
Academic Editors: Emmanuele

Barberi and Emanuele Guardiani

Received: 26 September 2025

Revised: 20 October 2025

Accepted: 20 October 2025

Published: 21 October 2025

Citation: Park, Y.-J.; Cho, H.-S.

Subset-Aware Dual-Teacher

Knowledge Distillation with Hybrid

Scoring for Human Activity

Recognition. Electronics 2025, 14, 4130.

https://doi.org/10.3390/

electronics14204130

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Subset-Aware Dual-Teacher Knowledge Distillation with Hybrid
Scoring for Human Activity Recognition
Young-Jin Park * and Hui-Sup Cho

Division of AI, Big Data and Block Chain, Daegu Gyeongbuk Institute of Science and Technology (DGIST),
Daegu 42988, Republic of Korea; mozart73@dgist.ac.kr
* Correspondence: yjpark@dgist.ac.kr

Abstract

Human Activity Recognition (HAR) is a key technology with applications in healthcare,
security, smart environments, and sports analytics. Despite advances in deep learning,
challenges remain in building models that are both efficient and generalizable due to the
large scale and variability of video data. To address these issues, we propose a novel
Dual-Teacher Knowledge Distillation (DTKD) framework tailored for HAR. The frame-
work introduces three main contributions. First, we define static and dynamic activity
classes in an objective and reproducible manner using optical-flow-based indicators, es-
tablishing a quantitative classification scheme based on motion characteristics. Second,
we develop subset-specialized teacher models and design a hybrid scoring mechanism
that combines teacher confidence with cross-entropy loss. This enables dynamic weighting
of teacher contributions, allowing the student to adaptively balance knowledge transfer
across heterogeneous activities. Third, we provide a comprehensive evaluation on the
UCF101 and HMDB51 benchmarks. Experimental results show that DTKD consistently
outperforms baseline models and achieves balanced improvements across both static and
dynamic subsets. These findings validate the effectiveness of combining subset-aware
teacher specialization with hybrid scoring. The proposed approach improves recognition
accuracy and robustness, offering practical value for real-world HAR applications such as
driver monitoring, healthcare, and surveillance.

Keywords: Human Activity Recognition (HAR); deep learning applications; knowledge
distillation

1. Introduction
Action recognition refers to the automatic identification and classification of human

activities in video sequences and has emerged as a core challenge in artificial intelligence
with applications in autonomous driving, smart security, and related domains. With the
emergence of deep learning-based approaches, models capable of effectively learning spa-
tiotemporal patterns have been developed, thereby significantly broadening the practical
applicability of action recognition [1,2].

However, ensuring reliability and robustness in real-world environments remains
a critical challenge. Numerous previous studies have repeatedly reported that action
recognition models tend to rely excessively on background information instead of the
actions themselves, leading to significant performance degradation when background
scenes change or recording conditions vary [3–6]. A contributing factor is the tendency
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of existing datasets to depend on subjective or intuitive judgments by researchers, in-
stead of on objective criteria when distinguishing motion characteristics across classes.
Consequently, consistency and reproducibility are compromised, and model robustness
to environmental changes is insufficiently guaranteed. Consequently, the present study
quantitatively evaluates the motion characteristics for each class in two large-scale ac-
tion recognition benchmarks and explicitly separates all classes into static (St-subset) and
dynamic (Dy-subset) subsets based on statistical indicators.

However, simple subset partitioning alone is insufficient to substantially improve the
model performance and generalization. Consequently, we independently trained expert
teacher models specialized for each subset and employed an architecture that integrated
information at different temporal resolutions through a dual-pathway structure [7]. Further-
more, we propose a dual-teacher knowledge distillation (DTKD) framework in which the
knowledge of both teachers is selectively transferred and integrated into a single student
model covering all classes via knowledge distillation (KD) [8]. The proposed framework
enhances both robustness and generalization by combining the strengths of subset-specific
experts—each reflecting distinct motion distributions and background dependencies. More-
over, this study experimentally demonstrated the ability to overcome the limitations of
subjective partitioning and single-model approaches by organically integrating quantita-
tively defined subsets with the KD paradigm.

The main contributions of this study can be summarized as follows:

1. Objective subset definition: We defined static and dynamic activity groups in an objective
and reproducible manner using optical-flow-based statistical indicators [9], thereby
establishing a quantitative classification scheme grounded in motion characteristics.

2. Dual-teacher selective distillation: Unlike existing multi-teacher KD approaches that
mainly rely on structural diversity or ensemble averaging, we independently trained
subset-specialized teachers and integrated their knowledge into the student through
a selective KD strategy. To support this process, we proposed a hybrid weighting
mechanism that combines teacher confidence with loss, enabling selective transfer
that simultaneously reflects teacher reliability and complementary signals.

3. Comprehensive evaluation: We conducted a subset-based performance analysis together
with a teacher–student distribution similarity assessment. Results show that the proposed
DTKD not only improves overall accuracy but also enables students to selectively mimic
teacher distributions and effectively acquire subset-specific knowledge.

The remainder of this paper is organized as follows: Section 2 reviews the related work
and highlights the distinct contributions of our study. Section 3 describes the proposed
methodology and experimental setup. Section 4 presents the quantitative results of the
various experiments. Section 5 discusses key implications and limitations, and Section 6
concludes the paper with directions for future research.

2. Related Works
2.1. Quantitative Analysis of Motion in Action Recognition

Numerous studies have leveraged optical flow to extract discriminative features
and enhance performance. Ref. [10] introduced the two-stream ConvNet architecture,
which independently learns from RGB and optical flow, thereby utilizing flow as a core
representation of motion. This approach achieved strong results for large-scale benchmarks,
such as UCF101 [11] and HMDB51 [12]. Notably, HMDB51 is considered more challenging
owing to visually similar classes (e.g., smile, eat, and chew) and lower video quality;
indeed, Ref. [13] reported accuracies exceeding 95% on UCF101 but only approximately
70% on HMDB51.
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Subsequent studies proposed fusion architectures such as I3D [1], whereas Ref. [14]
demonstrated that optical flow is crucial in capturing fine-grained motion and human
boundaries, and that its quality directly impacts recognition accuracy. Nevertheless, few
attempts have been made to quantitatively measure the motion intensity, partition classes
into subsets, and extend these analyses to distillation strategies.

Traditional flow-based recognition typically relies on a precomputed flow fed into
convolutional neural network (CNN) classifiers in a two-stage pipeline, which entails
a high computational cost, large storage requirements, and difficulties with end-to-end
training. Consequently, methods such as MotionNet-based hidden two-stream CNN [15]
and cross-modal self-supervised representation learning [16], which enable end-to-end
training and improved generalization, have been proposed.

Additionally, attempts have been made to quantify motion intensity using a trajectory
motion [17]. However, previous studies have largely remained at the level of analyzing
mean distributions or motion intensity, without systematically leveraging optical-flow
statistics to characterize class-specific properties or extending such analyses to subset
partitioning and performance evaluation.

2.2. Action Recognition Architectures

If the key factor in action recognition performance is in the motion characteristics,
practical realization depends on the choice of an appropriate architecture. The existing
models can be largely categorized into ConvNet- and Transformer-based approaches.
ConvNet models extract spatiotemporal features through two-dimensional (2D) or three-
dimensional (3D) convolutions; I3D, C3D [18], and SlowFast [7] are representative examples.
These models achieve a robust performance with relatively few parameters, making them
widely adopted across benchmarks.

In contrast, Transformer-based models exploit self-attention to capture long-range
dependencies, as in video Swin Transformer [19], TimeSformer [20], and ViViT [21], which,
when combined with large-scale pretraining, have achieved state-of-the-art performance.
However, their structural complexity and high computational demands impose signifi-
cant limitations.

This study adopted SlowFast as the backbone architecture, owing to its proven effi-
ciency and reliability. The reported accuracies were approximately 95–96% for UCF101
and 75–77% for HMDB51 [22–24], making SlowFast a reasonable backbone for evaluating
KD-based performance.

The superiority of spatiotemporal convolutional structures has been demonstrated
consistently. For instance, 3D CNNs have been shown to outperform 2D CNNs in action
recognition, and the R(2 + 1)D block was proposed to further improve the performance [25].
Extensions combining SlowFast with BERT have achieved enhanced results [26], and a wide
range of ConvNet-based studies have been conducted on UCF101 and HMDB51 [27–33].
Nevertheless, issues of efficiency and scalability remain unresolved, which motivated the
integration of KD techniques in this study.

2.3. Knowledge Distillation

KD is a representative framework for transferring knowledge from large teacher
models to lightweight student models; numerous strategies and variants have been pro-
posed. A comprehensive review [34] summarized the theoretical foundations of KD and
emphasized the need for multiteacher, cross-modal, and ensemble distillation to overcome
the limitations of single-teacher approaches. Accordingly, methods such as knowledge
amalgamation [35], heterogeneous KD [36,37], and attention-based teacher aggregation [38]
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have been introduced to enhance student generalization by integrating knowledge from
multiple teachers.

Dual-teacher approaches have also been explored under certain conditions. For in-
stance, one study employed both enhancement and raw video teachers to handle dark video
scenarios [39], whereas another applied dual-teacher KD to natural language processing by
separating teachers based on high- and low-frequency word distributions [40]. In addition,
a recent study [41] proposed dynamically adjusting the temperature based on the sharpness
of teacher–student distributions, thereby enabling more effective knowledge transfer.

Despite these advances, most previous studies have focused primarily on structural
diversity or prediction aggregation among teachers, with minimal emphasis placed on class-
specific characteristics. By contrast, the proposed DTKD explicitly partitions classes into
St- and Dy-subsets using optical-flow statistics, assigns specialized teachers to each subset,
and selectively transfers their knowledge to the student. This design enables students to
acquire both specialized expertise and overall generalization. The following section details
the structure and training procedures of the DTKD framework.

3. Methods
This paper proposed a method that integrates three key components: (1) motion

characteristic quantification based on optical flow, (2) efficient action recognition backbone
architecture, and (3) DTKD strategy. By combining these elements, the framework enables
training tailored to class-specific characteristics and ultimately aims to construct a more
robust and efficient action recognition model.

3.1. Optical Flow-Based Quantification of Motion Characteristic

Building on this research background, this study quantifies class-specific motion
characteristics in action recognition datasets using optical flow-based statistical indicators.
Optical flow computes pixel variations between consecutive frames, thereby capturing not
only human motion but also camera movement and background changes, which allows for
the numerical expression of video-level motion intensity.

In particular, UCF101 and HMDB51 contain diverse actions, complex backgrounds,
and camera motions, making the average optical flow a valid metric for distinguishing
motion levels across classes. However, the resulting statistics may vary depending on the
flow algorithm employed or the aggregation strategy—for instance, whether the average is
computed over the entire video, spatial regions, or temporal segments.

In this study, optical flow was calculated for each video sequence, and the class-wise
mean value µc was obtained. The first quartile (Q1) of the overall µc distribution was used
as the threshold. According to Equation (1), classes with µc < Q1 were assigned to the
St-subset, whereas the remainder were assigned to the dynamic subset (Dy-subset). Q1 was
selected to ensure that the St-subset contained classes with clear low-motion characteristics
while allowing the Dy-subset to encompass a broader range of motion intensities.

Static : subsetst = {c|µc < Q1}
Dynamic : subsetdy = {c|µc ≥ Q1}

(1)

Table 1 summarizes the optical flow distributions of the overall dataset and each subset
of UCF101 and HMDB51 to validate the classification criteria. The Dy-subset consistently
exhibited higher values across key metrics than the St-subset, indicating that the difference
in motion intensity between the classes was statistically significant. These results support
the necessity and effectiveness of subset-specific learning strategies.
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Table 1. Statistical summary of optical flow mean distributions for each class group, including the
first quartile (Q1), mean, STD, and interquartile range (IQR).

Dataset
UCF101 HMDB51

Q1 Mean STD IQR Q1 Mean STD IQR

Overall 0.508 1.157 0.835 1.088 0.688 1.160 0.598 0.837

Dy-subset 0.531 1.433 0.799 1.129 0.934 1.369 0.551 0.743

St-subset 0.280 0.361 0.105 0.153 0.495 0.548 0.110 0.157

Figure 1 shows the distribution of class-wise optical flow as a histogram, with the first
quartile (Q1) indicated by a red vertical line, providing an intuitive basis for defining the
St-subset. Figure 2 shows the mean and standard deviation (STD) of the optical flow for
each subset in a scatter plot. The St-subset was concentrated in the region of low mean and
variance, whereas the Dy-subset exhibited higher means with broader variance, confirming
a clear separation of motion characteristics.

 
(a)  (b) 

Figure 1. Histogram of class-wise optical flow means used for subset separation. The red vertical line
indicates the first quartile (Q1), which serves as the threshold for distinguishing static and dynamic
classes. (a) UCF101; (b) HMDB51.

 
(a)  (b) 

Figure 2. Scatter plots with regression lines of class-wise optical flow statistics. Each point represents
a class, plotted using the mean and STD of optical flow, demonstrating the separation between St-
and Dy-subsets. (a) UCF101; (b) HMDB51.
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Specifically, the St-subset of UCF101 includes the following classes: ApplyLipstick,
Archery, BaseballPitch, Billiards, BodyWeightSquats, CleanAndJerk, CricketShot, Golf-
Swing, Handstand-Pushups, JumpRope, PlayingCello, PlayingDhol, PlayingFlute, Playing-
Guitar, PlayingPiano, PlayingSitar, PlayingTabla, PullUps, ShavingBeard, SoccerPenalty,
TableTennisShot, TaiChi, TennisSwing, Typing, WallPushups, and WritingOnBoard.

For HMDB51, the classes belonging to the St-subset were chew, draw_sword, eat, golf,
kiss, pour, pullup, shoot_bow, situp, smile, smoke, sword_exercise, and talk, whereas all
the remaining classes were categorized as part of the Dy-subset.

The final numbers of training and testing videos for the overall dataset and each subset
are listed in Table 2. Notably, UCF101 was larger than HMDB51, and in both datasets, the
Dy-subset contained substantially more videos than the St-subset.

Table 2. Composition of the UCF101 and HMDB51 datasets after subset division, showing the number
of training and test videos for the overall set, and St- and Dy-subsets.

List No. Dataset
UCF101 HMDB51

Class Train Test Total Class Train Test Total

1
Overall 101 9537 3783 13,320 51 3570 1530 5100

Dy-subset 75 6949 2772 9721 38 2660 1140 3800
St-subset 26 2588 1011 3599 13 910 390 1300

2
Overall 101 9586 3734 13,320 51 3570 1530 5100

Dy-subset 75 6988 2733 9721 38 2660 1140 3800
St-subset 26 2598 1001 3599 13 910 390 1300

3
Overall 101 9624 3696 13,320 51 3570 1530 5100

Dy-subset 75 7033 2688 9721 38 2660 1140 3800
St-subset 26 2591 1008 3599 13 910 390 1300

The proposed optical-flow-based class-partitioning strategy reconstructs a dataset
by quantifying the motion characteristics of each class according to the statistical criteria
established in this study. This enables future action recognition models to be designed
in a class-aware manner, and can be extended as a generalized, data-driven partitioning
approach applicable to other datasets.

3.2. Proposed Dual Teacher Knowledge Distillation Framework
3.2.1. Backbone Architecture Based on Dual Pathways

The static and dynamic class partitioning introduced in the previous section demon-
strate that each subset exhibits distinct motion characteristics.

To capture these differences effectively, this study adopts SlowFast as the backbone
architecture. SlowFast employs a dual-pathway design with different temporal resolutions,
allowing the slow pathway to capture static contextual information and the fast pathway
to model fine-grained dynamic motions. This aligns well with the static and dynamic class
characteristics defined in this study.

In particular, the network structure of SlowFast itself was not modified; instead,
pretrained models from the PyTorch Hub [42] were directly utilized. The core contribution
of this research is in the design of the KD framework and its performance analysis instead
of architectural modifications.

In the SlowFast notation T × α, T represents the number of frames sampled by the
slow pathway, and α denotes the relative frame rate of the fast pathway with respect to
the slow one. For instance, SlowFast_16 × 8 indicates that the slow pathway processes
16 frames, whereas the fast pathway processes 128 frames over the same temporal window.
This parameterization provides a key trade-off between temporal coverage and compu-
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tational efficiency. In this study, the 16 × 8 configuration was primarily employed, and
8 × 8 configurations were included in the comparative analysis.

We constructed the proposed DTKD framework by leveraging the structural advantage
of SlowFast’s dual-pathway design in capturing both static and dynamic motions.

3.2.2. DTKD Framework Structure

The UCF101 and HMDB51 datasets used in this study exhibit clear differences in mo-
tion intensity across classes. For instance, ApplyLipstick primarily involves static features,
whereas running involves strong dynamic movements. Such differences affect not only the
classification accuracy but also the degree to which models rely on background information.

Consequently, the overall dataset was quantitatively analyzed using optical flow statis-
tics and divided into an St-subset and a Dy-subset. Independent teacher models were then
trained on each subset, and their output logits served as inputs for the DTKD procedure.

Figure 3 provides an overview of the entire framework, from dataset partitioning to
teacher–student knowledge transfer. The detailed training procedure that operationalized
this design into step-by-step learning is described in the following section.

 

Figure 3. Overview of the proposed DTKD framework comprising two stages: (1) subset-based
training of St-T and Dy-T; and (2) student training on the full dataset with dual-teacher distillation.

3.2.3. DTKD Training Procedure

We define a seven-step training procedure to implement the DTKD framework de-
scribed in the previous section. The core idea was to combine teacher confidence and
prediction loss through hybrid weighting, thereby incorporating both reliability and er-
ror information. The weighted soft targets were then aggregated to provide students
with optimized supervision signals. In addition, batch-wise loss normalization and logit
masking for out-of-subset classes were applied to prevent value distortions and irrelevant
interference.

Figure 4 summarizes the overall DTKD pipeline, where steps 1–7 correspond to Section
Temperature-Adjusted Softmax for Distillation–Section Final Loss. Among them, steps 2–5
represent the novel processes proposed in this study. The following sections describe each
step in detail.

Temperature-Adjusted Softmax for Distillation

In KD, temperature scaling was applied to compare the output distributions of the
teacher and student under the same criterion. Temperature T (KD_T) was applied to
the logits to generate soft labels. As KD_T increased, the softmax distribution became
smoother, thereby emphasizing inter-class similarities.

The teacher produced probability distributions using softmax, whereas the student
generated log-probability distributions using log-softmax. The student then minimized the
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difference between these two distributions using the Kullback–Leibler divergence (KL-Div)
loss [43].

 

Figure 4. Training procedure of the proposed DTKD, organized into eight sequential steps.

Because the PyTorch implementation of KL-Div requires the first input as log-
probabilities and the second as probabilities, student logits Lz are passed through log-
softmax. This ensures that the gradients are propagated only to the students [44]. Ac-
cordingly, the student distribution is defined in Equation (2), whereas the teacher outputs
Lst and Ldy are used as probability distributions obtained via softmax, as expressed in
Equation (3).

Student : p = log(softmax(
Lz

KD_T
)) (2)

Static : qst = so f tmax( Lst
KD_T )

Dynamic : qdy = so f tmax(
Ldy

KD_T )
(3)

The teacher–student distribution pairs defined in this manner are subsequently com-
pared selectively, depending on the subset to which each class belongs. To enable this, the
proposed method first establishes a responsibility partition for each teacher.

Responsibility Partition

In this step, each sample y is checked to determine whether its class belongs to subsetst

or subsetdy, and a binary mask is generated accordingly, as defined in Equation (4). This
mask serves as a mechanism for partitioning the responsibilities of teachers: static teacher
(St-T) provides learning signals only for static classes, whereas dynamic teacher (Dy-T) does
so only for dynamic classes. In this manner, each teacher supplies soft targets exclusively
within its specialized subset, ensuring that the student receives optimized knowledge
without unnecessary interference.

Static : maskst = y ∈ subsetst

Dynamic : maskdy = y ∈ subsetdy
(4)

Each teacher defines the maximum value of its softmax probability for a given sub-
set sample as the confidence score, as shown in Equation (5). This score quantifies the
prediction confidence and is incorporated into the distillation process to reduce teacher
uncertainty and promote a more stable knowledge transfer.

Static : con f st[maskst] = max(qst[maskst])

Dynamic : con f dy

[
maskdy

]
= max

(
qdy

[
maskdy

]) (5)
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Each teacher computes the cross-entropy (CE) loss for its assigned subset samples, as
defined in Equation (6). This loss serves as a quantitative measure of prediction accuracy at
the sample level, where larger values indicate lower accuracy and thus provide a numerical
evaluation of the teacher’s performance.

Static : CEst = −log(so f tmax(Lst)[yst])

Dynamic : CEdy = −log
(
softmax

(
Ldy

) [
ydy

]
)

(6)

For each teacher, the CE loss was normalized at the batch level using min–max nor-
malization, as defined in Equation (7). This procedure scales the loss values into the
range [0, 1], thereby mitigating the effects of scale differences and outliers and ensuring
that the predictive performance of each teacher is reflected under a consistent criterion
across batches.

Static : CEst_norm = (CEst−min)
(max−min)

Dynamic : CEdy_norm =
(CEdy−min)
(max−min)

(7)

Hybrid Score

The hybrid score sst and sdy serves as the core metric of DTKD, dynamically assigning
weights to each teacher’s soft target. Conventional confidence- or loss-based strategies rely
on a single indicator, which limits their ability to fully capture teacher reliability. Conse-
quently, we combined the confidence score (certainty of prediction) with the normalized
CE loss (prediction accuracy), thereby integrating the two complementary measures in a
balanced manner.

As defined in Equation (8), the hybrid score assigns greater weight to teachers with
higher confidence and lower error while reducing the influence of uncertain or inaccurate
knowledge transfer. This design maximized the effectiveness of distillation.

Static : sst = S_α × con f st + (1 − S_α)× (1 − CEst_norm)

Dynamic : sdy = S_α × con f dy + (1 − S_α)×
(

1 − CEdy_norm

) (8)

The adjustment of the hybrid score is defined in this study by the hyperparameter S_α.
This parameter controls the relative weight between the confidence score and inverse of
the normalized CE loss; larger values emphasize the confidence signal, whereas smaller
values highlight the CE loss-based signal. In this way, the teacher contributions can be
flexibly optimized to reflect the characteristics of the dataset and training environment
while avoiding bias toward a single indicator.

Teacher Soft Target

The hybrid scores computed in the previous step were converted into soft weights that
reflected the relative contributions of the teachers. For each sample, the hybrid scores of
the St-T and Dy-T were normalized according to Equation (9), ensuring that their weights
always summed up to one. Here, wst and wdy denote the soft weights of the St-T and Dy-T,
respectively.

Static : wst =
sst

sst+sdy

Dynamic : wdy =
sdy

sst+sdy

(9)

For samples outside a teacher-assigned subset, the corresponding soft weight is
set to zero such that St-T contributes only to the St-subset, whereas Dy-T contributes
only to the Dy-subset. This design combines responsibility partitioning with continuous
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weighting, enabling the student to be optimized according to teacher confidence and
predictive accuracy.

The soft weights determine the contribution of each teacher and are multiplied by
their softmax distributions. Finally, the weighted distributions of St-T (qst) and Dy-T (qdy)
are combined as shown in Equation (10) to yield the final teacher soft target q f inal .

q f inal = wst × qst + wdy × qdy (10)

The resulting q f inal serves as the ultimate target distribution for KD. Rather than
imitating a single teacher, the students learned from a dynamically weighted ensemble
distribution tailored to each sample. Thus, wst and wdy function as balancing factors that
regulate the relative contributions of the two teachers.

KD Loss

The final teacher soft target q f inal serves as the reference distribution for KD. For each
sample, soft labels from St-T and Dy-T were combined with their respective soft weights to
construct q f inal .

The student then learns by minimizing the divergence between the predicted distribu-
tion and this reference, as defined by the KL-Div loss LKD in Equation (11). This design
allowed students to incorporate sample-specific teacher knowledge rather than relying on
a single teacher, thereby maximizing the distillation effect.

LKD = KL
(

p ∥ q f inal

)
(11)

Student Loss

Whereas LKD guides the student to mimic the teacher’s soft-target distribution, the
student loss directly evaluates how accurately the model predicts the ground-truth labels.
Specifically, the discrepancy between the student predictions and true labels is measured
by the CE loss LCE, as defined in Equation (12). A lower LCE indicates better alignment
with the ground-truth and, thus, higher predictive accuracy.

LCE = −log(so f tmax(Lz)[y]) (12)

Final Loss

As previously defined, LKD encourages the students to mimic the teacher’s soft target
distribution, whereas LCE directly evaluates the prediction accuracy against the ground-
truth labels. The final loss L_{total} was obtained by combining these two objectives, as
expressed in Equation (13).

Ltotal = KD_α × KD_T2 × LKD + (1 − KD_α)× LCE (13)

Here, the weighting coefficient KD_α controls the trade-off between teacher imitation
and ground-truth supervision. In addition, the temperature parameter KD_T smoothens
the soft-label distribution, enabling the student to capture richer interclass similarity in-
formation. However, as KD_T increases, the gradient magnitudes tend to vanish; there-
fore, the correction factor KD_T2 is multiplied by the distillation term to ensure training
stability [8].

Consequently, the proposed final loss Ltotal achieves a balanced integration of teacher-
guided distillation and ground-truth learning, thereby maximizing the generalization
performance of the student model.
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The proposed method comprises optical-flow-based class partitioning followed by the
DTKD procedure in which each stage is designed to act complementarily to enhance both
the performance and generalization ability of the student model. In the next section, we
apply this framework to benchmark datasets, verify its effectiveness through experiments,
and quantitatively analyze the impact of the proposed DTKD strategy.

4. Experiments
This section describes the validation of the proposed method using two representative

benchmark datasets for action recognition. Section 4.1 describes the experimental settings
and datasets, whereas Section 4.2 presents the results of the baseline models. Section 4.3
reports the training outcomes of the class-specific teacher models, and finally, Section 4.4
analyzes the performance and effectiveness of the proposed DTKD framework.

4.1. Experimental Setup

All training in this study employed the SlowFast architecture as the backbone, with
the frame rate ratio between the two pathways set to four. The pretrained weights were
initialized using the Kinetics-400 [45] model provided by PyTorchVideo in the PyTorch
framework [46].

The training configuration was standardized with the SGD optimizer, an initial learn-
ing rate of 10−3, and a dropout rate of 0.5. Data augmentation included RandomShort-
SideScale, RandomCrop, and RandomHorizontal Flip, whereas normalization was per-
formed using dataset-specific statistics. The proposed DTKD framework was implemented
based on the code in [47].

For evaluation, cross-validation was performed using three official splits (List-{1,2,3})
provided by UCF101 and HMDB51. For HMDB51, however, because of class imbalance,
only splits id = 1 (train) and id = 2 (test) were used, excluding id = 0.

In DTKD experiments, sensitivity analyses were performed on the major hyperpa-
rameters KD_T, KD_α, and S_α. Additional experiments were conducted to investigate
the effects of freezing teacher parameters during training and tuning strategies when in-
tegrating teachers into student learning. Subset-based comparisons were used to verify
the performance gains of DTKD, and the KL-Div analysis quantitatively assessed how
effectively the student mimicked teacher distributions.

All the experiments were conducted in an environment with Ubuntu 20.04, Python 3.7,
PyTorch 1.8.0, and CUDA 11.1. The hardware setup included an RTX 3090 Ti GPU (NVIDIA,
Santa Clara, CA, USA) for the UCF101 experiments and an RTX TITAN GPU (NVIDIA,
Santa Clara, CA, USA) for the HMDB51 experiments.

4.2. Baseline Model

Baseline experiments were designed to train each dataset independently and to eval-
uate the classification performance on the overall dataset. This provided a quantitative
reference for comparing the performance improvements achieved using the proposed
DTKD framework.

During training, the model checkpoints were saved at every epoch and subsequently
evaluated on the test set to ensure the reliability of the results. In addition, comparative
experiments were conducted with frozen teacher settings and the training of the SlowFast
8 × 8 model.

Table 3 summarizes the results of models U1–U3 and H1–H3, which were trained using
three official split lists provided by UCF101 and HMDB51, respectively. The models trained
with List-3 (U3, H3) achieved the best performance for both datasets. However, because
previous studies have predominantly adopted List-1 as the standard for experiments and
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comparisons, this study selected U1 and H1 as the baselines to ensure consistency and
comparability with the existing literature. All subsequent experiments were conducted
using List-1.

Table 3. Training loss, Top-1 accuracy, and Top-5 accuracy of baseline models trained on the overall
datasets (UCF101 and HMDB51), evaluated on the test set. The results include models trained with
three official lists (U1–U3, H1–H3), Frozen models trained on List-1 (R4, H4), and SlowFast 8 × 8
architectures with ResNet-101 (R5, H5) and ResNet-50 backbones (U6, H6).

UCF101 HMDB51
SlowFast Model Role

Model Top1 (%) Top5 (%) Model Top1 (%) Top5 (%)

U1 95.14 99.68 H1 77.10 95.28 R101_16 × 8 Baseline (List-1)

U2 95.63 99.63 H2 76.07 94.89 R101_16 × 8 Cross-validation (List-2)

U3 96.50 99.84 H3 78.24 95.34 R101_16 × 8 Cross-validation (List-3)

U4 93.23 99.76 H4 70.93 92.32 R101_16 × 8 Frozen Baseline

U5 94.90 99.50 H5 77.03 95.41 R101_8 × 8 SlowFast 8 × 8

U6 94.68 99.50 H6 76.38 95.28 R50_8 × 8 SlowFast 8 × 8

Figure 5 shows the cross-validation results obtained from the three official split lists,
demonstrating that models U1–U3 and H1–H3 stably converged. Each graph presents the
training loss recorded during training on the training set, along with the Top-1 accuracy
evaluated on the test set using the checkpoints saved at each epoch.

 
(a)  (b) 

Figure 5. Cross-validation results of models trained with three official lists, presenting training loss
and Top-1 accuracy across all checkpoint models using the test set. (a) UCF101; (b) HMDB51.

Models U4 and H4, which were trained with the feature extractor frozen from the
baseline, exhibited degraded performance, highlighting the importance of fine-tuning for
adaptation to the target dataset. Models U5, H5 and U6, H6, trained with the SlowFast
8 × 8 architecture based on ResNet-101 and ResNet-50, respectively, exhibited a lower
accuracy than the baseline. This indicates that extended temporal resolution and network
depth play critical roles in performance improvement.

Furthermore, HMDB51 exhibited a large discrepancy between the Top-1 and Top-5
accuracies, confirming that the Top-5 accuracy serves as an important evaluation met-
ric in action recognition tasks in which classes are highly similar and class boundaries
are ambiguous.

The parameter counts for UCF101 and HMDB51 were calculated as follows: the
Baseline models (U1–U3 and H1–H3) contained 53.78 M (millions) parameters, while
the SlowFast 8 × 8 models with R101 (U5, H5) and R50 (U6, H6) backbones contained
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62.83 M and 34.57 M, respectively. In the Frozen configuration (U4, H4), the parameter
counts were 0.23 M for UCF101 and 0.12 M for HMDB51. In the Frozen setting, the backbone
of the Kinetics-400 pretrained SlowFast model was frozen, and only the classifier head was
retrained. Although the Baseline models share identical architectures and thus the same
total number of parameters, the Frozen setting trains only the classifier head, resulting in
different numbers of trainable parameters due to the class-size difference.

4.3. Class Specific Teacher Models

In the previous section, we evaluated the baseline performance of the entire dataset.
Next, we trained class-specific models specialized for the St-subset and Dy-subset to
validate the feasibility of using them as teachers. Each teacher was independently trained
on its corresponding subset, and the results are summarized in Table 4.

Table 4. Top-1 accuracy and Top-5 accuracy of class-specific teacher models trained on the Dy-subset
and St-subset.

UCF101 HMDB51
SlowFast Model Role

Model Top1 (%) Top5 (%) Model Top1 (%) Top5 (%)

TU1 96.46 99.89 TH1 77.71 95.86 R101_16 × 8 Dynamic Teacher

TU2 99.21 100 TH2 90.49 99.49 R101_16 × 8 Static Teacher

TU3 94.12 99.93 TH3 70.04 92.25 R101_16 × 8 Frozen Dynamic Teacher

TU4 99.01 99.90 TH4 86.12 99.49 R101_16 × 8 Frozen Static Teacher

The St-subset models (TU2, TH2) exhibited clear performance improvements com-
pared with the baseline, as static characteristics—often overshadowed by the strong motion
cues of dynamic classes in the overall training—were more effectively captured through
subset-specific learning. In contrast, the Dy-subset models (TU1, TH1) exhibited only
marginal gains, because the baseline models had already internalized sufficient motion
features during the overall training.

Two conditions were defined to further examine the effect of teacher adaptability and
freezing strategies on student performance.

Locked teacher (LT) specifies whether teacher parameters are frozen during sub-
set training: LT = True corresponds to frozen teachers (TU3, TU4, TH3, TH4), whereas
LT = False corresponds to regular teachers (TU1, TU2, TH1, TH2).

Frozen teacher at the student stage (FT) determines whether they are frozen during
student training. Thus, LT controls freezing during the teacher-training stage, whereas FT
governs freezing during student training.

Frozen teachers provide stable output distributions, but may lack dataset adaptability,
whereas non-frozen teachers can capture more refined representations, but may produce
unstable supervision signals. Therefore, comparing LT and FT offers empirical evidence of
the influence of teacher-freezing strategies on the generalization ability of students, with
the corresponding results presented in the next section.

4.4. Evaluation of the Dual Teacher Knowledge Distillation Framework

In the previous section, the performances of class-specific teacher models were val-
idated. Building on this foundation, this section presents the experimental results of
applying the DTKD framework, where both teachers are combined to perform KD on the
overall dataset.
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In DTKD, a student is trained to learn from the soft targets provided by each subset-
specific teacher. To evaluate the effectiveness of the framework, we systematically examined
the impact of the key distillation hyperparameters: KD_T, KD_α, and the proposed S_α.

The comparative performances across different dataset splits for UCF101 and HMDB51
are summarized in Table 5. For UCF101, the DTKD model SU12 showed a 1.00% improve-
ment over the baseline model U1, while for HMDB51, the model SH3 achieved a 2.30%
increase compared with H1.

Table 5. Experimental results of the proposed DTKD framework on UCF101 and HMDB51 under LT
and FT conditions with varying hyperparameters.

LT FT

UCF101 HMDB51

Model
Hyperparameter Top1

(%)
Top5
(%) Model

Hyperparameter Top1
(%)

Top5
(%)S_α KD_T KD_α S_α KD_T KD_α

T T SU1 0.3 2 0.2 95.82 99.87 SH1 0.3 2 0.2 78.87 95.41

T T SU2 0.5 2 0.2 95.69 99.71 SH2 0.5 2 0.2 78.41 95.80

T T SU3 0.7 2 0.2 95.72 99.68 SH3 0.7 2 0.2 79.40 95.60

T T SU4 0.3 2 0.4 96.06 99.74 SH4 0.7 2 0.4 79.20 95.34

T T SU5 0.3 2 0.8 93.42 99.79 SH5 0.7 2 0.8 78.08 75.14

T T SU6 0.3 4 0.2 95.77 99.76 SH6 0.7 4 0.2 79.33 95.47

T T SU7 0.3 4 0.4 95.96 99.68 SH7 0.7 4 0.4 79.00 95.47

T T SU8 0.3 4 0.6 95.35 99.68 SH8 0.7 4 0.6 77.82 95.08

T T SU9 0.3 8 0.2 95.59 99.81 SH9 0.7 8 0.2 78.08 95.14

T F SU10 0.3 2 0.4 95.85 99.68 SH10 0.7 2 0.2 79.27 95.28

F T SU11 0.3 2 0.4 95.85 99.76 SH11 0.7 2 0.2 78.35 95.47

F F SU12 0.3 2 0.4 96.14 99.74 SH12 0.7 2 0.2 79.00 95.28

T T SU13 - 2 0.4 91.70 99.15 SH13 - 2 0.2 72.79 93.04

4.4.1. Hyperparameter Sensitivity

Initial experiments were conducted with both LT and FT enabled while fixing
KD_T = 2 and KD_α = 0.2 and varying S_α ∈ {0.3, 0.5, 0.7}. The results demonstrated that
the best performance was achieved at S_α = 0.3 for UCF101 and S_α = 0.7 for HMDB51, in-
dicating that the optimal balance between hard labels and soft targets is dataset-dependent
and that S_α has a direct impact on DTKD performance.

Further experiments with different KD_T and KD_α combinations (SU4–SU9, SH4–SH9)
revealed that excessively large KD_α (e.g., SU5, SH5 at KD_α = 0.8) degraded performance
below the baseline, as the reliance on soft targets suppressed the contribution of ground-
truth supervision. In contrast, moderate KD_α settings consistently improved performance
over the baseline, highlighting the importance of carefully tuning distillation strength to
enhance model generalization.

4.4.2. Effect of Teacher Tuning

We compared the models with different LT/FT configurations (SU10–SU12, SH10–SH12)
to examine the effect of teacher tuning. The results demonstrated that SU12 (without LT
or FT) achieved the highest performance on UCF101, whereas SH3 (with both LT and FT)
yielded the best results on HMDB51. These findings suggest that teacher adaptation was
not beneficial. On UCF101, with its relatively simple class structure, flexible adaptation
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improved transfer, whereas on HMDB51, characterized by higher class similarity and
complex backgrounds, retaining pretrained stability was more effective.

Therefore, teacher-tuning strategies cannot be applied uniformly, and the optimal
configuration depends on dataset complexity and motion characteristics. This highlights
the need to carefully consider teacher freezing in DTKD and experimentally validate its
impact when extending it to other tasks.

4.4.3. Contribution of Selective Transfer in DTKD

We compared the proposed DTKD with a baseline selective KD (BSKD) to assess the
impact of teacher selection and weighting. BSKD applies a simple rule: each sample is
assigned to either a St-T or Dy-T based on its label, and the KD loss is computed only from
that teacher using KL-Div.

Although effective in single-teacher settings, this approach ignores teacher reliability
and error signals in dual-teacher environments, leading to unstable supervision and the
risk of imitating inappropriate distributions near class boundaries or noisy samples.

By contrast, DTKD introduces confidence–loss based soft weighting, which dynam-
ically combines the outputs of both teachers. This strategy suppresses uncertain sig-
nals, leverages complementary knowledge, and overcomes the limitations of a single-
teacher imitation.

As shown in Figure 6, DTKD (SU12, SH3) converges faster and more stably than BSKD
(SU13, SH13), consistently achieving a higher test accuracy throughout training. These
results demonstrate that selective transfer plays a central role in enhancing both training
stability and generalization in DTKD.

(a)  (b) 

Figure 6. Comparison between DTKD (SU12, SH3) and BSKD (SU13, SH13). Training loss and Top-1
accuracy across checkpoints demonstrate that DTKD achieves faster and more stable convergence, as
along with consistently higher accuracy. (a) UCF101; (b) HMDB51.

4.4.4. Subset-Based Aggregate Performance Analysis

The purpose of this experiment was to verify whether DTKD provides consistent
performance improvements across both static and dynamic classes instead of being limited
to specific classes. Hence, in UCF101 and HMDB51, the baseline models (U1, H1) and
DTKD models (SU12, SH3) were evaluated on the same test set.

First, per-class accuracy, defined as the ratio of correct classifications among the
samples belonging to each class, was calculated. Accordingly, the per-class mean accuracy,
St-subset mean, and Dy-subset mean were defined as the average accuracies of the overall,
static, and dynamic classes, respectively. This approach reflects all classes with equal
weights regardless of the sample size, thereby removing the bias caused by class imbalance
and enabling a fairer comparison.
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According to the results in Figure 7, for UCF101, the DTKD student (SU12) exhibited
an improvement of 0.96% in the overall per-class mean accuracy compared with the baseline
(U1). In the St-subset, a slight decrease of −0.18% was observed, which appears to be due
to the baseline performance of St-T already being high, leaving little room for improvement,
and statistical variation in the distillation process. In contrast, the Dy-subset exhibited a
clear improvement of 1.36%, which can be interpreted as an effective transfer of knowledge
from the Dy-T specialized in motion cues.

(a)  (b) 

Figure 7. Subset-based aggregate performance of Baseline and DTKD on UCF101 and HMDB51.
Bars indicate Top-1 accuracy, per-class mean, St-subset mean, and Dy-subset mean, with annotations
presenting absolute accuracy and gain (∆). (a) UCF101; (b) HMDB51.

In HMDB51, the DTKD student (SH1) exhibited an improvement of 2.30% in per-class
mean accuracy compared with the baseline (H3). Improvements of 3.85% and 1.77% in
the St- and Dy-subsets, respectively, were confirmed. The St-subset of HMDB51 includes
classes such as chew, smile, and smoke, which involve small changes in the face or hands
instead of large movements, along with low-frequency classes with few data samples,
making motion pattern learning difficult. In such cases, since the soft target weight of the
St-T increases for static classes, the St-T, which is strong in static features, effectively plays
a compensatory role, leading to performance improvement.

These results demonstrate that DTKD not only improves the overall accuracy but also
practically enhances the subset-specific performance through teacher designs tailored to
class motion characteristics. In particular, the significant improvement in the St-subset of
HMDB51 validates the effectiveness of the subset-specific teacher structure.

We demonstrated that DTKD consistently improves performance across both static
and dynamic subsets through aggregate accuracy analysis. However, verifying whether
these performance gains truly stem from the student’s ability to imitate the correct teacher
distribution requires a separate quantitative evaluation. Therefore, in Section 4.4.5, we
conducted a teacher–student distribution similarity analysis using KL-Div, which confirmed
that the DTKD student selectively reproduced the appropriate teacher distribution for each
class. This provides direct evidence that the improvements of DTKD are not merely due to
ensemble effects but rather result from selective knowledge transfer.

4.4.5. Teacher–Student Distribution Similarity Analysis

This experiment quantitatively evaluated how faithfully the DTKD student reproduced
the teacher’s soft-target distribution using the KL-Div. In UCF101, student SU12 and
teachers TU1, TU2 were compared, whereas in HMDB51, student SH3 and teachers TH3,
TH4 were used as comparison targets.

Table 6 summarizes the results of the difference between the student and teacher
softmax distributions for the same test set input. The KL-Div score was high in the overall
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test set, because it included classes outside the responsibility of each teacher. In contrast,
in the subset-level analysis, the KL-Div between matched teacher–student pairs was sig-
nificantly reduced, whereas the KL-Div between cross-teacher–student pairs increased
significantly. This quantitatively demonstrates that DTKD selectively imitates the correct
teacher distribution while suppressing unnecessary knowledge.

Table 6. Average KL-Div between student and teacher models on UCF101 and HMDB51. Results are
reported for the overall test set and for the St- and Dy-subsets.

UCF101 HMDB51

Dataset KL(S∥St-T) KL(S∥Dy-T) SM SIR KL(S∥St-T) KL(S∥Dy-T) SM SIR

Overall 19.22 4.52 NA NA 11.69 6.09 NA NA

St-subset 0.097 16.55 16.45 170.62 1.91 18.40 16.49 9.63

Dy-subset 26.20 0.13 26.07 201.54 15.04 1.88 13.16 7.00

This experiment verifies whether the DTKD student selectively imitates the teacher
distribution using KL-Div. By calculating the difference between the student and teacher
softmax distributions for the same test set input, we found that in the overall test set, which
contained numerous dynamic classes, the KL-Div between the student and Dy-T was lower
than that between the student and St-T.

As shown in Figure 8, the Dy-T distribution (orange) was more concentrated in the
lower ranges than the St-T distribution (blue).

 
(a)  (b) 

Figure 8. Overall KL-Div distribution between student and teacher models on the test set. The x-axis
represents KL values, whereas the y-axis indicates the number of test samples within each KL interval.
(a) UCF101; (b) HMDB51.

However, the key finding lies in the subset-level analysis. The KL-Div with matched
teachers consistently remained low, whereas the KL-Div with cross-teachers increased
significantly. This quantitatively confirms that the student did not merely learn a mix-
ture but selectively reproduced the teacher distribution appropriate to each class. To
further quantify this selectivity, we define the Selectivity Margin (SM) and the Selective
Imitation Ratio (SIR). SM represents the difference between the KL-Div of matched and
cross teacher–student pairs, with larger values indicating clearer preference for the correct
teacher distribution. SIR is defined as the ratio of cross-teacher KL to matched-teacher KL,
reflecting the degree to which the student suppresses irrelevant teachers while faithfully
imitating the appropriate one. Together, SM and SIR provide objective evidence that the
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DTKD student performs selective knowledge transfer, rather than merely relying on mixed
teacher signals.

In UCF101, the matched KL was low, and the cross KL was high, resulting in large SM
and SIR values, which demonstrated that the student clearly imitated the correct teacher
distribution. In HMDB51, however, SIR values were observed at a relatively low level of
7–10. This indicated that the difference between the matched and cross-teacher distribu-
tions was not as distinct as that in UCF101. In other words, owing to inter-class visual
similarity and lower video quality, teacher predictions formed less distinct boundaries,
and, consequently, the student exhibited relatively weaker teacher differentiation during
selective transfer.

5. Discussion
The DTKD proposed in this study is distinct from previous KD studies in that it

selectively delivers soft targets optimized for class characteristics. The St-T specializes
in background and low-frequency static features, whereas the Dy-T captures motion and
temporal variations. The student learns all classes while using the teacher distribution
corresponding to each sample subset as the supervision signal, and achieves a balance
between hard and soft supervision by combining distillation loss and CE loss.

This selective transfer is grounded in optical-flow-based subset partitioning. Although
classes were divided into St and Dy subsets using the Q1 threshold of the mean optical
flow values, Q1 cannot always be regarded as the optimal criterion. Alternatives, such as
the median (Q2), third quartile (Q3), trajectory motion intensity, or adaptive thresholding,
may serve as viable options. Furthermore, the optical flow computation algorithm and
aggregation method (e.g., overall mean vs. region-based or temporal mean) can also
influence the dataset composition and distillation outcomes. Although the proposed
approach provides a rational and reproducible criterion, further comparative and validation
studies using diverse methodologies are warranted.

Experimental results demonstrated that DTKD achieved stable and consistent improve-
ments over the baseline, with the key hyperparameters (KD_T, KD_α, and the proposed
S_α) directly impacting the performance. In particular, excessive KD_α led to degraded
accuracy, highlighting the importance of balancing hard and soft supervision. Both LT
and FT conditions yielded improvements over the baseline, suggesting that DTKD can be
designed to balance knowledge transfer stability (LT) and dataset adaptability (FT). The
KL-Div analysis confirmed that when subsets were matched, the distribution gap between
students and teachers was significantly reduced, demonstrating that selective transfer was
effective. Conversely, for the non-responsible subsets, the KL values were high, confirming
that unnecessary knowledge imitation was suppressed.

Additionally, BSKD, which distills knowledge by simply matching teacher distribu-
tions to subsets, recorded lower performance than the baseline, despite using the same
data. This likely stems from a structural difference: BSKD masks classes as static or dy-
namic and references only a single teacher distribution for the KL-Div calculation, whereas
DTKD combines both teacher distributions with hybrid score–based soft weighting before
comparing with students. Consequently, DTKD was able to reflect both teacher reliability
and complementary signals, whereas BSKD suffered from instability in the boundary and
noisy samples, leading to degraded performance.

Furthermore, whereas self-distillation, a widely used KD method, retransfers aug-
mented data representations within the same network, DTKD divides the same dataset
into subsets, specializes in teachers, and combines them using a selective KD strategy. This
process minimizes the distribution mismatch and validates the performance gain over the
baseline. However, because the information gap between teachers and students may not be
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large, the transfer effect could be limited and dataset bias could potentially be reinforced.
Therefore, additional validation of external datasets is necessary.

6. Conclusions
Action recognition research still faces limitations owing to excessive reliance on back-

ground cues and insufficient consideration of class-specific characteristics. Most previous
studies have not objectively distinguished between static and dynamic classes, and single-
teacher KD approaches have been constrained in terms of performance and generalization
because of a lack of domain-specific expertise.

Consequently, this study proposed a DTKD framework in which action classes are
divided into St- and Dy-subsets based on an optical flow-based statistical criterion. Expert
teachers were independently trained for each subset and their knowledge was distilled into
a student model.

Experimental results demonstrated that DTKD not only achieved higher accuracy
than the baseline across the entire dataset but also reached performance levels close to
those of the expert teachers within each subset. Furthermore, the KL-Div analysis between
teachers and students revealed a lower divergence when the student was paired with
the corresponding subset teacher, confirming that the proposed framework successfully
implemented selective knowledge transfer. These findings indicate that DTKD overcomes
the limitations of the single-teacher KD by complementarily combining domain-specific
soft targets, thereby enhancing both the representational capacity and generalization ability
of the student.

This study established the validity of a subset-specific selective KD strategy by pro-
viding consistent performance improvements and stabilized decision boundaries over
the baseline. Simultaneously, it acknowledged the limitations related to teacher depen-
dency, subset definition, and dataset scope, leaving directions for future research. In future
work, we plan to further evaluate the proposed DTKD framework on larger and more
diverse datasets to better assess its scalability and generalization capability. In addition,
since the DTKD structure is designed to be architecture-agnostic, it can be extended to
transformer-based video models such as TimeSformer or Video Swin Transformer to ex-
plore its applicability to attention-driven architectures. By addressing these directions,
DTKD has the potential to evolve into a robust and scalable distillation paradigm applicable
to diverse video-understanding tasks.

Moreover, the current subset-division criterion—based on the Q1 quartile of the optical
flow averages—can be further extended by exploring Q2, Q3, or adaptive thresholding
strategies. Such extensions could strengthen the generality of DTKD and lead to more
refined subset-aware KD strategies. Finally, validating this approach in complex real-
world scenarios such as pedestrian and driver action recognition in autonomous driving is
expected to further consolidate the practicality and scalability of DTKD.
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The following abbreviations are used in this manuscript:

St-T Static Teacher
Dy-T Dynamic Teacher
St-subset Static subset
Dy-subset Dynamic subset
KL-Div Kullback–Leibler divergence
KD Knowledge Distillation
DTKD Dual Teacher Knowledge Distillation
BSKD Baseline Selective Knowledge Distillation
LT Locked Teacher
FT Frozen Teacher at student stage
TU Teacher UCF101
TH Teacher HMDB51
SU Student UCF101
SH Student HMDB51
SM Selectivity Margin
SIR Selective Imitation Ratio
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