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Nasal AB42 mirrors brain amyloid
dynamics and cognitive decline
across the Alzheimer’s disease
continuum
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Early, non-invasive assessment of Alzheimer’s disease (AD) progression remains a key challenge.
This study evaluated whether nasal amyloid-B42 (AB42) levels reflect brain amyloid dynamics and
cognitive decline. Nasal discharge from 161 individuals, ranging from cognitively unimpaired to AD
dementia, was analyzed using ELISA, alongside neuropsychological assessments and amyloid PET
imaging. Moderate nasal AB42 levels (9.53-11.10 pg/mL) were positively associated with PET amyloid
burden and cognitive decline, identifying a critical transitional disease stage. Conversely, the highest
AB42 levels showed weaker correlations, suggesting a non-linear progression. The pattern of nasal
AB42 mirrored brain amyloid accumulation, which peaks and stabilizes in later disease stages. These
findings highlight nasal AB42 as a promising, scalable biomarker for tracking AD pathology and offer
the first evidence linking it with brain amyloid PET. This supports its potential use in both clinical and
longitudinal research settings.
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Alzheimer’s disease (AD) poses growing societal and economic burdens, intensified by the rapid aging of
the global population!. Despite substantial advances in understanding AD pathology, clinical trials aimed at
halting or reversing disease progression have not yet yielded broadly effective treatments. This underscores the
urgent need for accessible, non-invasive indicators capable of reflecting disease progression and underlying
neuropathological mechanisms. Such indicators would significantly enhance our understanding of AD
pathogenesis and potentially guide timely therapeutic interventions.

Currently, AD identification primarily involves familial medical history assessments, neuropsychological
evaluations, advanced neuroimaging techniques—such as magnetic resonance imaging (MRI) or positron
emission tomography (PET)—and analysis of cerebrospinal fluid (CSF) or blood biomarkers. Core biomarkers
in CSF and blood have demonstrated strong correlations with central pathological features, notably amyloid
deposition and tau pathology®>. Nevertheless, these methods face practical limitations, including the invasive
nature and risks of lumbar punctures, complexity and high costs of imaging modalities, and ongoing technical
challenges in adopting blood-based assays for broader clinical use.

To overcome these challenges, alternative peripheral body fluids that are easily accessible and reflect central
pathological changes should be explored®. Among these, nasal discharge fluid is particularly promising due
to its anatomical proximity to the olfactory epithelium (OE). Olfactory dysfunction, such as anosmia or
hyposmia, frequently precedes cognitive symptoms in AD>"!1. This early dysfunction is closely associated with
neurodegeneration within olfactory pathways and related brain regions, including the olfactory bulb (OB),
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entorhinal and transentorhinal cortices, and medial temporal lobes—regions known to overlap significantly
with areas involved in early AD pathology™'®!3. Structural and functional abnormalities, including altered
amyloid precursor protein (APP) processing and neuroinflammation, further indicate the presence of olfactory
neuropathology'*~!8. Indeed, multiple postmortem and antemortem studies consistently identified classical
AD hallmarks, such as intracellular neurofibrillary tau tangles and amyloid plaques, within central olfactory
processing regions!'®%.

Nasal discharge fluid bathes the OE, containing cellular debris derived from olfactory sensory neurons
(OSNG), offering unique insights into neuronal and neuropathological processes closely linked to the brain.
Given the high turnover and regenerative capacity of peripheral OSNs, nasal fluid may reflect ongoing neuronal
changes associated with early stages of AD pathology®*. Furthermore, its collection is straightforward, non-
invasive, and cost-effective compared to established methods involving CSF sampling or advanced imaging
modalities, thereby increasing its practical utility in both research and clinical settings.

Previous studies have identified AP peptides and APP within the olfactory mucosa samples obtained
postmortem from AD patients?®?. Aggregated AP was detected in the olfactory mucosa of 71% of AD
patients, compared to 22% of normal individuals and 14% of cases with other neurodegenerative diseases®.
Biopsy examinations of the olfactory mucosa further confirmed the presence of these pathological proteins
across the AD continuum, including mild cognitive impairment (MCI)?’. Recent immunoassay-based studies
revealed elevated oligomeric A levels in nasal discharge fluid from AD patients compared to cognitively normal
individuals, highlighting nasal fluid’s sensitivity to central AD-related neuropathological processes®®°.

Based on these observations, we hypothesized that nasal AP42 concentrations measured in nasal discharge
fluid reflect neuropathological changes associated with AD progression, particularly amyloid deposition
dynamics. To test this hypothesis, we quantitatively analyzed nasal AB42 levels across the entire AD continuum.
Our findings suggest that nasal AP42 levels indeed mirror central neuropathological changes occurring in the
brain, potentially clarifying the trajectory of AD proteinopathies and disease progression. Therefore, monitoring
nasal AB42 presents a promising and non-invasive avenue for investigating the underlying pathological processes
of AD, contributing to therapeutic research and advancing our understanding of disease pathogenesis.

Materials and methods

Participants and study design

All assessed participants were recruited from the Catholic University of Korea Yeouido St. Mary’s Hospital
in Seoul and this study was approved by the Catholic University of Korea Institutional Review Boards (IRB)
(IRB Number SC18TNSI0063). All clinical assessments and nasal discharge sample collections were conducted
between October 2018 and October 2019. Participants underwent comprehensive clinical and neuropsychological
assessment, including Clinical Dementia Rate (CDR) to stage the severity of dementia, the Global Deterioration
Scale (GDS) to assess global cognitive decline, and the Korean version of Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) neuropsychological battery to evaluate multiple cognitive domains®*-*2. Korean
version of Mini-Mental State Examination (MMSE) was also administered as a general cognitive screening
tool. Following neuropsychological assessment, patients were classified as cognitively unimpaired (CU), mild
cognition impaired (MCI), and AD dementia, following the criteria provided by the National Institute on Aging-
Alzheimer’s Association (NIA-AA) and Diagnostic and Statistical Manual of Mental Disorders (DSM-V). Out
of 218 individuals initially screened for eligibility, 57 were excluded due to the presence of one or more of the
following conditions: systemic illnesses known to affect cognition (such as thyroid disorders, severe anemia,
or syphilis), significant sensory impairments (hearing or vision), neurological conditions (including brain
tumors, encephalitis, or epilepsy), major cerebrovascular pathology, medications with cognitive side effects,
or contraindications to undergoing MRI. As a result, 161 participants were included in the final analysis. All
methods were performed in accordance with the relevant guidelines and regulations.

Nasal discharge fluid sampling and analysis

All subjects provided written informed consent before participating via self-referral or referral from their family.
Samples were collected according to a protocol previously described and delivered to DGIST for analysis?’. The
whole nasal discharges were pooled (>1.5 mL) in a microtube and immediately sonicated for 10-15 s, followed
by centrifugation (10,000xg for 10 min at 4 °C) to remove cells and cellular debris. A Protease Inhibitor Cocktail
was added to the supernatants (Roche, Mannheim, Germany). Samples were then rapidly frozen for permanent
storage at —80 °C. Nasal AP42 levels were quantified using enzyme-linked immunosorbent assay (ELISA;
Thermo Fisher Scientific, #KHB3544) following the manufacturer’s instructions. All ELISA measurements were
conducted between July and October 2020 after long-term frozen storage. This high-sensitivity assay has an
intra-assay coeflicient of variation of 8.6% and an analytical sensitivity below 1 pg/mL, with an assay range of
1.56-100 pg/mL. The corresponding standard deviation (~0.7-0.9 pg/mL in the measured range) supports the
resolution of adjacent quartile boundaries (e.g., Q2: 7.63-9.53 pg/mL vs Q3: 9.53-11.10 pg/mL).

AB-PET imaging

All patients underwent AB-PET using ['8F]flutemetamol and information regarding ['®F]flutemetamol
production, data collection, and analytical results were described previously®®>. We used T1 MRI images of
each individual for co-registration, defining regions of interest (ROIs), and correction of partial volume effects
associated with expansion of the cerebrospinal spaces due to cerebral atrophy. The standardized uptake value
ratio (SUVR) measured 90 min post-injection was utilized for ['8F]flutemetamol PET data analysis. To define
global cerebral AP burden, SUVRs of the six cortical ROIs (frontal, superior parietal, lateral temporal, striatum,
anterior cingulate cortex, and posterior cingulate cortex/ precuneus) were averaged. Two nuclear medicine
radiologists separately confirmed amyloid positivity based on visual readings.
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Statistical analysis

All statistical analyses were performed using GraphPad Prism and SPSS (version 23.0; IBM Corp, Armonk,
New York, USA). Descriptive statistics for the subject characteristics were generated in which frequencies and
percentages were calculated for categorical variables and means and standard deviations were calculated for
continuous variables. Values are presented as mean + standard deviation (SD) or standard error of the mean
(SEM), and individual data points represent individual samples. Statistical significance was determined at a p-
value below of 0.05, while p-values below or equal to 0.05, 0.01, 0.001, and 0.0001 were represented by *, **, ***,
and ****, respectively.

The normality distribution of the nasal AP42 data was evaluated using the Kolmogorov-Smirnov test.
Depending on the distribution characteristics of nasal AB42 data, participants were divided into quartiles. This
quartile was used as an indicator to analyze the correlation between nasal AB42 levels and cognitive function
measurements. Chi-square test and Fisher’s exact tests were applied for categorical variables, as appropriate.
Student’s t-test was used to demonstrate statistical differences between two groups, and One-way ANOVA or
two-way ANOVA with Dunnett’s or Turkey’s post hoc test was used when appropriate.

Multivariate logistic regression was used to assess the predictive utility of nasal AP42 levels and cognitive
measures (CDR, GDS, MMSE) for AD diagnosis. Both unadjusted and adjusted models were tested, with
adjustment for age, sex, and years of education. Regression analyses included either clinical diagnoses or cognitive
scores as covariates. Odds ratios (ORs) and 95% confidence intervals (CIs) were reported. Receiver operating
characteristic (ROC) curve analysis was used to evaluate sensitivity, specificity and area under the curve (AUC)
for nasal AP42 levels and cognitive function measurements to AD diagnosis. ROC curve analysis to evaluate the
ability of nasal AP42 levels and cognitive function measurements to AD diagnosis, logistic regression models
with the same covariates and confounding variables as above mentioned the regression model were calculated.

Results

Study population

We included in total 161 participants from the Catholic University of Korea Yeouido St. Mary’s Hospital in
Seoul. Participants underwent neuropsychological testing, including Clinical Dementia Rate (CDR), Global
Deterioration Scale (GDS), Mini-Mental State Examination (MMSE), and Consortium to Establish a Registry
for Alzheimer’s Disease (CERAD). These participants were classified as cognitively unimpaired (CU),
Preclinical, MCI, and AD (n=32 CU, n=29 with Preclinical, n=73 with MCI, n=27 with AD), according to
the criteria provided by National Institute on Aging-Alzheimer’s Association (NIA-AA) and Diagnostic and
Statistical Manual of Mental Disorders (DSM-V)3%. Participants were selected based on the following inclusion
criteria, adapted from a previous study’: age 55 years or older and absence of clinically significant psychiatric
disorders, including depressive disorder, schizophrenia, and bipolar disorder. CU subjects were recruited from
individuals undergoing brain examinations as part of routine health checkups at the outpatient clinic. Their
cognitive function was assessed using the Korean version of CERAD. MCI was diagnosed based on the following
criteria: (1) subjective memory complaints corroborated by an informant; (2) objective cognitive impairment in
multiple domains (at least 1.0 standard deviation below age- and education-adjusted norms on Korean version
of CERAD); (3) preserved activities of daily living; (4) CDR score of 0.5; and (5) absence of dementia according
to DSM-V criteria. AD patients’ diagnosis adhered to the probable AD criteria established by the National
Institute of Neurological and Communicative Disorders and Stroke and AD and Related Disorders Association
(NINCDS-ADRDA), as well as the DSM-V criteria, with positive amyloid PET results*®’. Table 1 summarizes
the demographic and clinical characteristics of this study.

Total CU Preclinical | MCI AD p-value
N 161 32 29 73 27
Female, N (%) 100 (62) 21 (66) 20 (69) 39 (53) 20 (74) 0.193
Age, years 74.36 (8.12) | 69.69 (7.54) | 74.76 (6.39) |74.10(8.33) |80.19 (5.82) | <0.001
Education, years 11.07 (4.90) |10.59 (4.96) | 12.21(4.90) |11.90(4.33) |8.19(5.04) | 0.008
APOE ¢4 carrier, N (%) 51 (36) 4(16) 10 (38) 26 (38) 11 (48) 0.114
MMSE 24.62(423) |27.75(2.12) |27.00(1.89) |24.86(2.65) |17.70 (3.58) | <0.001
CDR 0.45 (0.34) 0.09 (0.20) 0.29 (0.25) 0.49 (0.15) 0.93 (0.30) | <0.001
GDS 2.99 (0.91) 1.97 (0.53) 2.59 (0.62) 3.15(0.57) 4.19 (0.67) | <0.001
CERAD 58.37 (16.43) | 71.78 (10.78) | 70.24 (11.60) | 55.77 (12.11) | 36.78 (9.03) | <0.001
AB-PET positivity, N (%) 96 (60) 0(0) 29 (100) 43 (59) 24 (89) <0.001
AB-PET, ['8F]Flutemetamol SUVR | 0.67 (0.13)  [0.57(0.07) | 0.75(0.12) | 0.65(0.13) | 0.74(0.12) | <0.001

Table 1. Demographic and clinical characteristics. Data are expressed as mean (SD) or percentage (%), as
appropriate. p-values are from Chi-square test for categorical data and one-way ANOVA followed by Turkey’s
post hoc comparisons for continuous variables. AB, amyloid beta; AD, Alzheimer’s disease; ANOVA, analysis
of variance; APOE, apolipoprotein E; CDR, Clinical Dementia Rate; CERAD, Consortium to Establish a
Registry for Alzheimer’s Disease; CU, cognitively unimpaired; GDS, Global Deterioration Scale; MCI, mild
cognitive impairment; MMSE, Mini-Mental State Examination; PET, positron emission tomography; SD,
standard deviation; SUVR, standard uptake value ratio.
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Assessing the association between nasal AB42 levels and cognitive impairment
We first conducted immunoassays using enzyme-linked immunosorbent assay (ELISA) to identify if the nasal
AP42 levels were measurable in human nasal discharge fluid. No significant difference was observed in mean
nasal AP42 levels across the CU, Preclinical, MCI, and AD groups (p=0.487). To investigate the association
between nasal AB42 levels and cognitive function, we stratified nasal AP42 level into quartile (Q) groups®**. The
first quartile group (Q1) consisted of participants with lower than or equal to 7.63 pg/mL of nasal Ap42 (n=41),
the second quartile group (Q2) with greater than 7.63 pg/mL and lower than or equal to 9.53 pg/mL of nasal
AB42 (n=40), the third quartile group (Q3) with greater than 9.53 pg/mL and lower than or equal to 11.10 pg/
mL of nasal AP42 (n=40), and the last quartile group (Q4) with greater than 11.10 pg/mL of nasal Ap42 (n =40).
When we analyzed the groups divided by the clinician’s diagnostic groups, we found that the second-highest
quartile group (Q3) constituted the majority of patients with AD diagnosis (Fig. 1A; p=0.036). When we
examined the groups by different neuropsychological testing results, in all three tests, CDR, GDS, and MMSE,
the Q3 groups constituted the majority of patients with most severe cognition impairment (Fig. 1B-D; p=0.008,
0.037, 0.023, respectively).

Assessing the association between each quartile group of nasal AB42 and cognitive function
Next, we analyzed the relation between cognitive function measurements and quartile groups. Q3 groups
exhibited more impaired scores in all neuropsychological tests than any other group with statistical significance
(Fig. 2A-D). Q3 group showed the most impaired results in CDR (p=0.0157 with Q1, p=0.0028 with Q2, and
p=0.0450 with Q4). Similar results were witnessed in GDS (p=0.0071 with Q1 and p=0.0033 with Q2), in MMSE
(p=0.0277 with Q1, p=0.0230 with Q2, and p=0.0230 with Q4), and in CERAD (p=0.0427 with Q1, p=0.0429
with Q2, and p=0.0270 with Q4). These neuropsychological tests assess different domains in cognition, and this
result demonstrates that quartile groups of nasal AB42 level may reflect diverse changes in cognition.

In contrast, age and education years did not differ between quartile groups, indicating the association between
the nasal APB42 levels and cognition impairment was not affected by external factors.

Assessing the association between nasal AB42 and brain amyloid in PET

To address if nasal AP levels can reflect the brain amyloid load, we separated each quartile groups into Ap PET
positive and AP PET negative groups and compared the brain amyloid load across the groups (Fig. 3). The AP
PET Positive group in Q3 had significantly higher SUVR values, indicating higher AP burden in the brain than
any other quartile groups, including Q4 (p=0.0433 with QI and p=0.0068 with Q4).

Assessing the association between nasal AB42 and risk of developing AD

Next, in order to predict the odds ratio (OR) of being diagnosed with AD based on nasal AP42 levels, we
performed multivariate logistic regression analysis. The first model was unadjusted, while the second model
and was adjusted for age, sex, and years of education (Table 2). Having Q3 nasal AP42 level was associated with
increased odds for developing AD by all neuropsychological tests and clinician’s diagnosis than having Q1 Ap42
level.

Assessing the discriminative power of nasal AB42 as a biomarker

We performed ROC analysis to assess the ability of quartile nasal AP42 levels to discriminate AD from non-
AD subjects (Fig. 4A-F). Within all participants, when a participant’s age, sex, and quartile nasal AB42 level
information were provided, Q3 (AUC=0.766) showed the highest performance for discriminating AD from non-
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Fig. 1. Rate ratio of participants by nasal AB42 levels as quartiles. Proportions of participants in each nasal
AB42 quartile group—Q1 (blue), Q2 (green), Q3 (orange), and Q4 (red)—are shown according to (A) clinical
diagnosis, (B) Clinical Dementia Rating (CDR), (C) Global Deterioration Scale (GDS), and (D) Mini-Mental
State Examination (MMSE) categories. Group sizes for clinical diagnosis (A) are: CU (n=32), Preclinical
(n=29), MCI (n=73), and AD (n=27). Group sizes for CDR (B) are: CU (n=42), MCI (n=95), and AD
(n=24). Group sizes for GDS (C) are: CU (n=6), MCI (n=116), and AD (n=39). Group sizes for MMSE (D)
are: CU (n=65), MCI (n=40), and AD (n=56). A, amyloid beta; CDR, Clinical Dementia Rate; CERAD,
Consortium to Establish a Registry for Alzheimer’s Disease; CU, cognitively unimpaired; GDS, Global
Deterioration Scale; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination.
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Fig. 2. Clinical characteristics by quartiles of nasal AB42. Results of each quartile group’s cognitive function
measured by CDR is shown in (A), GDS in (B), MMSE in (C), and CERAD in (D). Association with age is
shown in (E) and years of education in (F). All data are presented as mean + SEM. Statistical significance

was tested by one-way ANOVA, followed by post-hoc using Dunnett. Statistical significance was determined
at a p-value below of 0.05, while p-values below or equal to 0.05 and 0.01 were represented by * and **,
respectively. Group sizes were as follows: Q1 (n=41), Q2 (n=40), Q3 (n=40), Q4 (n=40). AP, amyloid beta;
ANOVA, analysis of variance; CDR, Clinical Dementia Rate; CERAD, Consortium to Establish a Registry for
Alzheimer’s Disease; GDS, Global Deterioration Scale; MMSE, Mini-Mental State Examination.

AD subjects (Q1, AUC=0.714; Q2, AUC=0.683; Q4, AUC=0.640). When a participant’s age, sex, education,
and quartile nasal AB42 level information were provided, Q3 (AUC=0.778) also reliably separated AD from
non-AD (Q1, AUC=0.741; Q2, AUC=0.717; Q4, AUC=0.679). When a participant’s neuropsychological test
result was additionally provided, the Q3 showed the highest discriminating performance (AUC=0.959 for
MMSE; AUC=0.885 for CDR; AUC=0.892 for GDS; AUC=0.904 for CERAD).

Discussion

This study demonstrates that nasal AB42 concentrations reflect dynamic changes in brain amyloid pathology
across the AD continuum. Nasal discharge fluid, which bathes the olfactory epithelium, provides a unique
window into neuronal changes occurring in regions among the earliest affected in AD, including the OB
and adjacent medial temporal structures>?*°. Notably, moderate nasal AB42 concentrations (9.53-11.10 pg/
mL) were most strongly associated with cognitive impairment and amyloid PET positivity. Individuals in this
range (Q3 group) accounted for the largest proportion of AD patients, suggesting a transition phase in which
pathological burden becomes more clinically apparent. In contrast, those with the highest nasal AB42 levels
exhibited weaker associations, indicating a potential non-linear relationship between nasal Ap42 concentration
and disease stage. These observations align with established brain amyloidosis trajectories, where amyloid
accumulation accelerates early but eventually plateaus or declines in later stages*'™**.
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Fig. 3. Amyloid PET SUVR by quartiles of nasal AB42. Violin plots represent the SUVR values of Ap PET
negative (blue) and AP PET positive (red). Vertical lines indicate the interquartile range and medians are
indicated by gray horizontal line. Statistical significance was tested by two-way ANOVA, followed by post-
hoc using Dunnett. Statistical significance was determined at a p-value below of 0.05, while p-values below
or equal to 0.05 and 0.01 were represented by * and **, respectively. Group sizes were as follows: Q1 (n=41),
Q2 (n=40), Q3 (n=40), Q4 (n=40). AP, amyloid beta; ANOVA, analysis of variance; PET, positron emission
tomography; SUVR, standard uptake value ratio.

Importantly, our results show that nasal AP42 levels mirror the progression of cerebral amyloid pathology.
AP exists in multiple forms—monomers, dimers, oligomers, fibrils, and plaques—and disruptions in its
production and clearance are central to AD-related toxicity**%. The pattern observed in our study—a rise in
nasal AP42 concentrations followed by a plateau or modest decline—closely resembles trajectories documented
in longitudinal PET imaging studies**->%. This parallel supports the utility of nasal AB42 as a reflective index of
brain amyloid dynamics, offering a new avenue for non-invasive monitoring of disease processes.

A key strength of this study lies in the direct comparison of nasal AP42 concentrations with amyloid PET
imaging data across preclinical, MCI, and AD stages. To our knowledge, this is the first report to demonstrate
that nasal AP42 concentrations track brain amyloid burden in a stage-dependent manner. This mirroring effect
highlights the potential of nasal discharge as a peripheral fluid that captures central pathological processes.

Although nasal discharge sampling does not substitute for established techniques such as CSF analysis or PET
imaging, it offers notable practical advantages. Nasal sampling is non-invasive, low-cost, and logistically simple.
It circumvents the risks associated with lumbar puncture and the high financial and infrastructural demands
of neuroimaging. These attributes make it well suited for large-scale screening or longitudinal monitoring in
resource-limited settings.

Our study also examined potential clinical relevance. While nasal AB42 levels alone demonstrated
moderate discriminative ability in distinguishing AD from non-AD participants, performance improved when
demographic factors such as education level were included. This finding is consistent with previous studies
indicating that cognitive reserve may modulate the expression of AD symptoms>!. Moreover, a recent large-scale
community-based study reported that poor olfaction is significantly associated with plasma biomarkers of AD
and neurodegeneration, reinforcing the value of olfactory-based markers as indicators of central pathology™.
Incorporating neuropsychological testing further enhanced predictive accuracy, suggesting that nasal Ap42
could complement cognitive assessments in settings where neuroimaging is unavailable or impractical®®. While
not intended for diagnostic purposes, these results support further investigation into its role as a stratification
tool in research contexts.

While our findings are promising, several limitations must be considered. First, the study did not control for
diurnal variation, which may fluctuate over the course of the day. Future studies should standardize sampling
times to minimize this source of variability. Second, only a single nasal discharge sample was collected per
participant, limiting insights into temporal dynamics. This decision was made to reduce participant burden
and maintain compliance, particularly given the novelty and semi-invasive nature of the collection procedure.
Longitudinal data will be essential for understanding how nasal AP42 evolves across disease progression. Third,
while the study cohort spans the AD continuum, validation in larger and more diverse populations is needed. To
support this, we analyzed an independent dataset from individuals across the cognitive spectrum. Although this
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Model 1* Model 2+
OR | 95%CI p-value | OR | 95% CI p-value
2.1CDR
Q1|1 1

Q2 | 1.810 | [0.420,8.136] |0.439 | 1.760 | [0.366,8.457] | 0.480
Q3 | 5.429 | [1.399,21.068] | 0.014 |5.462 | [1.310,22.771] | 0.020
Q4 | 1.407 | [0.294,6.730] | 0.669 | 1.314 | [0.241,7.165] | 0.752
2.2GDS
Q1|1 1
Q2 | 1.029 | [0.302,3.508] |0.963 |0.998 | [0.280,3.554] |0.998
Q3 | 4312 | [1.480,12.559] | 0.007 | 4.417 | [1.435,13.600] | 0.010
Q4 | 1.944 | [0.632,5.980] |0.246 |2.282 | [0.689,7.552] |0.177
2.3 MMSE
Q1|1 1
Q2 | 0.732 | [0.284,1.887] |0.518 | 0.674 | [0.239,1.897] | 0.455
Q3 | 2357 | [0.961,5.781] | 0.061 |2.337 | [0.862,6.336] | 0.095
Q4 | 0560 | [0.209,1.497] |0.248 | 0.606 | [0.204,1.799] |0.367

2.4 Clinical description
Ql |1 1
Q2 | 1.632 | [0.424,6.285] | 0.476 1.656 | [0.392,6.992] | 0.492
Q3 | 4.454 | [1.308,15.169] | 0.017 4.607 | [1.217,17.442] | 0.025
Q4 | 1.028 | [0.239, 4.425] | 0.971 1.102 | [0.223,5.460] | 0.905

Table 2. Regression model of discriminative and predictive ability of nasal AP42 levels. Data are from logistic
regression models for progression to AD dementia with respective cognitive test results. AP, amyloid beta;
CDR, Clinical Dementia Rating; CI, confidence interval; GDS, Global Deterioration Scale; MMSE, Mini-
Mental State Examination; OR, odds ratio. *Regression estimates with unadjusted age, sex, and education year
variables. "Regression estimates with adjusted age, sex, and education year variables.

secondary dataset lacks amyloid PET imaging, the similarity in AB42 concentration distributions reinforces the
reproducibility of our measurement approach. This additional dataset offers an opportunity for future replication
studies, particularly in longitudinal or imaging-limited settings. Fourth, as this study was conducted at a single
clinical site, potential selection bias may limit generalizability. Moreover, unmeasured confounders—including
comorbid conditions, medication use, and socioeconomic factors—were not fully controlled and may influence
nasal AP42 levels. These factors should be addressed in future multicenter studies with broader demographic
and clinical adjustment.

Given the anatomical proximity of the nasal cavity and olfactory system to brain regions affected early in AD,
nasal AB42 may reflect central pathology more directly than distal fluids such as blood or saliva. Recent studies
further demonstrate that olfactory dysfunction correlates with entorhinal cortex and hippocampal atrophy,
particularly in individuals with subjective cognitive decline or MCI, reinforcing the idea that olfactory markers
capture early medial temporal lobe degeneration®’. In addition, recent longitudinal PET studies have shown
that declining olfactory identification scores predict incident MCI and are associated with increasing regional
amyloid and tau burden, especially in olfaction-relevant areas such as the orbitofrontal and entorhinal cortices.
Elucidating the biological mechanisms that underlie this relationship could open new opportunities for tracking
disease progression or evaluating therapeutic response via the nasal route.

In conclusion, this study provides the first evidence that nasal AP42 concentrations, particularly in the
moderate range, are significantly associated with AD diagnosis, cognitive decline, and brain amyloid deposition.
These findings support the utility of nasal discharge as a research tool for tracking AD-related changes and
improving our understanding of amyloid pathology across the disease continuum. With further validation
and standardization, nasal AB42 monitoring may offer a practical and scalable means of investigating disease
progression in both clinical and research settings.
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Receiver operating characteristic (ROC) curve analyses for nasal AP42 level biomarker performance

in distinguishing AD from non-AD subjects in Q1 (blue), Q2 (green), Q3 (orange), and Q4 (red). Areas under
the ROC curves (AUCs) are presented in legends. AUC, area under the curve; CDR, Clinical Dementia Rate;
CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; GDS, Global Deterioration Scale; MMSE,
Mini-Mental State Examination; ROC, receiver operating characteristic.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to restrictions
imposed by personal data protection regulations, but are available from the corresponding author on reasonable

request.
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