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SUMMARY

Mechanisms underlying single odorant activation of specific olfactory receptors are well understood. How-
ever, how the olfactory system processes complex odor mixtures at the receptor level remains unclear. This
study examined olfactory receptor activation patterns across odor complexities using phosphoTRAP anal-
ysis. For most mixtures, receptor activation patterns closely matched the linear sum of individual component
responses. However, distinct receptor sets display non-linear responses unexplained by linear models.
Mixture responses were generally located between component responses and often aligned with linear pre-
dictions, though some deviations indicated non-linear interactions. Total activated receptors remained rela-
tively constant regardless of odor complexity, suggesting efficient coding that prevented receptor saturation
as odorant components increased. These findings provide receptor-level evidence that the olfactory system
encodes complex odors primarily through linear integration of receptor activity, with added specificity from
non-linear responses in limited receptors, advancing understanding of how the olfactory system normalizes

receptor activation in response to natural odors.

INTRODUCTION

The mammalian olfactory system has a remarkable ability to
detect and discriminate an immense diversity of odors, a func-
tion essential for survival, behavior, and social interactions.'
This extraordinary sensitivity is achieved through the expression
of a large repertoire of olfactory receptor (OR) genes, each typi-
cally expressed in a single olfactory sensory neuron (OSN).>*
Through a combinatorial coding strategy, each odorant can acti-
vate multiple ORs, and each OR can respond to multiple odor-
ants, enabling the system to represent a vast array of odor iden-
tities with a finite receptor repertoire.*°

Over the past decades, elucidation of how individual
odorant molecules interact with their binding receptors,
including atomic-level insights from structural studies
and large-scale mapping of odorant-receptor pairs, has
advanced.”™"" Sequencing-based approaches have revealed
that even a single odorant often recruits a characteristic and
sometimes a broad subset of ORs, reflecting the diversity of
tuning breadths among receptors.’>'* However, most of

these studies have focused on responses to single odorants
or simple binary mixtures, which do not capture the
complexity of natural olfactory stimuli.’®'® In natural environ-
ments, most odors are complex mixtures containing dozens
to hundreds of volatile compounds.'”

Processing such complex mixtures presents a fundamental
challenge for the olfactory system. Behavioral and physiological
studies have shown that as mixture complexity increases, iden-
tifying individual components becomes more challenging for an-
imals and humans, and mixtures are often perceived as unique
odor objects rather than the sum of their parts.'®'° At the cellular
level, studies using calcium imaging, dissociated OSNs, and
in vitro assays have demonstrated that responses to binary
mixtures can exhibit both linear summation and pronounced
non-linear interactions, such as suppression or emergent activa-
tion."®2°2% However, how these principles extend to the full re-
ceptor repertoire when challenged with the complexity of natu-
ralistic odors remains unclear. In particular, whether increasing
odor complexity leads to a proportional increase in the number
of activated ORs, which could risk saturating the coding capacity
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Figure 1. Distinct activation patterns of olfactory receptors induced by four single odorants revealed by phosphoTRAP

(A) Schematic diagram of the experimental workflow. Mice were habituated for 4 h (Hab), exposed to a single odorant for 1.5 h (Stim), and the olfactory epithelium
(OE) was sampled (Samp). Immunostaining of OE shows olfactory marker protein (OMP, green) and phosphorylated S6 ribosomal protein (pS6, red) in activated
cells. Only ribosomes in activated cells are phosphorylated and selectively captured by pS6 immunoprecipitation (pS6-I1P). Scale bars, 10 pm

(B) Chemical structures and descriptions of the four odorants used for stimulation: acetophenone (red, sweet), decanal (blue, citrus), octanal (orange, fruity), and
cis-3-hexenol (sky blue, grassy).

(C and D) Distance matrices presenting the similarity in OR activation patterns for acetophenone, decanal, and their mixture (AD) (C), and for octanal, cis-3-
hexenol, and their mixture (OC) (D). Each row and column represents an individual sample.

(legend continued on next page)
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of the system, or whether mechanisms exist to constrain recep-
tor recruitment and maintain efficient coding, is unclear.'®?42°

Therefore, this study aimed to systematically examine OR acti-
vation patterns in response to a spectrum of odor complexities,
ranging from single odorants to binary mixtures and complex
naturalistic fragrances. Our study provides insight into how the
olfactory system maintains both efficiency and discriminative
power in the face of natural odor complexity.

RESULTS

Molecular profiling of odor-evoked OR activation using
phosphoTRAP

First, we assessed the odor investigation behavior. Mice were
alternately exposed for 5 min to empty filter paper (no odor, con-
trol) and odor-applied filter paper. In each experiment, mice were
exposed to three odorants per experiment, and over three days,
all nine odorants were tested. The order of odorant exposure was
randomized to avoid sequence bias (n = 7; Figures S1A and
S1B). The number of odor investigations did not differ signifi-
cantly across odor conditions, and the distance traveled within
the cage during each session was similar (Figures S1C and
S1D). The location of the mice during each odor session was re-
corded as heatmaps (Figures STE-S10). Thus, mice exhibited
neither innate preference nor aversion to any of the odorants
tested.

Upon binding of an odorant molecule, the OR activates the G
protein Golf, which subsequently stimulates adenylyl cyclase Il
(ACII).>>27 ACIIl catalyzes ATP conversion to cyclic AMP
(cAMP), raising intracellular cAMP levels and opening cyclic
nucleotide-gated ion channels.®?® The resulting influx of Na*
and Ca®* ions leads to neuronal depolarization and activation
of the mTORC1 pathway, ultimately activating S6 kinase and re-
sulting in the phosphorylation of ribosomal protein S6 in the stim-
ulated OSNs (Figure S2A).?>*° Phosphorylation of S6 protein,
thereby, serves as a useful marker to survey neural activation.®’
To examine the activation profile of phosphorylated ribosomal
protein S6 (pS6) in OSN in vivo, we performed immunohisto-
chemical analysis on olfactory epithelium (OE) sections obtained
from mice exposed either to a no-odor control or to 100% ace-
tophenone. In odor-exposed OE sections, pS6 expression within
mature OSNs increased, as identified by co-labeling with olfac-
tory marker protein (Figures S2B and S2C). In contrast, pS6
levels in OSNs from control animals remained at baseline levels.
These results support previous findings indicating that odorant
exposure increases pS6 phosphorylation in mature OSNs within
the OE."* Activity-dependent pS6 acts as a sensitive molecular
marker of recent neuronal activation and is the molecular sub-
strate for ribosome capture in the phosphoTRAP assay.®?

To further verify odor-evoked activation in the OE, western blot
analyses of OE tissue were performed after exposure to each
odor condition. Immunoblotting for pS6 and p-actin revealed
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increased pS6 signal in samples from odor-exposed mice
compared to controls. This result provided additional molecular
evidence that odor stimulation robustly induced pS6 expression
in the OE (Figures S2D and S2E).

We used phosphoTRAP (Figure 1A) to investigate the activa-
tion patterns of ORs in response to odor stimuli. This method en-
ables molecular profiling of activated ORs by capturing the phos-
phorylation of pS6, a neuronal activation marker. Because each
OSN expresses only one type of OR, this approach allows for
precise mapping of receptor activation.*> Mice were exposed
for 90 min to four distinct odorants (100% concentration of ace-
tophenone [A], decanal [D], octanal [O], and cis-3-hexenol [C]) or
their binary mixtures (acetophenone and decanal [AD] and octa-
nal and cis-3-hexenol [OC]) applied onto a filter paper, with
empty filter paper serving as a no-odor control (Figures 1A and
1B). Following exposure, total RNA and pS6-associated mRNA
were analyzed using next-generation sequencing.

Sequencing data analysis revealed distinct enrichment pat-
terns between total RNA and phosphoTRAP samples in
response to each odor stimulus. Distance matrices of these da-
tasets showed darker colors along the diagonal, indicating
strong similarity among replicates exposed to the same condi-
tion, which supports the reliability of our approach (Figures
S3A and S3B). When comparing the clustering ability of both ap-
proaches, principal-component analysis (PCA) of total RNA
failed to effectively separate individual odorant conditions
(Figures S3C and S3D), whereas that of phosphoTRAP samples
demonstrated clearer segregation of odorant conditions, reflect-
ing the enhanced specificity of this approach for capturing
neuronal activation (Figures S3E and S3F).

To further understand the activation patterns of ORs, we
focused on OR-encoding transcripts enriched in phosphoTRAP
samples. Correlation analysis of these OR activation patterns
showed high reproducibility among replicates for each odorant
stimulus (Figures 1C and 1D) (see also Data S1A and S1B for
log2 fold changes and p values of ORs). Distinctive response
patterns were observed among individual odorants. While
odorant mixtures were not identical to their single components,
they exhibited partial similarity to both. In both odorant sets,
PCA analysis clearly showed that the OR activation pattern of
the mixture was distinct yet intermediate, with the cluster repre-
senting the odorant mixture located between the clusters of its
constituent single chemicals (Figures 1E and 1F). For example,
in the A, D, and AD conditions, the AD mixture cluster was posi-
tioned between A and D. In the O, C, and OC conditions, the OC
cluster was found between O and C, albeit closer to O than C.
Although cluster positions of mixed odorants were in the direc-
tion of the vector sum of their individual odorant clusters, the
magnitude was less than that of the summed vector.

Similarly, the analysis of the full OR activation space demon-
strated high correlation of the predicted response to mixtures
(as a linear combination of individual odorant responses) with

(E and F) Principal-component analysis (PCA) plots of OR activation patterns for each odor pair and their mixtures; (E) acetophenone (red), decanal (blue), AD
mixture (purple), and control (black) groups are shown; (F) octanal (orange), cis-3-hexenol (sky blue), OC mixture (green), and control (gray) groups are shown.
Each circle indicates an individual mouse (n = 3 per group), while colored diamonds represent group means. Dashed lines indicate vectors from control to each
condition, and black diamonds represent the vector sum of single odorant responses. The percentage of variance explained by each principal component is

indicated on the axes (PC1 and PC2).
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the actual measured response (Figures S3G and S3H). The over-
all response characteristics of ORs suggested that the response
patterns to mixed odorants closely resembled the sum of their
individual components. Nonetheless, some discrepancies
between observed OR activation patterns and simple linear
summation implied that the responses to mixture involved non-
linear mechanisms in a minority of ORs. Thus, the abundance
of OR genes detected by phosphoTRAP analysis provides a
robust molecular readout of the OE’s response to odorant
stimulation.

Binary odorant mixtures induce complex OR activation
patterns encompassing linear and non-linear

interaction

To address how each OR responds to single odorants and their
binary mixtures, we analyzed the differential expression patterns
of individual ORs in phosphoTRAP data. Volcano plot analysis
revealed distinct OR activation signatures for each condition
(Figures 2A-2F). Significantly upregulated ORs (fold change >
2, p value < 0.05) were identified across all test conditions:
150 ORs for A (Figure 2A), 67 for D (Figure 2B), 178 for O
(Figure 2D), and 84 for C (Figure 2E). We also detected signifi-
cantly upregulated ORs in binary mixtures: 60 ORs responding
to the AD mixture (Figure 2C) and 92 to the OC mixture
(Figure 2F) (see also Data S2A and S2B for lists of significantly
upregulated ORs).

Although we also observed a minor population of downregu-
lated ORs, the suppression of OR responses could play an
important role in combinatorial coding and non-linear mixture ef-
fects, and future investigations will be necessary to elucidate
their biological contributions (see also Data S3A and S3B for lists
of significantly downregulated ORs).

To further compare individual odorant and binary mixture-
evoked receptor activation, we generated heatmaps of ORs
that exhibited statistically significant or above-threshold fold
changes in at least one condition. For visualization, expression
values were transformed to Z score to emphasize relative differ-
ences across conditions. This analysis revealed that ORs acti-
vated by A displayed distinct profiles from those responding to
D. Notably, most receptors responsive to either A or D also re-
sponded to their mixture (AD), whereas a subset of ORs that
were activated by single odorants failed to respond in the
mixture. A similar pattern was observed for O, C, and their
mixture (OC) (Figures 2G and 2H).

Venn diagram analysis revealed intricate patterns of OR activa-
tion in response to binary mixtures (Figures 21 and 2J). For the A
and D combination (Figure 21), most OR responses were specific
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to one component or the mixture itself. In total, 124 ORs re-
sponded exclusively to A, whereas only one OR responded exclu-
sively to D. An overlap of one OR was observed between A and the
AD mixture, whereas a larger overlap of 41 ORs occurred between
D and the AD mixture. Notably, 11 ORs were upregulated across
all three conditions, demonstrating consistent activation regard-
less of stimulus complexity. In addition, two distinct populations
of non-linear mixture-responsive ORs were identified. One group
comprised 14 ORs that responded to both single odorants but
showed no response to the mixture, suggesting inhibitory interac-
tions when these odorants are combined. The second group
comprised seven mixture-specific ORs that were not activated
by either single odorant, indicating emergent activation patterns
unique to the AD mixture.

For the O and C combination (Figure 2J), we observed similar
complexity but with different proportions. In total, 91 ORs re-
sponded exclusively to O, whereas only two ORs responded
exclusively to C. A total of 51 ORs were upregulated across all
three conditions, showing a higher degree of overlap compared
to the AD mixture. Additionally, 31 ORs that responded to single
odorants showed no response to the OC mixture, further support-
ing inhibitory mechanisms in this context. Notably, 36 mixture-
specific ORs were identified that were not activated by either sin-
gle odorant. This represents a substantial proportion of emergent
responses unique to the OC mixture (see also Data S2 and S3 for
lists of significantly up- or downregulated ORs).

These findings show that binary odorant mixtures activate
most receptors that respond to one of the component odorants.
In addition, non-linear emergent activation produces response
patterns to the mixture that differ from simple linear combina-
tions of individual odorant responses. This suggests that com-
plex integration mechanisms are at work at the receptor level.

To address whether the method of binary odor mixture deliv-
ery influences OR activation, we established two experimental
paradigms. In the “mixture” condition, both odorants were
applied together onto a single piece of filter paper. In contrast,
in the “separated” condition, each odorant was dispensed
onto its own filter paper, with the two papers placed side by
side approximately 1 mm apart, preventing potential direct
liquid-phase interactions before volatilization (Figure S4A).

Following odor stimulation, phosphoTRAP analysis of the ol-
factory epithelial tissue was performed, and the enrichment of
ORs was exclusively analyzed. PCA based on the OR activation
profiles revealed no clear separation between samples exposed
to the mixture condition (triangles) and those exposed to the
separated condition (squares) (Figures S4B and S4C; see also
Data S1C for log2 fold changes and p values for ORs). A

Figure 2. Comparative analysis of activated olfactory receptors in response to single odorants and binary mixtures

(A-F) Volcano plots showing differential expression of olfactory receptors (ORs) for each odorant condition: (A) acetophenone, (B) decanal, (C) AD mixture,
(D) octanal, (E) cis-3-hexenol, and (F) OC mixture. Red dots indicate significantly upregulated ORs (fold change > 2, p value < 0.05), blue dots indicate
significantly downregulated ORs (fold change < -2, p value < 0.05), and gray dots represent ORs with non-significant changes.

(G and H) Heatmaps showing expression patterns of significantly regulated ORs across odor conditions. (G) Shows data for acetophenone (A), decanal (D), and
AD mixture. (H) Shows data for octanal (O), cis-3-hexenol (C), and OC mixture. Expression levels were normalized by Z score transformation to emphasize relative
up- or downregulation across conditions, with red and blue representing up- and downregulated expression, respectively.

(land J) Venn diagrams summarizing the overlap of significantly upregulated ORs between individual odorants and their mixtures. (I) Acetophenone, decanal, and
AD mixture. (J) Octanal, cis-3-hexenol, and OC mixture. The diagrams highlight the unique and shared receptor activations, illustrating both linear and non-linear

mixture effects.
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Figure 3. Olfactory receptor activation patterns in response to naturalistic fragrances and their mixture

(A) Naturalistic fragrances used for stimulation: floral (pink, 31 compounds including florosa), mint (teal, 34 compounds including menthol), and FM mixture (floral
70% + mint 30%, blue). The main components and descriptions of the fragrances are shown.

(B) Distance matrix depicting the similarity of olfactory receptor (OR) activation patterns across floral, mint, and FM mixture conditions. Samples are clustered
based on pairwise distances of OR expression profiles.

(legend continued on next page)
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comprehensive analysis of the OR activation spectrum in both
conditions showed a very strong correlation between the mixture
and separated groups (Figures S4D and S4E), indicating highly
similar OR activation patterns regardless of the delivery method.

To explore the distribution of significantly upregulated ORs,
we plotted Venn diagrams. In both odorant combinations tested,
the majority of ORs activated in the separated condition also ap-
peared among those activated in the mixture condition. Notably,
the mixture group tended to recruit a small subset of ORs that
were not observed in the separated group (Figures S4F and
S4G) (see also Data S2C and S3C for lists of significantly up-
or downregulated ORs). Thus, direct chemical interactions
occurring when odorants are physically mixed may contribute
to an emergent OR activation.

Naturalistic fragrances and their mixtures induce
complex OR activation patterns encompassing linear
and non-linear interaction

Natural odors typically comprise complex mixtures containing
dozens to hundreds of volatile compounds.'” To investigate
whether the principles previously observed with single chemical
odorants and their mixtures also apply to naturalistic fragrances,
we studied the OR responses to commercially available per-
fumes constructed based on fragrance principles and their
mixtures.

We selected two distinctive complex fragrances: floral
(F, containing 31 compounds, including florosa) and mint (M, con-
taining 34 compounds, including menthol). Six chemicals were
common constituents of these two fragrances. For mixture (FM),
we blended floral and mint fragrance in a 7:3 ratio (Figure 3A).

Using phosphoTRAP analysis, we examined OR activation
patterns in response to either F, M, or their mixture FM. Analysis
of the sample distance matrix revealed that these conditions
continued to induce distinct and separable OR activation pat-
terns (Figure 3B). The analysis was restricted to OR-encoding
genes within the phosphoTRAP data, and PCA revealed clear
discrimination among the odor stimuli (Figure 3C). Consistent
with the findings for single chemical odorants and their mixtures
(Figures 1E and 1F), the OR activation pattern for FM was posi-
tioned between those for F and M. Notably, the distance of FM
from the control was less than that of the summed vector of F
and M.

Volcano plot analysis identified differentially expressed ORs
(fold change > 2, p value < 0.05) across all test conditions: 73
ORs for F fragrance (Figure 3D), 82 for M fragrance (Figure 3E),
and 76 for the FM mixture (Figure 3F) (see also Data S1D for
log2 fold changes and p values of ORs). Heatmap visualization
of differentially expressed ORs also illustrated the linear and
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non-linear relationship between individual fragrance and their
mixture (Figure 3G). Venn diagram analysis revealed intricate
patterns of OR recruitment in response to these complex fra-
grances (Figure 3H) (see also Data S2D and S3D for lists of signif-
icantly up- or downregulated ORs). Twenty-six ORs responded
exclusively to F fragrances, while 11 ORs were specific to M fra-
grances. The FM showed partial overlap with both F and M fra-
grances; five ORs were shared between F and mixture, whereas
29 ORs were common between M and FM. In addition, 42 ORs
were upregulated across all three conditions. No unique ORs
were exclusively activated by the mixture. These results extend
our findings from single odorants and binary mixtures to more
naturalistic, complex fragrances.

Similar to our observations with binary mixtures, the FM
mixture exhibited a non-linear activation pattern that was not
simply the weighted sum of its components. This finding rein-
forces the idea that non-linear integration is a fundamental prop-
erty of olfactory processing that extends from simple binary mix-
tures to complex naturalistic odors.

Activated OR count remains consistent despite
increasing odor complexity

We observed both linear and non-linear OR responses to mixed
odorant stimuli, prompting us to investigate how receptor activa-
tion scales with increasing odorant complexity. To address this,
we first plotted the number of constituent chemicals in each
odorant and complex odor experiment against the number of
activated ORs (Figure 4A). The increasing number of chemical
compounds in the odor stimulus did not lead to a corresponding
increase in OR activation.

The experiments involving single chemical compounds and
their mixtures differed significantly in the number of constituent
chemicals compared to the experiments with naturalistic fra-
grances and their mixtures. Statistical comparisons using
Kolmogorov-Smirnov tests confirmed no significant differences
between any pairwise comparisons (single vs. binary: p =
0.9333; single vs. complex: p = 0.2286; binary vs. complex:
p = 0.9000). This indicates that the olfactory system engages
similar numbers of receptors regardless of odor complexity.
We also counted the number of OR in single chemical com-
pounds (single), binary compound mixture (binary), and natural-
istic fragrances and their mixture (complex) (Figure 4B). One-way
ANOVA comparing all three groups showed no significant differ-
ences in mean activated OR counts (p = 0.3188).

Based on these observations, we propose a model for olfactory
coding characterized by linear and non-linear integration at the re-
ceptor level (Figure 4C). When odors are mixed, individual odor-
responsive ORs remain active while others are suppressed, and

(C) Principal-component analysis (PCA) of OR activation patterns with samples colored as floral (pink), mint (teal), FM mixture (blue), and control (black). Circles
represent individual mice (n = 3 per group), while colored diamonds indicate group means. Dashed lines represent vectors originating from the control condition to
each odor condition, with the black diamond denoting the vector sum of floral and mint. The percentage of variance explained by each principal component is

indicated on the axes (PC1 and PC2).

(D-F) Volcano plots illustrating differentially expressed ORs for floral (D), mint (E), and FM mixture (F) stimuli. Red dots mark significantly upregulated ORs (fold
change > 2, p value < 0.05), blue dots denote significantly downregulated ORs (fold change < -2, p value < 0.05), and gray dots correspond to non-significant

changes.

(G) Heatmap showing expression patterns of 113 significantly regulated ORs across floral (F), mint (M), and FM mixture (FM) conditions. Data are normalized using
Z score transformation, with red indicating higher expression and blue indicating lower expression relative to each OR’s mean.
(H) Venn diagram summarizing the overlap and unique distribution of significantly upregulated ORs among floral, mint, and FM mixture conditions.
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Figure 4. Statistical analysis of the number of activated olfactory receptors in response to odors of varying complexity

(A) Scatterplot depicting the relationship between the number of chemical components in each odor stimulus (x axis) and the corresponding number of activated
olfactory receptors (ORs) (y axis). Data include single odorants, binary mixtures, and complex naturalistic fragrances. No significant correlation was observed.
(B) Bar graph comparing mean activated OR counts among stimulus complexity categories: single chemical compounds (119.75 + 26.41, n = 4), binary mixtures
(76.0 + 16.0, n = 2), and complex fragrances (77.0 + 2.65, n = 3). Data are represented as mean + SEM. One-way ANOVA indicates no significant differences
among groups (p = 0.3188).

(C) Schematic model illustrating olfactory receptor coding at the receptor level. Individual odor-responsive ORs remain active (overlapping area), some ORs
exhibit suppression in mixtures (non-overlapping in single odors), and new mixture-specific ORs emerge. This integrated response maintains stable total OR
activation regardless of odor complexity.

certain individual odor-non-responsive ORs are activated. This results demonstrate that odorant mixture processing operates
integration spares the total number of activated ORs while gener-  through a combination of linear integration and selective non-
ating distinct activation patterns for different odors. linear interactions at the receptor level.

Mechanistically, these response profiles are consistent with When assessed using binary classification based on statistical
established principles of odor-receptor interactions. Suppres- thresholds (fold change > 2, p value < 0.05), the responses of
sion of OR activation in mixtures can be explained by receptor most ORs to odorant mixtures closely matched the linear sum
antagonism or competitive binding between odorant molecules  of responses to individual components. These criteria, selected
at the receptor site, a phenomenon demonstrated in previous to maintain continuity with established phosphoTRAP and tran-
studies.?>?® For some ORs not responsive to single odorants  scriptomic studies, enabled direct comparison with previous
but to odor mixtures, this emergent activity may result from allo-  work while providing statistical rigor and reproducibility.
steric modulation, cooperative binding, or non-linear network ef- However, a statistically significant subset of ORs displayed
fects at either the receptor or circuit level.>® non-linear response profiles that could not be predicted from

For all analyses, ORs were assigned to each response cate- single-component responses. Previous studies using in vivo im-
gory based on pre-defined fold-change and p value thresholds.  aging and in vitro reporter assays have suggested that ORs can
While our study does not directly distinguish the underlying mo-  exhibit non-linear responses to odorant mixtures.'®>' Recent
lecular mechanisms for every OR, the observed categories align  systematic analyses have demonstrated that antagonistic inter-
with known modes of receptor modulation and provide a actions at the receptor level are widespread and can modulate

descriptive framework for future mechanistic work. mixture representations.?%?>2° Qur findings extend this under-
standing by providing a comprehensive receptor-level profile
DISCUSSION of both linear and non-linear responses across a spectrum of
odor complexities, from binary mixtures to naturalistic fra-
Receptor-level mechanisms underlying olfactory grances containing dozens of compounds.

mixture processing

We employed phosphoTRAP technology to systematically Input normalization as a principle of olfactory coding
examine OR activation patterns across the entire receptor reper-  Input normalization in sensory systems expands dynamic range,
toire in response to individual odorants and their mixtures. Our  enhances contrast, and improves signal-to-noise ratio, while
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response normalization further reduces redundancy, maintains
perceptual stability, and enables context-dependent process-
ing.?* Studies in Drosophila have demonstrated that both forms
of normalization operate in the olfactory system, suggesting
these are general sensory principles.®*

No significant differences in activated OR counts between sin-
gle compounds, binary mixtures, and complex fragrances were
found despite large differences in chemical complexity. This im-
plies that the olfactory periphery may implement input normali-
zation to stabilize receptor recruitment across varying stimulus
conditions, although further research with varying odor concen-
trations is warranted to validate this hypothesis.

These results align with the findings reported by Zak et al.
(2024), suggesting that increasing mixture complexity leads to
denser olfactory bulb (OB) activation without altering overall
population sparseness.>* These convergent findings support
input normalization as a general computation in the OE that con-
strains receptor recruitment under complex odor conditions.
Whereas Zak et al. focused on the OB dynamics via optical im-
aging, our complementary receptor-level profiling of the OSN
demonstrated that normalization emerged at the first stage of ol-
factory processing.

By preventing receptor saturation and preserving coding ca-
pacity in environments containing hundreds of volatile com-
pounds, input normalization likely enhances odor discrimination
in noisy settings and improves detection against background
stimuli, as theoretical models predict. Elucidating the molecu-
lar mechanisms of this normalization will be essential for a
deeper understanding of olfactory coding principles.

Implications for artificial olfaction and sensory
technology
Our findings have important implications for the development of
artificial olfactory systems. The observation that biological olfac-
tory systems maintain stable receptor activation regardless of
mixture complexity provides a conceptual framework for opti-
mizing electronic nose algorithms and sensor designs. Recent de-
velopments in multi-thin film transistor sensor arrays demonstrate
that normalization and combinatorial coding strategies can
improve selectivity and robustness for complex odor detection.*®
Furthermore, advances in artificial intelligence have shown
that computational normalization through embedding spaces
can enable a more linear representation of non-linear olfactory
interactions, improving odor prediction for complex molecular
blends.®” However, the precise biological mechanisms underly-
ing these computational achievements remain unclear. Future
research integrating receptor-level insights from biological olfac-
tion with advances in artificial intelligence may accelerate the
development of next-generation sensory technologies.

Future research directions

Several important questions merit further investigation. First,
detailed sequence alignments and comparative analyses of acti-
vated ORs, focusing on the 3D structure of orthosteric binding
sites, could elucidate the molecular basis of receptor specificity
and ligand promiscuity. Advanced structural bioinformatics ap-
proaches can help determine whether specific odorants can
realistically bind across broad spectra of receptor sites.

¢? CellPress
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Second, the mechanisms underlying non-linear responses
and input normalization require systematic investigation. We
identified distinct populations of mixture-responsive ORs,
including those showing inhibitory interactions and emergent
activation patterns, but the molecular basis underlying these
phenomena remains unclear. Understanding whether these ef-
fects result from direct receptor-level interactions, allosteric
modulation, or network-level computations can help advance ol-
factory coding theory.

Finally, the generality of input normalization across different
stimulus conditions requires validation. We delivered high con-
centrations over extended periods, which may have influenced
the observed patterns. Future studies using behaviorally titrated
concentrations and controlled vapor-phase delivery systems
should assess whether normalization occurs under more physi-
ological conditions.

In summary, our findings show that olfactory mixture encod-
ing reflects mostly linear integration of component responses
combined with a smaller set of non-linear receptor interactions.
This hybrid coding strategy maintains stable receptor recruit-
ment as mixture complexity increases, and the minority of
non-linear responses adds specificity to enhance mixture
discrimination. By preventing receptor saturation and preser-
ving coding capacity, this efficient scheme ensures robust
odor detection in natural environments. Our insights pave the
way for future studies into the molecular mechanisms of periph-
eral olfactory processing and their translation into artificial sen-
sory systems.

Limitations of the study

Our experimental approach of co-applying binary odorants to fil-
ter paper does not provide precise control over vapor-phase
concentrations or account for potential chemical interactions be-
tween the components. The vapor pressure differences among
odorants may result in actual airborne ratios that deviate from
the intended proportion, potentially influencing OR activation
independent of receptor-level mechanisms.*® Future studies us-
ing an olfactometer with vapor-phase mixing capabilities can
improve stimulus control and enable more precise investigation
of concentration-dependent effects.

All odorants were delivered at high concentrations for
extended periods, raising the possibility of ceiling effects or
non-specific receptor activation. The use of high concentrations
may mask subtle differences in receptor engagement that occur
at more physiologically relevant intensities. Evaluating re-
sponses across broader concentration ranges, including near-
threshold levels, is essential for determining the robustness of
observed normalization patterns under natural conditions.

We used freely moving mice during odor exposure, which may
have introduced behavioral variability affecting receptor activa-
tion. Variations in odor investigation patterns, distance from
the odor source, or exploratory locomotion could alter stimulus
access and influence OR responses. Using head-fixed prepara-
tions with precise vapor-phase delivery can reduce the effects of
these confounders.

Future work should expand the scope by testing multiple clas-
ses of odorants across graded concentrations and varied
mixture ratios. Conducting larger systematic experiments can
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provide clearer insights into the contributions of linear and non-
linear integration mechanisms.

While phosphoTRAP enables unbiased, genome-wide
profiling of receptor activation, the method inherently links tran-
script abundance to statistical detection power. In this study,
approximately 30% of detected ORs exhibited low read counts
(<10), reducing the power to detect differential expression
when counts are very low. However, most ORs showing biolog-
ically relevant responses possessed sufficient coverage for
reliable statistical assessment. Nonetheless, some ORs with
substantial fold changes may not have achieved statistical
significance solely because of low abundance, reflecting the
trade-off between biological and statistical criteria in RNA-
sequencing analysis. Importantly, rigid fold-change and p value
thresholds must be interpreted in the context of coverage, and
while they guard against false positives, they can obscure func-
tionally meaningful receptor activation at the margins of
detectability.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Rabbit polyclonal anti-phospho S6 (Ser244,
Ser247)

Goat polyclonal anti-olfactory marker protein
Cy3-conjugated donkey anti-rabbit IgG
Alexa Fluor 488-conjugated donkey anti-goat
1gG

Normal Donkey Serum

HRP-conjugated p-Actin Antibody (C4)

Thermo Fisher Scientific

FUJIFILM Wako Pure Chemical Corporation
Jackson ImmunoResearch Labs
Jackson ImmunoResearch Labs

Jackson ImmunoResearch Labs
Santa Cruz Biotechnology

Cat# 44-923G; RRID: AB_2533798

Cat# 019-22291; RRID: AB_3094987
Cat# 711-165-152; RRID: AB_2307443
Cat# 705-545-003; RRID: AB_2340428

Cat# 017-000-121; RRID: AB_2337258
Cat# sc-47778 HRP; RRID: AB_2714189

Goat anti-Rabbit IgG-heavy and light chain Bethyl Cat# A120-101P; RRID: AB_67264
Antibody HRP Conjugated

Chemicals, peptides, and recombinant proteins

Acetophenone Merck Cas 98-86-2; Cat# 42163
Cis-3-hexenol Merck Cas 928-96-1; Cat# 91316
Decanal Merck Cas 112-31-2; Cat# 59581
Octanal Merck Cas 124-13-0; Cat# 52466
Floral fragrance SCENTON INC. N/A

Mint fragrance SCENTON INC. N/A

Floral + Mint fragrance SCENTON INC. N/A

Sodium fluoride, 99.99% (metals basis) Alfa Aesar Cas 7681-49-4; Cat# 011003

Calyculin A

Bovine Serum Albumin (IgG-Free, Protease-
Free)

cOmplete™, Mini, EDTA-free Protease
Inhibitor Cocktail

2-Mercaptoethanol (3-ME)

Sodium pyrophosphate dibasic
B-Glycerophosphate disodium salt hydrate
Sodium orthovanadate

RNasin® Ribonuclease Inhibitor

NP-40 Surfact-Amps™ Detergent Solution
HEPES (1 M)

Cycloheximide, 95%

Dynabeads™ Protein A for
Immunoprecipitation

PBS, pH 7.4

MgCI2 (1 M)

KCI (2 M), RNase-free

Nuclease-Free Water (not DEPC-Treated)
DTT (dithiothreitol)

Triton X-100

Tween 20

Sodium Dodecyl! Sulfate (SDS)

Tris ultrapure

Glycine

Cell Signaling Technology

Jackson Immunoresearch

Merck

Merck

Merck

Merck

Merck

Promega

Thermo Fisher Scientific
Thermo Fisher Scientific
Thermo Fisher Scientific
Thermo Fisher Scientific

Thermo Fisher Scientific
Thermo Fisher Scientific
Thermo Fisher Scientific
Thermo Fisher Scientific
Thermo Fisher Scientific
Merck

VWR

Merck

Duchefa

Duchefa

Cas 101932-71-2; Cat# 9902
Cat# 001-000-162; RRID: AB_2336946

Cat# 04693159001

Cas 60-24-2; Cat# 63689

Cas 7758-16-9; Cat# 71501
Cas 154804-51-0; Cat# G9422
Cas 13721-39-6; Cat# S6508
Cat# N2511

Cati# 28324

Cat# 15630080

Cat# 357420010

Cat# 10002D

Cat# 10010023
Cat# AM9530G
Cat# AM9640G
Cat# AM9932
Cat# R0861
Cat# X100
Cat# 0777-1L
Cat# L5750
Cat# T1501
Cat# G0709

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER
Sodium chloride Duchefa Cat# S0520
Albumin bovine, fraction V, >98% MPbio Cat# 160069
NuPAGE LDS Sample Buffer (4X) Thermo Fisher Scientific Cat# NP0007
Q-PAGE TGN Precast Gel (Mini, 15 wells, 10%) SMOBIO Technology Cat# QP4220
Restore Western Blot Stripping Buffer Thermo Fisher Scientific Cat# 21059

Critical commercial assays

DNF-472 HS RNA (15 nt) Kit
RNase-Free DNase Set
RNeasy Mini Kit

Pierce BCA Protein Assay Kits

Agilent
Qiagen
Qiagen
Thermo Fisher Scientific

Cat# DNF-472-0500
Cat# 79254
Cat# 74104
Cat# 23227

ECL Select Western Blotting Detection Cytiva Cat# RPN2235

Reagent

Deposited data

RNA sequencing data files This paper GEO: GSE296359, GEO: GSE296360, and

GEO: GSE306619

Experimental models: Organisms/strains

C57BL/6J

The Jackson Laboratory

RRID: IMSR_JAX:000664

Software and algorithms

Python (version 3.12.3)
STAR (version 2.7.10b)
Salmon (version 1.10.1)

R (version 4.4.2)

apeglm (version 1.26.0)
DEGreport (version 1.40.0)

DESeq?2 (version 1.44.0)
EnhancedVolcano (version 1.22.0)

ggplot2 (version 3.5.1)
pheatmap (version 1.0.12)

RColorBrewer (version 1.1.3)

pasilla (version 1.34.0)

Tidyverse

EthoVision XT (version 17.5.1718)
Imaged

Prism 10

Python
Dobin et al.*®
Patro et al.*°

The R Project for Statistical Computing
Zhu et al.*’

Pantano. L*

Love et al.*®
Blighe et al.**

Wickham. H*®
Kolde. R*®

Erich Neuwirth*’

Wolfgang Huber, Alejandro Reyes*®

Wickham et al.*?

Noldus

National Institutes of Health
GraphPad

https://www.python.org/
https://github.com/alexdobin/STAR
https://combine-lab.github.io/salmon/
https://www.r-project.org/
https://bioconductor.org/packages/apeglm/

https://bioconductor.org/packages/
DEGreport/

https://bioconductor.org/packages/DESeq2/

https://bioconductor.org/packages/
EnhancedVolcano/

https://ggplot2.tidyverse.org/

https://cran.r-project.org/web/packages/
pheatmap/index.html

https://cran.r-project.org/web/packages/
RColorBrewer/index.html

https://bioconductor.org/packages/pasilla
https://www.tidyverse.org/packages/
https://noldus.com/ethovision-xt
https://imagej.net/ij/index.html
https://www.graphpad.com/

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

C57BL/6J wildtype male mice (RRID: IMSR_JAX:000664) were housed in the Specific Pathogen Free (SPF) area of the Laboratory
Animal Resource Center at Daegu Gyeongbuk Institute of Science and Technology (DGIST). The mice were maintained under a
12-h light/dark cycle with ad libitum access to standard rodent chow and water. To ensure a clean environment, cages were replaced
regularly. All experimental procedures were approved by the Institutional Animal Care and Use Committee of DGIST (Approval num-
ber: DGIST-IACUC-25040908-0001) and were conducted in accordance with the guidelines for the care and use of laboratory
animals.
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METHOD DETAILS

Odor stimulation

C57BL/6J wildtype male mice (8 weeks old) were individually placed into sealed containers (403 x 165 x 175 mm, W x D x H;
volume =11.6 L) within an experimental animal housing facility. The facility was equipped with independent ventilation systems
for each room to prevent odorant mixing. Mice were habituated for 4 h in an odorless environment before exposure. For single
odorant conditions, 10 pL of undiluted (100%) acetophenone, decanal, octanal, or cis-3-hexenol (Merck) was applied directly
ontoa1cm x 1 cmfilter paper placed in a 35 mm culture dish. For binary mixture conditions, 10 pL of each undiluted (100%) compo-
nent was applied separately but simultaneously to the same filter paper (total 20 pL per dish), ensuring the absolute amount of each
odorant in the mixture matched that of its corresponding single odorant condition. For complex fragrances (floral, mint, and floral-
mint blend; SCENTON INC.), 10 pL of undiluted product was applied per dish. A filter paper with no odorant served as the control. The
prepared dish was then placed into the mouse container, and the mouse was exposed for 90 min. Each condition and control was
tested with three mice (n = 3), using littermates of the same sex to minimize biological variability.

Immunohistochemistry

After odor stimulation, mice were transcardially perfused first with PBS to remove blood, followed by 4% paraformaldehyde (PFA) to
fix tissues. The olfactory epithelium (OE) was dissected and post-fixed overnight in 4% PFA at 4°C. For cryoprotection, tissues were
incubated in 30% sucrose solution overnight at 4°C. Cryoprotected samples were embedded in OCT compound and frozen at
—80°C. The OE was cryosectioned at —25°C into 50 pm slices. Sections were mounted onto glass slides and air-dried at 37°C for
at least 30min.

To remove residual OCT, slides were washed in PBS three times for 5min each on a shaker at 30 RPM. Tissue sections were
blocked for 2h at room temperature with 5% normal donkey serum in 0.1% PBST (PBS with 0.1% Triton X-100). Sections were
then incubated overnight at 4°C with primary antibodies diluted 1:1,000 in 0.1% PBST: rabbit anti-phospho-S6 (Ser244, Ser247)
and goat anti-OMP. After primary incubation, slides were washed six times for 5min each in 0.1% PBST on a shaker at 30 RPM. Sec-
ondary antibody incubation was performed at room temperature for 2h using donkey anti-rabbit Cy3 and donkey anti-goat Alexa
Fluor 488, both at 1:1,000 dilution in 0.1% PBST. After incubation with secondary antibodies, slides were again washed three times
for 5min each in 0.1% PBST on a shaker at 30 RPM. Sections were mounted with mounting solution and placed on a coverslip.
Stained OE samples were imaged using confocal microscopy at 20x magnification.

Odor preference test

C57BL/6J wild-type male mice (8 weeks old) were individually housed in new sealed containers (403 x 165 x 175 mm, W x D x H;
volume =11.6 L) for habituation one day prior to the experiment. On the test day, each mouse was exposed alternately to a no-odor
filter paper and a filter paper soaked with an odor solution, each for 5 min, in cages with the lids removed. Filter papers (1 cm x 1 cm)
were placed in 35 mm dishes for odor presentation. Each experimental session included exposure to three different odors per day,
and over a total of three days, each animal was exposed to all nine odors (n = 7). The order of odor presentation was randomized to
avoid sequence-dependent preferences. Mouse behavior was recorded using a camera positioned above the cage, and all behav-
ioral videos were analyzed with EthoVision XT software.

Homogenization of olfactory epithelium tissues

The C57BL/6J wildtype male mice (8 weeks old) were euthanized by cervical dislocation following odorant stimulation. Immediately
after euthanasia, perfusion was performed using chilled perfusion buffer (PBS, 5 mM NaF, 2.5 mM NazVQOy,, 2.5 mM Na,P>07, 5 mM
B-glycerophosphate, 100 pg/mL cycloheximide, and one tablet of Roche cOmplete protease inhibitor per 100 mL). A total of 10 mL of
perfusion buffer was used to remove blood from the olfactory epithelium (OE) tissue. The OE was immediately sampled and placed
into a 2 mL tube containing 1.5 mL of homogenization buffer (10 mM HEPES [pH 7.4], 150 mM KCI, 10 mM MgCl,, 100 mM
calyculin A, 0.5 mM DTT, 100 U/mL RNasin (Promega), 250 pg/mL cycloheximide, and one tablet of Roche cOmplete protease in-
hibitor per 50 mL) on ice. The OE tissue was homogenized using a TissuelLyser Il (Qiagen) for 2 min at a frequency of 20 Hz in the
homogenization buffer. The tissue homogenates were centrifuged at 2,000 x g for 10 min at 4°C. The supernatant was transferred
to a new tube, and 105 pL of 10% NP-40 was added to the solution. After gently mixing by inversion and incubating on ice for 2 min,
the mixture was centrifuged at 20,000 x g for 10 min at 4°C. The supernatant was used for western blot or immunoprecipitation
analyses.

Western blot analysis

Protein concentrations of olfactory epithelium (OE) homogenates were measured using the BCA assay. Samples were adjusted to
equal protein concentrations and denatured by incubation with NUPAGE LDS sample buffer at 95°C for 5min, then rapidly cooled
on ice. Equal amounts of protein were loaded onto 10% polyacrylamide gels and subjected to SDS-PAGE (100V, 100min). Proteins
were transferred onto PVDF membranes (0.2A, 90 min). All subsequent membrane processing steps were carried out on a shaker at
30 RPM.
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Membranes were blocked with 5% bovine serum albumin (BSA) in 0.2% TBST for 1h at room temperature. Detection of pS6 and
B-actin was performed sequentially on the same membrane to ensure antibody specificity. For pS6 detection, membranes were incu-
bated with primary antibody (1:1,000 in 0.2% TBST) for 2h at room temperature, followed by eight washes (5min each) in 0.2% TBST.
Membranes were then incubated with anti-rabbit HRP-conjugated secondary antibody (1:20,000 in 0.2% TBST) for 40min at room
temperature and washed three times for 5min each.

Protein bands were visualized using enhanced chemiluminescence (ECL) and detected using a Bio-Rad ChemiDoc system.
Following detection of the pS6 signal, membranes were stripped using an antibody stripping buffer at room temperature for
30min and washed with 0.2% TBST. Membranes were then re-blocked with 5% BSA in 0.2% TBST for 1 h at room temperature.
For p-actin detection, membranes were incubated with HRP-conjugated p-actin antibody (1:20,000 in 0.2% TBST) for 40 min at
room temperature and washed three times for 5 min each in 0.2% TBST. Detection was performed using ECL, as above. Band in-
tensities were quantified using Imaged software.

Preparation of magnetic beads

A 200 pL of Protein A Dynabeads (Invitrogen) was washed twice with Wash Buffer A (10 mM HEPES [pH 7.4], 10 mM MgCl,, 150 mM
KClI, 1% NP-40) using a magnetic rack to remove the supernatant. The washed beads were then resuspended in Pre-coupling Buffer
(10 mM HEPES [pH 7.4], 10 mM MgCl,, 150 mM KCl, 1% NP-40, 2% IgG-free BSA), and mixed with 6 pL of pS6 antibody (Invitrogen
#44-923G). The mixture was incubated at 4°C overnight with rotation to allow for antibody coupling. Following overnight incubation,
the beads were washed twice with Wash Buffer A to remove unbound antibody. The beads were then resuspended in 400 pL of ho-
mogenization buffer and added with 28 pL of 10% NP-40. The beads were kept on ice until the immunoprecipitation steps were
initiated.

RNA isolation and ribosome immunoprecipitation

The following protocol for ribosome immunoprecipitation was adapted from previous works with modifications.'*>? For total RNA
isolation, a 50 pL aliquot of the OE homogenate was transferred to a new 1.5 mL tube. 350 pL of Buffer RLT (included in the RNeasy
Mini Kit, QIAGEN) was added to the sample on ice and incubated for 5 min. The RNA was then purified using the RNeasy Mini Kit
(QIAGEN) according to the manufacturer’s protocol, including an on-column DNase digestion step using the RNase-Free DNase
Set (QIAGEN) to eliminate genomic DNA contamination.

For ribosome immunoprecipitation, the prepared pS6 antibody-coupled Protein A Dynabeads were mixed with the remaining OE
homogenate and incubated for 1 h at room temperature with gentle rotation. Following incubation, the beads were washed four times
with Wash Buffer B (10 mM HEPES [pH 7.4], 350 mM KCI, 5 mM MgCl,, 2 mM DTT, 1% NP-40, 100 U/mL RNasin, and 100 pg/mL
cycloheximide). During the third wash, the beads were transferred to a new tube and incubated at room temperature for 10 min. After
the final wash, mRNA was eluted by adding 350 pL of Buffer RLT to the beads and incubating for 5 min on ice. The beads were
removed using a magnetic rack, and the mRNA was purified using the RNeasy Mini Kit (QIAGEN) following the manufacturer’s in-
structions, including the on-column DNase digestion step.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA quality assessment and sequencing

The quality and quantity of both total RNA and mRNA were assessed using an Agilent 5200 Fragment Analyzer with the Agilent DNF-
472 (15 nt) HS RNA Kit. Libraries were prepared using the TruSeq Stranded mRNA Sample Prep kit (lllumina), and sequencing was
carried out on an lllumina NovaSeq 6000 platform according to the manufacturer’s protocols. RNA sequencing and genome align-
ment were performed by SYSOFT (Daegu, Republic of Korea) as a commercial service. Raw reads can be accessed at GEO:
GSE296359, GEO: GSE296360, and GEO: GSE306619.

RNA-seq data analysis

RNA-seq data analysis was performed using integrated Python and R programming environments. Raw read counts were generated
through a pipeline involving read mapping with the STAR aligner and transcript quantification using Salmon, yielding gene-level count
data for analysis.*°

Differential gene expression analysis

Differential gene expression analysis was conducted using the DESeq2 R package.”® To address multiple hypothesis
testing, p-values were adjusted using the Benjamini-Hochberg false discovery rate (FDR) method, controlling the expected
proportion of false positives. Genes with a p-value <0.05 and an absolute log, fold change (log2FC) > 1 were considered significantly
differentially expressed. The log2FC estimates were further improved by reducing estimation bias and variance using Bayesian
shrinkage as implemented in the apegim package.”' This approach uses an approximate posterior estimation for generalized linear
model (GLM) coefficients, providing more stable and accurate effect size estimates, particularly for genes with low counts or high
variability.
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For exploratory data analysis, variance-stabilizing transformation (vst) was applied to normalized counts for calculating sample-to-
sample distance matrices based on Euclidean distances. These distances were visualized as heatmaps to assess sample
relatedness.

Principal component analysis (PCA)
Principal component analysis (PCA) was performed on vst-transformed counts to summarize global expression patterns. PCA visu-
alization incorporated group-specific color schemes, along with plotting of group centroids and vectors to illustrate additive or inter-
active effects among experimental conditions.

Volcano plots illustrating differential expression results were generated using raw p-values and log2FC.** Genes exceeding pre-
defined fold change and p-value thresholds were highlighted to facilitate candidate gene identification.

Heatmap analysis
Significantly differentially expressed genes were additionally visualized using heatmaps based on regularized log-transformed (rlog)
counts. Gene expression was normalized relative to control group means, and hierarchical clustering was applied to genes while pre-
serving sample order to maintain experimental design context.*®

To visualize and compare OR activation patterns across samples, z-scores were calculated for each OR gene. Specifically, for
each gene, the mean and standard deviation of expression values were computed across the biological replicates within each exper-
imental condition (n = 3). Individual expression values were then transformed by subtracting the group mean and dividing by the
group standard deviation. These z-scores were used solely for data visualization and exploratory analyses and not as criteria for sta-
tistical significance.

Full OR activation space analysis

Full OR activation space analysis was performed to evaluate relationships in OR activation patterns across experimental conditions.
For each binary odor mixture, the average log2FC from the two individual odor conditions was compared with the log2FC observed in
the mixture condition. Pairs of valid values were assessed by Pearson’s correlation (R and p-value) and linear regression (R?), and
scatterplots with fitted regression lines were generated to illustrate concordance.

Correlation analysis
Correlations between mixture (“+”) and separated (“&”) groups were assessed to evaluate the effect of odor presentation format on
OR expression patterns. For each odor pair, log2FC estimates for OR genes from the mixture (“+”) presentation were compared with
those from the separated (“&”) presentation. Pairs of valid log2FC values were evaluated by Pearson’s correlation (R and p-value) and
linear regression (R?), and scatterplots with fitted regression lines were generated to illustrate the impact of presentation format on
OR activation patterns.

Venn diagram analysis
Overlap of significant gene sets across conditions was assessed via Venn diagrams generated using Python’s matplotlib_venn pack-
age, employing significance criteria consistent with those used in differential expression analyses.

All statistical testing and thresholds were applied uniformly across analyses to ensure reproducibility and transparency of findings.
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