PV)) for this range of k (for some values of k,d,d’, a, it is known that these minors
cut ox (vg (PV)) as an irreducible component (see [24, Theorem 1.2.3])).

We can also use this Young flattening to compute conormal space of secant varieties of
Veronese.

Proposition 28. Let V = C**! and let f be any (closed) point of

0k (Vg (PV)) \ 0—1(vg (PV))
in PS4V, Suppose YFZ d> n(f) has rank k(Z) as a linear map in
a+1
Hom(s4v* @ /\ v.stve \v).
Then we have

Nipok(a(BV)) 2 (ker YFS () - (GmYFS . (f)*.
where the right-hand side is to be understood as the image of the multiplication
a+1
shy* ®/\V®Sd2V* ® [\ V*—siv*.
Proof.  This proposition follows directly from the same idea as Proposition 23 by apply-
ing it to a linear embedding
a+1
Sch—>Sd1V®/\V*®Sd2V® AV

Since rank YF‘;Z dom (f) = k( a) and, as observed before, v (P V') is contained in

o) (sea(B(sv & A V) <2 (s%v & A 1))
- ]P’(Sle ®/\V* <§;>S“’2V<§;aa/+\1 )

and not in the previous secants of the same Segre variety, this is straightforward from the proof
of Proposition 23 (i.e., the case p = (Z)). ]

5.2. Singularity and non-singularity. Using Proposition 28, we have the non-singu-
larity of 04 (v (P")) at any point outside X4 4(2) U 03(vg (P")).

Theorem 29 (From full-secant locus). Let vg:P" — PN be the d-uple Veronese em-
bedding withn > 3,d >3, and N = (";;d) — 1. Suppose that [ € o4(vg (P™)) \ o3(vg (P™?))
and [ does not belong to any 2-subsecant o4(vg(P?)) of 04(vg(P™)). Then o4(vy(P™)) is
smooth at every such f.
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Proof. First, note that, for every f in the statement, there exists a unique 4-dimensional
subspace U such that f € o4(vg (PU)), which is determined by the kernel of the symmetric
flattening ¢1 4. This gives a fibration as

104 (P") \ (24,4(2:P") U o3 (vg (P"))) — Gr(3,P")

whose fibers 771 (PU) are all isomorphic to o4(vg(PU)) \ (24,42:PU)Uo3(vg(PU))),
recalling that X4 4(2;P") C 04(vg(P")) is the maximum subsecant locus, i.e., the union of
all o4(vg (P1)) and 04(vg (P?)) in o4(vg (P™)). So we can reduce the proof of theorem to the
case of n = 3.

In case of n = 3, there is a list of normal forms in

04(vg (P?) \ (Z4,0(min{k — 1,7} — 1) U 03 (v (P?)))
due to Landsberg—Teitler (see [22, Theorem 10.9.3.1] or [25, Theorem 10.4]) such as
() fi =x0? +x17 + 27 + x37,
(i) fo = x0? 1x1 + 29 + x39,
(iii) f3 = x09 1 x1 + x29 7 1 x3,
(V) fa = x0?72x1% + x09 7 xz + x39,
V) fs = x§73x3 + x82x1x0 + x§ .

Case (i) f1 = xod + xld + xzd + X3d (Fermat-type). It is well known that this Fermat-
type f1 belongs to an almost transitive SL4(C)-orbit, which corresponds to a general point of
04(vg(P3)). Hence f is a smooth point of o4 (vg (P3)).

Case (ii) f» = x0? x1 + x29 + x39. Say U = C{xg, x1, X2, x3). Consider the Young
flattening

YF)_, 1 3(f2) €S20 @ U @ U* ® AU ~ Hom(S?2U* @ U.U ® A*U)

defined in (5.1). For simplicity, we will denote this type of Young flattening by ¢ throughout
the proof. Then ¢ ( f>) is

3 3
ax§ 2 ®xp ® (Z)’j ® x;j /\Xl) + g X1 ® x0 ® (Zyj ® X /\xo)

J=0 Jj=0
3 3
+)/xg—2®x1 & (Zyj ® Xxj /\xo) +8xg—2®x2® (ny ® x; /\xz)
J=0 j=0
3
+ exgl—Z X x3Q (Zyj ® x; /\x3)
j=0

for some nonzero «, B,7,8,¢ € C. Note that, as a linear map S?2U* @ U — U @ A2U,
rank¢(xg) = 3 and rank ¢( f>) = 4 -3 = 12. By Proposition 28, (ker¢( f2)) - (im ¢ ( f2))*
thus produces a subspace of 1/\7[*}2]04 (vg (IP’3)Z.

For d = 3, the expected dimension of N[*}z]o4(v3(]P’3)) for the smoothness is

(3+3)_16:4
3
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and the corresponding four points can be chosen as ygy;ys, y%yz, Y1)Y2Y3, y12y3 in S3U*,
which are given by the product of {y; ® xg, y2 ® X2, y3 ® x3} inker¢(f2) C U* ® U and
(52 Vo ®y2Ay3. 71 Q@ Y1 A Y2, Y1 ® Y1 A Y3, Y1 ® y2 A ys,
V2@ Y0 AY1,Y2 & Yo A Y3, Y2 & Y1 A Y3,
Y3® Y0 A V1,3 ® Yo A Y2, ¥3 ® y1 A ya}
inim¢(f2)t € U* @ A2U*. So 04 is non-singular at f>.
For any d > 4, inker¢(f») C SY72U* ® U, one can find a subspace generated by
{Fxi|Feldj,,i=0,...,3},

where
J = (Yoy2,Yoy3, ¥, ¥1Y2, Y13, 273)
is an ideal in S*U*. Also, in im ¢ ( f>)* C U* ® A2U*, there exists the same subspace as in
(5.2). In this case, our (ker ¢ (f>)) - (im ¢ ( f2)) contains the subspace of S¢U* generated by
7873 ¥87253, 593} ULyoyiva. -, yoy1y3} U{yoy3 v, yoyay3}
Uiyt yEv3 U a3 ys, yiyay3, v303)
for d = 4 and by
BT T s PR E Y s EACR NI R 6 IR R TR CNPPRS L R £

U SO G CYPPRNR Y s =4 NURTRIUR O DS Gl VA TU GRS -0

Utyor{ ™ oy 2y, yoy1yd T2 Udyoys s voyars )

S TS 57 e HUR (SR L S TR U PR

Ud 2508
for any d > 4 (note that the terms above are listed in the lexicographical order). In both cases,
these monomial generators can be also represented as

(6. v8 v oy TN v v v 2, 98 s,
Y29 v vy 98 vy 983y voyd T yeyd T
Uy ooy s v s v T s v T,

which implies that, by Proposition 28,

dim N{y,104(0q (P?)) = dim(ker ¢(f2)) - (im ¢ (f2))*
. {(d—1+3)_10Jr (d+2)_6} _ (d+3)—16.
3 2 3

Hence f; is a smooth point of oy4.
Case (iil) f3 = X()d_lxl + X2d_IX3. Then ¢( f3) is

200 (S0 0) 300 (S 0505
2 (D o p) £ 20 (T 01 15

+6x§i_3x3 QX2 ® (Zyj R X; /\xz) + nxg_z Q@ x3Q® (Zyj ® X;j /\xz)
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for some nonzero «, 8, y, 6, €, € C so that rank ¢( f3) = 12. For d = 3, a subspace

(y1 ® x0,y3 ® x2)
inker¢(f3) C U* ® U and another subspace in im¢( f3)~ C U* @ A2U*,
(5.3) (Vo® 2 AY3. 71 @ V1 AY2. 71 @ Y1 AY3. 01 @ y2 A Y3,
V2@ Yo A Y1, Y3 ® Yo A Y1, Y3 ® Yo A Y3, ¥z ® Y1 A Y3),

produce a desired 4-dimensional subspace (yg y%, y% V2, y% V3, V1 y%) in S3U*, which says that
04 is non-singular at f3.
Similarly, for the case of d > 4, (ker ¢( f3)) - (im ¢ ( f3))* contains a subspace of

Nipj0a(va(P?) C S4U*
which is generated by
&, y& 1, voyd N 08 vd T v, 8 e, yE s,
d—2.2 d—2 d—2 d—3.3 d—1 d—2
Yo Y1sYo Y1Y2.¥o TY1Y3. Vo Yi»YoYa .YoYy V3))
U vy ovE N = yiyd 25, v8, y8 s, pE72) 2, v8 7303,

using a subspace ({F ® x; | F € Jg_»,i =0,...,3}) inker¢(f3), where J is an ideal gen-
erated by {yoyz,y0y3,yf,y1y2,y1y3,y§} in S*U*, and the same subspace in im ¢ ( f3)*
as (5.3). Thus

s d+3
dim Npq04(vg (P?)) > ( ; ) — 16,

which means that f3 is also smooth.
Case (iv) f4 = x0?2x12 + x0% x5 + x3%. For d = 3, we have

(f) =2%08x1 8 (3 v @x Ax)+2x @08 (Y 8y Ax)
+ 2x1 ® x1 ®(Zyj ® x; /\xo)+2x0®x0®(2yj ® x; /\xz)
+2X0®X2®(Zyj ® X; /\xo)+2x2®xo®(ZJ’j ® x; /\Xo)
+6X3®X3®(Zyj ® x; /\Xs)

and rank ¢ ( f4) = 12. Then 1\7[’}4]04 (v3(IP3)) contains a 4-dimensional subspace correspond-

ing to (—yoy2y3 + ¥?y3. ¥1¥2¥3. 3. y2y3) which can be spanned by {y» ® xo, y3 ® x3} in
ker¢(fa) CU* ® U and

3@ Y0AYV1L,Y3R® VoA Y2, —V1 @ Y1 Ay2+ Y2 ® Yo A Y2,
Y0 ® Y2 A Y3+ y1 ® y1 A y3}

inimg(f4)t € U* ® A2U*. So 04 is non-singular at fj.
For d > 4, it holds that

d(fa) = 2x61_2 ®x1® (Z Vi ®x; /\xl)
+ 2(d —2)xg_3x1 ® x0 ® (Z Vi ®Xx; /\xl)

+2(d =2 P @x @ (Y ®x A xo)
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+(d—-2)(d-3)x§* 2 Qx0® (Z Y @ xj A xo)
+@-Dxi?@x® (Y @y An)
+ (d — l)x(‘)"‘2 QX2 ® (Zyj ® x; /\xo)
+d-1)(d — Z)Xg_3x2 ® xo0 ® (Z Vi ® xj A xo)
+dd-Dx{?@x3® (Zyj ® Xx; /\X3).
In this case, rank ¢»( f4) is also 12 and ker ¢( f4) has a subspace A; which is generated by
{(y0¥3,: 12,9173, 73, ¥273) a2 @ i (i =0,...,3), (yoy2)a—2 ® X0, (y})a—2 ® xo,

(¥3)a—2 ® x3. (—2y0y2 + (d — 1)y7)a—2 ® x2}
and im ¢ ( f4)* has a subspace B spanned by
D2®Y1AY2, 2@ Y1 A Y3, 28 Y2 A Y3, 3@ Yo A Y1,¥3 ® Yo A Y2,y3 ® y1 A Y2,
—d-=Dy1®y1 Ay2+2y2® yo A y2.—2y0 ® y2 A yz + (d — 1)y1 ® y1 A y3}.

Then one can check that A, - By produces a subspace of ﬁ[*}4]04(v3(P3)) in S4U* which is
the degree-d part of an ideal /; generated by 19 quartics

{(—4y5y3 + (4d — H)yoyiyz2 — (d — 1)*yT, =2y5y2y3 + (d — D)yoy3y3. y3¥3.
—2y0y1¥3 + (d — 1)y} y2,=2y0y152¥3 + 3y7y3, yoy153,—2y0y3 + (d — )yiy3,
—2y0y3y3 + (d — 1)y y2ys. —2y0y2y3 + (d — Dyiy3,

ViY3, YIV3 ViV2y3. ViV3. Y1Y3. Y1933, V1D2V3, V3. V3 V3, V3 Y3 )

(here, the underline means the leading term with respect to the lexicographic order). Say
T = S°U*. Then I has a minimal free resolution as

(5.4) 0— T(=7)* - T(=6)2* > T(-53% > T4 > 1 >0,

which shows that the Hilbert function of I can be computed as

d—4+3 d—5+3 d—6+3 d—7+3
H”’d):”( 3+)_36( 3+)+22( 3+)_4( +)

3
:(d;r3)—16 (d > 4).

This implies that
d+3 ~ d+3
( ;_ ) —16 > dim N{';,104(vq (P?)) = H(I.d) = ( : ) — 16,

which means that o4 is also smooth at fj.
Case (v) The final form f5 = xg_3xf + xg_lexz + xg_1x3. We begin with d = 3.
We have

¢(f5)=6x1®x1®(Zyj ® Xxj /\X1)+X2®X0®(Z)’j ®x]-/\x1)
+xZ®x1®(Zyj ® x; /\X0)+X1®XO®(Z)’j X X /\xz)

+ x1 ®x2®(2yj ® Xj /\)Co)—l-Xo@)ﬂ@(Z)’j ® X /\xz)
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+xo®x2®(2yj ® x; /\X1)+2)C3®x0®(2y]‘ ® x; /\xo)
+2XO®X()®(Z)71‘ ® Xx; /\X3)+2X0®X3®(Zyj ® x; /\xo)

and rank ¢( f5) = 12. The conormal space ]\Af[’;rs]o4(v3(IP’3)) contains a 4-dimensional sub-
space corresponding to (—yoy3 + 4y1y2y3 — 24y3. —y1y3 + 12y2y3, y2¥3, y3) which can
be spanned by {y3 ® x¢,2y1 ® xo + 12y2 ® x1 + y3 ® xo} inker¢p(f5) C U* ® U and

D3®@Y1AY2,=2y2@y1 AY2+ V3@ YoAY2,—2y1 @ Y2 Ay3 + y3 ® yo A y3}

inim¢(f5)~ C U* @ A2U*. So 04 is non-singular at fs.
For each d > 4, the Young flattening is of the form

$(f5) = 6x§ 3x1 @ x1 ® (Z Vi ® X; /\x1>

+3(d — 3)xg_4xf ® xo ® (Zyj ® xj /\Xl)
+3(d — 3)xg_4xf ®x1 ® (Z Vi ® X;j /\xo)
+ (d —3)(d —4)xg_5xf ® xo ® (Zyj ® Xx;j /\xo)
+(d = 2)(d = 3)x§ 1% @ x0 @ (33 ® %7 A xo)
+ (d —2)xg_3x2 ® X9 ® (Zyj ® x; /\xl)
+d-2x83x0x ® (Zyj ® X; /\xo)
+(d=2x{ P @x0® (3 @ Ax2)
+(d —2)xg_3x1 Rx2® (Zyj ® X; /\xo)
+x872@x; ®(Zy,- ® x; /\xz)
+x8? @ ® (Zyj ® Xj Axl)
+(d —1)(d —2)x61_3X3 ® x0 ® (Z Yy ® X;j /\xo)
+(d - l)x(‘}’_2 ® xo ® (Zyj ® xj /\xs)
+(d — l)x(‘f_2 RX3® (Zyj ® xj /\xo)

and rank ¢ ( f5) is also 12. Now, ker ¢ ( f5) contains a subspace A, which is generated by

{133, 93,5293.¥3)a—2 ® xi (i =0,....3), (~6y0y2 + (d = 2)y7)a—2 ® X3,
(=yoys + (d —Dy1y2)a—2 ® x3}
and im ¢ ( f5)© has a subspace B spanned by

(2@ y2Ay3. 3@ V1 AY2, Y3 Y1 AY3,Y3@ V2 A Y3, —V1 ® Y2 A Y3+ Y2 ® y1 A ys,
—(d—=1Dy28y1 Ay2+y3®yoAy2,—(d —1)y1 ® y2 A y3 + y3 ® yo A y3,
—Vo® Y1 AY2+ Y1 ®YoAYy2—Y2® Yo Ayi,

—Yo®@Y1IAY3I+ Y1 ®YoAYy3s—y3&yo Ay,
—6y0 @2 AY3+(d—=2)y1 @ y1 Ayz—6(d —1)y2 ® y1 A ya2}.
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Then one can check that A, - B, produces a subspace of ﬁ[’}5]04(v3(P3)) in S4U* which is
the degree-d part of an ideal /5 generated by 19 quartics

{36y5y3 — 12(d — 2)yoyiy2 + (d — 2% 1,
655273 — (d —2)y0y7y3 — 6(d — D)yoy1y3 + (d — 1)(d —2)yiy2,
—¥4y3 +2(d — Dyoy1y2y3 — (d — D*yiy3. —6y0y1y2y3 + (d — 2)y7 y3.
—yoy1¥3 + (d — 1)y7y2y3.—6y0y3 + (d — 2)y1y3. yoy3ys — (d — Dy1y3.
yoy2y3 — (d — D)y1y3¥3.Y0¥3 — (d — D)y1y2¥3. (d —2)y7y2y3 — 6(d — 1)y13.
YIY3. Y133, V1V2V3, Y1¥3, V3. Y3 V3, V3 V3, ¥2V3, V3 }-

Note that I, has the same minimal free resolution as /; in (5.4). Therefore, by the same
argument, we conclude that f5 is also a smooth point when d > 4. O

As a direct consequence of the main results in the paper, we also obtain the following
corollary on the (non-)singularity of subsecant loci in the fourth secant variety.

Corollary 30 (From subsecant loci). Let vg:P" — PN be the d-uple Veronese embed-
ding withn > 3,d >3, and N = (";d) — 1. Then the following holds.

(i) A general point in o4(vg(P?))\ 03(vg (P™)) is smooth for d > 4. For d = 3, 04(v3(P?))
is a non-trivial singular locus for any n > 4, while all points in 54(v3(P?)) \ 03(v3(P?))
are smooth forn = 3.

(i) o4(vg(P™)) is smooth at each point in o4(vg(PY)) \ 03(vg(P™)) if d > 7. Moreover,
o4(vg (PY)) is a non-trivial singular locus when d = 6 and o4(v4(P1)) C 03(vg(P™))
incase of d < 5.

Proof. Ask = 4 and n > 3, the relevant range for an m-subsecant locus in o4(vgz (P"))
sl <m<2.

(i) For m = 2, Theorem 2 (ii) says that o4(v4(P")) is a non-trivial singular locus in
o4(vg(P™) if d = 3, n > 4. The case (d,n) = (3, 3) is also discussed in Theorem 2 (iv).
When d = 4, 5, and 6, we can say that a general point in o4(vg (P?)) \ 03(v4(P")) is smooth
by Theorem 3 (i). For any d > 7, the same conclusion follows from Theorem 2 (i).

(ii) This is given by Theorem 1 for the case k = 4, m = 1. m

We add some remarks on Corollary 30.

Remark 31. (a) For d = 2, a subsecant variety o4(vg (IP?)) in 04(vg (P™)) is a trivial
singular locus, because 04 (v (P?)) = 03(vg (P?)) C 03(vg(P")).
(b) As pointed out in Example 27, a singularity can occur at a special point in

04(va(P?)) \ 03(va (P"))

even for d > 4.

Finally, we end this section by listing cases in which the same nice description for the
singular locus of oy (vz (P")) as in Example 6 can be made.
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Corollary 32. Let V be an (n + 1)-dimensional complex vector space (n > 1) and let
vg(PV) C PN be the image of the d-uple (d > 2) Veronese embedding of PV. Assume that
(k,d,n) satisfies one of the following conditions:

(i) d =2andn >k —1,
(i) k=2,d>2andn > 1,
Gii) k=3,d =3, andn >2,0ork =3,d =4, andn > 3,
(iv) k=4,d =3,andn > 4.
Then the singular locus of oy (vg (PV)) is given exactly as
{f ePS dy | f is any form which can be expressed using at most k — 1 variables},

which is an irreducible locus of dimension

d

and is equal to the maximum subsecant locus Xy g(min{k — 1,n} — 1;PV).

(k—l)(n—k+2)+(d+k_2)—1

Proof.  For case (i), the assertion is immediate since it corresponds to symmetric matri-
ces. In case (ii), we draw the conclusion from the fact that Sing(oz(vg (PV))) = v (PV) for
every d,n (see [20]).

For the remaining cases, we first claim that, for any 3 < k < n + 1, it holds

(5.5) oe-1a®V))c | (a2
Pk=2CcPV
We note that the right-hand side of (5.5) is an irreducible and closed subvariety of o (vg (PV)),
since it coincides with a subvariety 5 ejme A, Where a map

®:G(k —2,n) —>G((d +§_2) —l,N)

sending each subspace L of dimension k — 2 to the linear span (v (L)) in P is regular (see
e.g. [17, Example 6.10, Proposition 6.13]). Then, because a general element of the left-hand
side is of the form E{l 4+ -+ Zz_l for some linear forms £; , it belongs to (v (P*~2)) for some
P¥=2 ¢ PV so that the closure is also contained in the subvariety | pi—2py (Vg (P¥ —2)).

For case (iii), by [16, Theorem 2.1, Remark 2.4 (a), and Corollary 2.11] and Theorem 1,
and for case (iv), by Theorem 5, we know that

Sing(ox (va(PV)) = ok 1 gV UL |J  oxwaP2)),
Pk—2CPV

which can also be written as

0k—1(vg(PV)) U Zg g (min{k — 1,n} — 1; PV).
In both cases (iii) and (iv), we have oy (vg (PK—2)) = (vg (]P’k_z)). Thus, by the above claim,
the singular locus is equal to

) (0aP*72)) = Sp g(mintk — 1.2} — 1 PV),

Pk—2CPV

which is irreducible and can be described as written in the statement. The formula for the
dimension is immediate from dimension counting. |
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6. Concluding remark

So far, we have reported results on singular loci of o (vz (P")) coming from the sub-
secant loci. To the best of our knowledge, there is no general idea or clear consensus on the
singular locus of an arbitrary higher secant variety of any Veronese variety yet. From this point
of view, the present paper contributes by providing a more visible picture on the singular locus
via showing a generic smoothness of the subsecant loci for relatively low k and confirming the
singularity of the same loci for other k.

As we mentioned in the introduction, each point p € o;(vg(P"?)) \ 0x—1(vg (P™)) is
located in oy (vg (P™)) \ 0% —1(vg (P")) for some 1 < m < min{k — 1, n}. To make the picture
more complete, we have two future issues: (i) on the subsecant loci (i.e., m < min{k — 1, n}),
one needs to check the (non-)singularity not only at a general point but also at every point, and
(ii) points in the full-secant locus (i.e., m = min{k — 1, n}) should be treated.

Issue (i) is expected to be very complicated because, at some special point, a singular-
ity can also occur even for a low k as shown in Example 27 (in fact, we can generate more
examples using a similar idea). For the points in the subsecant loci, in general, one could not
hope to find some nice “normal forms” and the situation is expected to be wild (in other words,
the subsecant loci may not be covered with finitely many nice families of SL-orbits). But still,
we can push on our viewpoint a bit further and, along the same spirit, we can refine a main
result of this paper in the following manner. Based on the singularity results in Theorems 1, 2,
and 3 and using an estimation similar to Section 2.3, more generally, we have the following.

Theorem 33. Suppose that m = 1 and k, d satisfy Theorem 1 (ii) or (iii), or suppose
that k,d, m satisfy Theorem 2 (ii) or (iii) or Theorem 3 (ii) or (iii); in other words, the m-
subsecant variety or(vg(P™)) is a singular locus in op(vg(P")). Let 1 <m <n —1 and
r < n —m. Then, unless oy, (vg(P")) fills up the ambient space PN, the following holds:

(6.1) J(ox (va (P™)), 07 (va (P™))) C Sing(og+r(va(P"))),
where J(X,Y) denotes the “(embedded) join” of two subvarieties X, Y in their ambient space.
Proof.  Suppose that inclusion (6.1) does not hold. Then, taking x1, ..., x; to be general

points of vy (P™) and Xg 41, ..., Xk4, to be general points of vy (P"), we may assume that
x ¢ Sing(og 4 (vg (P™))) for a general x € (xy, ..., Xg4,). By Terracini’s lemma, we have

Ly = (Tx,vg(P"), ..., Tx,vg(P")) C Txog4,(vg(P")),

and by the assumption on k, we know that dim L1 > kn + k — 1.
On the other hand, since X1, ..., Xg4, are general points of vz (P"),

Ly = (Txy va(P?), ... Tayy, va(P")) C Txogqr (va(P?))

and L, has dimension at least rn + r — 1.
Moreover, we may assume L N Ly = @ as follows. Taking P7—m=1 c P” guch that

Xka1s-- s Xpgpr €EPTTLC PP gnd P AP = g,

and changing coordinates tg, ...,y U1,..., Uy on P as in Section 2.3, we may say that
P7—m=1 g the zero set of tyg = - -+ = t,, = 0 and P™ is the zero set of uq = --- = Uy = 0.
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For a point x” € P™, using parameterization (2.13), the tangent space T, , (x/)vg (P") is span-
ned by the rows of the matrix of the form [x : O] as (2.15). On the other hand, for a point
x”" € P"~™~1 and for an affine open set containing x”’, we may take u,,» = 1 instead of o = 1.
Then the only part on the parameterization of vz which contributes T,, , (x)vg (P") is

fo -monofu]<g—1,....,tm - monofu] <41, monofu]4

IT3RL

which corresponds to the tailing “x” part in (2.13) (recall that mono[u] <, is the set of mono-
mials of Cluy, ..., uy] of degree at most ¢). Thus a similar matrix whose rows span the other
tangent space T, (x7)vq (P") has a form [O : x]. This implies L1 N L, = @. Hence

dim(Lq, L) > (k+ryn+ (k+r)—1,

which is contrary to (L1, L) C Txog4r(vg (P™)). |

Remark 34 (Partial subsecant locus). This new singular locus

J(0k (va (P™)). 07 (va (P™)))

in (6.1) can be seen as a “partial version” of subsecant locus in this paper. In particular, it con-
tains the m-subsecant variety og,(vg (P™)) = J(ox (Vg (P™)), or(vg(P™))). So let us call
such a locus a partial subsecant locus of oy, (vg(P")). We note that the singularity of a spe-
cific form f = x2y? + z% in Example 27 can be explained using this notion; f is a point of
¥4.4(2; P3) where only a generic smoothness is known by Theorems 3 (i), but f also belongs
to a partial subsecant locus J(03(v4(P1)), o1 (v4(IP3))) which is singular by Theorem 33.

Therefore, one proper question on the singular locus of o (v4 (IP™)) here is probably such
as the following.

Question 35. Let Kk —1 <n and let O be the union of all possible (partial) subse-
cant loci of oy (vg (P")). Are the points of oz (vg (P")) \ (D U ox_1(vg (P"))) all smooth in
ok (vg (P"))?

Note that the answer to Question 35 is affirmative in cases of k = 2 classically and k = 3
(by [16]) and k = 4 (by Theorem 29). For a large value k compared to n (e.g. n < k — 1),
Question 35 may be answered negatively as in the following example.

Example 36. Let us consider o14(vg(PP?)), the 14-th secant variety of the Veronese
variety vg(IP?). Take 14 general points on vg(P2). In [3, Remark 4.10], the authors presented
a concrete point in the linear span of the 14 points which is a non-normal point to o14(vg(PP?)).
Note that one can also check this singular point does not belong to D, the locus of all partial
subsecants.

Remark 37. Finally, we would like to remark that the approach based on the same spirit
of trichotomy pattern of (non-)singularity on subsecant loci still can be applied to the study of
singular loci of higher secant varieties of other classical varieties such as Segre embeddings,
Segre—Veronese varieties and Grassmannians. For instance, we can have a conjectural result
like the following.
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Conjecture. Forn = (ny,ns,...,n;), let X be the Segre embedding
Pt x P2 x ... x P c PIOi+D=1 - pAG)

and denote o (X) by oy (n), the expected dimension of o (n) by si(n). Besides a few excep-
tional cases, for everym = (my,mo, ..., m;) withO0 < m; < min{k — 1,n; — 1}, we have that
the following holds:
(i) ox(n) is smooth at a general point in o3 (M) \ o_1 () if B(M) > 55 (M),
(i) ox(m) is singular in ox(n), but o (M) ¢ ox_1 (M) (i.e., non-trivial singular locus) if
Sk—1(m) < B(m) < si(m),
(iii) ox (M) C og—1 (1) if f(M) < sk ().
This can recover the result on the singular locus of the secant varieties of Segre embed-

dings [28, Corollary 7.17] for k = 2. Note that if we assume that everything is non-defective,
then the ranges above can be computed as

. Hle(mi +1)

(i) < k< ST A )— (1)

.. [Ti=i(mi +1) [Ti=i(m; +1)

W= S -0 Y maty—-n "
i) e k> — ALi=m+D

T immi+ ==

We plan to deal with these cases in a forthcoming paper.
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