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SUMMARY

Mechanisms underlying single odorant activation of specific olfactory receptors are well understood. How-

ever, how the olfactory system processes complex odor mixtures at the receptor level remains unclear. This

study examined olfactory receptor activation patterns across odor complexities using phosphoTRAP anal-

ysis. For most mixtures, receptor activation patterns closely matched the linear sum of individual component

responses. However, distinct receptor sets display non-linear responses unexplained by linear models.

Mixture responses were generally located between component responses and often aligned with linear pre-

dictions, though some deviations indicated non-linear interactions. Total activated receptors remained rela-

tively constant regardless of odor complexity, suggesting efficient coding that prevented receptor saturation

as odorant components increased. These findings provide receptor-level evidence that the olfactory system

encodes complex odors primarily through linear integration of receptor activity, with added specificity from

non-linear responses in limited receptors, advancing understanding of how the olfactory system normalizes

receptor activation in response to natural odors.

INTRODUCTION

The mammalian olfactory system has a remarkable ability to

detect and discriminate an immense diversity of odors, a func-

tion essential for survival, behavior, and social interactions.1,2

This extraordinary sensitivity is achieved through the expression

of a large repertoire of olfactory receptor (OR) genes, each typi-

cally expressed in a single olfactory sensory neuron (OSN).3,4

Through a combinatorial coding strategy, each odorant can acti-

vate multiple ORs, and each OR can respond to multiple odor-

ants, enabling the system to represent a vast array of odor iden-

tities with a finite receptor repertoire.5,6

Over the past decades, elucidation of how individual

odorant molecules interact with their binding receptors,

including atomic-level insights from structural studies

and large-scale mapping of odorant-receptor pairs, has

advanced.7–11 Sequencing-based approaches have revealed

that even a single odorant often recruits a characteristic and

sometimes a broad subset of ORs, reflecting the diversity of

tuning breadths among receptors.12–14 However, most of

these studies have focused on responses to single odorants

or simple binary mixtures, which do not capture the

complexity of natural olfactory stimuli.15,16 In natural environ-

ments, most odors are complex mixtures containing dozens

to hundreds of volatile compounds.17

Processing such complex mixtures presents a fundamental

challenge for the olfactory system. Behavioral and physiological

studies have shown that as mixture complexity increases, iden-

tifying individual components becomes more challenging for an-

imals and humans, and mixtures are often perceived as unique

odor objects rather than the sum of their parts.18,19 At the cellular

level, studies using calcium imaging, dissociated OSNs, and

in vitro assays have demonstrated that responses to binary

mixtures can exhibit both linear summation and pronounced

non-linear interactions, such as suppression or emergent activa-

tion.16,20–23 However, how these principles extend to the full re-

ceptor repertoire when challenged with the complexity of natu-

ralistic odors remains unclear. In particular, whether increasing

odor complexity leads to a proportional increase in the number

of activated ORs, which could risk saturating the coding capacity
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Figure 1. Distinct activation patterns of olfactory receptors induced by four single odorants revealed by phosphoTRAP

(A) Schematic diagram of the experimental workflow. Mice were habituated for 4 h (Hab), exposed to a single odorant for 1.5 h (Stim), and the olfactory epithelium

(OE) was sampled (Samp). Immunostaining of OE shows olfactory marker protein (OMP, green) and phosphorylated S6 ribosomal protein (pS6, red) in activated

cells. Only ribosomes in activated cells are phosphorylated and selectively captured by pS6 immunoprecipitation (pS6-IP). Scale bars, 10 μm

(B) Chemical structures and descriptions of the four odorants used for stimulation: acetophenone (red, sweet), decanal (blue, citrus), octanal (orange, fruity), and

cis-3-hexenol (sky blue, grassy).

(C and D) Distance matrices presenting the similarity in OR activation patterns for acetophenone, decanal, and their mixture (AD) (C), and for octanal, cis-3-

hexenol, and their mixture (OC) (D). Each row and column represents an individual sample.

(legend continued on next page)
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of the system, or whether mechanisms exist to constrain recep-

tor recruitment and maintain efficient coding, is unclear.15,24,25

Therefore, this study aimed to systematically examine OR acti-

vation patterns in response to a spectrum of odor complexities,

ranging from single odorants to binary mixtures and complex

naturalistic fragrances. Our study provides insight into how the

olfactory system maintains both efficiency and discriminative

power in the face of natural odor complexity.

RESULTS

Molecular profiling of odor-evoked OR activation using

phosphoTRAP

First, we assessed the odor investigation behavior. Mice were

alternately exposed for 5 min to empty filter paper (no odor, con-

trol) and odor-applied filter paper. In each experiment, mice were

exposed to three odorants per experiment, and over three days,

all nine odorants were tested. The order of odorant exposure was

randomized to avoid sequence bias (n = 7; Figures S1A and

S1B). The number of odor investigations did not differ signifi-

cantly across odor conditions, and the distance traveled within

the cage during each session was similar (Figures S1C and

S1D). The location of the mice during each odor session was re-

corded as heatmaps (Figures S1E–S1O). Thus, mice exhibited

neither innate preference nor aversion to any of the odorants

tested.

Upon binding of an odorant molecule, the OR activates the G

protein Golf, which subsequently stimulates adenylyl cyclase III

(ACIII).26,27 ACIII catalyzes ATP conversion to cyclic AMP

(cAMP), raising intracellular cAMP levels and opening cyclic

nucleotide-gated ion channels.3,28 The resulting influx of Na+

and Ca2+ ions leads to neuronal depolarization and activation

of the mTORC1 pathway, ultimately activating S6 kinase and re-

sulting in the phosphorylation of ribosomal protein S6 in the stim-

ulated OSNs (Figure S2A).29,30 Phosphorylation of S6 protein,

thereby, serves as a useful marker to survey neural activation.31

To examine the activation profile of phosphorylated ribosomal

protein S6 (pS6) in OSN in vivo, we performed immunohisto-

chemical analysis on olfactory epithelium (OE) sections obtained

from mice exposed either to a no-odor control or to 100% ace-

tophenone. In odor-exposed OE sections, pS6 expression within

mature OSNs increased, as identified by co-labeling with olfac-

tory marker protein (Figures S2B and S2C). In contrast, pS6

levels in OSNs from control animals remained at baseline levels.

These results support previous findings indicating that odorant

exposure increases pS6 phosphorylation in mature OSNs within

the OE.14 Activity-dependent pS6 acts as a sensitive molecular

marker of recent neuronal activation and is the molecular sub-

strate for ribosome capture in the phosphoTRAP assay.32

To further verify odor-evoked activation in the OE, western blot

analyses of OE tissue were performed after exposure to each

odor condition. Immunoblotting for pS6 and β-actin revealed

increased pS6 signal in samples from odor-exposed mice

compared to controls. This result provided additional molecular

evidence that odor stimulation robustly induced pS6 expression

in the OE (Figures S2D and S2E).

We used phosphoTRAP (Figure 1A) to investigate the activa-

tion patterns of ORs in response to odor stimuli. This method en-

ables molecular profiling of activated ORs by capturing the phos-

phorylation of pS6, a neuronal activation marker. Because each

OSN expresses only one type of OR, this approach allows for

precise mapping of receptor activation.33 Mice were exposed

for 90 min to four distinct odorants (100% concentration of ace-

tophenone [A], decanal [D], octanal [O], and cis-3-hexenol [C]) or

their binary mixtures (acetophenone and decanal [AD] and octa-

nal and cis-3-hexenol [OC]) applied onto a filter paper, with

empty filter paper serving as a no-odor control (Figures 1A and

1B). Following exposure, total RNA and pS6-associated mRNA

were analyzed using next-generation sequencing.

Sequencing data analysis revealed distinct enrichment pat-

terns between total RNA and phosphoTRAP samples in

response to each odor stimulus. Distance matrices of these da-

tasets showed darker colors along the diagonal, indicating

strong similarity among replicates exposed to the same condi-

tion, which supports the reliability of our approach (Figures

S3A and S3B). When comparing the clustering ability of both ap-

proaches, principal-component analysis (PCA) of total RNA

failed to effectively separate individual odorant conditions

(Figures S3C and S3D), whereas that of phosphoTRAP samples

demonstrated clearer segregation of odorant conditions, reflect-

ing the enhanced specificity of this approach for capturing

neuronal activation (Figures S3E and S3F).

To further understand the activation patterns of ORs, we

focused on OR-encoding transcripts enriched in phosphoTRAP

samples. Correlation analysis of these OR activation patterns

showed high reproducibility among replicates for each odorant

stimulus (Figures 1C and 1D) (see also Data S1A and S1B for

log2 fold changes and p values of ORs). Distinctive response

patterns were observed among individual odorants. While

odorant mixtures were not identical to their single components,

they exhibited partial similarity to both. In both odorant sets,

PCA analysis clearly showed that the OR activation pattern of

the mixture was distinct yet intermediate, with the cluster repre-

senting the odorant mixture located between the clusters of its

constituent single chemicals (Figures 1E and 1F). For example,

in the A, D, and AD conditions, the AD mixture cluster was posi-

tioned between A and D. In the O, C, and OC conditions, the OC

cluster was found between O and C, albeit closer to O than C.

Although cluster positions of mixed odorants were in the direc-

tion of the vector sum of their individual odorant clusters, the

magnitude was less than that of the summed vector.

Similarly, the analysis of the full OR activation space demon-

strated high correlation of the predicted response to mixtures

(as a linear combination of individual odorant responses) with

(E and F) Principal-component analysis (PCA) plots of OR activation patterns for each odor pair and their mixtures; (E) acetophenone (red), decanal (blue), AD

mixture (purple), and control (black) groups are shown; (F) octanal (orange), cis-3-hexenol (sky blue), OC mixture (green), and control (gray) groups are shown.

Each circle indicates an individual mouse (n = 3 per group), while colored diamonds represent group means. Dashed lines indicate vectors from control to each

condition, and black diamonds represent the vector sum of single odorant responses. The percentage of variance explained by each principal component is

indicated on the axes (PC1 and PC2).
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the actual measured response (Figures S3G and S3H). The over-

all response characteristics of ORs suggested that the response

patterns to mixed odorants closely resembled the sum of their

individual components. Nonetheless, some discrepancies

between observed OR activation patterns and simple linear

summation implied that the responses to mixture involved non-

linear mechanisms in a minority of ORs. Thus, the abundance

of OR genes detected by phosphoTRAP analysis provides a

robust molecular readout of the OE’s response to odorant

stimulation.

Binary odorant mixtures induce complex OR activation

patterns encompassing linear and non-linear

interaction

To address how each OR responds to single odorants and their

binary mixtures, we analyzed the differential expression patterns

of individual ORs in phosphoTRAP data. Volcano plot analysis

revealed distinct OR activation signatures for each condition

(Figures 2A–2F). Significantly upregulated ORs (fold change ≥

2, p value ≤ 0.05) were identified across all test conditions:

150 ORs for A (Figure 2A), 67 for D (Figure 2B), 178 for O

(Figure 2D), and 84 for C (Figure 2E). We also detected signifi-

cantly upregulated ORs in binary mixtures: 60 ORs responding

to the AD mixture (Figure 2C) and 92 to the OC mixture

(Figure 2F) (see also Data S2A and S2B for lists of significantly

upregulated ORs).

Although we also observed a minor population of downregu-

lated ORs, the suppression of OR responses could play an

important role in combinatorial coding and non-linear mixture ef-

fects, and future investigations will be necessary to elucidate

their biological contributions (see also Data S3A and S3B for lists

of significantly downregulated ORs).

To further compare individual odorant and binary mixture-

evoked receptor activation, we generated heatmaps of ORs

that exhibited statistically significant or above-threshold fold

changes in at least one condition. For visualization, expression

values were transformed to Z score to emphasize relative differ-

ences across conditions. This analysis revealed that ORs acti-

vated by A displayed distinct profiles from those responding to

D. Notably, most receptors responsive to either A or D also re-

sponded to their mixture (AD), whereas a subset of ORs that

were activated by single odorants failed to respond in the

mixture. A similar pattern was observed for O, C, and their

mixture (OC) (Figures 2G and 2H).

Venn diagram analysis revealed intricate patterns of OR activa-

tion in response to binary mixtures (Figures 2I and 2J). For the A

and D combination (Figure 2I), most OR responses were specific

to one component or the mixture itself. In total, 124 ORs re-

sponded exclusively to A, whereas only one OR responded exclu-

sively to D. An overlap of one OR was observed between A and the

AD mixture, whereas a larger overlap of 41 ORs occurred between

D and the AD mixture. Notably, 11 ORs were upregulated across

all three conditions, demonstrating consistent activation regard-

less of stimulus complexity. In addition, two distinct populations

of non-linear mixture-responsive ORs were identified. One group

comprised 14 ORs that responded to both single odorants but

showed no response to the mixture, suggesting inhibitory interac-

tions when these odorants are combined. The second group

comprised seven mixture-specific ORs that were not activated

by either single odorant, indicating emergent activation patterns

unique to the AD mixture.

For the O and C combination (Figure 2J), we observed similar

complexity but with different proportions. In total, 91 ORs re-

sponded exclusively to O, whereas only two ORs responded

exclusively to C. A total of 51 ORs were upregulated across all

three conditions, showing a higher degree of overlap compared

to the AD mixture. Additionally, 31 ORs that responded to single

odorants showed no response to the OC mixture, further support-

ing inhibitory mechanisms in this context. Notably, 36 mixture-

specific ORs were identified that were not activated by either sin-

gle odorant. This represents a substantial proportion of emergent

responses unique to the OC mixture (see also Data S2 and S3 for

lists of significantly up- or downregulated ORs).

These findings show that binary odorant mixtures activate

most receptors that respond to one of the component odorants.

In addition, non-linear emergent activation produces response

patterns to the mixture that differ from simple linear combina-

tions of individual odorant responses. This suggests that com-

plex integration mechanisms are at work at the receptor level.

To address whether the method of binary odor mixture deliv-

ery influences OR activation, we established two experimental

paradigms. In the ‘‘mixture’’ condition, both odorants were

applied together onto a single piece of filter paper. In contrast,

in the ‘‘separated’’ condition, each odorant was dispensed

onto its own filter paper, with the two papers placed side by

side approximately 1 mm apart, preventing potential direct

liquid-phase interactions before volatilization (Figure S4A).

Following odor stimulation, phosphoTRAP analysis of the ol-

factory epithelial tissue was performed, and the enrichment of

ORs was exclusively analyzed. PCA based on the OR activation

profiles revealed no clear separation between samples exposed

to the mixture condition (triangles) and those exposed to the

separated condition (squares) (Figures S4B and S4C; see also

Data S1C for log2 fold changes and p values for ORs). A

Figure 2. Comparative analysis of activated olfactory receptors in response to single odorants and binary mixtures

(A–F) Volcano plots showing differential expression of olfactory receptors (ORs) for each odorant condition: (A) acetophenone, (B) decanal, (C) AD mixture,

(D) octanal, (E) cis-3-hexenol, and (F) OC mixture. Red dots indicate significantly upregulated ORs (fold change ≥ 2, p value ≤ 0.05), blue dots indicate

significantly downregulated ORs (fold change ≤ -2, p value ≤ 0.05), and gray dots represent ORs with non-significant changes.

(G and H) Heatmaps showing expression patterns of significantly regulated ORs across odor conditions. (G) Shows data for acetophenone (A), decanal (D), and

AD mixture. (H) Shows data for octanal (O), cis-3-hexenol (C), and OC mixture. Expression levels were normalized by Z score transformation to emphasize relative

up- or downregulation across conditions, with red and blue representing up- and downregulated expression, respectively.

(I and J) Venn diagrams summarizing the overlap of significantly upregulated ORs between individual odorants and their mixtures. (I) Acetophenone, decanal, and

AD mixture. (J) Octanal, cis-3-hexenol, and OC mixture. The diagrams highlight the unique and shared receptor activations, illustrating both linear and non-linear

mixture effects.
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Figure 3. Olfactory receptor activation patterns in response to naturalistic fragrances and their mixture

(A) Naturalistic fragrances used for stimulation: floral (pink, 31 compounds including florosa), mint (teal, 34 compounds including menthol), and FM mixture (floral

70% + mint 30%, blue). The main components and descriptions of the fragrances are shown.

(B) Distance matrix depicting the similarity of olfactory receptor (OR) activation patterns across floral, mint, and FM mixture conditions. Samples are clustered

based on pairwise distances of OR expression profiles.

(legend continued on next page)
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comprehensive analysis of the OR activation spectrum in both

conditions showed a very strong correlation between the mixture

and separated groups (Figures S4D and S4E), indicating highly

similar OR activation patterns regardless of the delivery method.

To explore the distribution of significantly upregulated ORs,

we plotted Venn diagrams. In both odorant combinations tested,

the majority of ORs activated in the separated condition also ap-

peared among those activated in the mixture condition. Notably,

the mixture group tended to recruit a small subset of ORs that

were not observed in the separated group (Figures S4F and

S4G) (see also Data S2C and S3C for lists of significantly up-

or downregulated ORs). Thus, direct chemical interactions

occurring when odorants are physically mixed may contribute

to an emergent OR activation.

Naturalistic fragrances and their mixtures induce

complex OR activation patterns encompassing linear

and non-linear interaction

Natural odors typically comprise complex mixtures containing

dozens to hundreds of volatile compounds.17 To investigate

whether the principles previously observed with single chemical

odorants and their mixtures also apply to naturalistic fragrances,

we studied the OR responses to commercially available per-

fumes constructed based on fragrance principles and their

mixtures.

We selected two distinctive complex fragrances: floral

(F, containing 31 compounds, including florosa) and mint (M, con-

taining 34 compounds, including menthol). Six chemicals were

common constituents of these two fragrances. For mixture (FM),

we blended floral and mint fragrance in a 7:3 ratio (Figure 3A).

Using phosphoTRAP analysis, we examined OR activation

patterns in response to either F, M, or their mixture FM. Analysis

of the sample distance matrix revealed that these conditions

continued to induce distinct and separable OR activation pat-

terns (Figure 3B). The analysis was restricted to OR-encoding

genes within the phosphoTRAP data, and PCA revealed clear

discrimination among the odor stimuli (Figure 3C). Consistent

with the findings for single chemical odorants and their mixtures

(Figures 1E and 1F), the OR activation pattern for FM was posi-

tioned between those for F and M. Notably, the distance of FM

from the control was less than that of the summed vector of F

and M.

Volcano plot analysis identified differentially expressed ORs

(fold change ≥ 2, p value ≤ 0.05) across all test conditions: 73

ORs for F fragrance (Figure 3D), 82 for M fragrance (Figure 3E),

and 76 for the FM mixture (Figure 3F) (see also Data S1D for

log2 fold changes and p values of ORs). Heatmap visualization

of differentially expressed ORs also illustrated the linear and

non-linear relationship between individual fragrance and their

mixture (Figure 3G). Venn diagram analysis revealed intricate

patterns of OR recruitment in response to these complex fra-

grances (Figure 3H) (see also Data S2D and S3D for lists of signif-

icantly up- or downregulated ORs). Twenty-six ORs responded

exclusively to F fragrances, while 11 ORs were specific to M fra-

grances. The FM showed partial overlap with both F and M fra-

grances; five ORs were shared between F and mixture, whereas

29 ORs were common between M and FM. In addition, 42 ORs

were upregulated across all three conditions. No unique ORs

were exclusively activated by the mixture. These results extend

our findings from single odorants and binary mixtures to more

naturalistic, complex fragrances.

Similar to our observations with binary mixtures, the FM

mixture exhibited a non-linear activation pattern that was not

simply the weighted sum of its components. This finding rein-

forces the idea that non-linear integration is a fundamental prop-

erty of olfactory processing that extends from simple binary mix-

tures to complex naturalistic odors.

Activated OR count remains consistent despite

increasing odor complexity

We observed both linear and non-linear OR responses to mixed

odorant stimuli, prompting us to investigate how receptor activa-

tion scales with increasing odorant complexity. To address this,

we first plotted the number of constituent chemicals in each

odorant and complex odor experiment against the number of

activated ORs (Figure 4A). The increasing number of chemical

compounds in the odor stimulus did not lead to a corresponding

increase in OR activation.

The experiments involving single chemical compounds and

their mixtures differed significantly in the number of constituent

chemicals compared to the experiments with naturalistic fra-

grances and their mixtures. Statistical comparisons using

Kolmogorov-Smirnov tests confirmed no significant differences

between any pairwise comparisons (single vs. binary: p =

0.9333; single vs. complex: p = 0.2286; binary vs. complex:

p = 0.9000). This indicates that the olfactory system engages

similar numbers of receptors regardless of odor complexity.

We also counted the number of OR in single chemical com-

pounds (single), binary compound mixture (binary), and natural-

istic fragrances and their mixture (complex) (Figure 4B). One-way

ANOVA comparing all three groups showed no significant differ-

ences in mean activated OR counts (p = 0.3188).

Based on these observations, we propose a model for olfactory

coding characterized by linear and non-linear integration at the re-

ceptor level (Figure 4C). When odors are mixed, individual odor-

responsive ORs remain active while others are suppressed, and

(C) Principal-component analysis (PCA) of OR activation patterns with samples colored as floral (pink), mint (teal), FM mixture (blue), and control (black). Circles

represent individual mice (n = 3 per group), while colored diamonds indicate group means. Dashed lines represent vectors originating from the control condition to

each odor condition, with the black diamond denoting the vector sum of floral and mint. The percentage of variance explained by each principal component is

indicated on the axes (PC1 and PC2).

(D–F) Volcano plots illustrating differentially expressed ORs for floral (D), mint (E), and FM mixture (F) stimuli. Red dots mark significantly upregulated ORs (fold

change ≥ 2, p value ≤ 0.05), blue dots denote significantly downregulated ORs (fold change ≤ -2, p value ≤ 0.05), and gray dots correspond to non-significant

changes.

(G) Heatmap showing expression patterns of 113 significantly regulated ORs across floral (F), mint (M), and FM mixture (FM) conditions. Data are normalized using

Z score transformation, with red indicating higher expression and blue indicating lower expression relative to each OR’s mean.

(H) Venn diagram summarizing the overlap and unique distribution of significantly upregulated ORs among floral, mint, and FM mixture conditions.
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certain individual odor-non-responsive ORs are activated. This

integration spares the total number of activated ORs while gener-

ating distinct activation patterns for different odors.

Mechanistically, these response profiles are consistent with

established principles of odor-receptor interactions. Suppres-

sion of OR activation in mixtures can be explained by receptor

antagonism or competitive binding between odorant molecules

at the receptor site, a phenomenon demonstrated in previous

studies.22,23 For some ORs not responsive to single odorants

but to odor mixtures, this emergent activity may result from allo-

steric modulation, cooperative binding, or non-linear network ef-

fects at either the receptor or circuit level.25

For all analyses, ORs were assigned to each response cate-

gory based on pre-defined fold-change and p value thresholds.

While our study does not directly distinguish the underlying mo-

lecular mechanisms for every OR, the observed categories align

with known modes of receptor modulation and provide a

descriptive framework for future mechanistic work.

DISCUSSION

Receptor-level mechanisms underlying olfactory

mixture processing

We employed phosphoTRAP technology to systematically

examine OR activation patterns across the entire receptor reper-

toire in response to individual odorants and their mixtures. Our

results demonstrate that odorant mixture processing operates

through a combination of linear integration and selective non-

linear interactions at the receptor level.

When assessed using binary classification based on statistical

thresholds (fold change ≥ 2, p value ≤ 0.05), the responses of

most ORs to odorant mixtures closely matched the linear sum

of responses to individual components. These criteria, selected

to maintain continuity with established phosphoTRAP and tran-

scriptomic studies, enabled direct comparison with previous

work while providing statistical rigor and reproducibility.

However, a statistically significant subset of ORs displayed

non-linear response profiles that could not be predicted from

single-component responses. Previous studies using in vivo im-

aging and in vitro reporter assays have suggested that ORs can

exhibit non-linear responses to odorant mixtures.16,21 Recent

systematic analyses have demonstrated that antagonistic inter-

actions at the receptor level are widespread and can modulate

mixture representations.20,22,23 Our findings extend this under-

standing by providing a comprehensive receptor-level profile

of both linear and non-linear responses across a spectrum of

odor complexities, from binary mixtures to naturalistic fra-

grances containing dozens of compounds.

Input normalization as a principle of olfactory coding

Input normalization in sensory systems expands dynamic range,

enhances contrast, and improves signal-to-noise ratio, while

A B

0.5 1.0 1.5 2.0
0

Log(Number of Odorant Compounds)

N
um

be
ro

fA
ct

iv
at

ed
O

R
s

50

100

150

200

R²=0.1712
P=0.2682

200

100

150

50

0N
um

be
ro

fA
ct

iv
at

ed
O

R
s

Single Binary Complex

ns
ns ns

C

Odor A Odor B A + B Mixture

Non-activated ORs
A-responsive ORs
B-responsive ORs
A&B-responsive ORs
Mixture-responsive ORs
Mixture-inhibited ORs

Figure 4. Statistical analysis of the number of activated olfactory receptors in response to odors of varying complexity

(A) Scatterplot depicting the relationship between the number of chemical components in each odor stimulus (x axis) and the corresponding number of activated

olfactory receptors (ORs) (y axis). Data include single odorants, binary mixtures, and complex naturalistic fragrances. No significant correlation was observed.

(B) Bar graph comparing mean activated OR counts among stimulus complexity categories: single chemical compounds (119.75 ± 26.41, n = 4), binary mixtures

(76.0 ± 16.0, n = 2), and complex fragrances (77.0 ± 2.65, n = 3). Data are represented as mean ± SEM. One-way ANOVA indicates no significant differences

among groups (p = 0.3188).

(C) Schematic model illustrating olfactory receptor coding at the receptor level. Individual odor-responsive ORs remain active (overlapping area), some ORs

exhibit suppression in mixtures (non-overlapping in single odors), and new mixture-specific ORs emerge. This integrated response maintains stable total OR

activation regardless of odor complexity.
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response normalization further reduces redundancy, maintains

perceptual stability, and enables context-dependent process-

ing.24 Studies in Drosophila have demonstrated that both forms

of normalization operate in the olfactory system, suggesting

these are general sensory principles.34

No significant differences in activated OR counts between sin-

gle compounds, binary mixtures, and complex fragrances were

found despite large differences in chemical complexity. This im-

plies that the olfactory periphery may implement input normali-

zation to stabilize receptor recruitment across varying stimulus

conditions, although further research with varying odor concen-

trations is warranted to validate this hypothesis.

These results align with the findings reported by Zak et al.

(2024), suggesting that increasing mixture complexity leads to

denser olfactory bulb (OB) activation without altering overall

population sparseness.35 These convergent findings support

input normalization as a general computation in the OE that con-

strains receptor recruitment under complex odor conditions.

Whereas Zak et al. focused on the OB dynamics via optical im-

aging, our complementary receptor-level profiling of the OSN

demonstrated that normalization emerged at the first stage of ol-

factory processing.

By preventing receptor saturation and preserving coding ca-

pacity in environments containing hundreds of volatile com-

pounds, input normalization likely enhances odor discrimination

in noisy settings and improves detection against background

stimuli, as theoretical models predict.25 Elucidating the molecu-

lar mechanisms of this normalization will be essential for a

deeper understanding of olfactory coding principles.

Implications for artificial olfaction and sensory

technology

Our findings have important implications for the development of

artificial olfactory systems. The observation that biological olfac-

tory systems maintain stable receptor activation regardless of

mixture complexity provides a conceptual framework for opti-

mizing electronic nose algorithms and sensor designs. Recent de-

velopments in multi-thin film transistor sensor arrays demonstrate

that normalization and combinatorial coding strategies can

improve selectivity and robustness for complex odor detection.36

Furthermore, advances in artificial intelligence have shown

that computational normalization through embedding spaces

can enable a more linear representation of non-linear olfactory

interactions, improving odor prediction for complex molecular

blends.37 However, the precise biological mechanisms underly-

ing these computational achievements remain unclear. Future

research integrating receptor-level insights from biological olfac-

tion with advances in artificial intelligence may accelerate the

development of next-generation sensory technologies.

Future research directions

Several important questions merit further investigation. First,

detailed sequence alignments and comparative analyses of acti-

vated ORs, focusing on the 3D structure of orthosteric binding

sites, could elucidate the molecular basis of receptor specificity

and ligand promiscuity. Advanced structural bioinformatics ap-

proaches can help determine whether specific odorants can

realistically bind across broad spectra of receptor sites.

Second, the mechanisms underlying non-linear responses

and input normalization require systematic investigation. We

identified distinct populations of mixture-responsive ORs,

including those showing inhibitory interactions and emergent

activation patterns, but the molecular basis underlying these

phenomena remains unclear. Understanding whether these ef-

fects result from direct receptor-level interactions, allosteric

modulation, or network-level computations can help advance ol-

factory coding theory.

Finally, the generality of input normalization across different

stimulus conditions requires validation. We delivered high con-

centrations over extended periods, which may have influenced

the observed patterns. Future studies using behaviorally titrated

concentrations and controlled vapor-phase delivery systems

should assess whether normalization occurs under more physi-

ological conditions.

In summary, our findings show that olfactory mixture encod-

ing reflects mostly linear integration of component responses

combined with a smaller set of non-linear receptor interactions.

This hybrid coding strategy maintains stable receptor recruit-

ment as mixture complexity increases, and the minority of

non-linear responses adds specificity to enhance mixture

discrimination. By preventing receptor saturation and preser-

ving coding capacity, this efficient scheme ensures robust

odor detection in natural environments. Our insights pave the

way for future studies into the molecular mechanisms of periph-

eral olfactory processing and their translation into artificial sen-

sory systems.

Limitations of the study

Our experimental approach of co-applying binary odorants to fil-

ter paper does not provide precise control over vapor-phase

concentrations or account for potential chemical interactions be-

tween the components. The vapor pressure differences among

odorants may result in actual airborne ratios that deviate from

the intended proportion, potentially influencing OR activation

independent of receptor-level mechanisms.38 Future studies us-

ing an olfactometer with vapor-phase mixing capabilities can

improve stimulus control and enable more precise investigation

of concentration-dependent effects.

All odorants were delivered at high concentrations for

extended periods, raising the possibility of ceiling effects or

non-specific receptor activation. The use of high concentrations

may mask subtle differences in receptor engagement that occur

at more physiologically relevant intensities. Evaluating re-

sponses across broader concentration ranges, including near-

threshold levels, is essential for determining the robustness of

observed normalization patterns under natural conditions.

We used freely moving mice during odor exposure, which may

have introduced behavioral variability affecting receptor activa-

tion. Variations in odor investigation patterns, distance from

the odor source, or exploratory locomotion could alter stimulus

access and influence OR responses. Using head-fixed prepara-

tions with precise vapor-phase delivery can reduce the effects of

these confounders.

Future work should expand the scope by testing multiple clas-

ses of odorants across graded concentrations and varied

mixture ratios. Conducting larger systematic experiments can
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provide clearer insights into the contributions of linear and non-

linear integration mechanisms.

While phosphoTRAP enables unbiased, genome-wide

profiling of receptor activation, the method inherently links tran-

script abundance to statistical detection power. In this study,

approximately 30% of detected ORs exhibited low read counts

(<10), reducing the power to detect differential expression

when counts are very low. However, most ORs showing biolog-

ically relevant responses possessed sufficient coverage for

reliable statistical assessment. Nonetheless, some ORs with

substantial fold changes may not have achieved statistical

significance solely because of low abundance, reflecting the

trade-off between biological and statistical criteria in RNA-

sequencing analysis. Importantly, rigid fold-change and p value

thresholds must be interpreted in the context of coverage, and

while they guard against false positives, they can obscure func-

tionally meaningful receptor activation at the margins of

detectability.
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STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-phospho S6 (Ser244,

Ser247)

Thermo Fisher Scientific Cat# 44-923G; RRID: AB_2533798

Goat polyclonal anti-olfactory marker protein FUJIFILM Wako Pure Chemical Corporation Cat# 019–22291; RRID: AB_3094987

Cy3-conjugated donkey anti-rabbit IgG Jackson ImmunoResearch Labs Cat# 711-165-152; RRID: AB_2307443

Alexa Fluor 488-conjugated donkey anti-goat

IgG

Jackson ImmunoResearch Labs Cat# 705-545-003; RRID: AB_2340428

Normal Donkey Serum Jackson ImmunoResearch Labs Cat# 017-000-121; RRID: AB_2337258

HRP-conjugated β-Actin Antibody (C4) Santa Cruz Biotechnology Cat# sc-47778 HRP; RRID: AB_2714189

Goat anti-Rabbit IgG-heavy and light chain

Antibody HRP Conjugated

Bethyl Cat# A120-101P; RRID: AB_67264

Chemicals, peptides, and recombinant proteins

Acetophenone Merck Cas 98-86-2; Cat# 42163

Cis-3-hexenol Merck Cas 928-96-1; Cat# 91316

Decanal Merck Cas 112-31-2; Cat# 59581

Octanal Merck Cas 124-13-0; Cat# 52466

Floral fragrance SCENTON INC. N/A

Mint fragrance SCENTON INC. N/A

Floral + Mint fragrance SCENTON INC. N/A

Sodium fluoride, 99.99% (metals basis) Alfa Aesar Cas 7681-49-4; Cat# 011003

Calyculin A Cell Signaling Technology Cas 101932-71-2; Cat# 9902

Bovine Serum Albumin (IgG-Free, Protease-

Free)

Jackson Immunoresearch Cat# 001-000-162; RRID: AB_2336946

cOmpleteTM, Mini, EDTA-free Protease

Inhibitor Cocktail

Merck Cat# 04693159001

2-Mercaptoethanol (β-ME) Merck Cas 60-24-2; Cat# 63689

Sodium pyrophosphate dibasic Merck Cas 7758-16-9; Cat# 71501

β-Glycerophosphate disodium salt hydrate Merck Cas 154804-51-0; Cat# G9422

Sodium orthovanadate Merck Cas 13721-39-6; Cat# S6508

RNasin® Ribonuclease Inhibitor Promega Cat# N2511

NP-40 Surfact-AmpsTM Detergent Solution Thermo Fisher Scientific Cat# 28324

HEPES (1 M) Thermo Fisher Scientific Cat# 15630080

Cycloheximide, 95% Thermo Fisher Scientific Cat# 357420010

DynabeadsTM Protein A for

Immunoprecipitation

Thermo Fisher Scientific Cat# 10002D

PBS, pH 7.4 Thermo Fisher Scientific Cat# 10010023

MgCl2 (1 M) Thermo Fisher Scientific Cat# AM9530G

KCl (2 M), RNase-free Thermo Fisher Scientific Cat# AM9640G

Nuclease-Free Water (not DEPC-Treated) Thermo Fisher Scientific Cat# AM9932

DTT (dithiothreitol) Thermo Fisher Scientific Cat# R0861

Triton X-100 Merck Cat# X100

Tween 20 VWR Cat# 0777-1L

Sodium Dodecyl Sulfate (SDS) Merck Cat# L5750

Tris ultrapure Duchefa Cat# T1501

Glycine Duchefa Cat# G0709

(Continued on next page)
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

C57BL/6J wildtype male mice (RRID: IMSR_JAX:000664) were housed in the Specific Pathogen Free (SPF) area of the Laboratory

Animal Resource Center at Daegu Gyeongbuk Institute of Science and Technology (DGIST). The mice were maintained under a

12-h light/dark cycle with ad libitum access to standard rodent chow and water. To ensure a clean environment, cages were replaced

regularly. All experimental procedures were approved by the Institutional Animal Care and Use Committee of DGIST (Approval num-

ber: DGIST-IACUC-25040908-0001) and were conducted in accordance with the guidelines for the care and use of laboratory

animals.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Sodium chloride Duchefa Cat# S0520

Albumin bovine, fraction V, ≥98% MPbio Cat# 160069

NuPAGE LDS Sample Buffer (4X) Thermo Fisher Scientific Cat# NP0007

Q-PAGE TGN Precast Gel (Mini, 15 wells, 10%) SMOBIO Technology Cat# QP4220

Restore Western Blot Stripping Buffer Thermo Fisher Scientific Cat# 21059

Critical commercial assays

DNF-472 HS RNA (15 nt) Kit Agilent Cat# DNF-472-0500

RNase-Free DNase Set Qiagen Cat# 79254

RNeasy Mini Kit Qiagen Cat# 74104

Pierce BCA Protein Assay Kits Thermo Fisher Scientific Cat# 23227

ECL Select Western Blotting Detection

Reagent

Cytiva Cat# RPN2235

Deposited data

RNA sequencing data files This paper GEO: GSE296359, GEO: GSE296360, and

GEO: GSE306619

Experimental models: Organisms/strains

C57BL/6J The Jackson Laboratory RRID: IMSR_JAX:000664

Software and algorithms

Python (version 3.12.3) Python https://www.python.org/

STAR (version 2.7.10b) Dobin et al.39 https://github.com/alexdobin/STAR

Salmon (version 1.10.1) Patro et al.40 https://combine-lab.github.io/salmon/

R (version 4.4.2) The R Project for Statistical Computing https://www.r-project.org/

apeglm (version 1.26.0) Zhu et al.41 https://bioconductor.org/packages/apeglm/

DEGreport (version 1.40.0) Pantano. L42 https://bioconductor.org/packages/

DEGreport/

DESeq2 (version 1.44.0) Love et al.43 https://bioconductor.org/packages/DESeq2/

EnhancedVolcano (version 1.22.0) Blighe et al.44 https://bioconductor.org/packages/

EnhancedVolcano/

ggplot2 (version 3.5.1) Wickham. H45 https://ggplot2.tidyverse.org/

pheatmap (version 1.0.12) Kolde. R46 https://cran.r-project.org/web/packages/

pheatmap/index.html

RColorBrewer (version 1.1.3) Erich Neuwirth47 https://cran.r-project.org/web/packages/

RColorBrewer/index.html

pasilla (version 1.34.0) Wolfgang Huber, Alejandro Reyes48 https://bioconductor.org/packages/pasilla

Tidyverse Wickham et al.49 https://www.tidyverse.org/packages/

EthoVision XT (version 17.5.1718) Noldus https://noldus.com/ethovision-xt

ImageJ National Institutes of Health https://imagej.net/ij/index.html

Prism 10 GraphPad https://www.graphpad.com/
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METHOD DETAILS

Odor stimulation

C57BL/6J wildtype male mice (8 weeks old) were individually placed into sealed containers (403 × 165 × 175 mm, W × D × H;

volume ≈11.6 L) within an experimental animal housing facility. The facility was equipped with independent ventilation systems

for each room to prevent odorant mixing. Mice were habituated for 4 h in an odorless environment before exposure. For single

odorant conditions, 10 μL of undiluted (100%) acetophenone, decanal, octanal, or cis-3-hexenol (Merck) was applied directly

onto a 1 cm × 1 cm filter paper placed in a 35 mm culture dish. For binary mixture conditions, 10 μL of each undiluted (100%) compo-

nent was applied separately but simultaneously to the same filter paper (total 20 μL per dish), ensuring the absolute amount of each

odorant in the mixture matched that of its corresponding single odorant condition. For complex fragrances (floral, mint, and floral–

mint blend; SCENTON INC.), 10 μL of undiluted product was applied per dish. A filter paper with no odorant served as the control. The

prepared dish was then placed into the mouse container, and the mouse was exposed for 90 min. Each condition and control was

tested with three mice (n = 3), using littermates of the same sex to minimize biological variability.

Immunohistochemistry

After odor stimulation, mice were transcardially perfused first with PBS to remove blood, followed by 4% paraformaldehyde (PFA) to

fix tissues. The olfactory epithelium (OE) was dissected and post-fixed overnight in 4% PFA at 4◦C. For cryoprotection, tissues were

incubated in 30% sucrose solution overnight at 4◦C. Cryoprotected samples were embedded in OCT compound and frozen at

− 80◦C. The OE was cryosectioned at − 25◦C into 50 μm slices. Sections were mounted onto glass slides and air-dried at 37◦C for

at least 30min.

To remove residual OCT, slides were washed in PBS three times for 5min each on a shaker at 30 RPM. Tissue sections were

blocked for 2h at room temperature with 5% normal donkey serum in 0.1% PBST (PBS with 0.1% Triton X-100). Sections were

then incubated overnight at 4◦C with primary antibodies diluted 1:1,000 in 0.1% PBST: rabbit anti-phospho-S6 (Ser244, Ser247)

and goat anti-OMP. After primary incubation, slides were washed six times for 5min each in 0.1% PBST on a shaker at 30 RPM. Sec-

ondary antibody incubation was performed at room temperature for 2h using donkey anti-rabbit Cy3 and donkey anti-goat Alexa

Fluor 488, both at 1:1,000 dilution in 0.1% PBST. After incubation with secondary antibodies, slides were again washed three times

for 5min each in 0.1% PBST on a shaker at 30 RPM. Sections were mounted with mounting solution and placed on a coverslip.

Stained OE samples were imaged using confocal microscopy at 20x magnification.

Odor preference test

C57BL/6J wild-type male mice (8 weeks old) were individually housed in new sealed containers (403 × 165 × 175 mm, W × D × H;

volume ≈11.6 L) for habituation one day prior to the experiment. On the test day, each mouse was exposed alternately to a no-odor

filter paper and a filter paper soaked with an odor solution, each for 5 min, in cages with the lids removed. Filter papers (1 cm × 1 cm)

were placed in 35 mm dishes for odor presentation. Each experimental session included exposure to three different odors per day,

and over a total of three days, each animal was exposed to all nine odors (n = 7). The order of odor presentation was randomized to

avoid sequence-dependent preferences. Mouse behavior was recorded using a camera positioned above the cage, and all behav-

ioral videos were analyzed with EthoVision XT software.

Homogenization of olfactory epithelium tissues

The C57BL/6J wildtype male mice (8 weeks old) were euthanized by cervical dislocation following odorant stimulation. Immediately

after euthanasia, perfusion was performed using chilled perfusion buffer (PBS, 5 mM NaF, 2.5 mM Na3VO4, 2.5 mM Na4P2O7, 5 mM

β-glycerophosphate, 100 μg/mL cycloheximide, and one tablet of Roche cOmplete protease inhibitor per 100 mL). A total of 10 mL of

perfusion buffer was used to remove blood from the olfactory epithelium (OE) tissue. The OE was immediately sampled and placed

into a 2 mL tube containing 1.5 mL of homogenization buffer (10 mM HEPES [pH 7.4], 150 mM KCl, 10 mM MgCl2, 100 mM

calyculin A, 0.5 mM DTT, 100 U/mL RNasin (Promega), 250 μg/mL cycloheximide, and one tablet of Roche cOmplete protease in-

hibitor per 50 mL) on ice. The OE tissue was homogenized using a TissueLyser II (Qiagen) for 2 min at a frequency of 20 Hz in the

homogenization buffer. The tissue homogenates were centrifuged at 2,000 × g for 10 min at 4◦C. The supernatant was transferred

to a new tube, and 105 μL of 10% NP-40 was added to the solution. After gently mixing by inversion and incubating on ice for 2 min,

the mixture was centrifuged at 20,000 × g for 10 min at 4◦C. The supernatant was used for western blot or immunoprecipitation

analyses.

Western blot analysis

Protein concentrations of olfactory epithelium (OE) homogenates were measured using the BCA assay. Samples were adjusted to

equal protein concentrations and denatured by incubation with NuPAGE LDS sample buffer at 95◦C for 5min, then rapidly cooled

on ice. Equal amounts of protein were loaded onto 10% polyacrylamide gels and subjected to SDS-PAGE (100V, 100min). Proteins

were transferred onto PVDF membranes (0.2A, 90 min). All subsequent membrane processing steps were carried out on a shaker at

30 RPM.
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Membranes were blocked with 5% bovine serum albumin (BSA) in 0.2% TBST for 1h at room temperature. Detection of pS6 and

β-actin was performed sequentially on the same membrane to ensure antibody specificity. For pS6 detection, membranes were incu-

bated with primary antibody (1:1,000 in 0.2% TBST) for 2h at room temperature, followed by eight washes (5min each) in 0.2% TBST.

Membranes were then incubated with anti-rabbit HRP-conjugated secondary antibody (1:20,000 in 0.2% TBST) for 40min at room

temperature and washed three times for 5min each.

Protein bands were visualized using enhanced chemiluminescence (ECL) and detected using a Bio-Rad ChemiDoc system.

Following detection of the pS6 signal, membranes were stripped using an antibody stripping buffer at room temperature for

30min and washed with 0.2% TBST. Membranes were then re-blocked with 5% BSA in 0.2% TBST for 1 h at room temperature.

For β-actin detection, membranes were incubated with HRP-conjugated β-actin antibody (1:20,000 in 0.2% TBST) for 40 min at

room temperature and washed three times for 5 min each in 0.2% TBST. Detection was performed using ECL, as above. Band in-

tensities were quantified using ImageJ software.

Preparation of magnetic beads

A 200 μL of Protein A Dynabeads (Invitrogen) was washed twice with Wash Buffer A (10 mM HEPES [pH 7.4], 10 mM MgCl2, 150 mM

KCl, 1% NP-40) using a magnetic rack to remove the supernatant. The washed beads were then resuspended in Pre-coupling Buffer

(10 mM HEPES [pH 7.4], 10 mM MgCl2, 150 mM KCl, 1% NP-40, 2% IgG-free BSA), and mixed with 6 μL of pS6 antibody (Invitrogen

#44-923G). The mixture was incubated at 4◦C overnight with rotation to allow for antibody coupling. Following overnight incubation,

the beads were washed twice with Wash Buffer A to remove unbound antibody. The beads were then resuspended in 400 μL of ho-

mogenization buffer and added with 28 μL of 10% NP-40. The beads were kept on ice until the immunoprecipitation steps were

initiated.

RNA isolation and ribosome immunoprecipitation

The following protocol for ribosome immunoprecipitation was adapted from previous works with modifications.14,32 For total RNA

isolation, a 50 μL aliquot of the OE homogenate was transferred to a new 1.5 mL tube. 350 μL of Buffer RLT (included in the RNeasy

Mini Kit, QIAGEN) was added to the sample on ice and incubated for 5 min. The RNA was then purified using the RNeasy Mini Kit

(QIAGEN) according to the manufacturer’s protocol, including an on-column DNase digestion step using the RNase-Free DNase

Set (QIAGEN) to eliminate genomic DNA contamination.

For ribosome immunoprecipitation, the prepared pS6 antibody-coupled Protein A Dynabeads were mixed with the remaining OE

homogenate and incubated for 1 h at room temperature with gentle rotation. Following incubation, the beads were washed four times

with Wash Buffer B (10 mM HEPES [pH 7.4], 350 mM KCl, 5 mM MgCl2, 2 mM DTT, 1% NP-40, 100 U/mL RNasin, and 100 μg/mL

cycloheximide). During the third wash, the beads were transferred to a new tube and incubated at room temperature for 10 min. After

the final wash, mRNA was eluted by adding 350 μL of Buffer RLT to the beads and incubating for 5 min on ice. The beads were

removed using a magnetic rack, and the mRNA was purified using the RNeasy Mini Kit (QIAGEN) following the manufacturer’s in-

structions, including the on-column DNase digestion step.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA quality assessment and sequencing

The quality and quantity of both total RNA and mRNA were assessed using an Agilent 5200 Fragment Analyzer with the Agilent DNF-

472 (15 nt) HS RNA Kit. Libraries were prepared using the TruSeq Stranded mRNA Sample Prep kit (Illumina), and sequencing was

carried out on an Illumina NovaSeq 6000 platform according to the manufacturer’s protocols. RNA sequencing and genome align-

ment were performed by SYSOFT (Daegu, Republic of Korea) as a commercial service. Raw reads can be accessed at GEO:

GSE296359, GEO: GSE296360, and GEO: GSE306619.

RNA-seq data analysis

RNA-seq data analysis was performed using integrated Python and R programming environments. Raw read counts were generated

through a pipeline involving read mapping with the STAR aligner and transcript quantification using Salmon, yielding gene-level count

data for analysis.40

Differential gene expression analysis

Differential gene expression analysis was conducted using the DESeq2 R package.43 To address multiple hypothesis

testing, p-values were adjusted using the Benjamini-Hochberg false discovery rate (FDR) method, controlling the expected

proportion of false positives. Genes with a p-value ≤0.05 and an absolute log2 fold change (log2FC) ≥ 1 were considered significantly

differentially expressed. The log2FC estimates were further improved by reducing estimation bias and variance using Bayesian

shrinkage as implemented in the apeglm package.41 This approach uses an approximate posterior estimation for generalized linear

model (GLM) coefficients, providing more stable and accurate effect size estimates, particularly for genes with low counts or high

variability.
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For exploratory data analysis, variance-stabilizing transformation (vst) was applied to normalized counts for calculating sample-to-

sample distance matrices based on Euclidean distances. These distances were visualized as heatmaps to assess sample

relatedness.

Principal component analysis (PCA)

Principal component analysis (PCA) was performed on vst-transformed counts to summarize global expression patterns. PCA visu-

alization incorporated group-specific color schemes, along with plotting of group centroids and vectors to illustrate additive or inter-

active effects among experimental conditions.

Volcano plots illustrating differential expression results were generated using raw p-values and log2FC.44 Genes exceeding pre-

defined fold change and p-value thresholds were highlighted to facilitate candidate gene identification.

Heatmap analysis

Significantly differentially expressed genes were additionally visualized using heatmaps based on regularized log-transformed (rlog)

counts. Gene expression was normalized relative to control group means, and hierarchical clustering was applied to genes while pre-

serving sample order to maintain experimental design context.46

To visualize and compare OR activation patterns across samples, z-scores were calculated for each OR gene. Specifically, for

each gene, the mean and standard deviation of expression values were computed across the biological replicates within each exper-

imental condition (n = 3). Individual expression values were then transformed by subtracting the group mean and dividing by the

group standard deviation. These z-scores were used solely for data visualization and exploratory analyses and not as criteria for sta-

tistical significance.

Full OR activation space analysis

Full OR activation space analysis was performed to evaluate relationships in OR activation patterns across experimental conditions.

For each binary odor mixture, the average log2FC from the two individual odor conditions was compared with the log2FC observed in

the mixture condition. Pairs of valid values were assessed by Pearson’s correlation (R and p-value) and linear regression (R2), and

scatterplots with fitted regression lines were generated to illustrate concordance.

Correlation analysis

Correlations between mixture (‘‘+’’) and separated (‘‘&’’) groups were assessed to evaluate the effect of odor presentation format on

OR expression patterns. For each odor pair, log2FC estimates for OR genes from the mixture (‘‘+’’) presentation were compared with

those from the separated (‘‘&’’) presentation. Pairs of valid log2FC values were evaluated by Pearson’s correlation (R and p-value) and

linear regression (R2), and scatterplots with fitted regression lines were generated to illustrate the impact of presentation format on

OR activation patterns.

Venn diagram analysis

Overlap of significant gene sets across conditions was assessed via Venn diagrams generated using Python’s matplotlib_venn pack-

age, employing significance criteria consistent with those used in differential expression analyses.

All statistical testing and thresholds were applied uniformly across analyses to ensure reproducibility and transparency of findings.
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