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On the singular loci of higher secant varieties
of Veronese embeddings

By Katsuhisa Furukawa at Saitama and Kangjin Han at Daegu

Abstract. The k-th secant variety of a projective variety X � PN , denoted by �k.X/,
is defined to be the closure of the union of .k � 1/-planes spanned by k points on X . In
this paper, we examine the k-th secant variety �k.vd .Pn// � PN of the image of the d -uple
Veronese embedding vd of Pn to PN with N D

�
nCd
d

�
� 1, and focus on the singular locus of

�k.vd .P
n//, which is only known for k � 3. To study the singularity for arbitrary k; d; n, we

define the m-subsecant locus of �k.vd .Pn// to be the union of �k.vd .Pm// with any m-plane
Pm � Pn. By investigating the projective geometry of moving embedded tangent spaces along
subvarieties and using known results on the secant defectivity and the identifiability of sym-
metric tensors, we determine whether the m-subsecant locus is contained in the singular locus
of �k.vd .Pn// or not. Depending on the value of k, these subsecant loci show an interesting
trichotomy between generic smoothness, non-trivial singularity, and trivial singularity. In many
cases, they can be used as a new source for the singularity of the k-th secant variety of vd .Pn/
other than the trivial one, the .k � 1/-th secant variety of vd .Pn/. We also consider the case of
the fourth secant variety of vd .Pn/ by applying main results and computing conormal space
via a certain type of Young flattening. Finally, we present some generalizations and discussions
for further developments.

1. Introduction

Throughout the paper, we work over C, the field of complex numbers. Let X � PN be
an embedded projective variety. The k-th secant variety of X is defined as

(1.1) �k.X/ D
[

x1;:::;xk2X

hx1; : : : ; xki � PN ;

where hx1; : : : ; xki � PN denotes the linear span of the points x1; : : : ; xk and the overline
means the Zariski closure. In particular, �1.X/ D X and �2.X/ is often simply called the
secant or secant line variety of X in the literature.
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The construction of secant varieties (or more generally, join construction of subvarieties)
is not only one of the most famous methods in classical algebraic geometry, but also a very
popular subject in recent years, especially in connection with fields of research such as tensor
rank and decomposition, algebraic statistics, data science, geometric complexity theory, and so
on (see [22, 23] for more details).

Despite of a rather long history and the popularity, most of the fundamental questions on
the higher secant varieties �k.X/ still remain open even for many well-known base varietiesX .
For instance, one can ask the secant defectivity question, which concerns the dimension of
�k.X/. We say that �k.X/ is secant defective (or simply defective) if the dimension of �k.X/
is less than the expected one, min¹N; k � dim.X/C k � 1º. It is classically known that higher
secant varieties of curves are non-defective (e.g. [29, Corollary 1.2.3]). Due to the famous
theorem of Alexander–Hirschowitz [2], we know the dimensions of higher secant varieties
of all Veronese varieties. In other research, there are only a few cases where the dimension
theorem for �k.X/ is fully determined (see [29, 30] for references). Questions about defining
equations of k-th secant varieties have also only been answered for very small k of a few cases
and seem still far from understanding the essence of the sources for the equations (see also
[22, Chapter 5] for a reference).

In this paper, we concentrate on the case of X D vd .Pn/ � PN , the Veronese variety,
which is the image of the Veronese embedding vd WPn ,! PN with N D

�
nCd
d

�
� 1. In par-

ticular, we study the singular locus of �k.vd .Pn//, an arbitrary higher secant variety of the
Veronese variety.

The knowledge on singularities of higher secant varieties is fundamental and very impor-
tant for its own sake in the study of algebraic geometry and also can be useful for problems in
applications. For example, it can be used as a key condition to establish the identifiability of
structured tensors (e.g. the introduction in [7] and references therein).

For any irreducible variety X � PN , it is classically well known that

(1.2) �k�1.X/ � Sing.�k.X//

unless �k.X/ fills up the whole linear span hXi (see [29, Proposition 1.2.2]). In the paper, we
say that a point p 2 �k.X/ is a non-trivial singular point if p … �k�1.X/ and �k.X/ is singular
at p, while the points belonging to �k�1.X/ are called trivial singular points.

There are some known results on the singular loci of k-th secant varieties �k.X/, mostly
for very small k. The equality in (1.2) holds for determinantal varieties defined by minors of
a generic matrix. It is completely described for the second secant variety of the Segre product
of projective spaces in [28]. It has recently been generalized to the case of �2.X/, where X is
a Segre–Veronese embedding by [21] and X is a Grassmannian by [13]. For the third secant
variety of the Grassmannian G.2; 6/, the dimension and some other properties of the singularity
have been studied in [1].

For the case of Veronese varieties, it is classical that Sing.�k.vd .Pn/// D �k�1.vd .Pn//
holds both for the binary case (i.e., n D 1) and for the case of quadratic forms (i.e., d D 2) (see
e.g. [19, Chapter 1]). For k D 2, it was proved in [20] that the above equality holds also for
any d; n. In these cases, the k-th secant variety has only the trivial singularity. For k D 3,
the singular locus was completely determined by the second author in [16]; in particular, the
non-trivial singularity occurs if and only if d D 4 and n � 3.

In the present paper, we explore the singular locus of any higher secant variety of the
Veronese variety, and introduce a new main origin for the singularity other than the trivial
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singularity. We call this the “subsecant locus”. As in our main results, these loci show an inter-
esting trichotomy phenomenon among generic smoothness, non-trivial singularity, and trivial
singularity.

For any given point p 2 �k.vd .Pn//, there exists an m-plane (i.e., m-dimensional linear
subvariety) Pm of Pn with 1 � m � k � 1 such that p 2 �k.vd .Pm//; it immediately follows
for a general p, and even if p is in the boundary of the closure in (1.1), it is also true by
considering .1; d � 1/-symmetric flattening (see Section 3 for details). So, from now on, we
say that �k.vd .Pm// � �k.vd .Pn// is an m-subsecant variety of �k.vd .Pn// if m < k � 1

and m < n, and simply call it a subsecant variety in case there is no confusion. We also define
the m-subsecant locus of �k.vd .Pn//,

(1.3) †k;d .m/ or †k;d .mIP
n/ D

[
Pm�Pn

�k.vd .P
m//:

It naturally forms an increasing sequence of loci in the k-th secant variety as

†k;d .1/ � †k;d .2/ � � � � � †k;d .min¹k � 1; nº � 1/ � �k.vd .P
n//

D †k;d .min¹k � 1; nº/:

In particular, we have that †k;d .min¹k � 1; nº � 1/ is the union of all proper subsecant vari-
eties, which we call the maximum subsecant locus of the given k-th secant variety �k.vd .Pn//.
Any point of �k.vd .Pn// outside the maximum subsecant locus and the previous secant vari-
ety �k�1.vd .Pn// is called a point of the full-secant locus. Note that, for k D 3 of [16],
when d D 4 and n � 3, the singular locus of �3.vd .Pn// is given as the maximum subse-
cant locus †3;d .1/, which is the only case where the singularity pattern of the third secant
varieties becomes exceptional, while for all the other d; n, the singularity is just the trivial one,
�2.vd .P

n// (see Remark 4 (a)). Most of the previously known results on singular loci of secant
varieties can be understood in this viewpoint (see Remark 37).

Thus a basic question for our concern could be stated as follows: for given k; d;m; n,

when is �k.vd .P
n// singular at points of an m-subsecant locus †k;d .m/‹

In principle, it is somewhat straightforward (despite the computational complexity) to
check the singularity, once a complete set of equations for a higher secant variety is attained.
But, as mentioned above, not much is known about the defining equations and they seem quite
far from being fully understood at this moment, even for the Veronese case (see [11,24] for the
state of the art). Due to the lack of knowledge on the equations for the higher secant variety, it
is very difficult to determine the singular locus in general.

In this paper, without further understanding on the equations (!), we introduce a geometric
way to pursue it for this kind of problems, which is based on a careful study on the behavior
of embedded tangent spaces moving along a locus in the Veronese variety. For the casem D 1,
we first present the following result for the 1-subsecant locus†k;d .1/ D

S
P1�Pn �k.vd .P

1//

of �k.vd .Pn//, which is a generalization of [16, Theorem 2.1] (i.e., k D 3 case) to any higher
k-th secant varieties of Veronese varieties.

Theorem 1. Let vd WPn ! PN be the d -uple Veronese embedding with n � 2, d � 3,
and N D

�
nCd
d

�
� 1. Assume k � 3. For .k; d; n/ ¤ .3; 4; 2/, the following holds.

(i) If k � dC1
2

, then �k.vd .Pn// is smooth at every point in †k;d .1/ n �k�1.vd .Pn//.
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(ii) If k D dC2
2

, then†k;d .1/ � Sing.�k.vd .Pn/// but†k;d .1/ 6� �k�1.vd .Pn// (i.e., non-
trivial singularity). This case occurs only if d is even.

(iii) If k � dC3
2

, then †k;d .1/ � �k�1.vd .Pn// (i.e., trivial singularity, unless we have that
�k.vd .P

n// D PN ).

For .k; d; n/ D .3; 4; 2/, it holds that

(iv) �3.v4.P2// is smooth at every point in †3;4.1/ n �2.v4.P2//.

Concerning singular points of arbitrary �k.vd .Pn// originated from subsecant loci, we
prove the following general theorems on them-subsecant locus†k;d .m/withm � 2 and k � 4
as the main results.

Theorem 2. Let vd WPn ! PN be the d -uple Veronese embedding with n � 3, d � 3,
andN D

�
nCd
d

�
� 1. Let k � 4 and let Pm � Pn be anm-plane with 2 � m < min¹k � 1; nº.

Assume that .d;m/ … E D ¹.3; 3/; .3; 4/; .3; 5/; .4; 2/; .4; 3/; .4; 4/; .5; 2/; .6; 2/º.
For .k; d; n/ ¤ .4; 3; 3/, setting

� D

��mCd
m

�
mC 1

�
;

we have the following.

(i) If k < �, then �k.vd .Pn// is smooth at a general point in †k;d .m/ n �k�1.vd .Pn//.

(ii) If k D �, then †k;d .m/ � Sing.�k.vd .Pn/// but †k;d .m/ 6� �k�1.vd .Pn// (i.e., non-
trivial singularity).

(iii) If k > �, then †k;d .m/ � �k�1.vd .Pn// (i.e., trivial singularity, unless we have that
�k.vd .P

n// D PN ).

For .k; d; n/ D .4; 3; 3/, it holds that

(iv) �4.v3.P3// is smooth at every point in †4;3.2/ n �3.v3.P3//.

Theorem 3. In the same situation as Theorem 2, for

.d;m/ 2 E D ¹.3; 3/; .3; 4/; .3; 5/; .4; 2/; .4; 3/; .4; 4/; .5; 2/; .6; 2/º;

if k is in one of the ranges named (i), (ii), (iii) in Table 1, then the following property corre-
sponding to the name of the range holds.

(i) �k.vd .Pn// is smooth at a general point in †k;d .m/ n �k�1.vd .Pn//.

(ii) †k;d .m/ � Sing.�k.vd .Pn/// but †k;d .m/ 6� �k�1.vd .Pn//.

(iii) †k;d .m/ � �k�1.vd .Pn//.

To understand the reason for considering the conditions that .d;m/ is in E or not, we
discuss the secant defectivity and the generic identifiability of an m-subsecant variety

�k.vd .P
m// � �k.vd .P

n//:

Set Pˇ D hvd .P
m/i � PN with ˇ D

�
mCd
m

�
� 1, where �k.vd .Pm// � Pˇ is of dimension

at most kmC k � 1.
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.d;m/
.mCd

m /
mC1

(i) (ii) (iii)

.3; 3/ 5 k � 5 None 6 � k

.3; 4/ 7 k � 6 k D 7; 8 9 � k

.3; 5/ 28/3 k � 8 k D 9; 10 11 � k

.4; 2/ 5 k � 4 k D 5; 6 7 � k

.4; 3/ 35/4 k � 7 k D 8; 9; 10 11 � k

.4; 4/ 14 k � 13 k D 14; 15 16 � k

.5; 2/ 7 k � 7 None 8 � k

.6; 2/ 28/3 k � 8 k D 9; 10 11 � k

Table 1. (Non-)singularity of †k;d .m/ in Theorem 3

By [2], the codimension of �k.vd .Pm// in Pˇ is greater than max¹ˇ � .kmC k � 1/; 0º
(i.e., �k.vd .Pm// does not fill Pˇ and is secant defective) if and only if d D 2 and 2 � k � m,
or .k; d;m/ D .7; 3; 4/; .5; 4; 2/; .9; 4; 3/; .14; 4; 4/; indeed, in the latter case, the four k-th
secant varieties �k.vd .Pm// are hypersurfaces of Pˇ . Except these defective cases, we have
�k.vd .P

m// D Pˇ if kmC k � 1 � ˇ, or equivalently k �
�
mCd
m

�
=.mC 1/.

We say a point a 2 Pˇ is k-identifiable if there is a unique k-tuple of points x1; : : : ; xk
in vd .Pm/ such that a 2 hx1; : : : ; xki. We also say that �k.vd .Pm// is generically identi-
fiable if a general point a 2 �k.vd .Pm// is k-identifiable. From [14, Theorem 1], a gen-
eral point a 2 Pˇ is k-identifiable (or �k.vd .Pm// is generically identifiable in the case of
�k.vd .P

m//D Pˇ ) if and only ifmD 1 and k D .d C 1/=2, or .k; d;m/D .5; 3; 3/; .7; 5; 2/.
From [8, Theorem 1.1], when �k.vd .Pm// ¨ Pˇ is not secant defective, �k.vd .Pm// is not
generically identifiable if and only if .k; d;m/ D .9; 3; 5/; .8; 4; 3/; .9; 6; 2/.

Remark 4. We make some remarks on the theorems above.
(a) In the case of k D 3 and n � 3, Theorem 1 (ii) holds if and only if d D 4, and then

Sing.�3.v4.Pn// is equal to
S

P1�Pnhv4.P1/i D †3;4.1/ since �3.v4.P1// D hv4.P1/i and
�2.v4.Pn// �

S
P1�Pnhv4.P1/i (see also Corollary 32). This gives a geometric description

of the only exceptional case for the singular loci of the third secant varieties in [16].
(b) Theorem 1 (i) is stronger than Theorems 2 (i) and 3 (i), since it claims smoothness for

“every point” in the m-subsecant locus †k;d .m/ outside �k�1.vd .Pn//. The “general point”
condition in Theorems 2 (i) and 3 (i) cannot be deleted (see Example 27). We also note that the
ranges of k of (i) and (ii) are slightly different between Theorems 1 and 2. If m D 1 and d
is even, then the case k D d

�
mCd
m

�
=.mC 1/e D .d C 2/=2 is Theorem 1 (ii), which is similar

to Theorem 2 (ii); for this k, �k.vd .P1// is not generically identifiable. However, if d is odd,
then the case k D

�
mCd
m

�
=.mC 1/ D .d C 1/=2 belongs to Theorem 1 (i).

(c) Theorems 1 (i), 2 (i), and 3 (i) correspond to the k-identifiable case of a general point
a 2 �k.vd .P

m//. From the viewpoint of the secant fiber in incidence (2.1), this means that the
fiber p�1.a/ under the projection p consists of only one element up to permuting xi . On the
other hand, Theorems 1 (ii), 2 (ii), and 3 (ii) correspond to the case of generic non-identifiability
of the subsecant variety �k.vd .Pm// with the situation of �k�1.vd .Pm// ¨ Pˇ D hvd .P

m/i,
except .k; d;m; n/ D .3; 4; 1; 2/; .4; 3; 2; 3/. This non-identifiability of a general point a in
�k.vd .P

m// occurs if dimp�1.a/ > 0, or if dimp�1.a/ D 0 and #p�1.a/ � 2 (modulo per-
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mutation). For m D 1, only the former occurs when k D .d C 2/=2. For m � 2, the former
corresponds to the case where k is the ceiling of

�
mCd
m

�
=.mC 1/ … N with �k.vd .Pm//D Pˇ ,

to the case where �k.vd .Pm// ¨ Pˇ is defective, or to the case where �k�1.vd .Pm// ¨ Pˇ is
defective (i.e., .k; d;m/ D .8; 3; 4/; .6; 4; 2/; .10; 4; 3/; .15; 4; 4/), and the latter corresponds
to the case where k is the number

�
mCd
m

�
=.mC 1/ 2 N with �k.vd .Pm// D Pˇ except for

.k; d;m/ D .5; 3; 3/; .7; 5; 2/, or to the case .k; d;m/ D .9; 3; 5/; .8; 4; 3/; .9; 6; 2/.
(d) .k; d;m; n/ D .3; 4; 1; 2/; .4; 3; 2; 3/ (i.e., Theorems 1 (iv) and 2 (iv)), a posteriori,

turn out to be the only two exceptional cases which do not follow this trichotomy pattern;
in other words, though k belongs to the range of (ii) and the generic non-identifiability of
�k.vd .P

m// holds,†k;d .m/ does not provide non-trivial singular points (see also Remark 24).
Indeed, in [11], we show that if .k; d; n/ D .3; 4; 2/; .4; 3; 3/, then �k.vd .Pn// is a del Pezzo
k-th secant variety, that is, a k-th secant variety of next-to-minimal degree. In this sense, these
two cases also belong to a special class with respect to the degrees of higher secant varieties.
(For basic definitions and results on such varieties, see [9, 10].)

As an application of our main results for †4;d .2/ and †4;d .1/, we obtain the following
result on the singularity of the fourth secant variety of any Veronese variety.

Theorem 5 (Singular locus for �4.vd .Pn//). Let vd WPn ! PN be the d -uple Veronese
embedding with n � 3, d � 3, and N D

�
nCd
d

�
� 1. Then the following holds.

(i) �4.vd .Pn// is smooth at every point outside †4;d .2/ [ �3.vd .Pn//.

(ii) If d � 4, a general point in†4;d .2/ n �3.vd .Pn// is also a smooth point of �4.vd .Pn//.
When d D 3 and n D 3, all points in †4;d .2/ n �3.vd .Pn// are smooth. If d D 3 and
n � 4, then †4;d .2/ � Sing.�4.vd .Pn/// but †4;d .2/ 6� �3.vd .Pn// (i.e., non-trivial
singularity).

(iii) For d � 7, all points in†4;d .1/ n �3.vd .Pn// � �4.vd .Pn// are smooth. When d D 6,
†4;d .1/ � Sing.�4.vd .Pn/// but †4;d .1/ 6� �3.vd .Pn// (i.e., non-trivial singularity).
When d � 5, †4;d .1/ � �3.vd .Pn// (i.e., trivial singularity).

For a projective variety X � PN , we denote by Vertex.X/ the set of vertices of X . Then
X is a cone if and only if Vertex.X/ ¤ ;.

Example 6 (Cases with a nice description). The smallest case for the singular locus
of �4.vd .Pn// beyond the classical results for d D 2 or n D 1 is .d; n/ D .3; 2/, but in this
case, there is nothing to check because �4.v3.P2// fills up the ambient space P9 and then
Sing.�4.v3.P2/// D ;. In the case .d; n/ D .3; 3/, by Theorem 5 (i) and (ii), we have

Sing.�4.v3.P3/// D �3.v3.P3//:

For the case .d; n/ D .3; 4/, if V denotes a 5-dimensional C-vector space with P4 D PV ,
Theorem 5 tells us that the singular locus of the fourth secant variety of v3.PV / in P34 is
precisely the locus of cubic hypersurfaces in five variables which are cones with the vertex
dimension at least 1 as follows:

Sing.�4.v3.PV /// D �3.v3.PV // [†4;3.2IPV /

D �3.v3.PV // [
° [

P2�PV

�4.v3.P
2//
±
D

[
P2�PV

hv3.P
2/i
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D ¹f 2 PS3V j the cubic hypersurface X � PV defined by f
is a cone with dim Vertex.X/ � 1º;

which is just the maximum subsecant locus †4;3.2IPV /, an irreducible 15-dimensional locus
in the 19-dimensional variety �4.v3.PV //. By the same argument, we can obtain

Sing.�4.v3.Pn/// D †4;3.2IPn/ for any n � 4:

Such a simple description of the singular locus can be attained in a few more cases (see
Corollary 32 for details).

The paper is structured as follows. In Section 2, as preparation, we first recall some
preliminaries on k-th secant varieties and corresponding incidences. Then, using projective
techniques, such as Terracini’s lemma, the trisecant lemma, descriptions of embedding tangent
spaces, and tangential projections, we reveal several geometric properties of m-subsecant vari-
eties in higher secant varieties of Veronese varieties, which are crucial for the proof of the main
theorems. In Section 3, as an illustration of the whole picture and our main ideas, we treat the
casem D 1 and prove Theorem 1. In Section 4, we deal with the general case (i.e.,m � 2) and
prove Theorem 2 and Theorem 3 to generalize the ideas used in the previous section. We would
like to remark that this can be done because the dimension theorem [2] and the generic identi-
fiability question [8, 14] were settled for the case of Veronese varieties. In Section 5, we focus
on the singular locus of the fourth secant variety and prove Theorem 5 by dividing the case into
two parts: “full-secant locus points (i.e., m D 3)” treated in Theorem 29 via Young flattening
and conormal space computation and “the subsecant locus” by Corollary 30. Finally, we make
some generalizations and remarks on the material for further developments in Section 6.

2. Some geometric properties of subsecant varieties

2.1. Projection from the incidence to the secant variety. For a (reduced and irreduc-
ible) variety X , we denote X � � � � �X , the (usual) product of k copies of X , by .X/k . We
denote the k-fold symmetric product of X , .X/k=Sn, by Symk.X/.

For the d -uple Veronese embedding vd WPn ! PN with N D
�
nCd
d

�
� 1, we regard the

incidence variety I D I.n/ � PN � .Pn/k to be the Zariski closure of

(2.1) I 0 D I 0.n/ D ¹.a; x
0
1; : : : ; x

0
k/ j a 2 hx1; : : : ; xki and dimhx1; : : : ; xki D k � 1º;

where we write xi D vd .x0i / for x0i 2 Pn. Taking the first projection pW I ! PN , we have
p.I / D �k.vd .P

n// (see also [29, Definition 1.1.3], [30, Chapter I, §1, Chapter V]). For any
a 2 �k.vd .P

n//, p�1.a/ is often called the secant fiber of a. Note that I is invariant under
permuting factors on .Pn/k from the definition so that both p and qi maps factor through
PN � Symk.Pn/.

We also have dim I D nk C k � 1 by considering general fibers of qW I ! .Pn/k . For
each 1 � i � k, let qi W I ! .Pn/k ! Pn be the composition of q and the projection to the
i -th factor .Pn/k ! Pn. Then the following commutative diagram is obtained:

I

PN .Pn/k Pn:

 !

p

 

!q

 

!

qi

 

!
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Remark 7. We have some remarks on the incidence variety I � PN � .Pn/k .
(a) I 0 can be viewed as a Pk�1-bundle over a non-empty open subset U of .Pn/k ,

consisting of k-tuples of points with the expected spanning dimension, so that I is irreducible.
Further, for q�1.U / D I \ .Pn � U/, we have I 0 D q�1.U / since both are irreducible closed
subsets in PN � U having the same dimension. So, for any .a; x01; : : : ; x

0
k
/ 2 I n I 0 and for

xi D vd .x
0
i /, dimhx1; : : : ; xki < k � 1 (in other words, there is no .a; x01; : : : ; x

0
k
/ 2 I n I 0

such that dimhx1; : : : ; xki D k � 1 but a … hx1; : : : ; xki). Finally, note that the Euclidean clo-
sure of I 0 also coincides with I in this case (see e.g. [23, Theorem 3.1.6.1]).

(b) In the case of dim �k.vd .P
n// D nk C k � 1, it holds p.I n I 0/ ¤ �k.vd .Pn//, and

then p�1.a/ � I 0 for general a 2 �k.vd .Pn//. In addition, if k �
�
nCd�1
n

�
, then setting

D D ¹.x01; : : : ; x
0
k/ 2 .P

n/k j dim.hvd�1.x
0
1/; : : : ; vd�1.x

0
k/i/ < k � 1º;

we have dim.I \ .PN �D// < dim.I /, and hence p.I \ .PN �D// ¤ �k.vd .Pn//.
(c) (Alternative incidences for the k-th secant variety) In the literature, instead of .X/k ,

other spaces such as the symmetric product Symk.X/ (e.g. in [8]), the Hilbert scheme of
degree k 0-dimensional subschemes Hilbk.X/ (e.g. in [5]), and the Grassmannian G.k � 1;N /
(e.g. in [27]) have also been used in the incidence to consider the k-th secant variety of
X � PN .

Remark 8. Let us fix anm-planeL D Pm � Pn and consider the d -uple Veronese em-
bedding of Pm, vd WL D Pm ! Pˇ with ˇ D

�
mCd
m

�
� 1. We often use the following notation.

(a) Let yL � Pn be any .n �m � 1/-plane not intersecting L. Changing homogeneous
coordinates t0; t1; : : : ; tm;u1;u2; : : : ;um0 on Pn withm0D n�m, we may assume thatL� Pn

is the zero set of u1; : : : ; um0 and yL � Pn is the zero set of t0; : : : ; tm. For any x0i 2 Pn, say

x0i D Œx
0
i;0 W � � � W x

0
i;m W x

0
i;mC1 W � � � W x

0
i;n� 2 Pn;

then we set y0i D Œx
0
i;0 W � � � W x

0
i;m W 0 W � � � W 0�. Thus y0i gives a point of the m-plane if x0i is not

of the form Œ0 W � � � W 0 W � W � � � W ��. By abuse of notation, we denote by y0i both corresponding
points in Pm and in Pn. Further, considering linear projections �1WPn Ü Pm from the center
yL (eliminating the u-variables), and �2WPN Ü Pˇ (eliminating all the monomials of degree
d which involve u-variables), we have a natural commuting diagram as vd ı �1 D �2 ı vd ,

(2.2)
Pn PN

Pm Pˇ :

 - !
vd

 !�1  ! �2

 - !
vd

In particular, when d D 2 and n D mC 1 (i.e., m0 D 1), then �1 is an (inner) projection from
one point a 2 Pn and �2 corresponds to a tangential projection of PN from Tv2.a/v2.P

n/.
(b) On the affine open subset ¹t0 ¤ 0º, the d -uple Veronese embedding vd WPn ! PN

is parameterized by monomials in monoŒt; u��d , where monoŒt; u��e (resp. monoŒt ��e) is de-
fined to be the set of monomials in CŒt1; : : : ; tm; u1; : : : ; um0 � (resp. in CŒt1; : : : ; tm�) of degree
at most e for an integer e.

Let us study the behavior of some points in the boundary of I , which belong to I but do
not belong to I 0, as follows.
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Lemma 9. Let L D Pm � Pn be any m-plane with m < n, and consider

Pˇ D hvd .L/i � PN :

For vd WL D Pm ,! Pˇ , let us take I.m/ � Pˇ � .Pm/k to be the closure of the set of points
.a; x01; : : : ; x

0
k
/ 2 Pˇ � .Pm/k such that a 2 hx1; : : : ; xki and dimhx1; : : : ; xki D k � 1 (i.e.,

the incidence variety of the same kind as I D I.n/ in (2.1)). In this setting, one of the following
conditions holds for any .a; x01; : : : ; x

0
k
/ 2 I n I 0 with a 2 Pˇ :

(i) a 2 p.I.m/ n I 0.m//, or

(ii) there is a subset C � .Pm/k of dimension > 0 such that ¹aº � C � I.m/.

Proof. Let ¹Wj º be the irreducible components of I n I 0. For each j , we take

(2.3) .aj ; x
0
j;1; : : : ; x

0
j;k/ 2 Wj � PN � .Pn/k :

Let yL � Pn be a general .n �m � 1/-plane such that all x0j;i … yL and L \ yL D ;. For the
linear projection �1WPn Ü Pm from the center yL, as in Remark 8 with diagram (2.2), we
have a natural linear projection �2WPN Ü Pˇ and then define the projections

�1WP
N
� .Pn/k Ü PN � .Pm/k; �2WP

N
� .Pm/k Ü Pˇ � .Pm/k;

where �2.�1.I // D I.m/. Taking two Segre embeddings

Seg1WP
N
� .Pn/k ,! P l1 ; Seg2WP

N
� .Pm/k ,! P l2 ;

we may regard �1 as the restriction of a linear projection �RWP l1 Ü P l2 whose center R is
a certain linear subvariety of P l1 . Let zP l1 � P l1 � P l2 be the graph of �R, which coincides
with the blowing-up of P l1 with respect to R. Let r1W zP l1 ! P l1 and r2W zP l1 ! P l2 be projec-
tions. Then we have the following commutative diagram:

(2.4)

zP l1

P l1 P l2

PN � .Pn/k PN � .Pm/k Pˇ � .Pm/k :

 !r1

 

!

r2

 

!
�R

 
-

!Seg1

 

!
�1

 
-

!Seg2

 

!
�2

Under I � PN � .Pn/k ,! P l1 , taking R \ I in P l1 , we have codim.R \ I; I / � 2, as fol-
lows. For the center yL of �1WPn Ü Pm, we set

yL.i/ D ¹.x01; : : : ; x
0
k/ 2 .P

n/k j x0i 2
yLº:

We consider the projection NqWPN � .Pn/k ! .Pn/k . Then a point z 2 PN � .Pn/k belongs
to the indeterminacy locus of �1 if and only if Nq.z/ 2 yL.i/ for some i with 1 � i � k. Since
�RjI .D �R ı Seg1jI / coincides with Seg2 ı �1jI , and since R \ I is the indeterminacy locus
of �RjI , we have

R \ I D q�1
� k[
iD1

yL.i/

�
;
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where q is equal to NqjI W I ! .Pn/k . In particular, since the dimension of the fibers of qjI0 is
constant, and since codim.yL.i/; .Pn/k/ D mC 1, it follows that codim.R \ I 0; I / D mC 1.
Now, let ¹Qsº be the irreducible components of R \ I . Then codim.Qs; I / D mC 1 in the
case Qs \ I 0 ¤ ;, i.e., Qs 6� I n I 0. In order to consider the remaining case Qs � I n I 0,
we use the irreducible components ¹Wj º of I n I 0. For .aj ; x0j;1; : : : ; x

0
j;k
/ 2 Wj given in (2.3),

since x0j;i … yL, it follows Wj 6� R for any j .
If an irreducible component Qs of R \ I satisfies Qs � I n I 0, then there is some j

such thatQs � R \Wj ¨ Wj ¨ I , and then codim.Qs; I / � 2. As a result, in any case, each
irreducible component of R \ I is of codimension mC 1 or at least 2, which implies that
codim.R \ I; I / � 2.

Now, let .a; x01; : : : ; x
0
k
/ 2 I n I 0 satisfy a 2 Pˇ , where dimhx1; : : : ; xki < k � 1 for

xi D vd .x
0
i / as in Remark 7 (a) (note that we do not know a 2 hx1; : : : ; xki). We regard

.a; x01; : : : ; x
0
k
/ as a point of P l1 under the embedding I � P l1 .

If .a; x01; : : : ; x
0
k
/ … R, then

�1.a; x
0
1; : : : ; x

0
k/ D .a; y

0
1; : : : ; y

0
1/

is determined in �1.I / � PN � .Pm/k , where y0i 2 Pm is the image of x0i under Pn ! Pm.
Since a 2 Pˇ ,

�2.�1.a; x
0
1; : : : ; x

0
k// D .a; y

0
1; : : : ; y

0
1/

is determined and is contained in I.m/. Then dimhy1; : : : ; yki < k � 1 for yi D vd .y0i / 2 Pˇ ,
which means .a; y01; : : : ; y

0
1/ 2 I.m/ n I

0
.m/

.
Assume .a; x01; : : : ; x

0
k
/ 2 R. We consider the blowing-up zP l1 of P l1 with respect to R,

and the projections r1; r2 in diagram (2.4). Note that, for the strict transformation S � zP l1 of
PN � .Pn/k � P l1 , two composite morphisms

S
r1jS
���! PN � .Pn/k ��! PN and S

r2jS
���! PN � .Pm/k ��! PN

coincide since it holds on an open subset of S . Let E � zP l1 be the exceptional divisor, and let
zI � zP l1 be the strict transformation of I � P l1 . Then r2. zI / D �1.I /. Let

E1 D r
�1
1 .a; x01; : : : ; x

0
k/ \ .E \

zI /

be the fiber of E \ zI ! R \ I at .a; x01; : : : ; x
0
k
/. It follows from codim.R \ I; I / � 2 that

dim.E1/ � 1. Since r�11 .z/ ' r2.r
�1
1 .z// � P l2 for each z 2 P l1 , we have dim.r2.E1// � 1.

Since the image of r2.E1/ under PN � .Pm/k ! PN is ¹aº, there is C � .Pm/k of positive
dimension such that r2.E1/ D ¹aº � C � PN � .Pm/k . Since a 2 Pˇ and

�2.r2.E1// � �2.r2. zI // D �2.�1.I // D I.m/;

we have ¹aº � C D �2.¹aº � C/ � I.m/.

Lemma 10 (Non-triviality of subsecant varieties). For an m-plane L D Pm � Pn, we
have

�k.vd .L// \ �k�1.vd .P
n// � �k�1.vd .L//:

In particular, �k.vd .L// 6� �k�1.vd .Pn// unless �k�1.vd .L// D �k.vd .L//.

Proof. Let a 2 �k.vd .L// \ �k�1.vd .Pn// (note that a can be in the boundary of
�k�1.vd .P

n//). For a general point b0 2 �k�1.vd .Pn//, we take an irreducible curve C in
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�k�1.vd .P
n// such that a;b0 2C . Let �2WPN Ü Pˇ be the linear projection in Remark 8 (a),

and let C 0 D �2.C / � Pˇ . Since a 2 Pˇ , we have a D �2.a/ 2 C 0.
Since b0 is general, for a general point b 2 C , we have

b 2 hx1; : : : ; xk�1i with x1; : : : ; xk�1 2 vd .P
n/:

Take x0i 2 Pn with xi D vd .x0i /. Setting yi D �2.xi /, we have yi D vd .y0i / with y0i 2 L for
each i D 1; : : : ; k � 1 as in Remark 8 (a). Then �2.b/ 2 hy1; : : : ; yk�1i � �k�1.vd .L//. As
a result, a 2 C 0 � �k�1.vd .L// and the assertion follows.

Remark 11. We have some consequences of Lemma 10.
(a) (Border rank preserving pair) For any Pm � Pn and for any k; d > 0, by Lemma 10,

we can derive

(2.5) �k.vd .P
n// \ hvd .P

m/i D �k.vd .P
m//

as a set. Since one inclusion is obvious, let us prove �k.vd .Pn// \ hvd .Pm/i � �k.vd .Pm//.
Suppose that it does not hold. Then there exists a form f 2 �k.vd .P

n// \ hvd .P
m/i with

f 2 �k0
.vd .P

m// n �k.vd .P
m// for some k0 > k. Then f 2 �k0

.vd .P
m//\ �k0�1.vd .P

n//

so that f 2 �k0�1.vd .P
m// by Lemma 10. Similarly, repeating the same “descent” argument,

we have f 2 �k.vd .Pm//, which is a contradiction. Thus the equality in (2.5) is true.
In other words, for any d -th Veronese embedding X D vd .Pn/ and the linear span

L D hvd .P
m/i of any sub-Veronese variety vd .Pm/, we showed that .X;L/ is a border rank

preserving pair for any k; d > 0 in the terminology of [22, Definition 5.7.3.1] (we would also
like to note that [6, Theorem 1.1] can imply the same result for any d � k in case of Pm � Pn).

(b) (Every †k;d .m/ is closed) Recall that the symmetric subspace variety Subm.SdV /
(see [22, Section 7.1.3]) is defined as

¹f 2 PSdV j there exists W � V such that dimW D mC 1; f 2 PSdW º:

Let n D dim PV . For any m � n, we have Subm.SdV / D
S

Pm�PV hvd .P
m/i. Now, we

show that†k;d .m/ is the intersection of the whole k-th secant �k.vd .PV // and the symmetric
subspace variety Subm.SdV / set-theoretically. See that

�k.vd .PV // \ Subm.SdV / D �k.vd .PV // \
[

Pm�PV

hvd .P
m/i

D

[
Pm�PV

�
�k.vd .PV // \ hvd .P

m/i
�

D

[
Pm�PV

�k.vd .P
m// .D †k;d .m// by (2.5):

Therefore, we obtain that †k;d .m/ D �k.vd .PV // \ Subm.SdV / as a set and in particular
every m-subsecant †k;d .m/ is a Zariski-closed locus in �k.vd .PV //.

2.2. General secant fiber of a subsecant variety, entry locus, and its Veronese image.
We take another incidence variety J � Pˇ � .Z/k for an m-dimensional projective variety
Z � Pˇ to be the Zariski closure of

(2.6) J 0 D ¹.a; x1; : : : ; xk/ j a 2 hx1; : : : ; xki and dimhx1; : : : ; xki D k � 1º;
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with the projections

pWJ ! �k.Z/ � Pˇ ; qi WJ ! .Z/k ! Z;

where .Z/k ! Z is the projection to the i -th factor for 1 � i � k. Then dimJ D mk C k � 1

for any k � dimhZi C 1 by considering general fibers of J ! .Z/k .
For a 2 �k.Z/, the scheme-theoretic image qi .p�1.a// in Z is called the (k-th) entry

locus of Z with respect to a in the literature. It is known that, for a general a 2 �k.Z/, the
locus qi .p�1.a// is equidimensional, and moreover, if Z is smooth and in the characteristic 0,
then p�1.a/ is smooth so that qi .p�1.a// is reduced (see [29, Definition 1.4.5]).

Let Z;X � PN be projective varieties of dimensions m; n. Let Z � X and Z � Pˇ ,
where Pˇ is a ˇ-plane of PN (i.e., Z is degenerate in PN ). Now, a general point a 2 Z
does not have to be general in X any longer. If ˇ < kmC k � 1, then the projection p has
positive-dimensional fibers.

We begin with a consequence of Terracini’s lemma in our setting and add two more
lemmas concerning “the entry locus” qi .p�1.a//.

Lemma 12. Assume that �k.Z/ 6� Sing.�k.X//. Let F be an irreducible component of
p�1.a/ for a general point a 2 �k.Z/ in incidence (2.6). Then, for a general point x 2 qi .F /
with 1 � i � k, we have Tx.X/ � Ta.�k.X// where Tx.X/ � PN means the embedded tan-
gent space to X at x.

Proof. Since �k.Z/ n Sing.�k.X// is non-empty open in �k.Z/ and a is general, it is
a smooth point of �k.X/; hence the embedded tangent space Ta.�k.X// is defined. In addition,
a is contained in the .k � 1/-plane hx1; : : : ; xki for general x1; : : : ; xk 2 Z with xi D x. Then
the assertion follows by Terracini’s lemma (cf. [29, Corollary 1.4.2], [30, Chapter II, 1.10,
Chapter V, 1.4]).

Lemma 13. For a projective variety Z, let hZi D Pˇ and consider the incidence J as
(2.6) with k � 2. Suppose that the (k � 1)-secant of Z is not defective and not equal to Pˇ .
Then, for a general point .a; x1; : : : ; xk/ 2 J and for any irreducible component F of p�1.a/
containing .a; x1; : : : ; xk/, qi jF WF ! qi .F / is generically finite.

Proof. For simplicity, we set i D 1. First, since .a; x1; : : : ; xk/ is a general point of the
incidence J , we may assume that a is a general point of �k.Z/ and x1; : : : ; xk are k general
points on Z.

Let �x1
WPˇ Ü Pˇ�1 be the linear projection from x1. Since Z is non-degenerate

in Pˇ and �k�1.Z/ ¤ Pˇ , the map �x1
j�k�1.Z/ is generically finite onto its image (other-

wise, a general point x1 is contained in Vertex.�k�1.Z//, a linear subvariety of �k�1.Z/,
a contradiction).

Let J 0 � Pˇ � .Z/k�1 be the incidence for the .k � 1/-secant of Z, i.e., the closure of

¹.b; zx2; : : : ; zxk/ j b 2 hzx2; : : : ; zxki and dimhzx2; : : : ; zxki D k � 2º:

Since �k�1.Z/ is not secant defective, the first projection pJ 0 WJ 0 ! �k�1.Z/ is generically
finite. Hence the composite map

(2.7) � D �x1
ı pJ 0 WJ

0
! �x1

.�k�1.Z//

is generically finite.
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Let J1 D q�11 .x1/ � J . Then

�x1
ı pjJ1

WJ1 ! �x1
.�k�1.Z//

is dominant (this is because, for general b 2 �k�1.Z/, we take a general point c 2 hx1; bi and
k � 1 points zx2; : : : ; zxk 2 Z such that b 2 hzx2; : : : ; zxki; then .c; x1; zx2; : : : ; zxk/ 2 J1, whose
image under �x1

ı p is �x1
.c/ D �x1

.b/). Since .a; x1; : : : ; xk/ 2 J1 is general in J and by
the dominance of �x1

ıpjJ1
, we may consider ˛D �x1

.a/ as a general point in �x1
.�k�1.Z//.

Let F be an irreducible component of p�1.a/ containing .a; x1; x2; : : : ; xk/, and sup-
pose that q1jF has general fibers of positive dimensions. Then the fiber of q1jF at x1 2 q1.F /,
F \ J1, is of positive dimension, which means that we have .a; x1; zx2; : : : ; zxk/ 2 F \ J1 for
fixed a; x1 and moving .zx2; : : : ; zxk/ with positive dimension.

For general .a; x1; zx2; : : : ; zxk/ 2 F \ J1, we have the intersection point b.zx2; : : : ; zxk/
of the line ha; x1i and the hyperplane hzx2; : : : ; zxki in hx1; zx2; : : : ; zxki D Pk�1. Note that

�x1
.b.zx2; : : : ; zxk// D �x1

.a/ D ˛:

The k-tuple .b.zx2; : : : ; zxk/; zx2; : : : ; zxk/ moves with positive dimension since so does (k � 1)-
tuple .zx2; : : : ; zxk/. In other words, the following locus is of positive dimension:

¹.b.zx2; : : : ; zxk/; zx2; : : : ; zxk/ j .a; x1; zx2; : : : ; zxk/ 2 F \ J1º � �
�1.˛/ � J 0;

which contradicts that �, given in (2.7), is generally finite.

Lemma 14. For a projective varietyZ � hZi D Pˇ , suppose that �k�1.Z/ is a hyper-
surface in Pˇ and �k.Z/D Pˇ . Then we have qi .p�1.a//DZ for a general point a 2 �k.Z/.
In particular, there is an irreducible component F of p�1.a/ such that qi .F / D Z.

Proof. Since p�1.a/ is invariant under permuting xi -factors, we set i D 1 for sim-
plicity. Take a general a 2 �k.Z/ D Pˇ . Since Vertex.�k�1.Z// is a linear subvariety of
�k�1.Z/ ¨ Pˇ andZ is non-degenerate in Pˇ , Vertex.�k�1.Z// \Z ¨ Z. This implies that,
for general x 2 Z, dimhx; �k�1.Z/i > dim.�k�1.Z// so that hx; �k�1.Z/i D Pˇ . Thus any
given general point a 2 Pˇ sits on a line hx; bi for any general x 2 Z and for some gen-
eral b 2 �k�1.Z/. Taking k � 1 points zx2; : : : ; zxk 2 Z such that b 2 hzx2; : : : ; zxki, we have
.a; x; zx2; : : : ; zxk/ 2 p

�1.a/, which means q1.p�1.a// D Z.

Now let us focus on the case

Z D vd .P
m/ � PˇD.

mCd
m /�1;

the image of the d -uple Veronese embedding of Pm. Here we prove a very useful proposition,
which is of independent interest itself. In Proposition 15, we consider the entry locus of a gen-
eral point in Z and estimate the dimension of the linear span of its image under (d � 1)-uple
Veronese embedding vd�1WPm ! Pˇd�1D.mCd�1

m /�1.

Proposition 15. Let Z D vd .Pm/ � Pˇ with d � 3, 2 � m � k � 2, and

ˇ D

�
mC d

m

�
� 1 < kmC k � 1:
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Assume dim.�k�1.Z// D .k � 1/mC k � 2 < ˇ (in other words, the (k � 1)-th secant ofZ is
not defective and not equal to Pˇ ), where .k � 1/mC k �

�
mCd
m

�
. Let J � Pˇ � .Z/k be the

Zariski closure of incidence (2.6), let .a; x1; : : : ; xk/ 2 J be a general point, and let F � J
be an irreducible component of p�1.a/ containing .a; x1; : : : ; xk/. Then the following holds.

(i) If .k � 1/mC k <
�
mCd
m

�
, then we have

dimhvd�1.A/i � k C .kmC k � 1/ � dim �k.Z/

for the preimage A � Pm of qi .F / [ ¹x1; : : : ; xkº � Z under vd W Pm ' Z and for
each 1 � i � k.

(ii) If .k � 1/mC k D
�
mCd
m

�
, then qi .F / D Z. In addition, if .d;m/ ¤ .3; 2/, then

dimhvd�1.P
m/i � k Cm:

Remark 16. (a) Two inequalities

ˇ D

�
mC d

m

�
� 1 < kmC k � 1 and .k � 1/mC k �

�
mC d

m

�
are equivalent to �

mCd
m

�
mC 1

< k <

�
mCd
m

�
mC 1

C 1I

this occurs if and only if �
mCd
m

�
mC 1

… N and k D

��mCd
m

�
mC 1

�
:

(b) In Proposition 15 (ii), if .d;m/ D .3; 2/, then the condition .k � 1/mC k D
�
mCd
m

�
gives k D 4. In this case, qi .F / D Z is still true (e.g., by Lemma 13), but

dimhvd�1.P
m/i D dimhv2.P2/i D 5

is k Cm � 1, not greater than or equal to k Cm.

To prove Proposition 15, we settle two lemmas, Lemmas 17 and 19; the former one is
technical and the latter geometric.

Lemma 17. Let d;m; k be integers such that d � 3 and 2 � m � k � 2.

(i) If .k � 1/mC k <
�
mCd
m

�
< kmC k, then

�
mCd�1
m

�
� 1 � 2m � k � 0.

(ii) If .k � 1/mC k D
�
mCd
m

�
and .d;m/ ¤ .3; 2/, then

�
mCd�1
m

�
� 1 �m � k � 0.

(iii) If
�
mCd
m

�
D kmC k, then

�
mCd�1
m

�
� 1 �m � k � 0.

Note that Lemma 17 (iii) is applied in a discussion of the proof of Theorem 2 (ii), though
it is not used in this section.

To show the lemma, we need some calculations as follows.

Remark 18. (a) Let m D 2 and kmC k >
�
mCd
m

�
. Then .k � 1/mC k <

�
mCd
m

�
does

not occur. Otherwise, we have

3k � 2 <

�
mC d

m

�
D
.d C 2/.d C 1/

2
< 3k;
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and then .dC2/.dC1/
2

D 3k � 1. Considering the congruence modulo 3, we have

.d C 2/.d C 1/ � 6k � 2 � 1 .mod 3/:

Then the possible values of .d C 2/.d C 1/ are

.d C 2/.d C 1/ �

8̂<̂
:
2 � 1 � 2 .d D 0/;

0 � 2 � 0 .d D 1/;

1 � 0 � 0 .d D 2/;

modulo 3, which is absurd.
(b) For d D 3; 4; 5, we calculate numbers m satisfying the conditions�

mCd
m

�
mC 1

… N; k D

��mCd
m

�
mC 1

�
; and .k � 1/mC k <

�
mC d

m

�
:

For d D 3, the smallestm is 5. For d D 4, the smallestm is 3 and the next smallestm is 7. For
d D 5, the smallest m is 9. The explicit values of ı D

�
mCd�1
m

�
� .1C k C 2m/ for them are

obtained as follows:

.d;m; k; ı/ D .3; 5; 10; 0/; .4; 3; 9; 4/; .4; 7; 42; 63/; .5; 9; 201; 495/:

Proof of Lemma 17. (i) From Remark 18 (a), we may assume m � 3. Let

ı D

�
mC d � 1

m

�
� .1C k C 2m/:

Since �
mC d � 1

m

�
D

d

mC d

�
mC d

m

�
;

using .k � 1/mC k C 1 �
�
mCd
m

�
, we have

ı D

�
mC d � 1

m

�
� .1C k C 2m/

�
1

mC d

�
d..k � 1/mC k C 1/ � .mC d/.1C k C 2m/

�
:

Setting k D mC a with a � 2, we have

d..k � 1/mC k C 1/ � .mC d/.1C k C 2m/

D m.k.d � 1/ � 3d � 1 � 2m/

D m..mC a/.d � 1/ � 3d � 1 � 2m/

� m..mC 2/.d � 1/ � 3d � 1 � 2m/

D m.dm � 3m � d � 3/ D m..d � 3/.m � 1/ � 6/:

(2.8)

Then ı � 0 holds in the following three cases: d � 6 and m � 3; d D 5 and m � 4; or d D 4
and m � 7. In addition, in Remark 18 (b) (see also Remark 16 (a)), we explicitly check that
ı � 0 if d D 4 and m � 6, and that there is no k in our range if d D 5 and m D 3.
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On the other hand, when d D 3, (2.8) implies

d..k � 1/mC k C 1/ � .mC d/.1C k C 2m/ D m.2.mC a/ � 10 � 2m/ D m.2a � 10/:

Hence ı � 0 holds if d D 3 and a � 5. For d D 3 and k D mC a with a D 2; 3; 4, we have

ı D
m2 �m � 2k

2
D
m.m � 3/ � 2a

2
> 0

if m � 5. In addition, in Remark 18 (b), we explicitly check that there is no k in our range if
d D 3 and m � 4.

(ii) Let ı D
�
mCd�1
m

�
� .1C k Cm/. As in (i), using .k � 1/mC k D

�
mCd
m

�
, we have

ı D

�
mC d � 1

m

�
� .1C k Cm/ D

1

mC d

�
d..k � 1/mC k/ � .mC d/.1C k Cm/

�
;

and

d..k � 1/mC k/ � .mC d/.1C k Cm/ D km.d � 1/ � 2dm �m �m2 � d

� .mC 2/m.d � 1/ � 2dm �m �m2 � d

D .d � 2/.m2 � 1/ � 2 � 3m:

If d � 3 andm� 4, then since .d � 2/.m2 � 1/� 2� 3m�m.m� 3/� 3� 1, it holds ı � 0.
If d � 4 and m D 3, then since .d � 2/.m2 � 1/ � 2 � 3m � 5, it similarly holds ı � 0. On
the other hand, if d D 3 and m D 3, then .k � 1/mC k D

�
mCd
m

�
implies

4k � 3 D
.d C 3/.d C 2/.d C 1/

3Š
D 20I

this case does not occur since k cannot be an integer. If d � 4 and m D 2, then

3k � 2 D
.d C 2/.d C 1/

2
:

In this case, ı D .dC1/d
2
� k � 3 � 0, because of

3
�.d C 1/d

2
� k � 3

�
�
3.d C 1/d

2
�
.d C 2/.d C 1/

2
� 11 D d2 � 12 � 4:

(iii) Next, we assume
�
mCd
m

�
D kmC k. Then

ı D

�
mC d � 1

m

�
� .1C k Cm/ D

1

mC d
.d.kmC k/ � .mC d/.1C k Cm//:

Using k D mC a D .mC 1/C .a � 1/ with a � 2, we have

d.kmC k/ � .mC d/.1C k Cm/

D .d � 1/km � .mC d/.mC 1/

D .d � 1/m.mC 1/C .d � 1/m.a � 1/ � .mC d/.mC 1/

D .mC 1/..d � 1/m � .mC d//C .d � 1/m.a � 1/

D .mC 1/..d � 2/.m � 1/ � 2/C .d � 1/m.a � 1/:

If d � 3, m � 2, and .d;m/ ¤ .3; 2/, then we have ı � 0. If .d;m/ D .3; 2/, then since

.mC 1/..d � 2/.m � 1/ � 2/C .d � 1/m.a � 1/ D �3C 4.a � 1/ � 1;

we also have ı � 0.



Furukawa and Han, Singular loci of higher secant of Veronese embeddings 219

The next lemma concerns a general fact on linear sections of Veronese varieties, which
is of independent interest itself.

Lemma 19. Let k;m � 2. Let x01; : : : ; x
0
k
2 Pm be k general points, let

veWP
m
! PˇeD.mCe

m /�1

be the e-uple Veronese embedding of Pm, and let M D hve.x01/; ve.x
0
2/; : : : ; ve.x

0
k
/i � Pˇe .

Then, for any k-plane R � Pˇe containing the .k � 1/-plane M , the following holds.

(i) Assume k � ˇe �m, and assume that there is a curve C � R \ ve.Pm/ passing through
ve.x

0
1/. Then it holds that

(2.9) R � hve.x
0
2/; : : : ; ve.x

0
k/;Tve.x

0
1/
ve.P

m/i:

(ii) Assume e � 3 and k � ˇe � 2m. Then we have

dimve.x
0
1/
.R \ ve.P

m// D 0;

where the left-hand side means dimension of component(s) passing through ve.x01/. In
particular, the set of a point ¹ve.x01/º is an irreducible component of R \ ve.Pm/.

(iii) Assume e D 2 and k � 1 � ˇ2 � 2m. Assume that there is a curve C � R \ v2.Pm/
such that v2.x01/ 2 C . Then, for any irreducible subset D � R \ v2.Pm/, it holds that
D � v2.hx

0
1; x
0
l
i/ for some l D 2; : : : ; k, where v2.hx01; x

0
l
i/ is a conic curve in Pˇ2

given as the image of the line hx01; x
0
l
i � Pm,

Proof. Let C � R \ ve.Pm/ be a curve passing through ve.x01/. Let

� D �hve.x
0
2/;:::;ve.x

0
k
/iWP

ˇe Ü Pˇe�kC1

be the linear projection from the (k � 2)-plane hve.x02/; : : : ; ve.x
0
k
/i. If k � ˇe �m, then the

generalized trisecant lemma [29, Proposition 1.4.3] implies

M \ ve.P
m/ D ¹ve.x

0
1/; ve.x

0
2/; : : : ; ve.x

0
k/º:

In particular, dim.M \ ve.Pm// D 0 and C 6�M . We have �.ve.x01// 2 �.C / � Pˇe�kC1

because of ve.x01/ 2 C . If C is contracted to a point under � , then �.C / D �.ve.x01//, which
means that C �M , a contradiction. Hence �.C / must be a curve.

For the k-planeR � Pˇe , which contains the (k � 2)-dimensional center of � , the image
�.R/ is a line in Pˇe�kC1. Thus �.C / D �.R/. Moreover, it follows

�.C / D �.R/ D T�.ve.x
0
1//
�.R/ � T�.ve.x

0
1//
�.ve.Pm//;

where, by generic smoothness, the right-hand side is equal to �.Tve.x
0
1/
ve.Pm// since x01 2Pm

is general. It follows that R is contained in the preimage of �.Tve.x
0
1/
ve.Pm//, which implies

inclusion (2.9) of (i).
The condition k � ˇe �m holds if k or k � 1 is at most ˇe � 2m. Next, we consider

a tangential projection
�Tve.x0

1
/ve.Pm/WP

ˇe Ü Pˇe�m�1
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from the m-plane Tve.x
0
1/
ve.Pm/ � Pˇe , and its restriction z� D �Tve.x0

1
/ve.Pm/jve.Pm/ on

ve.Pm/. Note that the Veronese variety ve.Pm/ and any embedded tangent space to ve.Pm/
intersect only at one point; in particular, ve.Pm/ \ Tve.x

0
1/
ve.Pm/ D ¹ve.x01/º. If R � Pˇ

satisfies (2.9), we have

(2.10) z�.R \ ve.P
m// � z�.ve.P

m// \ hz�.ve.x
0
2//; : : : ; z�.ve.x

0
k//i:

By Terracini’s lemma, for general z 2 ve.Pm/, the linear variety hTve.x
0
1/
ve.Pm/;Tzve.Pm/i

coincides with an embedded tangent space to �2.ve.Pm// and is of dimension dim �2.ve.Pm//.
Then

�Tve.x0
1

/ve.Pm/.Tzve.P
m// D Tz�.z/z�.ve.P

m// � Pˇe�m�1

is of dimension dim �2.ve.Pm// �m � 1. It follows

(2.11) dim z�.ve.Pm// D dim �2.ve.P
m// �m � 1:

Let e � 3 and k � ˇe � 2m. Suppose that dimve.x
0
1/
.R \ ve.Pm// > 0, which means

the existence of a curve C satisfying condition (i). Since

codim
�
z�.ve.P

m//;Pˇe�m�1
�
� .k � 1/ � .ˇe � 2m � 1/ � .k � 1/ � 0;

again the trisecant lemma implies that the right-hand side in (2.10) is only the set of k � 1
points z�.ve.x02//; : : : ; z�.ve.x

0
k
//. Thus each irreducible subset D � R \ ve.Pm/ satisfies

(2.12) z�.D/ D z�.ve.x
0
l//

for some l D 2; : : : ; k. (At least, takingD D C , we exactly have (2.12).) From e � 3, we have
dim �2.ve.Pm// D 2mC 1 (i.e., non-defective). In this case, by (2.11), dim z�.ve.Pm// D m,
i.e., the map z� must be generically finite. Then we reach a contradiction since ve.x0l/ is a
general point. This implies that dimve.x

0
1/
.R \ ve.Pm// D 0.

Finally, we consider the case of e D 2. Then dim �2.v2.Pm// D 2m for m � 2 (i.e.,
defective), and by (2.11), dim z�.v2.Pm// D m � 1. This means that the tangential projection
z� W v2.Pm/ Ü z�.v2.Pm// has fibers of dimension 1. Moreover, as in Remark 8 (a), we know
that

�Tv2.x0
1

/v2.Pm/WP
ˇ2D

.mC2/.mC1/
2

�1 Ü Pˇ2�m�1D
.mC1/m

2
�1

satisfies the commutative diagram

Pm P
.mC2/.mC1/

2
�1

Pm�1 P
.mC1/m

2
�1;

 - !
v2

 !�x0
1

 ! �Tv2.x0
1

/v2.Pm/

 - !
v2

where �x01 WP
m Ü Pm�1 is the linear projection from x01, and v2WPm�1 ,! P

.mC1/m
2
�1 is

the Veronese embedding of Pm�1. Then

dim.z�.v2.Pm/// D dim.v2.Pm�1// D m � 1:

If k � 1 � ˇ2 � 2m, then

codim.z�.v2.Pm//;Pˇ2�m�1/ � .k � 1/ � .ˇ2 � 2m/ � .k � 1/ � 0I



Furukawa and Han, Singular loci of higher secant of Veronese embeddings 221

hence the trisecant lemma implies z�.D/ D z�.v2.x0l// for some l D 2; : : : ; k as we discussed
for (2.12).

In the diagram above, for any y0 2 hx01; x
0
l
i � Pm with y0 ¤ x01, we have

z�.v2.y
0// D v2.�x01.y

0// D v2.�x01.x
0
l// D z�.v2.x

0
l//I

indeed,
z��1.z�.v2.x

0
l/// D v2.hx

0
1; x
0
li/:

Since z�.D/ D z�.v2.x0l//, we have D � v2.hx01; x
0
l
i/.

We give one calculation before proving Proposition 15.

Remark 20. For d D 3 and m ¤ 2, if

�0 D

�
mCd
m

�
mC 1

… N and k D d�0e

(as under the conditions of Proposition 15 and Remark 16 (a)), then .kmC k � 1/ � ˇd ¤ 1.
The reason is as follows. First, we may write�0D .mC 3/.mC 2/=6DM=3 for someM 2N
since .mC 3/.mC 2/ is divisible by 2. In addition, dividing M by 3 with remainder, we have
M D 3QCR for a quotient Q and a remainder R. Since �0 DM=3 … N, R must be 1 or 2.
In this setting, k D dM=3e D QC 1. It follows that .kmC k � 1/ � ˇd is equal to

.kmC k/ �

�
mC 3

3

�
D .mC 1/

�
k �

.mC 3/.mC 2/

6

�
D .mC 1/

�
.QC 1/ �

�
QC

R

3

��
D .mC 1/ �

3 �R

3
:

If .kmC k � 1/ � ˇd D 1, then 3 D .mC 1/.3 �R/. Since 3 �R is 1 or 2 and m 2 N, we
get m D 2.

Proof of Proposition 15. (i) For simplicity, we set i D 1; then

x1 2 q1.F / � Z D vd .P
m/:

For s D dim �k.Z/, an irreducible component F of p�1.a/ is of dimension

dimJ � s D .kmC k � 1/ � s:

From Lemma 13, we have dim q1.F / D .kmC k � 1/ � s.
Let q1.F /0 � Pm be the preimage of q1.F / � Z under vd W Pm ' Z, and let

A D q1.F /
0
[ ¹x01; : : : ; x

0
kº � Pm:

Let vd�1WPm ! Pˇd�1 be the (d � 1)-uple Veronese embedding. Then the (k � 1)-plane

hvd�1.x
0
1/; : : : ; vd�1.x

0
k/i � Pˇd�1

is contained in the linear variety

hvd�1.A/i D hvd�1.q1.F /
0/ [ ¹vd�1.x

0
1/; : : : ; vd�1.x

0
k/ºi
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and is of codimension c D dimhvd�1.A/i � .k � 1/. By Lemma 17 (i), ˇd�1 � 2m � k � 0.
So, by the generalized trisecant lemma,

vd�1.P
m/ \ hvd�1.x

0
1/; : : : ; vd�1.x

0
k/i D ¹vd�1.x

0
1/; : : : ; vd�1.x

0
k/º:

In particular,

vd�1.q1.F /
0/ \ hvd�1.x

0
1/; : : : ; vd�1.x

0
k/i � ¹vd�1.x

0
1/; : : : ; vd�1.x

0
k/º:

Since dim q1.F /
0 � 1, we may take a point y0 2 q1.F /0 such that

vd�1.y
0/ … hvd�1.x

0
1/; : : : ; vd�1.x

0
k/i:

Assume d � 4. Applying Lemma 19 (ii) to

R D hvd�1.x
0
1/; : : : ; vd�1.x

0
k/; vd�1.y

0/i � hvd�1.A/i;

we have
dimvd�1.x

0
1/
.R \ vd�1.P

m// D 0:

In particular, we have dimvd�1.x
0
1/
.R \ vd�1.q1.F /

0// D 0. Regarding it as an intersection
of two irreducible subvarieties in hvd�1.A/i, we deduce that every irreducible component of
R \ vd�1.q1.F /

0/ is of dimension at least dim.vd�1.q1.F /0// � .c � 1/. Hence

dim.hvd�1.A/i/ � k C dim.vd�1.q1.F /
0// D k C .kmC k � 1/ � s:

Next, let us consider the case of d D 3. For l D 2; : : : ; k, since v2.hx01; x
0
l
i/ � Pˇ2 is

a conic, it follows that hv2.hx01; x
0
l
i/i is a 2-plane, which is equal to hv2.x01/; v2.x

0
l
/; zi for

some z 2 Pˇ2 . Then˝
v2.x

0
1/; : : : ; v2.x

0
k/; v2.hx

0
1; x
0
li/
˛
D hv2.x

0
1/; : : : ; v2.x

0
k/; zi

is a linear subvariety of dimension at most k. Since v2.q1.F /0/ \ hv2.x01/; : : : ; v2.x
0
k
/i is

empty or is a set of points, the intersection

v2.q1.F /
0/ \

˝
v2.x

0
1/; : : : ; v2.x

0
k/; v2.hx

0
1; x
0
li/
˛

is of dimension at most 1. On the other hand, since m ¤ 2 by Remark 18 (a), we have

dim q1.F /
0
D .kmC k � 1/ � ˇ � 2

as in Remark 20. For the union

W D
[

lD2;:::;k

v2.q1.F /
0/ \

˝
v2.x

0
1/; : : : ; v2.x

0
k/; v2.hx

0
1; x
0
li/
˛
� Pˇ2 ;

we see that q1.F /0 n v�12 .W / ¤ ; and may take y0 2 q1.F /0 n v�12 .W /.
Let R D hv2.x01/; : : : ; v2.x

0
k
/; v2.y

0/i � hv2.A/i and suppose that

dimv2.x
0
1/
.R \ v2.q1.F /

0// > 0;
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that is to say, there is a curve C � R \ v2.q1.F /0/ containing v2.x01/. Taking D D C and
applying Lemma 19 (iii), we have C D v2.hx01; x

0
l
i/ for some l > 1. If

dim
˝
v2.x

0
1/; : : : ; v2.x

0
k/; v2.hx

0
1; x
0
li/
˛
D k;

then R D hv2.x01/; : : : ; v2.x
0
k
/; v2.hx

0
1; x
0
l
i/i, contradicting the definition ofW and our choice

of y0. Else, if
dim

˝
v2.x

0
1/; : : : ; v2.x

0
k/; v2.hx

0
1; x
0
li/
˛
D k � 1;

then C D v2.hx01; x
0
l
i/ � v2.q1.F /

0/ \ hv2.x
0
1/; : : : ; v2.x

0
k
/i, also contradicting that the inter-

section is of dimension at most 0.
Hence dimv2.x

0
1/
.R \ v2.q1.F /

0// D 0. Then, in the same way as above, we have

dim.hv2.A/i/ � k C .kmC k � 1/ � s:

(ii) In the case when

.k � 1/mC k D

�
mC d

m

�
;

we have kmC k � 1 � s � m. It follows from Lemma 13 and Pm ' Z that qi .F / D Z. From
Lemma 17 (ii), if .d;m/ ¤ .3; 2/, then we have that Pˇd�1 D hvd�1.P

m/i is of dimension at
least k Cm.

We end this subsection by making one more important remark on the case when

�k.vd .P
m// ¨ Pˇd

is secant defective, which will be used in the proof of Theorem 3 (ii).

Remark 21 (Estimate in defective cases). For four defective cases

.k; d;m/ D .7; 3; 4/; .5; 4; 2/; .9; 4; 3/; .14; 4; 4/;

similarly to Proposition 15, we can have an estimation

dimhvd�1.A/i � k C ı;

where A D v�1
d
.q1.p

�1.a/// � Pm, the preimage of the entry locus of a, and ı is the secant
defect of �k.vd .Pm//; here A is ı-equidimensional, the k general points x01; : : : ; x

0
k
2 Pm are

contained in A, and it is well known that ı D 2 when .k; d;m/ D .9; 4; 3/ and ı D 1 in all the
other defective cases.

For three cases
.k; d;m/ D .5; 4; 2/; .9; 4; 3/; .14; 4; 4/;

we see that ˇd�1 � 2m � k and

vd�1.A/ \ hvd�1.x
0
1/; : : : ; vd�1.x

0
k/i � ¹vd�1.x

0
1/; : : : ; vd�1.x

0
k/º

by the trisecant lemma so that we may take y0 2 A such that

vd�1.y
0/ … hvd�1.x

0
1/; : : : ; vd�1.x

0
k/i:
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By Lemma 19 (ii), we get

dimvd�1.x
0
1/
.R \ vd�1.P

m// D 0;

where
R D hvd�1.x

0
1/; : : : ; vd�1.x

0
k/; vd�1.y

0/i:

Thus, by the intersection argument in hvd�1.A/i (similar to Proposition 15 (i)), we derive the
estimation

dimhvd�1.A/i � dimRC dim vd�1.A/ D k C ı:

For the remaining case .k; d;m/ D .7; 3; 4/, it holds ˇd�1 � 2m D k � 1, and we still
can claim that

dim.hv2.A/i/ � k C ı D 7C 1 D 8

as follows. For the 6-dimensional subspace M D hv2.x01/; : : : ; v2.x
0
7/i � hv2.A/i, the trise-

cant lemma implies

M \ v2.A/ �M \ v2.P
4/ D ¹v2.x

0
1/; : : : ; v2.x

0
7/º;

the 0-dimensional intersection. Then dim.hv2.A/i/ � 7 (otherwise, we get M D hv2.A/i so
that M \ v2.A/ D v2.A/, a contradiction). Suppose that

dim.hv2.A/i/ D 7;

and set R D hv2.A/i. We take the irreducible components of the 1-equidimensional closed
set A as A D

Ss
jD1Aj . Note that v2.Aj / � R \ v2.Pm/. Since x01 2 A, there is a curve Aj0

containing x01. Taking C D v2.Aj0
/ and applying Lemma 19 (iii), for any j with 1 � j � s,

we have v2.Aj / D v2.hx01; x
0
lj
i/ for some lj D 2; : : : ; k. This is equivalent to Aj D hx01; x

0
lj
i,

a line in P4; in particular, x01 2 Aj . In the same way, Aj must contain x01; : : : ; x
0
7. But this is

a contradiction, because these points are chosen as seven general points in P4. Thus it follows
that dim.hv2.A/i/ � 8.

2.3. Estimate for the linear span of tangents moving along a subsecant variety. First,
we give the following explicit description of the embedded tangent space Txvd .P

n/ � PN to
vd .P

n/ at a point x in vd .Pn/ or vd .Pm/. Note that it is related to computations of Gauss
maps (see [12]).

Recall that monoŒt ��e denotes the set of monomials f 2 CŒt1; : : : ; tm� with deg f � e.
Then 1 2 monoŒt ��e as the monomial of degree 0. As mentioned in Remark 8, as chang-
ing homogeneous coordinates t0; t1; : : : ; tm; u1; u2; : : : ; um0 on Pn with m0 D n �m, we may
assume that Pm is the zero set of u1; : : : ; um0 . On the affine open subset ¹t0 ¤ 0º, the Veronese
embedding vd WPn ! PN is parameterized by monomials of CŒt1; : : : ; tm; u1; : : : ; um0 � of
degree at most d . So it is expressed as

(2.13) ŒmonoŒt ��d W u1 �monoŒt ��d�1 W � � � W um0 �monoŒt ��d�1 W ��;

where ui �monoŒt ��d�1 means

¹uif j f 2 monoŒt ��d�1º D .ui W ui t1 W ui t2 W � � � W ui t
d�1
m /;

and “�” means the remaining monomials.
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Let x D vd .x0/ with x0 2 ¹t0 ¤ 0º � Pn. Then Txvd .P
n/ � PN coincides with the

n-plane spanned by the .nC 1/ points corresponding to the row vectors of266666666664

vd

𝜕vd=𝜕t1
:::

𝜕vd=𝜕tm
𝜕vd=𝜕u1

:::

𝜕vd=𝜕um0

377777777775
.x0/ D

266666666664

monoŒt��d u1�monoŒt��d�1 : : : um0 �monoŒt��d�1 �

.monoŒt��d /t1 u1�.monoŒt��d�1/t1 : : : um0 �.monoŒt��d�1/t1 �

:::
:::

:::
:::

.monoŒt��d /tm u1�.monoŒt��d�1/tm : : : um0 �.monoŒt��d�1/tm �

O monoŒt��d�1 : : : O �

:::
: : :

:::

O O : : : monoŒt��d�1 �

377777777775
.x0/

(2.14)

using (2.13), where .monoŒt ��e/ti means ¹𝜕f=𝜕ti j f 2monoŒt ��eº and O is a zero matrix with
suitable size.

In particular, in case of x0 2 Pm D ¹u1 D � � � D um0 D 0º, we see that the matrix is of
the form

(2.15)

266666666664

monoŒt��d O : : : O O

.monoŒt��d /t1 O : : : O O
:::

:::
:::

:::

.monoŒt��d /tm O : : : O O

O monoŒt��d�1 : : : O O
:::

: : :
:::

O O : : : monoŒt��d�1 O

377777777775
.x0/:

As a consequence, we settle a key proposition which estimates a lower bound of the
dimension of the linear span of moving embedded tangent spaces along a subset of a given Pm.

Proposition 22. Let vd WPn ! PN be the d -uple Veronese embedding. For anm-plane
Pm � Pn, for a (possibly reducible) subset A � Pm, and for a linear variety ƒ � hvd .Pm/i,
the dimension of the linear varietyD

ƒ [
[

x2vd .A/

Tx.vd .P
n//
E
� PN

is greater than or equal to

(2.16) dimhƒ [ vd .A/i C .n �m/¹1C dimhvd�1;m.A/iº;

where ve;mWPm ! P .
mCe

m /�1 is the e-uple Veronese embedding of Pm.

Proof. For a given A � Pm, we consider

B0 D vd .A/; B1 D .𝜕vd=𝜕u1/.A/; : : : ; Bm0 D .𝜕vd=𝜕um0/.A/

as subsets in PN , where Bi is embedded by the parameterization of the .mC 1C i/-th row of
the matrix of (2.14) for 1 � i � m0. Note that, for the homogeneous coordinates Œw0 W � � � W wN �
on PN corresponding to (2.13), hvd .Pm/i D PˇD.

mCd
m /�1 is the zero set of wˇC1; : : : ; wN ,

and ƒ [ B0 is contained in the set.
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Since A � ¹u1 D � � � D um0 D 0º, it follows from (2.15) that the linear variety

(2.17) hƒ [ B0; B1; : : : ; Bm0i � PN

is of dimension dim.hƒ [ B0i/C dim.hB1i/C � � � C dim.hBm0i/Cm0.
Again, by (2.15), we see that B0 ' vd .A/ and Bi ' vd�1;m.A/ for 1 � i � m0. As the

linear variety (2.17) is contained in hƒ [
S
x2vd .A/

Tx.vd .P
n//i, we have the assertion.

3. Case of m D 1

3.1. Symmetric flattening and conormal space computation. For the proof of Theo-
rem 1, we begin with some preliminaries on equations for secant varieties and conormal space
computation via known sets of equations, whereas we mainly adopt the geometric viewpoint
and techniques for the m � 2 case in Section 4.

Let V be an .nC 1/-dimensional C-vector space Chx0; x1; : : : ; xni. Let f 2 SdV be
a homogeneous polynomial of degree d (or d -form) and let Œf � be the corresponding point
in PSdV . In this paper, we frequently abuse notation, denoting both a d -form in SdV and
the point in PSdV just by f . For the Veronese variety vd .PV /, we have a natural one-to-
one correspondence between points of the ambient space hvd .PV /i and equivalent classes of
degree d -forms in S D CŒx0; x1; : : : ; xn�. First of all, let us recall some notions related to this
correspondence.

Given a form f of degree d , the minimum number of linear forms li needed to write f
as a sum of d -th powers is the so-called (Waring) rank of f and we denote it by rank.f /. Note
that one can define rank.Œf �/ by rank.f /, because this rank is invariant under nonzero scaling.
The (Waring) border rank is given by the same notion in the limiting sense. In other words, if
there is a family ¹f� j � > 0º of polynomials with constant rank r and lim�!0 f� D f , then
we say that f has border rank at most r . The minimum such r is called the border rank of f
and we denote it again by rank.f /. Note that, by definition, �k.vd .PV // is the variety of
homogeneous polynomials f of degree d with border rank rank.f / � k.

Now, we recall that some part of defining equations for �k.vd .PV // comes from so-
called symmetric flattenings. Consider the polynomial ring S D S�V D CŒx0; : : : ; xn� and
consider another polynomial ring T D S�V � D CŒy0; : : : ; yn�, where V � is the dual C-vector
space of V . Define the differential action of T on S as follows: for any g 2 Td�a; f 2 Sd , we
set g � f D g.𝜕0; 𝜕1; : : : ; 𝜕n/f 2 Sa, where 𝜕i D 𝜕=𝜕xi . Let us take bases for Sa and Td�a as

XI D
1

i0Š � � � inŠ
x
i0
0 � � � x

in
n and YJ D yj0

0 � � �y
jn
n ;

with jI j D i0 C � � � C in D a, jJ j D j0 C � � � C jn D d � a. For a given f D
P
jI jDd bI � XI

in Sd , we have a linear map

�d�a;a.f /WTd�a ! Sa; g 7! g � f

for any a with 1 � a � d � 1, which can be represented by the following
�
aCn
n

�
�
�
d�aCn
n

�
-

matrix: 0B@ bI;J

1CA with bI;J D bICJ ;
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in the bases defined above. We call this “the .d � a; a/-symmetric flattening (or catalecticant)
matrix” of f . It is easy to see that the transpose �d�a;a.f /T is equal to �a;d�a.f /.

It is obvious that if f has (border) rank 1, then any symmetric flattening �d�a;a.f / has
rank 1. By subadditivity of matrix rank, we also know that rank�d�a;a.f / � r if rank.f / � r .
So we obtain a set of defining equations coming from .k C 1/-minors of the matrix �d�a;a.f /
for �k.vd .PV //. For some small values of k, it is known that these minors are sufficient to cut
the variety �k.vd .PV // scheme-theoretically (see [24, Theorem 3.2.1]).

Let us recall some more basic terms and facts. Let Z � PW be a (reduced and irre-
ducible) variety and yZ its affine cone in W . Consider a (closed) point yp 2 yZ and call p the
corresponding point in PW . We denote the affine tangent space to Z at p in W by yTpZ and
we define the (affine) conormal space toZ at p, yN �pZ as the annihilator . yTpZ/? � W �. Since
dim yN �pZ C dim yTpZ D dimW and dimZ � dim yTpZ � 1, we get that

(3.1) dim yN �pZ � codim.Z;PW /

and the equality holds if and only if Z is smooth at p. This conormal space is quite useful to
study the (embedded) tangent space TpZ.

For any given form f 2 SdV , we call 𝜕 2 Tt apolar to f if the differentiation 𝜕 � f
gives zero (i.e., 𝜕 2 ker�t;d�t .f /). And we define the apolar ideal f ? � T as

f ? D ¹𝜕 2 T j 𝜕 � f D 0º:

It is straightforward to see that f ? is indeed an ideal of T . Moreover, it is well known that the
quotient ring Tf D T=f ? is an Artinian Gorenstein algebra with socle degree d (see e.g.
[19, Chapter 1]). In terms of this apolar ideal, we have a useful description of (a part of)
conormal space as follows.

Proposition 23. Suppose that f 2 SdV corresponds to a (closed) point Œf � of

�k.vd .PV // n �k�1.vd .PV //:

Then, for any a with 1 � a � bdC1
2
c with rank�d�a;a.f / D k, we have

yN �Œf ��k.vd .PV // � .f
?/a � .f

?/d�a

as a subspace of Td D SdV �.

Proof. Let X � PW be any variety. For any linear embedding W ,! A˝ B and the
induced embedding

X � PW ,! P .A˝ B/;

it is well known that, for any Œf � 2 �k.X/ � P .A˝ B/, considering �k.X/ as a subvariety of
P .A˝ B/, we have

yN �Œf ��k.X/ � ker.f /˝ im.f /? D yN �Œf ��p.Seg.PA � PB//

in A� ˝ B� provided that X � �p.Seg.PA � PB//, X ª �p�1.Seg.PA � PB// and f has
rank k � p as a linear map in Hom.A�; B/ (see e.g. [24, Section 2.5]). Here Seg.PA � PB/
means the Segre variety in P .A˝ B/.
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Further, since X � PW � P .A˝ B/, then as a subvariety of PW , it holds that

yN �Œf ��k.X/ � �.ker.f /˝ im.f /?/ D yN �Œf �.�p.Seg.PA � PB// \ PW /;

where � WA� ˝ B� ! W � is the dual map of the given inclusion W ,! A˝ B .
The assertion is immediate when we apply this fact to a partial polarization

SdV ,! SaV ˝ Sd�aV;

because X D vd .PV / is contained in Seg.PSaV � PSd�aV / � P .SaV ˝ Sd�aV / (i.e.,
p D 1 case) and

rank�d�a;a.f / D k;

ker�d�a;a.f / D .f
?/d�a;

im.�d�a;a.f //
?
D .f ?/a:

3.2. Proof of Theorem 1. Now we study singularity and non-singularity of the subse-
cant variety �k.vd .P1// � �k.vd .Pn// in each range of k; d as in Theorem 1.

Proof of Theorem 1. (i) Let f be any form belonging to �k.vd .P1// n �k�1.vd .Pn//.
Set X D vd .Pn/ � PN , the Veronese variety. Consider f as a polynomial in CŒx0; x1� as
in Section 3.1. Then, by [19, Theorem 1.44], we know that T=f ? is an Artinian Gorenstein
algebra with socle degree d and that f ? is a complete intersection of two homogeneous poly-
nomials F;G, each of degree a and b (a � b) with aC b D d C 2, as an ideal of CŒy0; y1�,
where the Hilbert function of T=f ? is

(3.2) .1; 2; : : : ; a � 1; a; : : : ; a; a � 1; : : : ; 2; 1/:

We claim that rank�k;d�k.f / D k (i.e., a D k). If a < k, then by shape (3.2), we see that
rank�t;d�t .f / < k for all t . In particular, all k-minors of �t;d�t .f / vanish for any t . As the k-
minors of catalecticant �t;d�t for each k � 1� t � d � .k � 1/ give the ideal of �k�1.vd .P1//
(e.g. [19, Theorem 1.45]), this implies f 2 �k�1.vd .P1// � �k�1.vd .Pn//, which is a con-
tradiction. Hence we have that f ? D .F;G; y2; : : : ; yn/ as an ideal in T D CŒy0; y1; : : : ; yn�
for some polynomial F of degree k and G of degree .d � k C 2/ in CŒy0; y1�.

Now, let us show that �k.X/ is smooth at f by computing the dimension of conormal
space. In general, by (3.1), we have

(3.3)
�
nC d

d

�
� kn � k � dimC yN

�
Œf ��k.X/;

where the left-hand side is given by the expected codimension of the k-th secant variety. By
Proposition 23, we also have

(3.4) dimC yN
�
Œf ��k.X/ � dimC.f

?/k � .f
?/d�k :

Thus f is a smooth point of �k.X/ if the lower bound for the dimension of conormal space in
(3.4) is equal to the expected codimension in (3.3).

Since k � dC1
2

by the assumption, note that d � k � k unless d is odd and k D dC1
2

,
where d � k D d�1

2
< k.
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(a) If d is odd and k D dC1
2

, then we have

.f ?/k � .f
?/d�k

D .F; y2; : : : ; yn/k � .y2; : : : ; yn/d�k

D h.¹yiyj j 2 � i; j � nº/d �[ F � ¹y2; : : : ; ynº � ¹y
d�k�1
0 ; yd�k�20 y1; : : : ; y

d�k�1
1 ºi

D CŒy0; y1; : : : ; yn�d n .¹y
d
0 ; y

d�1
0 y1; : : : ; y

d
1 º
�[ ¹y2; : : : ; ynº � ¹y

d�1
0 ; : : : ; yd�11 º/

�[ F � ¹y2; : : : ; ynº � ¹y
d�k�1
0 ; yd�k�20 y1; : : : ; y

d�k�1
1 º;

where �[ means the “disjoint union” of sets of forms of degree d .
So we obtain

dim yN �Œf ��k.X/ � dimC.f
?/k � .f

?/d�k

D

�
nC d

d

�
� .d C 1/ � d.n � 1/C .n � 1/.d � k/�

note that k D
d C 1

2

�
D

�
nC d

d

�
� kn � k;

which tells us that �k.X/ is smooth at f .
(b) When d is odd and k < dC1

2
or d is even, we have k � d � k and

.f ?/k � .f
?/d�k D .F; y2; : : : ; yn/k � .F; y2; : : : ; yn/d�k

D h.¹yiyj j 2 � i; j � nº/d

�[ F � ¹y2; : : : ; ynº � ¹y
d�k�1
0 ; yd�k�20 y1; : : : ; y

d�k�1
1 º

�[ F 2 � ¹yd�2k0 ; yd�2k�10 y1; : : : ; y
d�2k
1 ºi:

Thus, by a dimension counting similar to case (a), we see that

dim yN �Œf ��k.X/ �
�
nC d

d

�
� .d C 1/ � d.n � 1/C .n � 1/.d � k/C .d � 2k C 1/

D

�
nC d

d

�
� kn � k;

which coincides with the expected codimension as desired. Thus f is a smooth point of �k.X/.
(ii) First note that dim �k.vd .P

1// D min¹2k � 1; dº and the incidence I has dimen-
sion 2k � 1. In the case d � 2k � 2, each fiber of pW I ! Pd is of dimension at least 1, so
for a general a 2 �k.vd .P1//, it holds qi .p�1.a// D vd .P1/ for some i with 1 � i � k in
incidence (2.6) in Section 2.2.

Now, let n � 3, k D 3 or n � 2, k � 4 and d D 2k � 2. Suppose

�k.vd .P
1// 6� Sing.�k.vd .P

n///:

Then a general point
a 2 �k.vd .P

1// D Pd

is a smooth point of �k.vd .Pn//. Since qi .p�1.a// D vd .P1/ for some i , it follows from
Lemma 12 that, for M D Ta�k.vd .P

n//, we have the inclusion Tx.vd .P
n// �M for a gen-
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eral x 2 vd .P1/, and then the inclusion holds for any x 2 vd .P1/. This is because, for the
Gauss map 
 W vd .Pn/! G.n;PN / sending 
.z/ D Tz.vd .P

n// (a morphism since vd .Pn/
is smooth), considering the closed setGM D ¹W 2G.n;PN / jW �M º, we have 
.U /�GM
for a certain non-empty open subset U � vd .P1/, and then 
.vd .P1// � GM . Therefore,

(3.5)
D [
x2vd .P1/

Tx.vd .P
n//
E
� Ta�k.vd .P

n//:

Taking m D 1, ƒ D ;, and A D P1 in Proposition 22, the number (2.16), a lower bound for
dimension of left-hand side of (3.5), is equal to dn. Thus we have

.2k � 2/n D dn � k.nC 1/ � 1 .D dim Ta�k.vd .P
n///;

which is equivalent to the formula n � .k � 1/=.k � 2/. It follows that n � 2 if k D 3, and
n D 1 if k � 4, contrary to our assumption.

Finally, since

�k�1.vd .P
1// ¨ �k.vd .P

1// when d � 2k � 2

(note that dim �k�1.vd .P
1// D 2k � 3 < d ), the �k.vd .P1// is a non-trivial singular locus of

�k.vd .P
n//, which means that �k.vd .P1// 6� �k�1.vd .Pn//, by Lemma 10.

(iii) By assumption, dim �k�1.vd .P
1// D min¹2k � 3; dº D d , that is to say,

�k�1.vd .P
1// D �k.vd .P

1// D hvd .P
1/i D Pd I

hence the assertion follows.
(iv) For .n; k/ D .2; 3/, smoothness of all points in �3.vd .P1// n �2.vd .P2// for d � 4

was already proved in [16, Theorem 2.14]. This is included for completeness.

Remark 24. Part (iv) is the exception to the trichotomy in Theorem 1. Under the con-
dition .k; d;m; n/ D .3; 4; 1; 2/ of (iv), the arithmetic deduced from the inclusion assumption
(3.5) of moving tangents in the proof does not make any contradiction. The situation is similar
in the other exceptional case to the trichotomy, .k; d;m; n/ D .4; 3; 2; 3/ (Theorem 2 (iv)).

4. Proof of main results

In this section, we prove Theorems 2 and 3. We will first discuss the non-singularity result
and then the results for the singular loci.

4.1. Generic smoothness. We begin with a lemma which deals with a secant fiber of
a general point in an m-subsecant variety vd .Pm/ in vd .Pn/ � PN .

Lemma 25. Assume

dim �k.vd .P
n// D nk C k � 1 and dim �k.vd .P

m// D mk C k � 1

(i.e., vd .Pn/ and vd .Pm/ are non-defective). Let k �
�
mCd�1
m

�
. Fix L D Pm � Pn to be an

m-plane, and take a 2 �k.vd .L// to be a general point. In the incidence I � PN � .Pn/k

with the first projection pW I ! PN as in (2.1), we then have the following inclusion scheme-
theoretically: p�1.a/ � ¹aº � .L/k .
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Proof. (i) Consider any .a; x01; : : : ; x
0
k
/ 2 p�1.a/ � I . Let I.m/ � PN � .L/k be an-

other incidence as in Lemma 9. Since a 2 �k.vd .L// is general, it follows a … �k�1.vd .L//
and a … p.I.m/ n I 0.m// by Remark 7 (b). Since dim �k.vd .L// D mk C k � 1, the secant fiber
of I.m/! PN at a also consists of finite points. So, by Lemma 9, we have .a;x01; : : : ; x

0
k
/ 2 I 0.

From Lemma 10, it is also true that a … �k�1.vd .Pn//. Thus we may write

a D

kX
iD1

cixi for some ci 2 C;

regarding a and xi D vd .x0i / as vectors in the affine space CNC1, where ci ¤ 0 for 1 � i � k.
As in Remark 8, set y0i D Œx

0
i;0 W � � � W x

0
i;m W 0 W � � � W 0�. For yi D vd .y0i /, diagram (2.2)

implies

a D

kX
iD1

ciyi ; where y0i ¤ 0 for 1 � i � k:

For the affine open subset V0 D ¹t0 ¤ 0º � Pn, we may assume x0i 2 V0 for all i . Since
vd WP

n ! PN is parameterized on V0 by monoŒt; u��d , and a 2 hvd .L/i, it holds that

0 D

kX
iD1

ci � ¹.u1 �monoŒt ��d�1/.x
0
i /º D

kX
iD1

ci � x
0
i;mC1 � ¹monoŒt ��d�1.y

0
i /º;

where for Mono D u1 �monoŒt ��d�1;monoŒt ��d�1 and pt D x0i ; y
0
i , the symbol ¹Mono.pt/º

means the vector obtained by evaluating monomials in Mono at the value of pt.
Since k �

�
mCd�1
m

�
, applying Remark 7 (b) to �k.vd .L//, we may assume

(4.1) dimhvd�1.y
0
1/; : : : ; vd�1.y

0
k/i D k � 1;

which gives ci � x0i;mC1 D 0; thus we have x0i;mC1 D 0 for all 1 � i � k (more precisely, the
linear independence of (4.1) means a k-minor of the corresponding matrix is nonzero, and
ci � x

0
i;mC1 D 0 is obtained by multiplying the inverse of the k � k submatrix). Similarly, we

can obtain x0i;j D 0 for each j > m and for all 1 � i � k, which gives the linear defining
equations for .L/k in .Pn/k . Hence x01; : : : ; x

0
k
2 L.

(ii) Let U � .Pn/k be the open subset used in Remark 7, where I 0 is the Pk�1-bundle
over U . We define a morphism ˆWPk�1 � U ! PN � U by

ˆ..c1 W � � � W ck/; .x
0
1; : : : ; x

0
k// D

� kX
iD1

civd .x
0
i /; .x

0
1; : : : ; x

0
k/

�
:

Note that, by the linear independence of vd .x01/; : : : ; vd .x
0
k
/ for .x01; : : : ; x

0
k
/ 2 U ,

kX
iD1

civd .x
0
i / D

kX
iD1

zcivd .x
0
i / 2 PN

if and only if .c1 W � � � W ck/ D .zc1 W � � � W zck/ 2 Pk�1. Then ˆ.Pk�1 � U/ D I 0, and more-
over, we have the isomorphism Pk�1 � U ' I 0 under ˆ.

Let U0 D U \ .V0/k � .Pn/k , where .V0/k is an affine variety and its affine coordinates
ring isA D CŒ¹x0i;j º�. In addition, for each k-minor � of the matrix whose i -th column consists
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of monomials ofm variables x0i;1; : : : ; x
0
i;m of degrees at most d � 1, we set .V0/k� D ¹� ¤ 0º,

an open subset of .V0/k whose coordinates ring is A� . Let W � ¹c1 ¤ 0º � Pk�1 be the
affine open subset such that all the coordinates c1; : : : ; ck are nonzero, where the coordinates
ring of W is CŒc2; : : : ; ck�c2���ck

by regarding c1 D 1.
We may assume p�1.a/ � I 0 \ .¹aº � .V0/k/. To consider the scheme-theoretic struc-

ture of p�1.a/, for the composite morphismˆ1 D p ıˆWPk�1 �U0! PN , we take the fiber

ˆ�11 .a/ � Pk�1 � U0 � Pk�1 � .V0/
k :

Since a … �k�1.vd .Pn//,ˆ�11 .a/�W � .V0/
k . Since a is general in �k.vd .L//, and by (4.1),

ˆ�11 .a/ is contained in the union of affine open subsets W � .V0/k� with all k-minors �.
We take

F� D ˆ
�1
1 .a/ \ .W � .V0/

k
� /

for each � , and consider the ideal I.F�/ in A� Œc2; : : : ; ck�c2���ck
, the affine coordinates ring of

W � .V0/
k
�

. For ˇ D
�
mCd
m

�
� 1, we may write

a D .1 W a.1/ W � � � W a.ˇ/ W 0 W � � � W 0/ 2 hvd .L/i � PN

with a.1/; : : : ; a.ˇ/ 2 C and a.`/ D 0 if ` > ˇ. Then the expression a D
Pk
iD1 ci � vd .x

0
i /

means that

a.`/
kX
iD1

ci � vd .x
0
i /
.0/
�

kX
iD1

ci � vd .x
0
i /
.`/
2 I.F�/ for 1 � ` � N;

where vd .x0i /
.`/ is the `-th coordinate of vd .x0i / 2 PN . In particular,

kX
iD1

ci � vd .x
0
i /
.`/
2 I.F�/ for ` > ˇ:

Using the discussion of (i), we have x0i;j 2 I.F�/ for all 1 � i � k and j > m, which means
that I.F�/ contains the defining ideal of .Pk�1 � .L/k/ \ .W � .V0/k� /. Thus, scheme-theo-
retically, it follows F� � Pk�1 � .U0 \ .L/k/ for any � , and hence

ˆ�11 .a/ � Pk�1 � .U0 \ .L/
k/:

Therefore, p�1.a/ � ¹aº � .L/k .

Remark 26. We recall some known results on the k-the secant variety and its incidence
in terms of k-fold symmetric product of Pn.

(a) It is known that Symk.Pn/ is non-singular at .x01; : : : ; x
0
k
/ if x0i ¤ x

0
j whenever i ¤ j .

Thus the subset of all distinct k-points of Pn is a smooth open subscheme of Symk.Pn/
(see e.g. [4, Lemma 7.1.4]). Then we also consider the incidence variety in this set-
ting as zI � PN � Symk.Pn/, where zI corresponds to I in (2.1) under the natural map
PN � .Pn/k ! PN � Symk.Pn/ and zpW zI ! �k.vd .P

n// � PN is the first projection.

(b) Assume k.nC 1/ <
�
nCd
n

�
. Then we know from [8, Theorem 1.1] that the projection

zpW zI ! �k.vd .P
n// is birational except for .k; d; n/ D .9; 6; 2/; .8; 4; 3/; .9; 3; 5/, be-

cause it is a dominant and generically injective morphism.
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Now, we are ready to prove Theorem 2 (i) and Theorem 3 (i).

Proof of Theorem 2 (i) and Theorem 3 (i). For anm-plane Pm � Pn withm� 2, we take
the m-subsecant variety Z D �k.vd .Pm// of Y D �k.vd .Pn//. From [2], for d � 3, Z does
not fill hZi and is secant defective if and only if

.k; d;m/ D .7; 3; 4/; .5; 4; 2/; .9; 4; 3/; .14; 4; 4/:

Thus, by the assumptions of Theorems 2 and 3, we know that

dimY D nk C k � 1; dimZ D mk C k � 1 � dimhZi D
�
mC d

m

�
� 1;

that is, Y;Z are non-defective. In this case, Z D hZi if and only if

k D

�
mCd
m

�
mC 1

2 N:

In particular, under the assumption k < � of Theorem 2 (i), we have Z ¨ hZi.
If Z ¨ hZi, then since .k; d;m/ D .9; 3; 5/; .8; 4; 3/; .9; 6; 2/ are excluded from Theo-

rem 2 and Table 1 (i), it follows from [8, Theorem 1.1] that Z is generically identifiable. If
Z D hZi, then .k; d;m/ D .5; 3; 3/; .7; 5; 2/ of Table 1 (i) only occur, and in these cases, it
follows from [14, Theorem 1] that Z is generically identifiable.

Let a 2 Z be a general point and consider zpW zI ! Y . Note that k �
�
mCd�1
m

�
for each

.k; d;m/ of our range, an assumption of Lemma 25. Applying Lemma 25, Remark 26 (b), and
the generic identifiability of Z, we may assume that the scheme-theoretic fiber zp�1.a/ is one
point x D .a; x01; : : : ; x

0
k
/ 2 zI \ .PN � Symk.L// and x is a non-singular point in zI , because

x is contained in a smooth Zariski open subset of zI (i.e., a projective bundle over a smooth
open base; see Remarks 7 (a) and 26 (a)).

Now, we restrict the projective morphism zpW zI ! Y onto a non-empty affine open neigh-
borhood a 2 W D SpecA � Y and another open subset x 2 U D SpecB � zI , and take the
injective ring homomorphism A ,! B corresponding to zpjU WU ! W . Also, letma (resp.mx)
be the maximal ideal of a in A (resp. of x in B). Note that we may take U so that zpjU WU ! W

is a finite morphism (cf. [18, Chapter II, Example 3.22 (d)]).
SinceA=ma D B=mx ' C and zp�1.a/ ' Spec.B ˝A A=ma/ ' Spec.B=maB/ is iso-

morphic to one simple point SpecB=mx, we have maB D mx in B . Let Bma
D B ˝A Ama

,
whose member can be expressed as b=s with b 2 B , s 2 A nma. We have maBma

D mxBma

in Bma
, and then

.Ama
CmaBma

/=maBma
' Ama

=maAma
' Bma

=maBma
;

which implies Ama
CmaBma

D Bma
CmaBma

D Bma
as Ama

-module. By the Nakayama
lemma (see e.g. [26, Corollary of Theorem 2.2]), it follows Ama

D Bma
. In particular, Bma

is
a local ring, whose maximal ideal is mxBma

. Thus we have

Ama
D Bma

D .Bma
/mxBma

D Bmx ;

which implies that a is a smooth point in Y .

We present an example which shows that one cannot extend this generic smoothness
result to an arbitrary point in the locus �k.vd .Pm// n �k�1.vd .Pn//.
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Example 27 (Singularity can occur at a special point in Theorem 3 (i)). Let

V D Chx; y; z; wi � W D Chx; y; zi

and let f D x2y2 C z4 be a form of degree 4. Then f represents a point in

�4.v4.PW // n �3.v4.PV //:

Note that rank�2;2.f / D 4 > 3, where �a;d�aWSdV ! SaV ˝ Sd�aV is the symmetric
flattening. Theorem 3 (i) shows that a general form in �4.v4.PW // n �3.v4.PV // is a smooth
point. But here we show that f is a singular point of �4.v4.PV //. We know that the form
fD D x

2y2 has Waring rank 3 so that fD D `41 C `
4
2 C `

4
3 for some `i 2 CŒx; y�1. By [16,

Theorem 2.1], fD is also a singular point of �3.v4.PV //. Since f 2 hfD; z4i, by Terracini’s
lemma, we see that Tz4v4.PV /�Tf �4.v4.PV // and T`i

v4.PV /�Tf �4.v4.PV // for any i .
Further, because �3.v4.P1// D hv4.P1/i and fD has 1-dimensional secant fiber in its inci-
dence, one can move `i along this P1. Thus we have

(4.2) Tf �4.v4.PV // �
D [
`i2P1

T`4
i
v4.PV /;Tz4v4.PV /

E
:

Note that, using parameterization (2.13), we can estimate the dimension of the right-hand side
of (4.2). Take an affine open subset ¹Œ1 W t W u1 W u2�º of P3 and (with a change of coordinates)
let z4 be Œ1 W 0 W 1 W 1� and let `i 2 P1 be represented by Œ1 W t W 0 W 0� for t 2 C. Then, by
(2.14), the embedded tangent space to v4.PV / at Œ1 W t W u1 W u2� is given as the row span of266664
1 t t2 t3 t4 u1 u1t u1t

2 u1t
3 u2 u2t u2t

2 u2t
3 u2

1 u2
1t � � � u3

1 � � � u2
2 � � �

1 2t 3t2 4t3 u1 2u1t 3u1t
2 u2 2u2t 3u2t

2 u2
1 � � � � � � � � �

1 t t2 t3 2u1 2u1t � � � 3u
2
1 � � � � � �

1 t t2 t3 � � � � � � 2u2 � � �

377775:
On Œ1 W t W 0 W 0� (for all t 2 C), this matrix turns into the shape266664

1 t t2 t3 t4

1 2t 3t2 4t3 O

1 t t2 t3

1 t t2 t3

377775;
and at Œ1 W 0 W 1 W 1�, it is equal to266664

1 1 1 1 1 � � � 1 � � �

1 1 1 1 � � � � � �

1 2 3 � � � � � �

1 � � � 2 � � �

377775;
which shows that dimh

S
`i2P1 T`4

i
v4.PV /i � 12, dim Tz4v4.PV / D 3, andD [

`i2P1

T`4
i
v4.PV /

E
\ Tz4v4.PV / D ;:

Thus, by (4.2), we obtain dim Tf �4.v4.PV // � 16 D 12C 3C 1, greater than the expected
dimension. Hence f is a singular point of �4.v4.PV //, whereas �4.v4.PV // is smooth at
a general point of �4.v4.PW //.
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4.2. Singularity. In this subsection, we will prove parts (ii) and (iii) both in Theorem 2
and Theorem 3, which show the singularity of them-subsecant loci†k;d .m/ in the k-th secant
variety �k.vd .Pn//. As †k;d .m/ is the union of all the m-subsecant varieties �k.vd .Pm// in
�k.vd .P

n// as (1.3), it is enough to prove the statements for any �k.vd .Pm// � �k.vd .Pn//.

Proof of Theorem 2 (ii) and Theorem 3 (ii). As we noted above, it is enough here to show
that �k.vd .Pm// � Sing.�k.vd .Pn/// and �k.vd .Pm// 6� �k�1.vd .Pn// for each m-subse-
cant variety �k.vd .Pm// � �k.vd .Pn//.

We will first prove that �k.vd .Pm// � Sing.�k.vd .Pn/// under the condition in Theo-
rem 2 with �

mCd
m

�
mC 1

… N;

next for Theorem 3 with .k; d;m/ ¤ .9; 3; 5/; .8; 4; 3/; .9; 6; 2/, and finally for�
mCd
m

�
mC 1

2 N

or .k; d;m/ D .9; 3; 5/; .8; 4; 3/; .9; 6; 2/. Basically, we use the same idea for the proof, but
a detailed way of estimation will be slightly different according to each case (due to secant
defectivity and non-identifiability). The non-triviality of the singular locus, i.e.,

�k.vd .P
m// 6� �k�1.vd .P

n//;

can be directly obtained at the end by Lemma 10.
Take a general point .a; x1; : : : ; xk/ in the incidence J as (2.6) for Z D vd .Pm/ � Pˇ

and take an irreducible component F of p�1.a/ containing .a; x1; : : : ; xk/. Then it follows
that a 2 �k.vd .Pm// is a general (so smooth) point in �k.vd .Pm//.

Suppose �k.vd .Pm// 6� Sing.�k.vd .Pn///. Then we may assume that a is also a smooth
point in �k.vd .Pn//. In particular, we have

Ta.�k.vd .P
m/// � Ta.�k.vd .P

n///:

Terracini’s lemma implies Txi
vd .P

n/ � Ta�k.vd .P
n// for i D 1; : : : ; k, and Lemma 12 im-

plies Tx.vd .P
n// � Ta.�k.vd .P

n/// for a general point x 2 qi .F /. Thus we have

(4.3)
D
Ta.�k.vd .P

m/// [
[

x2qi .F /[¹x1;:::;xkº

Tx.vd .P
n//
E
� Ta.�k.vd .P

n///:

First of all, let us consider Theorem 2 (ii) with�
mCd
m

�
mC 1

… N:

Set

k D

��mCd
m

�
mC 1

�
:

Then

ˇ D

�
mC d

m

�
� 1 < kmC k � 1 and .k � 1/mC k �

�
mC d

m

�
as in Remark 16. We have Pˇ D Ta.�k.vd .P

m/// since �k.vd .Pm// fills up the whole Pˇ .
It is enough to discuss the following three cases:
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(a1) .k � 1/mC k <
�
mCd
m

�
,

(a2) .k � 1/mC k D
�
mCd
m

�
and .d;m/ ¤ .3; 2/,

(a3) .k � 1/mC k D
�
mCd
m

�
and .d;m/ D .3; 2/.

For case (a1) (i.e., .k � 1/mC k <
�
mCd
m

�
), we take A D v�1

d
.qi .F / [ ¹x1; : : : ; xkº/ in

Pm and ƒ D Pˇ . From Proposition 15 (i), we get dimhvd�1;m.A/i � k C .kmC k � 1/ � ˇ
for the (d � 1)-uple Veronese embedding vd�1;m of Pm. From Proposition 22, the dimension
of the left-hand side in (4.3) is greater than or equal to the number (2.16), which is

dimhƒ [ vd .A/i C .n �m/¹1C dimhvd�1;m.A/iº

� ˇ C .n �m/.1C k C .kmC k � 1/ � ˇ/:

From inclusion (4.3), we obtain

ˇ C .n �m/.1C k C .kmC k � 1/ � ˇ/ � knC k � 1;

which implies .n �m/.1C .kmC k � 1/ � ˇ/ � .kmC k � 1/ � ˇ. This is a contradiction,
because n > m and .kmC k � 1/ � ˇ > 0.

Now, assume .k � 1/mC k D
�
mCd
m

�
(equivalently, kmC k � 1 � ˇ D m). Then, in

the same way as above, using Proposition 15 (ii) and taking

A D Pm D v�1d .Z/ and ƒ D hvd .P
m/i D Pˇ ;

we have

(4.4) ˇ C .n �m/.1C dimhvd�1;m.P
m/i/ � knC k � 1:

For .d;m/ ¤ .3; 2/ (i.e., case (a2)), Proposition 15 implies that dimhvd�1;m.Pm/i � k Cm.
Then .n �m/.mC 1/ � kmC k � 1 � ˇ D m, contrary to n > m.

For .d;m/ D .3; 2/ (i.e., case (a3)), we get ˇ D 9, dimhvd�1;m.Pm/i D 5, and

k D

��mCd
m

�
mC 1

�
D 4:

The condition .k; d; n/ ¤ .4; 3; 3/ implies n � 4. Then we also have a contradiction since (4.4)
does not hold. Hence we show that �k.vd .Pm// � Sing.�k.vd .Pn///.

Secondly, let us regard Theorem 3 (ii). For .k; d;m/ D .10; 3; 5/; .10; 6; 2/, we have
the same result as Theorem 2 since �k.vd .Pm// D Pˇ and it satisfies (a1), (a2) respectively.
Then, except for .k; d;m/ D .9; 3; 5/; .8; 4; 3/; .9; 6; 2/, the remaining part of Theorem 3 (ii)
consists of the following two cases:

(b1) .k; d;m/ D .7; 3; 4/; .5; 4; 2/; .9; 4; 3/; .14; 4; 4/ (i.e., the case of �k.vd .Pm// being
defective),

(b2) .k; d;m/ D .8; 3; 4/; .6; 4; 2/; .10; 4; 3/; .15; 4; 4/ (i.e., just after the defective case).

By the same reason, we also have inclusion (4.3) for these cases provided that

�k.vd .P
m// 6� Sing.�k.vd .P

n///:

For case (b1), i.e., the defective case, it is known that all the �k.vd .Pm// are hyper-
surfaces in Pˇ (see [2]). So, taking A D v�1

d
.qi .p

�1.a/// � Pm corresponding to the entry
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locus of a, by Proposition 22, an inclusion of the same kind as (4.3) implies

(4.5) ˇ � 1C .n �m/.1C dimhvd�1.A/i/ � knC k � 1;

where ˇ is equal to kmC k � ı and ı is the secant defect of �k.vd .Pm//. Inequality (4.5) is
equivalent to

n �m �
ı

1C dimhvd�1.A/i � k
�

ı

1C ı
< 1;

which contradicts n �m � 1, because dimhvd�1.A/i � k C ı by Remark 21.
For case (b2), i.e., just after the defective case (b1), the k-th secant variety �k.vd .Pm//

fills up Pˇ , and hence Ta.�k.vd .P
m/// D Pˇ . Then we can also get a contradiction in a simi-

lar way, as follows. Since the .k � 1/-secant variety �k�1.vd .Pm// is a hypersurface in Pˇ , by
Lemma 14, we have qi .F / D vd .Pm/ for an irreducible component F of p�1.a/ for general
a 2 Pˇ so that we can take A D Pm. By Proposition 22, inclusion (4.3) implies

ˇ C .n �m/.1C dimhvd�1.P
m/i/ D

�
mC d

m

�
� 1C .n �m/

�
mC d � 1

m

�
� knC k � 1;

which fails to hold in (b2); more precisely, for

.k; d;m/ D .8; 3; 4/; .6; 4; 2/; .10; 4; 3/; .15; 4; 4/;

the value
�
mCd
m

�
� 1C .n �m/

�
mCd�1
m

�
� .knC k � 1/ is equal to

7n � 33; 4n � 11; 10n � 35; 20n � 85;

respectively, which must be greater than 0 because of the condition n � mC 1. Thus we obtain
�k.vd .P

m// � Sing.�k.vd .Pn///.
Now, we discuss the following two cases:

(c1) k D
�
mCd
m

�
=.mC 1/ 2N of Theorem 2; since we exclude .k; d;m/D .5; 3; 3/; .7; 5; 2/,

a general point a 2 Pˇ D �k.vd .P
m// is not k-identifiable and the secant fiber p�1.a/

consists of two or more points (see [14, Theorem 1]);

(c2) .k; d;m/ D .9; 3; 5/; .8; 4; 3/; .9; 6; 2/ of Theorem 3; then a general point

a 2 �k.vd .P
m// ¨ Pˇ

is not k-identifiable and p�1.a/ consists of two points (see [8, Theorem 1.1]).

In these cases, even though they do not have positive-dimensional secant fibers, we can still get
a proof by contradiction using a different estimate, as follows.

Similarly, suppose that

�k.vd .P
m// 6� Sing.�k.vd .P

n///

and take a general point a 2 �k.vd .Pm// so that a is a smooth point in both �k.vd .Pm// and
�k.vd .P

n//. We take k general points x1; : : : ; xk 2 vd .Pm/ with a 2 hx1; : : : ; xki. By the
non-identifiability, we have another set of k points y1; : : : ; yk 2 vd .Pm/with a 2 hy1; : : : ; yki
such that .a; x1; : : : ; xk/ and .a; y1; : : : ; yk/ are distinct in the secant fiber

p�1.a/ � I � Pˇ � .vd .P
m//k
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(modulo permutation on .vd .Pm//k). Let x0i 2 Pm (resp. y0j ) be the preimage of xi , that is,
vd .x

0
i / D xi (resp. of yj with vd .y0j / D yj ).
Setting A D ¹x01; : : : ; x

0
k
; y01; : : : ; y

0
k
º, we have an inclusion, similar to (4.3),

(4.6)
D
Ta.�k.vd .P

m/// [
[

x2vd .A/

Tx.vd .P
n//
E
� Ta.�k.vd .P

n///:

For the .d � 1/-uple Veronese embedding

vd�1 D vd�1;mWP
m ,! Pˇd�1 with ˇd�1 D

�
mC d � 1

m

�
� 1;

dimhvd�1.x01/; : : : ; vd�1.x
0
k
/i D k � 1 since x01; : : : ; x

0
k

are general in Pm. The .k � 1/-plane
hvd�1.x

0
1/; : : : ; vd�1.x

0
k
/i is contained in hvd�1;m.A/i. On the other hand, the codimension

of vd�1.Pm/ � Pˇd�1 , that is,
�
mCd�1
m

�
� 1 �m, is greater than or equal to k; this follows

from Lemma 17 (iii) in case (c1), and from explicit calculations in case (c2).
Then we have dimhvd�1;m.A/i � k, as follows. Otherwise, dimhvd�1;m.A/i � k � 1

implies hvd�1;m.A/i D hvd�1.x01/; : : : ; vd�1.x
0
k
/i. Since y01; : : : ; y

0
k
2 A � Pm, it follows

vd�1.y
0
1/; : : : ; vd�1.y

0
k/ 2 hvd�1.x

0
1/; : : : ; vd�1.x

0
k/i \ vd�1.P

m/;

where the right-hand side must be ¹vd�1.x01/; : : : ; vd�1.x
0
k
/º because of the generalized trise-

cant lemma [29, Proposition 1.4.3], which gives a contradiction.
Again by (4.6) and Proposition 22, we get

knC k � 1 � dimhTa�k.vd .P
m// [ vd .A/

˛
C .n �m/¹1C dimhvd�1;m.A/iº

� dim Ta�k.vd .P
m//C .n �m/.1C k/ D kmC k � 1C .n �m/.1C k/

D knC k C .n �m � 1/;

which is a contradiction since n �m � 1 � 0. Thus, in these generic non-identifiable cases, it
also holds that �k.vd .Pm// � Sing.�k.vd .Pn///.

Note that, for
.k; d;m/ D .10; 3; 5/; .9; 4; 3/; .10; 6; 2/;

i.e., just after the non-identifiable case (c2), the singularity is already shown in the second
part of this proof, where .k; d;m/ D .9; 4; 3/ is also in the defective case (b1). The case
.k; d;m/ D .5; 3; 3/; .7; 5; 2/, which is excluded from (c1), belongs to Theorem 3 (i); in this
sense, the non-trivial singularity does not appear for .d;m/ D .3; 3/; .5; 2/.

Finally, since �k�1.vd .Pm// ¨ �k.vd .P
m// for the k of the range in this part (ii),

�k.vd .P
m// is a non-trivial singular locus, which means �k.vd .Pm// 6� �k�1.vd .Pn//, by

Lemma 10.

We finish this section by proving Theorems 2 (iii) and 3 (iii) and Theorem 2 (iv).

Proof of Theorem 2 (iii) and Theorem 3 (iii). By the conditions in part (iii) of these two
theorems, we see that

k � 1 �

��mCd
m

�
mC 1

�



Furukawa and Han, Singular loci of higher secant of Veronese embeddings 239

if �k.vd .Pm// is never defective, or

k � 1 �

��mCd
m

�
mC 1

�
C 1

if .d;m/ 2 ¹.3; 4/; .4; 2/; .4; 3/; .4; 4/º, the defective list of Alexander–Hirschowitz. In any
case, we have �k�1.vd .Pm// D hvd .Pm/i. Hence

�k.vd .P
m// D �k�1.vd .P

m// � �k�1.vd .P
n//

and the assertion follows.

Proof of Theorem 2 (iv). This is shown in [11] by explicitly giving the defining equa-
tions of �4.v3.P3//.

5. Case of fourth secant variety of Veronese embedding

In this section, we aim to prove Theorem 5 as an investigation of the singular loci of
the fourth secant variety (i.e., k D 4) of any Veronese variety. This theorem consists of one
part dealing with the (non-)singularity of points in full-secant loci (i.e., m D 3) and the other
part for points in the maximum subsecant loci †4;d .min¹k � 1; nº � 1/. So we will obtain
Theorem 5 by proving Theorem 29 (Theorem 5 (i)) and Corollary 30 (Theorem 5 (ii) and (iii)).

5.1. Equations by Young flattening. In [24], another source of equations for secant
varieties of Veronese varieties was introduced via the so-called Young flattening. Here we
briefly review the construction of a certain type of Young flattening and use it to compute
the conormal space of a given form.

Let V D CnC1 and d D d1 C d2 C 1. For 1 � a � n, we consider a map

YFad1;d2;n
WSdV ! Sd1V ˝ Sd2V ˝

â

V � ˝

aC1̂

V

which is obtained by first embedding SdV ,! Sd1V ˝ Sd2V ˝ V via co-multiplication, then
tensoring with Id 2

Va
V ˝

Va
V �, and finally skew-symmetrizing and permuting.

For any f 2 SdV , we identify YFad1;d2;n
.f / 2 Sd1V ˝ Sd2V ˝

Va
V � ˝

VaC1
V as

a linear map

(5.1) Sd1V � ˝

â

V ! Sd2V ˝

aC1̂

V:

Let ˛1; : : : ; ˛.nC1
a / give a basis of

Va
V . For a decomposable wd 2 SdV , YFad1;d2;n

maps as

wd 7!
dŠ

d1Š d2Š
wd1 ˝ wd2 ˝

�X
I

˛�I ˝ .˛I ^ w/
�
;

and if we take z0; : : : ; zn, a basis of V (now, we have that w D
P
cj zj 2 V for some cj and

˛I D zi1 ^ � � � ^ zia for some distinct i1; : : : ; ia), then we have

YFad1;d2;n
.wd / D

dŠ

d1Š d2Š

nX
jD0

cj
X

i1;:::;ia¤j

wd1 ˝ wd2 ˝ .zi1 ^ � � � ^ zia/
�

˝ .zi1 ^ � � � ^ zia ^ zj /;
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which shows YFad1;d2;n
.wd / has rank

�
n
a

�
as the linear map (note that the rank does not

depend on the choice of w and just consider the case w D z0). Further, for k �
�
nCd 0

d 0

�
with

d 0 D min¹d1; d2º, it is also immediate to see that rank.YFad1;d2;n
.f // D k

�
n
a

�
for a general k

sum of d -th power f D
Pk
iD1w

d
i .

Thus, from k
�
n
a

�
C 1minors of the matrix YFad1;d2;n

.f /, we obtain a set of equations for
�k.vd .PV // for this range of k (for some values of k; d; d 0; a, it is known that these minors
cut �k.vd .PV // as an irreducible component (see [24, Theorem 1.2.3])).

We can also use this Young flattening to compute conormal space of secant varieties of
Veronese.

Proposition 28. Let V D CnC1 and let f be any (closed) point of

�k.vd .PV // n �k�1.vd .PV //

in PSdV . Suppose YFa
d1;d2;n

.f / has rank k
�
n
a

�
as a linear map in

Hom
�
Sd1V � ˝

â

V; Sd2V ˝

aC1̂

V
�
:

Then we have

yN �Œf ��k.vd .PV // � .ker YFad1;d2;n
.f // � .im YFad1;d2;n

.f //?;

where the right-hand side is to be understood as the image of the multiplication

Sd1V � ˝

â

V ˝ Sd2V � ˝

aC1̂

V � ! SdV �:

Proof. This proposition follows directly from the same idea as Proposition 23 by apply-
ing it to a linear embedding

SdV ,! Sd1V ˝

â

V � ˝ Sd2V ˝

aC1̂

V:

Since rank YFa
d1;d2;n

.f / D k
�
n
a

�
and, as observed before, vd .PV / is contained in

�.n
a/

�
Seg

�
P
�
Sd1V ˝

â

V �
�
� P

�
Sd2V ˝

aC1̂

V
���

� P
�
Sd1V ˝

â

V � ˝ Sd2V ˝

aC1̂

V
�

and not in the previous secants of the same Segre variety, this is straightforward from the proof
of Proposition 23 (i.e., the case p D

�
n
a

�
).

5.2. Singularity and non-singularity. Using Proposition 28, we have the non-singu-
larity of �4.vd .Pn// at any point outside †4;d .2/ [ �3.vd .Pn//.

Theorem 29 (From full-secant locus). Let vd WPn ! PN be the d -uple Veronese em-
bedding with n � 3, d � 3, andN D

�
nCd
d

�
� 1. Suppose that f 2 �4.vd .Pn// n �3.vd .Pn//

and f does not belong to any 2-subsecant �4.vd .P2// of �4.vd .Pn//. Then �4.vd .Pn// is
smooth at every such f .
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Proof. First, note that, for every f in the statement, there exists a unique 4-dimensional
subspace U such that f 2 �4.vd .PU//, which is determined by the kernel of the symmetric
flattening �1;d�1. This gives a fibration as

� W �4.vd .P
n// n

�
†4;d .2IP

n/ [ �3.vd .P
n//
�
! Gr.3;Pn/

whose fibers ��1.PU/ are all isomorphic to �4.vd .PU// n .†4;d .2IPU/ [ �3.vd .PU///,
recalling that †4;d .2IPn/ � �4.vd .Pn// is the maximum subsecant locus, i.e., the union of
all �4.vd .P1// and �4.vd .P2// in �4.vd .Pn//. So we can reduce the proof of theorem to the
case of n D 3.

In case of n D 3, there is a list of normal forms in

�4.vd .P
3// n .†4;d .min¹k � 1; nº � 1/ [ �3.vd .P

3///

due to Landsberg–Teitler (see [22, Theorem 10.9.3.1] or [25, Theorem 10.4]) such as

(i) f1 D x0d C x1d C x2d C x3d ,

(ii) f2 D x0d�1x1 C x2d C x3d ,

(iii) f3 D x0d�1x1 C x2d�1x3,

(iv) f4 D x0d�2x12 C x0d�1x2 C x3d ,

(v) f5 D xd�30 x31 C x
d�2
0 x1x2 C x

d�1
0 x3.

Case (i) f1 D x0d C x1d C x2d C x3d (Fermat-type). It is well known that this Fermat-
type f1 belongs to an almost transitive SL4.C/-orbit, which corresponds to a general point of
�4.vd .P

3//. Hence f1 is a smooth point of �4.vd .P3//.
Case (ii) f2 D x0d�1x1 C x2d C x3d . Say U D Chx0; x1; x2; x3i. Consider the Young

flattening

YF1d�2;1;3.f2/ 2 S
d�2U ˝ U ˝ U � ˝^2U ' Hom.Sd�2U � ˝ U;U ˝^2U/

defined in (5.1). For simplicity, we will denote this type of Young flattening by � throughout
the proof. Then �.f2/ is

˛xd�20 ˝ x0 ˝

� 3X
jD0

yj ˝ xj ^ x1

�
C ˇxd�30 x1 ˝ x0 ˝

� 3X
jD0

yj ˝ xj ^ x0

�
C 
xd�20 ˝ x1 ˝

� 3X
jD0

yj ˝ xj ^ x0

�
C ıxd�22 ˝ x2 ˝

� 3X
jD0

yj ˝ xj ^ x2

�

C �xd�23 ˝ x3 ˝

� 3X
jD0

yj ˝ xj ^ x3

�
for some nonzero ˛; ˇ; 
; ı; � 2 C. Note that, as a linear map Sd�2U � ˝ U ! U ˝^2U ,
rank�.x50/ D 3 and rank�.f2/ D 4 � 3 D 12. By Proposition 28, .ker�.f2// � .im�.f2//

?

thus produces a subspace of yN �Œf2�
�4.vd .P

3//.
For d D 3, the expected dimension of yN �Œf2�

�4.v3.P3// for the smoothness is�
3C 3

3

�
� 16 D 4
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and the corresponding four points can be chosen as y0y2y3; y21y2; y1y2y3; y
2
1y3 in S3U �,

which are given by the product of ¹y1 ˝ x0; y2 ˝ x2; y3 ˝ x3º in ker�.f2/ � U � ˝ U and

¹y0 ˝ y2 ^ y3; y1 ˝ y1 ^ y2; y1 ˝ y1 ^ y3; y1 ˝ y2 ^ y3;

y2 ˝ y0 ^ y1; y2 ˝ y0 ^ y3; y2 ˝ y1 ^ y3;

y3 ˝ y0 ^ y1; y3 ˝ y0 ^ y2; y3 ˝ y1 ^ y2º

(5.2)

in im�.f2/
? � U � ˝^2U �. So �4 is non-singular at f2.

For any d � 4, in ker�.f2/ � Sd�2U � ˝ U , one can find a subspace generated by

¹F ˝ xi j F 2 Jd�2; i D 0; : : : ; 3º;

where
J D hy0y2; y0y3; y

2
1 ; y1y2; y1y3; y2y3i

is an ideal in S�U �. Also, in im�.f2/
? � U � ˝^2U �, there exists the same subspace as in

(5.2). In this case, our .ker�.f2// � .im�.f2//
? contains the subspace of SdU � generated by

¹y20y
2
2 ; y

2
0y2y3; y

2
0y
2
3º [ ¹y0y

2
1y2; : : : ; y0y1y

2
3º [ ¹y0y

2
2y3; y0y2y

2
3º

[ ¹y41 ; : : : ; y
2
1y
2
3º [ ¹y1y

2
2y3; y1y2y

2
3 ; y

2
2y
2
3º

for d D 4 and by

¹yd�20 y22 ; y
d�2
0 y2y3; y

d�2
0 y23º [ ¹y

d�3
0 y21y2; y

d�3
0 y21y3; : : : ; y

d�3
0 y33º

[ ¹yd�40 y41 ; y
d�4
0 y31y2; : : : ; y

d�4
0 y43º [ � � � [ ¹y

2
0y
d�2
1 ; y20y

d�3
1 y2; : : : ; y

2
0y
d�2
3 º

[ ¹y0y
d�1
1 ; y0y

d�2
1 y2; : : : ; y0y1y

d�2
2 º [ ¹y0y

d�2
2 y3; : : : ; y0y2y

d�2
3 º

[ ¹yd1 ; : : : ; y
2
1y
d�2
2 ; : : : ; y21y

d�2
3 º [ ¹y1y

d�2
2 y3; : : : ; y1y2y

d�2
3 º

[ ¹yd�22 y23 ; : : : ; y
2
2y
d�2
3 º

for any d > 4 (note that the terms above are listed in the lexicographical order). In both cases,
these monomial generators can be also represented as

.¹yd0 ; y
d�1
0 y1; : : : ; y0y

d�1
3 º n ¹yd0 ; y

d�1
0 y1; y

d�1
0 y2; y

d�1
0 y3;

yd�20 y21 ; y
d�2
0 y1y2; y

d�2
0 y1y3; y

d�3
0 y31 ; y0y

d�1
2 ; y0y

d�1
3 º/

[ .¹yd1 ; y
d�1
1 y2; : : : ; y

d
3 º n ¹y1y

d�1
2 ; y1y

d�1
3 ; yd2 ; y

d�1
2 y3; y2y

d�1
3 ; yd3 º/;

which implies that, by Proposition 28,

dim yN �Œf2�
�4.vd .P

3// � dim.ker�.f2// � .im�.f2//
?

�

²�
d � 1C 3

3

�
� 10C

�
d C 2

2

�
� 6

³
D

�
d C 3

3

�
� 16:

Hence f2 is a smooth point of �4.
Case (iii) f3 D x0d�1x1 C x2d�1x3. Then �.f3/ is

˛xd�20 ˝ x0 ˝
�X

yj ˝ xj ^ x1

�
C ˇxd�30 x1 ˝ x0 ˝

�X
yj ˝ xj ^ x0

�
C 
xd�20 ˝ x1 ˝

�X
yj ˝ xj ^ x0

�
C ıxd�22 ˝ x2 ˝

�X
yj ˝ xj ^ x3

�
C �xd�32 x3 ˝ x2 ˝

�X
yj ˝ xj ^ x2

�
C �xd�22 ˝ x3 ˝

�X
yj ˝ xj ^ x2

�
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for some nonzero ˛; ˇ; 
; ı; �; � 2 C so that rank�.f3/ D 12. For d D 3, a subspace

hy1 ˝ x0; y3 ˝ x2i

in ker�.f3/ � U � ˝ U and another subspace in im�.f3/
? � U � ˝^2U �,

hy0 ˝ y2 ^ y3; y1 ˝ y1 ^ y2; y1 ˝ y1 ^ y3; y1 ˝ y2 ^ y3;

y2 ˝ y0 ^ y1; y3 ˝ y0 ^ y1; y3 ˝ y0 ^ y3; y3 ˝ y1 ^ y3i;

(5.3)

produce a desired 4-dimensional subspace hy0y23 ; y
2
1y2; y

2
1y3; y1y

2
3i in S3U �, which says that

�4 is non-singular at f3.
Similarly, for the case of d � 4, .ker�.f3// � .im�.f3//

? contains a subspace of

yN �Œf3�
�4.vd .P

3// � SdU �

which is generated by

.¹yd0 ; y
d�1
0 y1; : : : ; y0y

d�1
3 º n ¹yd0 ; y

d�1
0 y1; y

d�1
0 y2; y

d�1
0 y3;

yd�20 y21 ; y
d�2
0 y1y2; y

d�2
0 y1y3; y

d�3
0 y31 ; y0y

d�1
2 ; y0y

d�2
2 y3º/

[ .¹yd1 ; y
d�1
1 y2; : : : ; y

d
3 º n ¹y1y

d�1
2 ; y1y

d�2
2 y3; y

d
2 ; y

d�1
2 y3; y

d�2
2 y23 ; y

d�3
2 y33º/;

using a subspace h¹F ˝ xi j F 2 Jd�2; i D 0; : : : ; 3ºi in ker�.f3/, where J is an ideal gen-
erated by ¹y0y2; y0y3; y21 ; y1y2; y1y3; y

2
3º in S�U �, and the same subspace in im�.f3/

?

as (5.3). Thus

dim yN �Œf3�
�4.vd .P

3// �

�
d C 3

3

�
� 16;

which means that f3 is also smooth.
Case (iv) f4 D x0d�2x12 C x0d�1x2 C x3d . For d D 3, we have

�.f4/ D 2x0 ˝ x1 ˝
�X

yj ˝ xj ^ x1

�
C 2x1 ˝ x0 ˝

�X
yj ˝ xj ^ x1

�
C 2x1 ˝ x1 ˝

�X
yj ˝ xj ^ x0

�
C 2x0 ˝ x0 ˝

�X
yj ˝ xj ^ x2

�
C 2x0 ˝ x2 ˝

�X
yj ˝ xj ^ x0

�
C 2x2 ˝ x0 ˝

�X
yj ˝ xj ^ x0

�
C 6x3 ˝ x3 ˝

�X
yj ˝ xj ^ x3

�
and rank�.f4/ D 12. Then yN �Œf4�

�4.v3.P3// contains a 4-dimensional subspace correspond-
ing to h�y0y2y3 C y21y3; y1y2y3; y

3
2 ; y

2
2y3i which can be spanned by ¹y2 ˝ x0; y3 ˝ x3º in

ker�.f4/ � U � ˝ U and

¹y3 ˝ y0 ^ y1; y3 ˝ y0 ^ y2;�y1 ˝ y1 ^ y2 C y2 ˝ y0 ^ y2;

�y0 ˝ y2 ^ y3 C y1 ˝ y1 ^ y3º

in im�.f4/
? � U � ˝^2U �. So �4 is non-singular at f4.

For d � 4, it holds that

�.f4/ D 2x
d�2
0 ˝ x1 ˝

�X
yj ˝ xj ^ x1

�
C 2.d � 2/xd�30 x1 ˝ x0 ˝

�X
yj ˝ xj ^ x1

�
C 2.d � 2/xd�30 x1 ˝ x1 ˝

�X
yj ˝ xj ^ x0

�
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C .d � 2/.d � 3/xd�40 x21 ˝ x0 ˝
�X

yj ˝ xj ^ x0

�
C .d � 1/xd�20 ˝ x0 ˝

�X
yj ˝ xj ^ x2

�
C .d � 1/xd�20 ˝ x2 ˝

�X
yj ˝ xj ^ x0

�
C .d � 1/.d � 2/xd�30 x2 ˝ x0 ˝

�X
yj ˝ xj ^ x0

�
C d.d � 1/xd�23 ˝ x3 ˝

�X
yj ˝ xj ^ x3

�
:

In this case, rank�.f4/ is also 12 and ker�.f4/ has a subspace A1 which is generated by

¹hy0y3; y1y2; y1y3; y
2
2 ; y2y3id�2 ˝ xi .i D 0; : : : ; 3/; hy0y2id�2 ˝ x0; hy

2
1id�2 ˝ x0;

hy23id�2 ˝ x3; h�2y0y2 C .d � 1/y
2
1id�2 ˝ x2º

and im�.f4/
? has a subspace B1 spanned by

¹y2 ˝ y1 ^ y2; y2 ˝ y1 ^ y3; y2 ˝ y2 ^ y3; y3 ˝ y0 ^ y1; y3 ˝ y0 ^ y2; y3 ˝ y1 ^ y2;

�.d � 1/y1 ˝ y1 ^ y2 C 2y2 ˝ y0 ^ y2;�2y0 ˝ y2 ^ y3 C .d � 1/y1 ˝ y1 ^ y3º:

Then one can check that A1 � B1 produces a subspace of yN �Œf4�
�4.v3.P3// in SdU � which is

the degree-d part of an ideal I1 generated by 19 quartics

¹�4y20y
2
2 C .4d � 4/y0y

2
1y2 � .d � 1/

2y41 ;�2y
2
0y2y3 C .d � 1/y0y

2
1y3; y

2
0y
2
3 ;

�2y0y1y
2
2 C .d � 1/y

3
1y2;�2y0y1y2y3 C 3y

3
1y3; y0y1y

2
3 ;�2y0y

3
2 C .d � 1/y

2
1y
2
2 ;

�2y0y
2
2y3 C .d � 1/y

2
1y2y3;�2y0y2y

2
3 C .d � 1/y

2
1y
2
3 ;

y31y3; y
2
1y
2
2 ; y

2
1y2y3; y

2
1y
2
3 ; y1y

3
2 ; y1y

2
2y3; y1y2y

2
3 ; y

4
2 ; y

3
2y3; y

2
2y
2
3º

(here, the underline means the leading term with respect to the lexicographic order). Say
T D S�U �. Then I1 has a minimal free resolution as

(5.4) 0! T .�7/4 ! T .�6/22 ! T .�5/36 ! T .�4/19 ! I ! 0;

which shows that the Hilbert function of I can be computed as

H.I; d/ D 19

�
d � 4C 3

3

�
� 36

�
d � 5C 3

3

�
C 22

�
d � 6C 3

3

�
� 4

�
d � 7C 3

3

�
D

�
d C 3

3

�
� 16 .d � 4/:

This implies that�
d C 3

3

�
� 16 � dim yN �Œf4�

�4.vd .P
3// � H.I; d/ D

�
d C 3

3

�
� 16;

which means that �4 is also smooth at f4.
Case (v) The final form f5 D x

d�3
0 x31 C x

d�2
0 x1x2 C x

d�1
0 x3. We begin with d D 3.

We have

�.f5/ D 6x1 ˝ x1 ˝
�X

yj ˝ xj ^ x1

�
C x2 ˝ x0 ˝

�X
yj ˝ xj ^ x1

�
C x2 ˝ x1 ˝

�X
yj ˝ xj ^ x0

�
C x1 ˝ x0 ˝

�X
yj ˝ xj ^ x2

�
C x1 ˝ x2 ˝

�X
yj ˝ xj ^ x0

�
C x0 ˝ x1 ˝

�X
yj ˝ xj ^ x2

�
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C x0 ˝ x2 ˝
�X

yj ˝ xj ^ x1

�
C 2x3 ˝ x0 ˝

�X
yj ˝ xj ^ x0

�
C 2x0 ˝ x0 ˝

�X
yj ˝ xj ^ x3

�
C 2x0 ˝ x3 ˝

�X
yj ˝ xj ^ x0

�
and rank�.f5/ D 12. The conormal space yN �Œf5�

�4.v3.P3// contains a 4-dimensional sub-
space corresponding to h�y0y23 C 4y1y2y3 � 24y

3
2 ;�y1y

2
3 C 12y

2
2y3; y2y

2
3 ; y

3
3i which can

be spanned by ¹y3 ˝ x0; 2y1 ˝ x0 C 12y2 ˝ x1 C y3 ˝ x2º in ker�.f5/ � U � ˝ U and

¹y3 ˝ y1 ^ y2;�2y2 ˝ y1 ^ y2 C y3 ˝ y0 ^ y2;�2y1 ˝ y2 ^ y3 C y3 ˝ y0 ^ y3º

in im�.f5/
? � U � ˝^2U �. So �4 is non-singular at f5.

For each d � 4, the Young flattening is of the form

�.f5/ D 6x
d�3
0 x1 ˝ x1 ˝

�X
yj ˝ xj ^ x1

�
C 3.d � 3/xd�40 x21 ˝ x0 ˝

�X
yj ˝ xj ^ x1

�
C 3.d � 3/xd�40 x21 ˝ x1 ˝

�X
yj ˝ xj ^ x0

�
C .d � 3/.d � 4/xd�50 x31 ˝ x0 ˝

�X
yj ˝ xj ^ x0

�
C .d � 2/.d � 3/xd�40 x1x2 ˝ x0 ˝

�X
yj ˝ xj ^ x0

�
C .d � 2/xd�30 x2 ˝ x0 ˝

�X
yj ˝ xj ^ x1

�
C .d � 2/xd�30 x2 ˝ x1 ˝

�X
yj ˝ xj ^ x0

�
C .d � 2/xd�30 x1 ˝ x0 ˝

�X
yj ˝ xj ^ x2

�
C .d � 2/xd�30 x1 ˝ x2 ˝

�X
yj ˝ xj ^ x0

�
C xd�20 ˝ x1 ˝

�X
yj ˝ xj ^ x2

�
C xd�20 ˝ x2 ˝

�X
yj ˝ xj ^ x1

�
C .d � 1/.d � 2/xd�30 x3 ˝ x0 ˝

�X
yj ˝ xj ^ x0

�
C .d � 1/xd�20 ˝ x0 ˝

�X
yj ˝ xj ^ x3

�
C .d � 1/xd�20 ˝ x3 ˝

�X
yj ˝ xj ^ x0

�
and rank�.f5/ is also 12. Now, ker�.f5/ contains a subspace A2 which is generated by

¹hy1y3; y
2
2 ; y2y3; y

2
3id�2 ˝ xi .i D 0; : : : ; 3/; h�6y0y2 C .d � 2/y

2
1id�2 ˝ x3;

h�y0y3 C .d � 1/y1y2id�2 ˝ x3º

and im�.f5/
? has a subspace B2 spanned by

¹y2 ˝ y2 ^ y3; y3 ˝ y1 ^ y2; y3 ˝ y1 ^ y3; y3 ˝ y2 ^ y3;�y1 ˝ y2 ^ y3 C y2 ˝ y1 ^ y3;

�.d � 1/y2 ˝ y1 ^ y2 C y3 ˝ y0 ^ y2;�.d � 1/y1 ˝ y2 ^ y3 C y3 ˝ y0 ^ y3;

�y0 ˝ y1 ^ y2 C y1 ˝ y0 ^ y2 � y2 ˝ y0 ^ y1;

�y0 ˝ y1 ^ y3 C y1 ˝ y0 ^ y3 � y3 ˝ y0 ^ y1;

�6y0 ˝ y2 ^ y3 C .d � 2/y1 ˝ y1 ^ y3 � 6.d � 1/y2 ˝ y1 ^ y2º:
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Then one can check that A2 � B2 produces a subspace of yN �Œf5�
�4.v3.P3// in SdU � which is

the degree-d part of an ideal I2 generated by 19 quartics

¹36y20y
2
2 � 12.d � 2/y0y

2
1y2 C .d � 2/

2y41 ;

6y20y2y3 � .d � 2/y0y
2
1y3 � 6.d � 1/y0y1y

2
2 C .d � 1/.d � 2/y

3
1y2;

�y20y
2
3 C 2.d � 1/y0y1y2y3 � .d � 1/

2y21y
2
2 ;�6y0y1y2y3 C .d � 2/y

3
1y3;

�y0y1y
2
3 C .d � 1/y

2
1y2y3;�6y0y

3
2 C .d � 2/y

2
1y
2
2 ; y0y

2
2y3 � .d � 1/y1y

3
2 ;

y0y2y
2
3 � .d � 1/y1y

2
2y3; y0y

3
3 � .d � 1/y1y2y

2
3 ; .d � 2/y

2
1y2y3 � 6.d � 1/y1y

3
2 ;

y21y
2
3 ; y1y

2
2y3; y1y2y

2
3 ; y1y

3
3 ; y

4
2 ; y

3
2y3; y

2
2y
2
3 ; y2y

3
3 ; y

4
3º:

Note that I2 has the same minimal free resolution as I1 in (5.4). Therefore, by the same
argument, we conclude that f5 is also a smooth point when d � 4.

As a direct consequence of the main results in the paper, we also obtain the following
corollary on the (non-)singularity of subsecant loci in the fourth secant variety.

Corollary 30 (From subsecant loci). Let vd WPn ! PN be the d -uple Veronese embed-
ding with n � 3, d � 3, and N D

�
nCd
d

�
� 1. Then the following holds.

(i) A general point in �4.vd .P2// n �3.vd .Pn// is smooth for d � 4. For d D 3, �4.v3.P2//
is a non-trivial singular locus for any n � 4, while all points in �4.v3.P2// n �3.v3.P3//
are smooth for n D 3.

(ii) �4.vd .Pn// is smooth at each point in �4.vd .P1// n �3.vd .Pn// if d � 7. Moreover,
�4.vd .P

1// is a non-trivial singular locus when d D 6 and �4.vd .P1// � �3.vd .Pn//
in case of d � 5.

Proof. As k D 4 and n � 3, the relevant range for anm-subsecant locus in �4.vd .Pn//
is 1 � m � 2.

(i) For m D 2, Theorem 2 (ii) says that �4.vd .Pm// is a non-trivial singular locus in
�4.vd .P

n// if d D 3, n � 4. The case .d; n/ D .3; 3/ is also discussed in Theorem 2 (iv).
When d D 4, 5, and 6, we can say that a general point in �4.vd .P2// n �3.vd .Pn// is smooth
by Theorem 3 (i). For any d � 7, the same conclusion follows from Theorem 2 (i).

(ii) This is given by Theorem 1 for the case k D 4, m D 1.

We add some remarks on Corollary 30.

Remark 31. (a) For d D 2, a subsecant variety �4.vd .P2// in �4.vd .Pn// is a trivial
singular locus, because �4.vd .P2// D �3.vd .P2// � �3.vd .Pn//.

(b) As pointed out in Example 27, a singularity can occur at a special point in

�4.vd .P
2// n �3.vd .P

n//

even for d � 4.

Finally, we end this section by listing cases in which the same nice description for the
singular locus of �k.vd .Pn// as in Example 6 can be made.
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Corollary 32. Let V be an .nC 1/-dimensional complex vector space .n � 1/ and let
vd .PV / � PN be the image of the d -uple .d � 2/ Veronese embedding of PV . Assume that
.k; d; n/ satisfies one of the following conditions:

(i) d D 2 and n � k � 1,

(ii) k D 2, d � 2, and n � 1,

(iii) k D 3, d D 3, and n � 2, or k D 3, d D 4, and n � 3,

(iv) k D 4, d D 3, and n � 4.

Then the singular locus of �k.vd .PV // is given exactly as

¹f 2 PSdV j f is any form which can be expressed using at most k � 1 variablesº;

which is an irreducible locus of dimension

.k � 1/.n � k C 2/C

�
d C k � 2

d

�
� 1

and is equal to the maximum subsecant locus †k;d .min¹k � 1; nº � 1IPV /.

Proof. For case (i), the assertion is immediate since it corresponds to symmetric matri-
ces. In case (ii), we draw the conclusion from the fact that Sing.�2.vd .PV /// D vd .PV / for
every d; n (see [20]).

For the remaining cases, we first claim that, for any 3 � k � nC 1, it holds

(5.5) �k�1.vd .PV // �
[

Pk�2�PV

hvd .P
k�2/i:

We note that the right-hand side of (5.5) is an irreducible and closed subvariety of �k.vd .PV //,
since it coincides with a subvariety

S
ƒ2Imˆƒ, where a map

ˆWG.k � 2; n/! G

��
d C k � 2

d

�
� 1;N

�
sending each subspace L of dimension k � 2 to the linear span hvd .L/i in PN is regular (see
e.g. [17, Example 6.10, Proposition 6.13]). Then, because a general element of the left-hand
side is of the form `d1 C � � � C `

d
k�1

for some linear forms `i , it belongs to hvd .Pk�2/i for some
Pk�2 � PV so that the closure is also contained in the subvariety

S
Pk�2�PV hvd .P

k�2/i.
For case (iii), by [16, Theorem 2.1, Remark 2.4 (a), and Corollary 2.11] and Theorem 1,

and for case (iv), by Theorem 5, we know that

Sing.�k.vd .PV /// D �k�1.vd .PV // [
° [

Pk�2�PV

�k.vd .P
k�2//

±
;

which can also be written as

�k�1.vd .PV // [†k;d .min¹k � 1; nº � 1IPV /:

In both cases (iii) and (iv), we have �k.vd .Pk�2// D hvd .Pk�2/i. Thus, by the above claim,
the singular locus is equal to[

Pk�2�PV

hvd .P
k�2/i D †k;d .min¹k � 1; nº � 1IPV /;

which is irreducible and can be described as written in the statement. The formula for the
dimension is immediate from dimension counting.
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6. Concluding remark

So far, we have reported results on singular loci of �k.vd .Pn// coming from the sub-
secant loci. To the best of our knowledge, there is no general idea or clear consensus on the
singular locus of an arbitrary higher secant variety of any Veronese variety yet. From this point
of view, the present paper contributes by providing a more visible picture on the singular locus
via showing a generic smoothness of the subsecant loci for relatively low k and confirming the
singularity of the same loci for other k.

As we mentioned in the introduction, each point p 2 �k.vd .Pn// n �k�1.vd .Pn// is
located in �k.vd .Pm// n �k�1.vd .Pn// for some 1 � m � min¹k � 1; nº. To make the picture
more complete, we have two future issues: (i) on the subsecant loci (i.e., m < min¹k � 1; nº),
one needs to check the (non-)singularity not only at a general point but also at every point, and
(ii) points in the full-secant locus (i.e., m D min¹k � 1; nº) should be treated.

Issue (i) is expected to be very complicated because, at some special point, a singular-
ity can also occur even for a low k as shown in Example 27 (in fact, we can generate more
examples using a similar idea). For the points in the subsecant loci, in general, one could not
hope to find some nice “normal forms” and the situation is expected to be wild (in other words,
the subsecant loci may not be covered with finitely many nice families of SL-orbits). But still,
we can push on our viewpoint a bit further and, along the same spirit, we can refine a main
result of this paper in the following manner. Based on the singularity results in Theorems 1, 2,
and 3 and using an estimation similar to Section 2.3, more generally, we have the following.

Theorem 33. Suppose that m D 1 and k; d satisfy Theorem 1 (ii) or (iii), or suppose
that k; d;m satisfy Theorem 2 (ii) or (iii) or Theorem 3 (ii) or (iii); in other words, the m-
subsecant variety �k.vd .Pm// is a singular locus in �k.vd .Pn//. Let 1 � m � n � 1 and
r � n �m. Then, unless �kCr.vd .Pn// fills up the ambient space PN , the following holds:

(6.1) J.�k.vd .P
m//; �r.vd .P

n/// � Sing.�kCr.vd .P
n///;

where J.X; Y / denotes the “(embedded) join” of two subvarietiesX; Y in their ambient space.

Proof. Suppose that inclusion (6.1) does not hold. Then, taking x1; : : : ; xk to be general
points of vd .Pm/ and xkC1; : : : ; xkCr to be general points of vd .Pn/, we may assume that
x … Sing.�kCr.vd .Pn/// for a general x 2 hx1; : : : ; xkCri. By Terracini’s lemma, we have

L1 D hTx1
vd .P

n/; : : : ;Txk
vd .P

n/i � Tx�kCr.vd .P
n//;

and by the assumption on k, we know that dimL1 > knC k � 1.
On the other hand, since xkC1; : : : ; xkCr are general points of vd .Pn/,

L2 D hTxkC1
vd .P

n/; : : : ;TxkCr
vd .P

n/i � Tx�kCr.vd .P
n//

and L2 has dimension at least rnC r � 1.
Moreover, we may assume L1 \ L2 D ; as follows. Taking Pn�m�1 � Pn such that

xkC1; : : : ; xkCr 2 P r�1 � Pn�m�1 and Pm \ Pn�m�1 D ;;

and changing coordinates t0; : : : ; tm; u1; : : : ; um0 on Pn as in Section 2.3, we may say that
Pn�m�1 is the zero set of t0 D � � � D tm D 0 and Pm is the zero set of u1 D � � � D um0 D 0.
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For a point x0 2 Pm, using parameterization (2.13), the tangent space Tvd .x0/vd .P
n/ is span-

ned by the rows of the matrix of the form Œ� W O� as (2.15). On the other hand, for a point
x00 2 Pn�m�1 and for an affine open set containing x00, we may take um0 D 1 instead of t0 D 1.
Then the only part on the parameterization of vd which contributes Tvd .x00/vd .P

n/ is

t0 �monoŒu��d�1; : : : ; tm �monoŒu��d�1;monoŒu��d

which corresponds to the tailing “�” part in (2.13) (recall that monoŒu��e is the set of mono-
mials of CŒu1; : : : ; um0 � of degree at most e). Thus a similar matrix whose rows span the other
tangent space Tvd .x00/vd .P

n/ has a form ŒO W ��. This implies L1 \ L2 D ;. Hence

dimhL1; L2i > .k C r/nC .k C r/ � 1;

which is contrary to hL1; L2i � Tx�kCr.vd .P
n//.

Remark 34 (Partial subsecant locus). This new singular locus

J.�k.vd .P
m//; �r.vd .P

n///

in (6.1) can be seen as a “partial version” of subsecant locus in this paper. In particular, it con-
tains the m-subsecant variety �kCr.vd .Pm// D J.�k.vd .Pm//; �r.vd .Pm///. So let us call
such a locus a partial subsecant locus of �kCr.vd .Pn//. We note that the singularity of a spe-
cific form f D x2y2 C z4 in Example 27 can be explained using this notion; f is a point of
†4;4.2IP3/ where only a generic smoothness is known by Theorems 3 (i), but f also belongs
to a partial subsecant locus J.�3.v4.P1//; �1.v4.P3/// which is singular by Theorem 33.

Therefore, one proper question on the singular locus of �k.vd .Pn// here is probably such
as the following.

Question 35. Let k � 1 � n and let D be the union of all possible (partial) subse-
cant loci of �k.vd .Pn//. Are the points of �k.vd .Pn// n .D [ �k�1.vd .Pn/// all smooth in
�k.vd .P

n//?

Note that the answer to Question 35 is affirmative in cases of k D 2 classically and k D 3
(by [16]) and k D 4 (by Theorem 29). For a large value k compared to n (e.g. n < k � 1),
Question 35 may be answered negatively as in the following example.

Example 36. Let us consider �14.v8.P2//, the 14-th secant variety of the Veronese
variety v8.P2/. Take 14 general points on v8.P2/. In [3, Remark 4.10], the authors presented
a concrete point in the linear span of the 14 points which is a non-normal point to �14.v8.P2//.
Note that one can also check this singular point does not belong to D , the locus of all partial
subsecants.

Remark 37. Finally, we would like to remark that the approach based on the same spirit
of trichotomy pattern of (non-)singularity on subsecant loci still can be applied to the study of
singular loci of higher secant varieties of other classical varieties such as Segre embeddings,
Segre–Veronese varieties and Grassmannians. For instance, we can have a conjectural result
like the following.
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Conjecture. For En D .n1; n2; : : : ; nr/, let X be the Segre embedding

Pn1 � Pn2 � � � � � Pnr � P
Q
.niC1/�1µ Pˇ.En/

and denote �k.X/ by �k.En/, the expected dimension of �k.En/ by sk.En/. Besides a few excep-
tional cases, for every Em D .m1; m2; : : : ; mr/with 0 � mi � min¹k � 1; ni � 1º, we have that
the following holds:

(i) �k.En/ is smooth at a general point in �k. Em/ n �k�1.En/ if ˇ. Em/ > sk. Em/,

(ii) �k. Em/ is singular in �k.En/, but �k. Em/ 6� �k�1.En/ (i.e., non-trivial singular locus) if
sk�1. Em/ < ˇ. Em/ � sk. Em/,

(iii) �k. Em/ � �k�1.En/ if ˇ. Em/ � sk�1. Em/.

This can recover the result on the singular locus of the secant varieties of Segre embed-
dings [28, Corollary 7.17] for k D 2. Note that if we assume that everything is non-defective,
then the ranges above can be computed as

(i) ” k <

Qr
iD1.mi C 1/Pr

iD1.mi C 1/ � .r � 1/
;

(ii) ”
Qr
iD1.mi C 1/Pr

iD1.mi C 1/ � .r � 1/
� k <

Qr
iD1.mi C 1/Pr

iD1.mi C 1/ � .r � 1/
C 1;

(iii) ” k �

Qr
iD1.mi C 1/Pr

iD1.mi C 1/ � .r � 1/
C 1:

We plan to deal with these cases in a forthcoming paper.
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