'.) Check for updates

Wiley

Neural Plasticity

Volume 2025, Article ID 7259018, 18 pages
https://doi.org/10.1155/np/7259018

WILEY

Review Article

mGluR5 as a Potential Orchestrator of Astrocyte
Interactions in Neurological Disorders

Jeongseop Kim,"? Jiyong Lee,’ Hyein Song,3 Ja Wook Koo ,"* and Shinwoo Kang

'Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea

2Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea
’Department of Pharmacology, College of Medicine, Soonchunhyang University, Cheonan-si, Republic of Korea

*Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988,
Republic of Korea

Correspondence should be addressed to Ja Wook Koo; jawook.koo@kbri.re.kr and Shinwoo Kang; ksw90@sch.ac.kr
Received 20 May 2025; Revised 11 July 2025; Accepted 9 August 2025
Academic Editor: Jacopo Lamanna

Copyright © 2025 Jeongseop Kim et al. Neural Plasticity published by John Wiley & Sons Ltd. This is an open access article under
the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

Astrocytes and metabotropic glutamate receptor 5 (mGluR5) have emerged as pivotal regulators of synaptic homeostasis and
neural communication within the central nervous system (CNS). Although mGluR5 has long been considered neuron-specific, its
functional expression in astrocytes is now recognized as essential for calcium (Ca**) signaling, gliotransmission, and the modula-
tion of synaptic plasticity. Dysregulation of astrocytic mGluR5 is increasingly implicated in the pathophysiology of neurodegener-
ative and psychiatric disorders including Alzheimer’s disease (AD), Parkinson’s disease (PD), depression, anxiety, and
schizophrenia (SCZ) by promoting neuroinflammation, excitotoxicity, and synaptic dysfunction. In this review, we explore the
emerging role of astrocytic mGIuR5 in mediating astrocyte-neuron communication and its maladaptive regulation in disease
contexts. We also assess the therapeutic potential of targeting astrocytic mGluR5, highlighting advances in pharmacological
modulators, gene therapy, and RNA-based strategies aimed at restoring homeostatic function. Despite recent progress, critical
knowledge gaps remain, particularly regarding the regional specificity of astrocytic mGIuR5 effects, its crosstalk with other
signaling pathways, and its contribution to chronic neuroinflammation. Addressing these challenges may unlock innovative
astrocyte-targeted therapies to restore synaptic integrity and protect against neurodegeneration in CNS disorders.
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mGluR5 belongs to the group I mGluRs, which activate key
processes such as long-term potentiation (LTP) and long-term
depression (LTD), essential for neurodevelopment, learning,
and memory [3, 4]. Upon glutamate binding, group I mGluRs
activate phospholipase C (PLC), which in turn produces inosi-
tol 1,4,5-trisphosphate (IP3) and prompts the release of intra-
cellular calcium ions (Ca®"). Ca®*, a crucial second messenger
in the central nervous system (CNS), facilitates synaptic plas-

1. Introduction

1.1. mGluR5 in Synaptic Modulation and Disease. Metabo-
tropic glutamate receptor 5 (mGluR5), a G-protein-coupled
receptor (GPCR), plays a crucial role in synaptic plasticity
and maintaining neurological health. As a key modulator of
glutamatergic neurotransmission, mGluR5 regulates neuronal
excitability and cognitive functions, particularly within the hip-

pocampus (HPC), striatum, and cortical regions essential for
emotion, learning, and memory [1]. In contrast to ionotropic
receptors that mediate rapid synaptic transmission, mGluR5
activates intracellular signaling cascades that exert long-lasting
influences on synaptic strength [2].

ticity by activating various enzymes such as Ca®*/calmodulin-
dependent protein kinase II (CaMKII) [2]. Additionally, Ca**
binds to the remaining membrane-bound diacylglycerol
(DAG), activating protein kinase C (PKC), which ultimately
influences mitogen-activated protein kinase (MAPK) and
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FIGURE 1: Roles of astrocytic mGluRS5 in tripartite synapse astrocytic mGIuR5 plays a pivotal role in maintaining synaptic homeostasis
primarily by two mechanisms, relieving excitotoxicity and modulating neuronal plasticity. mGluR5 is activated by glutamate, activating PLC

enzyme that cleaves PIP2 into DAG and IP3. IP3 increases intracellular Ca** level, which in turn activates Ca**-

dependent enzymes such as

CamKII which plays a crucial role in synaptic plasticity, learning, and memory. Ca** also binds to DAG and activate PKC and MAPK, finally
expressing genes like BDNF. The process includes NMDAR, another crucial glutamate receptor for neuronal plasticity, LTP, and LTD.
Elevated intracellular Ca** also promotes gliotransmitters (ATP, glutamate, and D-serine) release which interact with presynaptic AIR and

NMDAR. In addition, Ca**
excitotoxicity.

cyclic AMP response element-binding protein (CREB). This
cascade leads to the transcription of various genes involved
in synaptic plasticity [5] (Figure 1).

Numerous studies suggest potential interaction between
group I mGluRs and ionotropic GluRs, such as N-methyl-D-
aspartate receptors (NMDARs), further emphasizing their role
in synaptic strengthening and neuronal communication [6-9].
NMDARs may be coactive or not with mGluR5 depending on
the context, where the NMDAR subtype and developmental
stage play critical roles, thus, enabling intricate synaptic
mechanisms that allow both LTP and NMDAR-independent
LTD [2].

Dysregulation of mGluR5 signaling has been implicated in
several neurological and psychiatric disorders, including Alz-
heimer’s disease (AD), schizophrenia (SCZ), and fragile X syn-
drome [10, 11]. Overstimulation of mGIuRS5 activity can lead to
excitotoxicity, in which excessive glutamate stimulation causes
sustained Ca** influx and mitochondrial dysfunction, ulti-
mately resulting in neuronal death and disease progression.
When Ca** is excessively released due to mGIuR5 overactiva-
tion, the intracellular Ca** regulatory mechanism, mediated by

enhances GLT-1 transcription and transporter efficiency, thus, regulating glutamate reuptake to relieve

the plasma membrane Ca** ATPase (PMCA) and the plasma
membrane Na*/Ca*" exchanger (NCX), becomes overloaded
[12]. The excessive Ca®* then induces cellular toxicity by
impairing mitochondrial electron transport chain function
and generating reactive oxygen species (ROS), leading to neur-
ite degeneration [13]. Consequently, mGluR5 has emerged as a
promising therapeutic target, with positive and negative allo-
steric modulators (PAMs and NAMs) under investigation. For
instance, NAMs such as 2-methyl-6-(phenylethynyl)pyridine
(MPEP) and basimglurant have shown potential in preclinical
studies (Table 1). However, despite these encouraging findings,
most mGluR5 modulators have faced limited success in clinical
trials, with few progressing beyond phase 1 or 2 (Table 1).

As research continues to elucidate mGIuR5’s diverse roles
across neural networks, its potential as a therapeutic target for
various neurodegenerative and psychiatric disorders becomes
increasingly apparent.

1.2. Astrocytes in Gliotransmission and Neuron Communication:
An Overview. Astrocytes, once considered merely support
cells, are now recognized as dynamic regulators of brain
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function [36, 37]. The concept of the tripartite synapse, which
includes astrocytes and neuronal pre and postsynaptic ele-
ments, highlights their central role in synaptic regulation.
These glial cells play a crucial role in maintaining synaptic
homeostasis, regulating neurotransmitter levels, and support-
ing neuronal health. Astrocytes contribute to neurovascular
coupling, preserve blood-brain barrier (BBB) integrity, and
regulate synaptic activity through potassium buffering and glu-
tamate clearance via EAATSs [38—40].

In addition to homeostatic roles, astrocytes contribute to
brain metabolism by coupling the neuronal and vascular sys-
tems, thereby, distributing nutrients to synaptic components.
Both glycolysis, mediated by glutamate uptake, and glycogen-
olysis, promoted by neuromodulators such as noradrenaline,
vasoactive intestinal polypeptide (VIP), and adenosine, result
in lactate release by astrocytes. Lactate is then transported to
neurons to serve as a key energy source for the brain, while
generating reduced nicotinamide adenine dinucleotide
(NADH), which modulates NMDAR. This process leads to
the expression of genes involved in synaptic plasticity, such
as the activity-regulated cytoskeletal (Arc) gene and brain-
derived neurotrophic factor (BDNF) [41, 42] (Figure 1).

Astrocytes, as principal regulators of the BBB, utilize end-
foot processes to release signaling molecules such as transform-
ing growth factor-f (TGF-p}), which adjusts BBB permeability,
particularly during injury or disease [38]. This regulatory func-
tion is crucial for maintaining the brain’s internal environment,
shielding it from toxins while allowing the selective entry of
essential nutrients. Astrocytes also regulate extracellular potas-
sium concentrations through Kir4.1 channels, preventing neu-
ronal hyperexcitability, and ensuring stable firing patterns [40].

A key role played by astrocytes is the uptake of excess
neurotransmitters such as glutamate from the synaptic cleft.
Excitatory amino acid transporter 1 (EAATI) and EAAT2, also
known as glutamate transporter-1 (GLT-1) in astrocytes, act to
reabsorb glutamate, thereby, enabling intracellular glutamine
synthesis. Glutamine is then transported to neurons via the
astrocytic system N transporter 1 (SN1) and the neuronal sys-
tem A transporter 2 (SAT2), metabolized into glutamate, and
captured inside synaptic vesicles (Figure 1).

As astrocytes are increasingly recognized for their role in
neuron-glial communication, targeting these cells presents a
promising therapeutic avenue for treating conditions such as
AD and SCZ. The multifaceted roles of astrocytes, ranging
from BBB regulation to neurotransmitter clearance and synap-
tic modulation, underscore their importance in maintaining
brain homeostasis and offer novel targets for treating neurode-
generative and psychiatric disorders [43—45].

1.3. Pathophysiological Mechanisms Involving Astrocytic
mGIuR5 as a Key Trigger. Although the neuronal expression
of mGluR5 has been well-documented, with crucial roles in
postsynaptic regulation [46, 47], recent findings have
highlighted its expression in astrocytes, extending its influence
beyond neurons [48] (Figure 1).

Astrocytic mGluR5, located in the perisynaptic space, mod-
ulates Ca®* signaling cascades that leads to the propagation of
Ca”" waves through gap junctions and the subsequent release

Neural Plasticity

of gliotransmitters such as ATP, glutamate, and D-serine
agents [49-52]. These gliotransmitters modulate nearby neu-
ronal synapses, influencing synaptic plasticity processes such as
LTP and LTD, both of which are essential for cognitive func-
tions like learning and memory [53-55]. Additionally, astro-
cytic mGluR5 ensures the balance necessary for stable synaptic
environments by aiding modulation of other receptors, such as
NMDARs and presynaptic adenosine Al receptors, with the
gliotransmitters [55, 56]. Overactivated mGIuR5 signaling can
lead to dysregulated Ca®* waves and gliotransmitter release,
thereby altering astrocyte-mediated glutamate and GABA bal-
ance and ultimately causing excitotoxicity. In epilepsy, exces-
sive mGIuR5 activity can amplify glutamate spillover and
excitotoxicity, while in SCZ, impaired astrocytic mGluR5 func-
tion may result in reduced GABAergic tone and hyperactive
neuronal networks [11, 57].

mGluR5 and its encoding gene, GRM5, are highly
expressed in developing immature astrocytes but decline to
low levels following astrocytic maturation [58], suggesting
that the initial high expression of mGluR5 plays a pivotal
role in regulating astrocyte growth and branching [59, 60].
Recent research has expanded the role of mGluR5 by
highlighting its reemergence in astrocytes under specific
conditions. For example, during neuropathic pain [49]
induction or in certain disease states such as AD [61-63]
and brain ischemia [61], mGIuR5 expression is reactivated
in astrocytes, triggering excessive synapse formation and
network rewiring. This reemergence can lead to maladap-
tive synaptic plasticity [49], suggesting a potential role for
astrocytic mGlIuR5 in the development of neurological dis-
orders. Further studies are needed to explore how these
findings could translate into therapeutic strategies for
neurodegenerative and psychiatric diseases.

The uptake of excess neurotransmitters, particularly gluta-
mate, happens via EAAT1 and EAAT2 (GLT-1), which is
tightly regulated by astrocytic mGluR5 [64]. The receptor mod-
ulates GLT-1 expression and glutamate uptake to prevent exci-
totoxicity and maintain excitatory neurotransmission within
physiological limits. mGIuR5 activation induces Ca®* signaling
in astrocytes, driving GLT-1’s quantitative and functional upre-
gulation [65, 66] (Figure 1). Notably, fragile X mental retarda-
tion protein (FMRP) facilitates this process by binding to
mGluR5 mRNA and enhancing its translation. Loss of FMRP
disrupts mGIuR5 expression and activity, resulting in reduced
GLT-1 expression, impaired glutamate uptake, and increased
neuronal excitability [67]. Disruption of this system in neuro-
degenerative diseases can impair glutamate clearance, contrib-
uting to excitotoxicity and neuronal damage [68]. In AD, for
instance, astrocytic failure to clear synaptic glutamate exacer-
bates amyloid-beta (Af)-induced neurotoxicity [69].

1.4. The Objective of the Review. Astrocytic mGluR5 is emerg-
ing as a key regulator in neurodegenerative and psychiatric
diseases, where its dysregulation contributes to neuroinflam-
mation and synaptic dysfunction. Although the role of neuro-
nal mGluR5 has been extensively studied, the functions of
astrocytic mGluR5, which are vital for synaptic homeostasis
and the control of neuroinflammatory processes, still need to
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be explored. Emerging evidence links astrocytic mGIluR5 to
essential functions, such as Ca** signaling and gliotransmis-
sion, which influence neuron-astrocyte communication and
broader CNS regulation [51, 70].

This review explores the distinct roles of astrocytic mGluR5
in disease pathophysiology, and its potential as a therapeutic
target. Remarks from studies targeting nonspecific or region-
wide mGIuR5 are also included in this review if they provide
significant insights into astrocyte-neuron interactions or hold
value for future research specifically focused on astrocytes. By
modulating astrocytic mGIuR5 activity, novel strategies may
emerge to restore synaptic balance, reduce neuroinflammation,
and offer innovative treatments for conditions like AD, depres-
sion, and SCZ [11, 71].

2. Astrocytic mGluR5 Dysfunction in
Neurodegenerative Diseases

Astrocytes, once considered purely supportive, are now rec-
ognized for their crucial role in maintaining brain homeosta-
sis and modulating neuronal activity. Under pathological
conditions, astrocytes become reactive, adopting neuroin-
flammatory phenotypes that contribute to the progression
of neurodegenerative diseases such as AD and Parkinson’s
Disease (PD) [36, 72]. Astrocytic mGluR5 regulates these
inflammatory responses [73]. While mGIuR5 typically sup-
ports synaptic homeostasis and neuroprotection under
physiological conditions, its dysregulation can trigger inflam-
matory cascades, exacerbating neuronal damage and disease
progression [74].

2.1. AD. AD is the most common form of dementia, charac-
terized by progressive memory loss, cognitive decline, and
eventual neuronal death. Its pathological hallmarks of AD
include the extracellular accumulation of AP plaques and the
intracellular formation of neurofibrillary tangles composed of
hyperphosphorylated tau protein. These abnormalities disrupt
synaptic integrity, impair neuronal communication, and drive
neurodegeneration [75].

A growing body of evidence implicates mGluR5 in AD
progression, mainly through its interactions with A oligomers
(Figure 2). Astrocytes, key glial cells involved in maintaining
neuronal homeostasis, modulate mGIuR5 activity. Under phys-
iological conditions, astrocytic mGluR5 regulates neurotrans-
mitter levels and protects against excitotoxicity. However, in
AD, this regulation becomes disrupted, particularly in response
to AP accumulation. A, especially at a concentration of
100 nM AB42, has been shown to increase astrocytic Ca?t
levels, potentially through a mechanism in which AP forms
channel-like structures that facilitate Ca®* entry. This Ca**
increase was observed several minutes after AP treatment in
isolated astrocytes in vitro, suggesting that activation of the
intracellular astrocytic signaling mechanism requires sufficient
delay [76]. Consequently, calcineurin (CaN) becomes acti-
vated, which in turn promotes mGIuR5 overexpression. This
may further elevate intracellular Ca*" levels, establishing a
vicious cycle of sustained signaling [10, 76, 77].

This overexpressed mGluRS5, along with elevated intracel-
lular Ca** levels, impairs AP clearance and promotes chronic

neuroinflammation. In this state, astrocytes release pro-
inflammatory cytokines such as IL-1p, TNF-a, and ROS, fur-
ther contributing to neuronal damage [78]. Excessive mGIuR5
signaling in astrocytes also enhances nitric oxide (NO) produc-
tion and oxidative stress, aggravating synaptic dysfunction and
neurotoxicity [79, 80].

In neurons, mGluR5 interacts with Ap oligomers through a
prion protein (PrPC)-mediated mechanism, forming a com-
plex that activates nonreceptor tyrosine kinase Fyn, a key
enzyme involved in tau phosphorylation and NMDAR inter-
nalization. This signaling cascade contributes to synaptic dete-
rioration, impaired plasticity, and cognitive deficits associated
with AD [81]. Moreover, mGluR5 overactivation amplifies glu-
tamatergic transmission, promoting excitotoxicity [82]. Collec-
tively, this pathological feedback loop-comprising Ap
accumulation, excitotoxicity, and inflammation, accelerates
neurodegeneration in AD.

Targeting mGluR5 has emerged as a promising therapeutic
strategy for AD. Pharmacological inhibition of mGIuR5 dis-
rupts the Ap-mGluR5-PrPC complex, thereby, attenuating
downstream signaling cascades involving Fyn activation, tau
hyperphosphorylation, and synaptic degeneration. However, it
is important to note that commonly used pharmacological
agents such as MPEP and fenobam, are not selective for astro-
cytic mGluR5 and also target neuronal mGluR5. This lack of
cell-type specificity may contribute to variable therapeutic out-
comes and highlights the need for more targeted approaches
that distinguish between astrocytic and neuronal mGIuR5 sig-
naling. Despite these limitations, mGluR5 antagonists have
shown efficacy in preclinical AD models by preventing cogni-
tive decline, restoring synaptic function, and reducing neuroin-
flammation [10, 81]. In addition, these compounds alleviate
oxidative stress and suppress the production of proinflamma-
tory cytokines, offering the dual benefit of mitigating both
excitotoxicity and inflammation [11, 83].

Given the role of mGluR5 in neurons and astrocytes, mod-
ulating its activity represents a multifaceted therapeutic
approach for AD. By disrupting toxic Af interactions, reducing
excitotoxicity, and alleviating neuroinflammation, mGluR5
inhibition may confer neuroprotection and potentially slow
the progression of AD [84]. However, as previous PET imaging
studies have reported reduced mGluR5 levels in the HPC of AD
patients (Table 2), further clinical investigations are warranted
to determine the long-term efficacy and optimal timing of
mGluR5-targeted therapies in humans.

2.2. PD. PD is primarily characterized by motor symptoms
such as bradykinesia, tremors, muscular rigidity, and postural
instability, which result from the progressive loss of dopami-
nergic neurons in the substantia nigra pars compacta. These
neurons play a critical role in regulating movement by modu-
lating basal ganglia circuits [99]. However, the clinical mani-
festations of PD extend beyond motor dysfunction and include
a spectrum of nonmotor symptoms such as cognitive decline,
depression, and sleep disturbances that significantly impact
patients’ quality of life [100]. In recent years, a growing body
of evidence suggests that PD pathogenesis involves not only
dopaminergic degeneration but also significant alterations in
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Ficure 2: The Role of mGluR5 in neurodegenerative and psychiatric disorders. (A) Alzheimer’s disease (AD): in disease states, astrocytic
mGluR5 interacts with AP oligomers, triggering neuroinflammation via production of IL-1f, TNF-a, and oxidative stress, and impairing
EAAT function, which contributes to glutamate overflow and synaptic dysfunction. Postsynaptic neuronal mGluR5 forms a complex with
AB-PrPC to activate Fyn kinase, leading to tau hyperphosphorylation and NMDA receptor dysfunction. (B) Parkinson’s disease (PD):
dysregulated astrocytic mGluR5 elevates IL-6, IL-1B, and TNF-a production, reduces EAAT expression, thereby, exacerbating dopaminergic
neuronal toxicity and impairing glutamate balance. (C) Depression: chronic stress suppresses astrocytic mGluR5-EAAT? signaling, disrupt-
ing glutamate clearance. Postsynaptically, altered interactions between mGluR5 and Homer1b/c impair NMDA receptors and TrkB signal-
ing, amplifying excitotoxicity, and reducing synaptic plasticity. (D) Schizophrenia: aberrant astrocytic mGluR5 signaling reduces PGC-1a
mediated mitochondrial biogenesis, disturbing astrocyte maturation and glutamate regulation. Neuronal mGluR5 downregulates NMDA
receptor activity, while mGIuR5 antagonists such as MPEP may restore cognitive function and normalize glutamatergic signaling.

glutamate transmission and neuroinflammatory processes
(Figure 2).

Although few studies have investigated astrocytic mGluR5
in PD, overactivated astrocytic mGluR5 signaling plays a cru-
cial role in PD by promoting the production of neuroinflam-
matory mediators, which impair the clearance of excess
glutamate. This failure to regulate extracellular glutamate levels
leads to its accumulation, thereby, driving excitotoxicity [101].
Such dysregulation is particularly detrimental to dopaminergic
neurons, which are highly vulnerable to glutamate-induced
excitotoxic stress [45]. As a result, dysfunctional astrocytic
mGluR5 signaling not only perpetuates neuroinflammation
but also fails to safeguard neurons from excitotoxic damage,

contributing to the self-reinforcing cycle of neurodegeneration
characteristic of PD.

Group I mGluRs, including mGluR1 and mGIuRS5, is criti-
cal for the basal ganglia by modulating excitatory neurotrans-
mission and synaptic plasticity. Activation of these receptors at
multiple sites within the basal ganglia circuitry can contribute
to the synaptic overactivity observed in PD [102]. In PD, the
degeneration of dopaminergic neurons disrupts the balance
between excitatory and inhibitory signaling in the striatum,
leading to increased glutamate release and subsequent over-
activation of mGluR5 [103]. This aberrant activation promotes
excitotoxicity, oxidative stress, and mitochondrial dysfunction,
thereby, exacerbating neuronal loss and worsening motor
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symptoms [100]. In parallel, reactive astrocytes in both the
substantia nigra and striatum secrete proinflammatory cyto-
kines including TNF-a, IL-1B, and IL-6, which amplify neu-
roinflammation and contribute to the progressive degeneration
of dopaminergic neurons [104].

Beyond motor dysfunction, aberrant mGIuR5 activity has
also been implicated in nonmotor symptoms of PD, including
cognitive decline and mood disorders. Overactivation of
mGIuR5 and subsequent excitotoxicity in brain regions such
as the prefrontal cortex (PFC) and HPC, key centers for cogni-
tion and emotion, impair synaptic plasticity and neurotrans-
mission, thereby, worsening cognitive decline and mood
disorders in PD patients [103].

Therapeutic strategies targeting mGluR5 have shown
promise in alleviating both motor and nonmotor PD symp-
toms. mGluR5 antagonists, such as MPEP and AFQ056, have
been shown to reduce neuroinflammation, protect dopaminer-
gic neurons, and restore glutamate homeostasis [103, 105].
However, these compounds, do not selectively target astrocytic
mGluR5 and are also known to modulate neuronal signaling.
This pharmacological limitation should be carefully considered
when interpreting both preclinical and clinical outcomes.
Notably, mGIluR5 NAMs including AFQ056, have demon-
strated beneficial effects in clinical trials by improving motor
symptoms in PD patients experiencing levodopa-induced dys-
kinesias (Table 1). Beyond motor improvements, these agents
may also ameliorate cognitive and affective disturbances by
restoring glutamatergic balance in the PFC and HPC [94].

Given the broad expression of mGluR5 in both neurons
and astrocytes, targeting this receptor represents a comprehen-
sive therapeutic approach for PD. Inhibiting mGluR5 may
simultaneously mitigate excitotoxicity, preserve dopaminergic
neurons, suppress neuroinflammation, and improve cognitive
as well as affective symptoms.

2.3. Pain. Neuropathic pain is a chronic condition caused by
injury or dysfunction of the somatosensory nervous system,
characterized by heightened sensitivity to stimuli (allodynia)
and spontaneous pain. Although traditionally associated with
neuronal hyperexcitability and spinal sensitization, recent evi-
dence suggests a pivotal role for astrocytes in the development
and maintenance of neuropathic pain [49, 106].

Astrocytic mGluR5 has emerged as a key modulator in this
context. Although, typically downregulated in mature astro-
cytes, mGluR5 is transiently re-expressed in astrocytes of the
somatosensory cortex following peripheral nerve injury. This
reactivation induces robust Ca** signaling and upregulation of
multiple synaptogenic factors, including thrombospondin-1,
glypican-4, and hevin, which together promote excessive excit-
atory synaptogenesis and network hyperexcitability. A previous
study demonstrated that selective deletion of astrocytic
mGluR5 in the somatosensory cortex abolished the develop-
ment of mechanical allodynia in mice, indicating a direct causal
role in chronic pain [49, 106].

Importantly, the upregulation of mGluR5 in astrocytes pre-
ceded the inset of pain hypersensitivity, suggesting a causative
rather than compensatory role. Astrocytic mGIuR5 activation
led to structural synaptic remodeling that shifted the excitation/
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inhibition balance toward hyperexcitability, thereby, sustaining
persistent pain states. Complementary evidence from the ante-
rior cingulate cortex also highlights the contribution of astro-
cytic mGIuR5 to chronic pain. In this region, injury-induced
astrocyte hyperactivity has been shown to elevate mGIuR5-
dependent glutamate release, leading to heightened excitatory
transmission and persistent pain signaling. Suppressing astro-
cytic mGluR5 activity in the ACC effectively restored synaptic
balance and reduced pain behaviors [106]. Together, these
findings underscore the therapeutic potential of targeting astro-
cytic mGluR5 in neuropathic pain, expanding its relevance
beyond neurodegenerative and psychiatric diseases.

3. Astrocytic mGluR5 Dysfunction in
Psychiatric Disorders

Targeting astrocytic mGluR5 is emerging as a promising ther-
apeutic approach for addressing psychiatric disorders. Dysre-
gulation of astrocytic mGluRS5 has been associated with mood,
cognitive, and behavioral dysfunctions in conditions like
depression, anxiety, SCZ, and autism [107]. Modulating its
activity may help restore synaptic balance, reduce neuroinflam-
mation, and enhance neuroplasticity. Various pharmacological
agents, including mGluR5 antagonists or modulators, are cur-
rently under investigation for their ability to counteract mal-
adaptive astrocytes-neurons interactions implicated in these
disorders [108-110].

3.1. Depression. Major depressive disorder (MDD) is marked
by persistent mood disturbances and cognitive impairments,
often associated with disruptions in balance between excitatory
and inhibitory neurotransmission [111].

Dysregulation of astrocytic mGIuR5 contributes to this
imbalance by affecting extracellular glutamate levels, synaptic
plasticity, and neuroinflammatory responses. Chronic stress, a
major risk factor for MDD, has been shown to downregulates
astrocytic mGlIuR5 in brain regions essential for emotional
regulation, such as the PFC, HPC, and amygdala [112]. Con-
versely, other studies using human and rodent MDD models
have reported increased astrocyte reactivity and upregulation
of astrocytic markers in some brain regions [113]. This upre-
gulation may result in excessive glutamate release, synaptic
hyperexcitability, and neurotoxicity, hallmarks of MDD
pathology (Figure 2).

Astrocytes play a central role in glutamate clearance via
EAATS, and chronic stress impairs this function, further inten-
sifying excitotoxicity and neuroinflammation [39]. Astrocytic
mGIuR5 also regulates astrocytic Ca>* signaling, which is criti-
cal for synaptic signaling and gliotransmission [114]. Under
chronic stress, mGluR5 dysfunction disrupts Ca** homeosta-
sis, diminishing neurotrophic support, and worsening synaptic
deficits associated with depression [115].

Chronic stress disrupts the cellular mechanisms essential
for maintaining protein homeostasis in response to misfolded
proteins. The accumulation of misfolded proteins in the endo-
plasmic reticulum (ER) activates signaling pathways such as
PERK/elF2, which are involved in mGluR5-dependent LTD
and memory decline [116]. Additionally, chronic stress inhibits
CREB phosphorylation and selectively downregulates BDNF
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expression in the HPC, leading to the internalization of
AMPARs and resulting in depression-like behaviors [116,
117]. This impaired astrocyte-neuron communication may
also lower BDNF levels, increasing susceptibility to stress-
induced deficits in neuroplasticity [118].

The dual role of astrocytic mGIuR5, shifting between neu-
roprotection and neurotoxicity, complicates its functional
interpretation [119, 120]. Under normal conditions, mGluR5
supports synaptic plasticity through Ca** signaling; however,
in chronic stress-induced overactivation, it leads to neuroin-
flammation and synaptic dysfunction. Pharmacological studies
targeting mGluR5 have shown therapeutic potential, with
antagonists like 3- ([2-Methyl-1,3-thiazol-4-yl]ethynyl)pyri-
dine (MTEP) and basimglurant reducing depressive-like beha-
viors by restoring synaptic homeostasis and mitigating
glutamatergic hyperactivity [121]. It should be emphasized
that these drugs are not selective for astrocytic mGIuR5 and
concurrently affect neuronal receptors, which may confound
the interpretation of behavioral and molecular outcomes in
experimental models. Furthermore, chronic stress downregu-
lates astrocytic mGIuR5 in the HPC, mirroring the synaptic
deficits observed in depression, while overexpression of
mGIluR5 reverses these deficits [112]. An interesting aspect of
previous clinical PET studies is the complex results observed in
mGluR5 levels (Table 2). This complexity likely reflects the
heterogeneous nature of depression. For example, mGIluR5
levels were found to be notably decreased in the PFC of non-
smoking persons or drug-naive young adults (Table 2). Addi-
tionally, clinical trials using mGluR5 antagonists and NAMs
have not shown significant differences, but some evidence sug-
gests that these agents, when combined with conventional anti-
depressants, may offer additional benefits (Table 1).
Consequently, the role of mGluR5 in depression is highly com-
plex and warrants further investigation.

The interaction between mGluR5 and Homerl proteins
further underscores the receptor’s role in depression.
Homerlb/c, downregulated in the PFC during MDD, espe-
cially in projections from the basolateral amygdala, modulates
mGluR5 signaling, impacting early neurodevelopment and
synaptic organization [122]. Homerla, an activity-dependent
splice variant, disrupts Homerlb/c-mGIluR5 interactions,
enabling signaling plasticity but potentially destabilizing ER-
plasma membrane microdomains critical for Ca** signaling
and glutamate regulation [123]. Excessive Homerla expression
in reactive astrocytes disrupts these microdomains, potentially
contributing to the synaptic dysfunction observed in depres-
sion [123].

Recent RNA sequencing studies confirm that Homerl is
expressed in cortical astrocytes, with Homer1b/c and mGluR5
forming clusters within astrocytic processes, similar to their
neuronal distribution [124, 125]. These microdomains func-
tion as astrocytic signaling hubs, regulating synaptic plasticity
and glutamate homeostasis. In pathological conditions such as
depression, the altered Homerla expression has been impli-
cated in synaptic dysfunction. Increased Homerla levels may
disrupt synaptic organization, potentially impairing mGIluR5
function and glutamate clearance, which could contribute to
MDD-related synaptic deficits [126].
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In summary, Homerl proteins are critical regulators of
mGluR5 signaling in neurons and astrocytes, balancing struc-
tural stability and signaling adaptability. Dysregulation of the
mGlIuR5-Homerl interaction contributes to the synaptic and
neuroinflammatory pathology of MDD. Targeting this interac-
tion offers a promising strategy for restoring proper glutamate
signaling and addressing treatment-resistant depression.

3.2. Anxiety. Anxiety disorders, including posttraumatic stress
disorder (PTSD), are characterized by heightened fear
responses and persistent worry, often attributed to dysregula-
tion in glutamatergic transmission and synaptic plasticity
[127, 128].

mGluR5 plays a pivotal role in the regulation of anxiety,
particularly within the amygdala, a central hub for fear condi-
tioning and emotional learning [129]. Hyperactivation of
mGluR5 in the amygdala has been closely associated with exag-
gerated fear responses and anxiety-like behaviors in preclinical
models [128, 130]. Additionally, mGIuR5 signaling in the PFC
and HPC plays a significant role in regulating stress responses,
with excessive receptor activation promoting neuronal hyper-
excitability and dysregulated fear memory processing [131].
Notably, previous studies using mGluR5 radioligand-based
PET imaging have shown increased mGluR5 levels in the
PFC and HPC of PTSD patients (Table 2), further supporting
the involvement of mGlIuR5 in the pathophysiology of anxiety
disorders.

Pharmacological inhibition of mGIuR5 has demonstrated
substantial efficacy in preclinical models of anxiety. Antago-
nists like MPEP and fenobam reduce anxiety-like behaviors by
mitigating glutamatergic hyperactivity in the amygdala and
prefrontal circuits [128, 132]. Interestingly, astrocytes also
exhibit abnormal mGluR5 activity in anxiety disorders, which
contributes to disrupted glutamate homeostasis and exacer-
bated neuroinflammatory processes [133]. Therapeutic strate-
gies targeting both neuronal and astrocytic mGluR5 may
provide a comprehensive approach to restoring glutamatergic
balance and alleviating anxiety symptoms (Table 1).

mGluR5 dynamically regulates glutamate homeostasis
through its complex interaction with GLT-1. Acute activation
enhances glutamate clearance, whereas chronic overactivation
has been associated with downregulation of GLT-1 and
GLAST, potentially leading to glutamate accumulation and exci-
totoxicity in stress-sensitive regions, such as the PFC and HPC
[66, 134]. Targeting the mGluR5-GLT-1 axis may, therefore,
provide a promising therapeutic strategy to restore glutamatergic
homeostasis and mitigate PTSD-related neurobiological dys-
function, as this imbalance is thought to underline key features
of PTSD, including cognitive deficits and impaired fear
extinction.

Recent animal studies using the inescapable foot shock
(IFS) model of PTSD have demonstrated increased mGIuR5
expression, alongside reduced levels of BDNF, its receptor
TrkB, and GLT-1 in both the PFC and HPC [135]. Remarkably,
these molecular and behavioral abnormalities were reversed by
MPEP administration, underscoring the central role of
mGluR5 in mediating glutamate dysregulation under stress
conditions.
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3.3. SCZ. SCZ is marked by positive (hallucinations and
delusions), negative (apathy and social withdrawal), and cog-
nitive symptoms [136], with glutamatergic dysfunction, partic-
ularly NMDAR hypofunction, strongly implicated in its
pathophysiology [137]. mGlIuR5, a key modulator of NMDAR,
plays an essential role in synaptic plasticity and cognitive
function, both of which are impaired in SCZ [11, 138].
Reduced mGlIuR5 activity in the PFC and HPC may
contribute to cognitive and negative symptoms by impairing
synaptic plasticity and NMDAR function [131] (Figure 2).

In the context of 22q11 deletion syndrome (22q11DS), a
major genetic risk factor for SCZ, mitochondrial dysfunction
emerges as a critical component. Several genes deleted in
22q11DS encode mitochondrial proteins, linking mitochon-
drial disturbances to the onset of SCZ [139, 140]. During early
development, astrocytic mGluR5 drives mitochondrial biogen-
esis through PPARy co-activator-1o (PGC-1a), which is essen-
tial for astrocyte maturation and synaptic support [60]. This
astrocyte-neuron interplay is vital for functional circuit forma-
tion, and disruptions in astrocytic maturation, especially in the
late-developing PFC, may underlie cognitive deficits in SCZ
[141, 142].

In both SCZ and 22q11DS, astrocyte mediated mitochon-
drial dysfunction may disrupt synaptogenesis and neural cir-
cuit development [143]. Notably, induced pluripotent stem cell
(iPSC)-derived neurons from 22q11DS patients without SCZ
exhibit compensatory mitochondrial upregulation, while those
with SCZ show reduced ATP production [144]. Activating the
PGC-1la pathway restores mitochondrial function, emphasiz-
ing its protective role against SCZ development in 22q11DS
[144]. Thus, astrocytic mGluR5 coordinates synaptic activity
with mitochondrial energy production during brain develop-
ment. Its regulation of PGC-1a-driven mitochondrial biogene-
sis is vital for maintaining astrocyte activity and synaptic
integrity [59, 60]. In SCZ and 22q11DS, dysregulation of this
pathway may underlie cognitive and neurodevelopmental
impairments. Targeting astrocytic mGluR5 and boosting mito-
chondrial function could be a promising strategy for reducing
SCZ risk in 22q11DS patients. Beyond cognitive functions,
mGluR5 also influences the dopaminergic system, which is
implicated in the positive symptoms of SCZ. By regulating
dopamine in the striatum and PFC, mGluR5 dysregulation
contributes to hyperdopaminergic states associated with hallu-
cinations and delusions [145, 146]. Preclinical studies suggest
that mGluR5 agonists or PAMs enhance NMDAR function
and mitigate cognitive deficits in SCZ models [146, 147]
(Table 1), highlighting mGluR5 as a promising therapeutic
target. However, human PET studies have not identified signif-
icant differences in mGIuR5 levels between SCZ patients and
controls. Given the limited number of studies in this area
(Table 2), further investigation is needed.

4. Conclusion and Future Directions

4.1. Integration of mGIuR5 and Astrocyte Research. Recent
breakthroughs have transformed our understanding of astro-
cytes, highlighting their active involvement in synaptic trans-
mission, neuroinflammation, and plasticity. No longer viewed
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as passive support cells, astrocytes are now recognized as criti-
cal contributors to brain physiology. The discovery that
mGIuR5, a critical modulator of glutamatergic signaling, is
expressed in both neurons and astrocytes has introduced new
dimensions to the study of neuron-glia interactions in health
and disease [37, 148]. Astrocytic mGIuR5 regulates Ca*" sig-
naling, gliotransmission, and neuroinflammatory responses,
underscoring its role in synaptic homeostasis and brain plas-
ticity [149].

In pathological states, such as neurodegenerative and psy-
chiatric disorders, dysregulated astrocytic mGIuR5 contributes
to disease progression through mechanisms like excitotoxicity,
neuroinflammation, and synaptic imbalance [150]. Targeting
this glial-neuronal crosstalk presents a novel therapeutic strat-
egy, shifting focus beyond traditional neuron-centric
approaches to treating brain disorders.

4.2. Open Questions. Despite notable advances in the study of
astrocytic mGluR5, several critical questions remain unre-
solved. While its role in mediating Ca®* signaling within astro-
cytes is well established, the downstream consequences for
neuronal circuits, particularly under pathological conditions,
are still poorly understood. In disorders such as SCZ and
depression, the precise mechanisms through which astrocytic
mGluR5 modulates synaptic plasticity and cognitive function
remain to be elucidated [115]. This highlights the need for
refined studies using astrocyte-specific tools to dissect its con-
tributions across different brain regions and cell populations.

Another central uncertainty concerns the region-specific
roles of astrocytic mGluR5. Given its expression in diverse
brain regions, each with distinct roles in cognition, motor con-
trol, and emotional regulation, its region-dependent contribu-
tions to disease pathologies remain poorly characterized [102].
Equally important is the question of disease-stage specificity.
Emerging evidence suggests that astrocytic mGluR5 may exert
protective effects during early phases of injury or stress, but
may become maladaptive when chronically activated. Under-
standing how its function evolves across the course of disease
whether neurodegenerative or psychiatric could help define
time-sensitive therapeutic windows and reduce the risk of ther-
apeutic failure due to misaligned treatment timing,

Additionally, the dual role of mGIuR5 in neuroinflamma-
tion requires deeper investigation. Some studies suggest that
acute activation may help contain inflammatory responses,
whereas chronic overactivation may exacerbate proinflamma-
tory signaling, glutamate dysregulation, and excitotoxicity.
Understanding the molecular switch between these two modes
of action could have substantial therapeutic implications, par-
ticularly in diseases such as AD or PD, where chronic inflam-
mation is a hallmark.

Finally, astrocytic mGluR5 does not act in isolation. Astro-
cytes express a wide array of receptors including purinergic,
adrenergic, and GABAergic types that may interact with or
modulate mGluR5 signaling. The nature of this receptor cross-
talk remains largely unexplored. Investigating how these inter-
actions may open new avenues for combination therapies that
target multiple glial pathways, thereby, more effectively restor-
ing synaptic and metabolic homeostasis.
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Collectively, addressing these open questions will not only
refine our understanding of astrocytic mGIuR5 function but
also accelerate the development of precision therapies tailored
to disease context, stage, and regional pathology.

4.3. Prospective Therapies. Astrocytic mGluR5 represents a
promising therapeutic target across a range of neurological
and psychiatric disorders. In neurodegenerative diseases such
as AD and PD, mGluR5 antagonists, including MPEP and
CTEP, have shown potential to reduce synaptic dysfunction,
excitotoxicity, and neuroinflammation [10]. By preventing the
overactivation of mGluR5 in reactive astrocytes, these com-
pounds may help preserve synaptic homeostasis and promote
neural health. While preclinical studies have yielded encourag-
ing results, further clinical trials are necessary to evaluate their
long-term efficacy and safety in human populations.

In psychiatric disorders such as SCZ and depression, mod-
ulating astrocytic mGluR5 offers a novel approach to addres-
sing cognitive and emotional impairments. PAMs of mGluR5
agents that enhance receptor activity without causing overex-
citation are being investigated for their ability to improve cog-
nition and synaptic plasticity [146]. Compared to direct
agonists, PAMs provide more refined modulation, potentially
minimizing excitotoxicity risk while enhancing synaptic resil-
ience. Combining mGluR5 targeting agents with conventional
antidepressants or antipsychotics could provide a synergistic
approach that engages both astrocytic and neuronal mechan-
isms, thereby, enhancing therapeutic efficacy.

Despite recent progress, a major limitation of current
mGIuR5 modulators lies in their lack of cell-type specificity.
Most pharmacological agents indiscriminately target both astro-
cytic and neuronal mGluR5, complicating the attribution of
observed effects to glial mechanisms and potentially inducing
unintended neuronal consequences. To address this, future
research should prioritize the development of astrocyte-selective
targeting strategies such as viral vectors, nanoparticle-based sys-
tems, or astrocyte-specific promoters. These approaches will be
essential for precisely targeting astrocytic mGluR5 and translat-
ing glia-centered findings into clinical practice.

Emerging genetic techniques, such as gene therapies and
RNA-based interventions, offer promising approaches for the
selective modulation of astrocytic mGIuR5. By employing viral
vectors or RNA interference, researchers could precisely regu-
late mGIuR5 expression in specific brain regions, providing a
precision medicine approach to disorders like autism spectrum
disorder and fragile X syndrome, where mGluR5-mediated
plasticity is disrupted [43, 44]. These genetic interventions
hold the potential for personalized treatments finely tuned to
individual disease profiles.

Importantly, while mGluR5 inhibition is beneficial in cer-
tain contexts, activation of this receptor could be advantageous
in disorders characterized by synaptic failure and cognitive
decline. Therefore, future therapies must be adaptable and
capable of either enhancing or inhibiting mGIuR5 signaling
depending on the disease stage, context, and underlying pathol-
ogy. Achieving optimal balance between neuroprotection and
maintaining physiological astrocytic function will be essential
for the successful development of mGluR5-targeted treatments.
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