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Objective: To assess patient gait ability by capturing both trend and scale aspects, this study 
proposes a method using the Pearson correlation coefficient and symmetric mean absolute 
percentage error (SMAPE).
Methods: Gait patterns from three patients with hip osteoarthritis (OA) were analyzed using 
kinematic and kinetic data. In each case, using MAPE or Pearson correlation alone failed to 
provide a reliable assessment, revealing limitations in capturing the full characteristics of gait 
patterns.
Results: The combined use of Pearson and SMAPE effectively identified gait abnormalities 
across all cases. This integrated approach offered a more accurate and comprehensive evalu-
ation than single-metric methods.
Conclusion: The findings highlight the importance of considering both trend and scale in gait 
analysis. The proposed dual-metric methodology overcomes the limitations of conventional 
and single-metric approaches, enabling a clearer understanding of gait characteristics in pa-
tients with hip OA.
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INTRODUCTION

Patients with hip osteoarthritis (OA) demonstrate abnormal 
gait patterns [1,2]. Subsequently, artificial hip joint replacement 
surgery is performed, followed by gait rehabilitation The ulti-
mate goal is to enable patients with hip OA to achieve a normal 
gait pattern [3-5]. Quantifying gait ability at each stage in this 
comprehensive process is crucial. This allows for an intuitive 
assessment of both the surgical and rehabilitative effects [6-8]. 
There has been significant research conducted on the quantita-

tive assessment of gait ability through gait experiments [9-13].
Gait analysis using motion capture equipment and force plates 

is being extensively employed to analyze the quantitative charac-
teristics of hip OA patients’ gait by comparing various variables 
with normal gait [14-17]. Such comparisons can be applied even 
to small datasets and offer quantitative results that are easy to 
interpret intuitively. They provide a straightforward way to as-
sess gait differences without relying on complex models or large 
sample sizes. This straightforwardness stems from the fact that 
the metrics are normalized and bounded, which enables consis-
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tent and intuitive interpretation.
The gait data derived from the motion capture sensors such 

as Vicon and Optitrack is in the form of time-series data. Gait 
ability can be evaluated based on how similar the patients’ gait-
time-series data is to the gait-time-series data of the healthy 
controls [18-20]. The closer a patient’s gait is to that of healthy 
controls’ gait data, the more it can be considered as approaching 
normal gait. Conversely, the more it diverges from healthy con-
trols’ gait data, the more it can be regarded as abnormal gait.

The gait data, represented as time-series data, should be an-
alyzed with consideration for both trend and scale similarity 
[21,22]. A commonly employed approach for assessing the 
similarity of time-series data is through the use of the Pearson 
correlation coefficient. Conversely, a variety of metrics have 
been utilized to assess scale similarity. Nevertheless, each metric 
is associated with inherent limitations, and recent research has 
focused on employing the symmetric mean absolute percentage 
error (SMAPE) metric as a means to mitigate these drawbacks 
[22-25]. By combining the Pearson coefficient and SMAPE 
score, this study aims to offer a more comprehensive and clin-
ically meaningful assessment of gait. Furthermore, it presents 
case-specific examples that reveal the limitations of using ei-
ther metric alone, thereby contributing a practical perspective 
for future gait assessment protocols as preliminary study. This 
study was conducted in the process of identifying indices for 
gait assessment and classification, as reported in Choi et al. [22].

METHODS

Subject
Three hip OA patients as seen in Table 1 involved in the study 
were diagnosed with hip OA within the past month. Partici-
pants diagnosed with hip OA and included in this study were 
classified as grade 3 or 4 based on the Kellgren–Lawrence 
grading system. All selected patients were deemed suitable can-
didates for total hip arthroplasty, with classification confirmed 
through clinical evaluation by an orthopedic specialist. Individ-
uals with OA grades 0 to 2 were excluded, as they were not indi-

cated for surgical intervention. Furthermore, participants with 
any prior musculoskeletal disorders affecting the lower limbs, 
other than hip OA, were also excluded. All gait assessments 
were conducted within three months following radiographic 
diagnosis of hip OA.

A total of 16 healthy subjects (8 female and 8 male; age: 56±9 
years; weight: 64±10 kg; height: 163±7 cm) were recruited as 
the control group. None of the participants had a history of 
gait-related disorders. The healthy control dataset employed in 
this study was identical to that reported in our previous publi-
cation, without any modification. The dataset was collected in-
dependently of the case patient data, ensuring that the selection 
was blinded to the case results and thus eliminating the risk of 
post-hoc bias. In addition, all healthy control data had been 
anonymized in accordance with institutional and regulatory re-
quirements, which permits reuse in subsequent studies.

For the purpose of comparative analysis, the healthy control 
dataset was derived from a prior publication by the authors, in 
which similar experimental protocols were employed [22].

Instruments
The experiments were performed with the Vicon camera (33EA) 
and force plate (2EA, AMTI). The Plug-in Gait lower limb 
marker set was used, and markers were attached to specific an-
atomical landmarks to capture lower limb kinematics. Markers 
were placed on the anterior superior iliac spines, posterior su-
perior iliac spines, the midpoints of the lateral thighs (between 
the greater trochanter and lateral femoral epicondyles), the 
midpoints of the lateral shanks (between the lateral femoral 
epicondyles and lateral malleoli), lateral femoral epicondyles, 
lateral malleoli, heels, and the second metatarsal heads. All 
markers were positioned by an experienced examiner following 
the standard protocol to ensure consistency and accuracy of 
data collection.

Marker trajectory data were processed in Vicon Nexus soft-
ware, where the Plug in Gait model was applied to transform 
three dimensional marker coordinates into segmental kine-
matics, and joint angles were subsequently computed through 

Table 1. Physical information of hip osteoarthritis patients

Sex Height (cm) Weight (kg) Affected side Age (yr) KL grade
Patient 1 Male 176 70 Left 52 3
Patient 2 Female 163 53 Left 71 4
Patient 3 Male 183 64 Right 62 3

This table presents the physical information of the 3 hip osteoarthritis patients who participated in gait experiment of this preliminary study. KL grade 
refers to the Kellgren–Lawrence (KL) grading system.
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inverse kinematics according to the model’s standard pipeline.

Experiment protocol
To induce a natural gait, subjects freely walk 6 minutes on floor. 
After attaching the marker, subjects walk about 2 m above the 
force-plate. The subject walked 7 times on the force plates hid-
den in the blanket. Among them, the data was used when the 
subject stepped on the force-plate exactly when walking.

Ethical approval declarations
Prior to the experiment, all subjects signed consent forms ap-
proved by Kyungpook National University Chilgok Hospital 
Institutional Review Board (IRB No. 2018-05-008). This study 
followed the policy statement concerning the Declaration of 
Helsinki.

Data analysis
Data analysis tool
Data analysis was performed using Python (version 3.6.7, 64-
bit) and the packages used were NumPy 1.16.3, Matplotlib 3.0.1, 
and pandas 0.23.4.

Variables for gait assessment
In this study, the variables, assessed using Pearson correlation 
coefficient and SMAPE score, can be classified into the kinetics 
and kinematics aspects. In the kinetics aspect, the focus is on 
the sagittal direction moments of the hip joint, knee joint, and 
ankle joint on the affected side. In the kinematics aspect, the fo-
cus is on the sagittal direction angles of the hip joint, knee joint, 
and ankle joint on the affected side. These variables are individ-
ually compared with the average value of the healthy controls. 
The entire gait cycle, spanning from the heel strike of the stance 
phase to the end of the swing phase, is considered as a single 
gait cycle. Throughout this process, the time duration was di-
vided into 100 equal intervals to synchronize the gait cycles in 
each trial. The gait cycle was normalized such that heel strike 
corresponded to 0% and toe-off to 100% [26,27].

Pearson correlation coefficient for gait similarity in view of trend
Pearson correlation coefficient is an index that quantifies the 
similarity between two time-series data in view of trend. The 
Pearson correlation coefficient formula is as shown in Eq. (1):

        (1)

where R represents Pearson correlation coefficient and N rep-
resents the number of data points. Hi represents the ith value 
of healthy subjects’ gait time series data, and Pi represents the 
ith value of the patient’s gait time series data. H represents the 
average value of healthy subjects’ gait time series data, and P 
represents the average value of the patient’s gait time series data.

SMAPE for gait similarity in view of scale
SMAPE is an index that quantifies the similarity between two 
time-series data in view of scale. The SMAPE formula is as 
shown in Eq. (2):

         (2)

where N represents the number of data points. Hi represents the 
ith value of healthy subjects’ gait time series data, and Pi rep-
resents the ith value of the patient’s gait time series data. 

represents the average of the ith values of healthy subjects and 
patients. By dividing |Hi − Pi| by this value, it helps resolve the 
scaling disparity issue and prevents potential division by zero 
problems [28]. On the contrary, the formula commonly used 
for MAPE in machine learning is as shown in Eq. (3):

          (3)

The primary difference between MAPE and SMAPE lies in 
the value used for normalization. While MAPE divides by the 
magnitude of the reference time series data, SMAPE divides by 
the average magnitude of the two compared time series. This 
difference can prevent problems associated with calculations 
becoming unfeasible when the reference data is zero. Further-
more, concerning MAPE, when the data being compared ex-
hibits a significant scale difference from the reference, an issue 
arises wherein the MAPE value may appear significantly large 
or small [20]. In conclusion, SMAPE score can effectively cap-
ture the similarity between two time-series datasets, even in the 
presence of a substantial scale difference [22,28,29].
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SMAPE score typically yields values between 0 and 1. As the 
reference value Hi is derived from data obtained from healthy 
control, a value approaching zero indicates similarity to gait 
pattern observed in healthy control. To intuitively understand 
gait ability, an index known as SMAPE score is employed, and 
SMAPE score formula is as shown in Eq. (4):

        (4)

SMAPE score close to 1 indicates gait ability similar to that of 
the healthy control, while a score closes to 0 suggests a deviation 
from the healthy control.

RESULTS

As shown in Table 2, the hip, knee, and ankle joint angles and 
moments of three patient cases were compared with those of 
healthy controls, and the results are presented in terms of the 
Pearson correlation coefficient, MAPE, and SMAPE scores.

Case 1
Fig. 1 represents the SMAPE scores and Pearson correlation 
coefficients of the first patient and a graph of the hip angle and 
knee angle in the sagittal direction. For hip angle, the patient’s 
Pearson coefficient for healthy controls is 0.96, MAPE is 12.58, 
and SMAPE score is 0.74. For knee angle, the patient’s Pear-
son coefficient for healthy controls is 0.74, MAPE is 2.59, and 
SMAPE score is 0.67.

Case 2
Fig. 2 represents the SMAPE score and Pearson correlation co-
efficients of the second patient and a graph of the hip moment 

and knee moment in the sagittal direction. For knee moment, 
the patient’s Pearson coefficient for healthy controls is 0.93, 
MAPE is 2.16, and SMAPE score is 0.73. For ankle moment, the 
patient’s Pearson coefficient for healthy controls is 0.80, MAPE 
is 12.17, and SMAPE score is 0.55.

Case 3
Fig. 3 represents the SMAPE score and Pearson correlation 
coefficients of the hip moment and knee angle in the sagittal 
direction. For hip moment, the patient’s Pearson coefficient for 
healthy controls is 0.40, MAPE is 3.37, and SMAPE score is 0.61. 
For knee angle, the patient’s Pearson coefficient for healthy con-
trols is 0.08, MAPE is 42.51, and SMAPE score is 0.63.

DISCUSSION

In the case of hip angle as seen in Fig. 1, the Pearson coefficient 
is remarkably high (0.96), primarily due to the similarity in 
trends, despite the fact that the patient’s gait does not exhibit 
similar scale range of hip angle when compared to the gait of 
the healthy control. In the case of knee angle, despite the small 
scale between gait data, distinct trends emerge, leading to a rel-
atively low Pearson correlation coefficient (0.74). This indicates 
that the Pearson correlation coefficient effectively captures vari-
ations in gait patterns. On the other hand, in view of scale, the 
difference between healthy and patient, in knee angle has de-
creased. It can be observed that both SMAPE score (hip angle: 
0.74, knee angle: 0.67) and MAPE (hip angle: 12.58, knee angle: 
2.59) effectively reflect this difference. With MAPE, effective 
tracking of similarity is observed; however, it is not straightfor-
ward to discern whether the MAPE value (from 12.58 to 2.59) 
aligns with the gait pattern compared to SMAPE score (from 

Table 2. Comparison of joint kinematics and kinetics between patients and healthy controls

Case Index Hip angle Knee angle Ankle angle Hip moment Knee moment Ankle moment
Case 1 Pearson 0.96 0.74 0.58 0.63 0.94 0.75

MAPE 12.58 2.59 20.10 1.82 3.17 9.74
SMAPE 0.74 0.67 0.58 0.67 0.74 0.60

Case 2 Pearson 0.93 0.79 0.56 0.72 0.93 0.80
MAPE 0.70 4.65 16.67 1.33 2.16 12.17
SMAPE 0.74 0.67 0.54 0.70 0.73 0.55

Case 3 Pearson -0.87 0.08 -0.24 0.40 -0.74 0.37
MAPE 12.95 42.51 2.43 3.37 7.25 20.85
SMAPE 0.51 0.63 0.62 0.61 0.59 0.62

This table compares the hip, knee, and ankle joint angles and moments of three patient cases with those of healthy controls, presenting the values of the 
Pearson correlation coefficient, MAPE, and SMAPE scores. Pearson refers to the Pearson correlation coefficient, and SMAPE refers to the SMAPE score.
MAPE, mean absolute percentage error; SMAPE, symmetric MAPE.
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0.74 to 0.67). This is because MAPE normalizes only with re-
spect to the reference data, that is, healthy control data between 
the two time series data. Therefore, when the scale of the refer-
ence data is significantly larger or smaller than the comparison 
data, the MAPE value can become very small or large, regard-
less of the similarity in scale.

In the case of knee moment as seen in Fig. 2, the knee mo-
ments of healthy controls and patients exhibit similarity in 
terms of trend and scale. The Pearson coefficient (0.93) and 
SMAPE score (0.73) represents relatively high values, while 
MAPE (2.16) represents relatively low values. On the other 
hand, in the case of ankle moments with low similarity between 

healthy control and patient, the values of Pearson coefficient 
(0.80) and SMAPE score (0.55) decreased, and the MAPE 
(12.17) increased. In other words, it is evident that all three in-
dicators (Pearson coefficient, MAPE, SMAPE score) appropri-
ately demonstrate similarity in normal case.

In the case of knee angle as seen in Fig. 3, the limitation of 
MAPE is highlighted. In situations where a substantial scale 
difference exists between healthy control and patient data, the 
MAPE value (42.51) of hip moment becomes excessively large, 
making it impossible to intuitively determine gait ability. Con-
versely, in the case of hip moment, due to the large scale of both 
two data, although the difference is large, the MAPE value (3.37) 

Fig. 1. This figure depicts the results of the second trial of gait experiment for patient 1. The upper graph on left side illustrates SMAPE 
scores for kinetics and kinematics, with red indicating gait scores of hip OA patient in terms of scale similarity. The upper graph on 
right side illustrates Pearson correlation coefficients for kinetics and kinematics, with red indicating gait scores of hip OA patient in 
terms of trend similarity. The lower graphs illustrate the hip angle and knee angle of affected side in the sagittal direction. The black 
lines represent the average hip and knee angle for gait of healthy controls, and the red lines represent the hip and knee angle of the 
hip OA patient, respectively. SMAPE, symmetric mean absolute percentage error; OA, osteoarthritis.
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Fig. 2. This figure depicts the results of the second trial of gait experiment for patient 2. The upper graph on left side illustrates SMAPE 
scores for kinetics and kinematics, with red indicating gait scores of hip OA patient in terms of scale similarity. The upper graph on 
right side illustrates Pearson correlation coefficients for kinetics and kinematics, with red indicating gait scores of hip OA patient in 
terms of trend similarity. The lower graphs illustrate the knee moment and ankle moment of affected side in the sagittal direction. 
The black lines represent the average knee and ankle moment for gait of healthy control, and the red lines represent the knee and 
ankle moment of the hip OA patient, respectively. SMAPE, symmetric mean absolute percentage error; OA, osteoarthritis.

is overwhelmingly smaller than the knee angle result. In sum-
mary, the Pearson correlation coefficient is sufficient for evalu-
ating the trend aspect of a patient’s gait pattern, but it is incom-
plete as it fails to account for scale-related differences. MAPE is 
capable of capturing such scale-related aspects. However, when 
patient gait data include values close to zero, MAPE may pro-
duce disproportionately large values regardless of actual simi-
larity. Additionally, when there is a significant scale discrepancy 
between the healthy control and patient data, MAPE can yield 
misleadingly large or small values, independent of their scale 
similarity. The SMAPE score mitigates these limitations. Even 
when patient gait values are very small or scale differences are 

large, SMAPE score still provides a stable and interpretable 
score that better reflects scale similarity.

The Pearson correlation coefficient is widely used and valu-
able for its ability to intuitively demonstrate the trend similar-
ity between two time series data [30-34]. However, Pearson 
correlation only captures the similarity in trends between two 
datasets and does not consider the similarity in the scale aspect 
of the data [35]. Even if there are significant differences in the 
magnitude of the forces or moments occurring during gait, the 
Pearson correlation coefficient will yield a value close to 1 as 
long as the increasing and decreasing trends are similar. In the 
case of patients, there is often a significant limitation in gener-
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ating adequate force or a markedly restricted range of motion 
during the gait process [36-39]. Considering these character-
istics of the patient, the patient’s gait data must be evaluated in 
terms of scale as well as trend when compared to the healthy 
controls.

In this regard, when analyzing similarity using only Pearson 
correlation, it may lead to the conclusion that the gait patterns 
of the healthy controls and patients are similar, as long as the 
trends align, without accounting for the differences in scale. On 
the other hands, to compare such scale differences in time-se-
ries data, a commonly used technique in machine learning is 
MAPE [40-42]. While MAPE has traditionally been used to 
evaluate the similarity between predicted and actual values 

in regression tasks, it has also been employed to compare the 
scale-related similarity between two time-series datasets, in-
cluding applications in gait analysis [42-44]. However, MAPE 
has limitations when one of the time series data to be compared 
is significantly larger in scale, the MAPE value is too small 
or too large regardless of the similarity [20]. Additionally, it 
cannot handle cases where the denominator is zero. It is also 
challenging to intuitively understand the error magnitude. This 
difficulty arises because MAPE produces an absolute value 
rather than a value within a specific range. In response to these 
shortcomings, SMAPE is proposed as a supplement [28,29]. 
Since SMAPE divides the error value by the average of the mag-
nitudes of the two time series data, it can offset the effects of 

Fig. 3. This figure depicts the results of the third trial of gait experiment for patient 3. The upper graph on left side illustrates SMAPE 
scores for kinetics and kinematics, with red indicating gait scores of hip OA patient in terms of scale similarity. The upper graph on 
right side illustrates Pearson correlation coefficients for kinetics and kinematics, with red indicating gait scores of hip OA patient in 
terms of trend similarity. The lower graphs illustrate the hip moment and knee angle of affected side in the sagittal direction. The 
black lines represent the average hip moment and knee angle for gait of healthy controls, and the red lines represent the hip moment 
and knee angle of the hip OA patient, respectively. SMAPE, symmetric mean absolute percentage error; OA, osteoarthritis.
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significant scale differences between them. Additionally, divid-
ing by the average ensures that the calculation is not impeded 
even if one of the time series values is zero. Lastly, the resulting 
value ranges between 0 and 1, making it easier to intuitively un-
derstand the difference [28,29,45,46].

Certainly, relying solely on SMAPE is not advisable. In gait 
analysis, the trend similarity, which indicates appropriate move-
ments at appropriate times, is also crucial. Similarity in scale 
alone does not ensure natural gait [26,27,47,48].

This approach enables a numerical, model-free interpretation 
of gait dynamics that can support or even replace traditional 
expert assessments [49,50]. It is particularly useful in clinical 
settings with small sample sizes, as it allows for intuitive and 
scalable evaluations of gait patterns without relying on complex 
machine learning models. Furthermore, our method aligns with 
prior studies that have adopted dynamic and quantitative met-
rics for gait assessment.

Table 3 provides a summary of the trend and scale sensitivity 
characteristics of the three metrics. Although SMAPE does not 
directly measure trend similarity in the same manner as the 
Pearson correlation coefficient, its symmetric normalization 
allows the error to be partially influenced by the relative varia-
tion between actual and predicted values. As a result, SMAPE 
reflects not only magnitude differences but also captures, to a 
moderate extent, the consistency of trend, thereby providing a 
more balanced evaluation across cases.

Limitation and future work
This study proposes that Pearson correlation and SMAPE score 
can serve complementary roles in evaluating gait characteris-
tics. However, this interpretation is based on a limited number 
of cases, and further validation using a larger and more diverse 
dataset is required to confirm its generalizability. Although 
SMAPE score offers advantages over MAPE, particularly in 
handling near-zero values, it still shows limitations when 
faced with large scale discrepancies. Due to its normalization, 

SMAPE score may show limited variability even when the un-
derlying time-series differ significantly in both trend and scale. 
To address this, future research will explore modified versions 
of SMAPE score, such as incorporating weights or applying cor-
rection coefficients, to enhance its responsiveness to clinically 
meaningful differences. Finally, while the reference data used in 
this study was cross-validated with known normative gait pat-
terns during the stance phase, potential variability among ref-
erence datasets remains a consideration. Expanding the dataset 
and applying the proposed approach under various reference 
conditions will be important directions for future work.

Conclusion
This case study highlights the limitations of using MAPE or 
Pearson correlation alone in gait analysis. By applying SMAPE 
score alongside Pearson, we offer a more balanced and interpre-
table framework that captures both trend and scale differences. 
While limited in scope, this case-based approach demonstrates 
the potential of metric-driven gait evaluation. We hope this 
framework contributes to more transparent and replicable as-
sessments in clinical and research contexts.
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