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ARTICLE INFO ABSTRACT

Keywords: Keratins are the largest subgroup of intermediate filament proteins, forming 10-nm filaments from type 1/I
Ime"_ne‘ﬁate filament heterodimers, and occur primarily in epithelial cells. Keratin 6 (K6; type II) and Keratin 17 (K17; type I) show a
Keratin complex expression pattern that includes induction following stress and in several diseases, including carci-
Filament bundling . . . .

Structure nomas. K17 is being used as a biomarker for several types of cancer. K6 and K17 sequences are respectively

highly homologous to K5 and K14, which are expressed in the progenitor compartment of epidermis and related
epithelia. The mechanical support roles of the K6/K17 and K5/K14 pairing require 10 nm filament assembly and
the subsequent lateral association of these filaments to form thicker bundles. Previous studies showed that the
non-helical tail domain of K14 is dispensable for 10 nm filament assembly but essential to the bundling of K5/
K14 filaments. Whether the K6/K17 pairing undergoes bundling, and whether the tail domain of K17 plays a role,
is unknown. Here, we use sedimentation assays and electron microscopy to show that, when paired with K6,
tailless K17 forms filaments that do not readily bundle. Nuclear magnetic resonance analysis revealed that the
isolated K17 tail domain is an intrinsically disordered region (IDR). Follow-up studies with mutant K17 tail
constructs suggest that IDR-like tail domains of keratins can form a curved local structure required for bundling
and interact dynamically with other regions of keratin filaments in a flexible and heterogeneous manner.

Mechanical resilience
Nuclear Magnetic Resonance (NMR)
Intrinsically Disordered Region (IDR)

particularly abundant in surface epithelia (Cohen et al., 2022). IFs are a
crucial component of the cytoskeleton, forming a structural network
within the cell that is attached at sites of cell-cell and cell-matrix

1. Introduction

The skin, the largest organ in the human body, provides a vital

barrier against environmental factors, regulates body temperature, and
facilitates sensory perception. Being at the interface between the body
and the external environment, the skin possesses physical and chemical
defense mechanisms that protects it against heat, pathogens, chemicals,
and ultraviolet radiation. These protective functions rely in part on an
intricate network of specialized proteins, including keratins, that
together maintain skin structure and function under normal and stress
conditions.

Keratins are intermediate filament (IF)-forming proteins and are

adhesion and provides mechanical support, preserves cellular integ-
rity, and contributes to many additional cellular processes (Kim and
Coulombe, 2007; Windoffer et al., 2011; Seltmann et al., 2013). The
significant contribution of IFs to cellular resilience is unique among
cytoskeletal elements, complementing and extending the roles of F-actin
and microtubules (Fuchs and Cleveland, 1998; Kim and Coulombe,
2007). Consequently, mutations or defects in IF sequences lead to dis-
eases characterized by tissue fragility (Omary et al., 2004).

The IF superfamily includes ~70 genes that can be partitioned into 6
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major subtypes based on gene substructure and sequence homology
(Kim and Coulombe, 2007). With the exception of the type V nuclear
lamins, IF proteins primarily occur in the cytoplasm, though exceptions
to that general rule are emerging (Coulombe et al., 2024). All IF proteins
possess three major and structurally distinct domains: the N-terminal
head, the central rod, which is heptad repeat-rich and a-helical, and the
C-terminal tail (Fig. 1A). Type I IF (n = 28) and type II IF (n = 26) genes
code for keratin proteins, which are primarily expressed in epithelia and

form 10-nm intermediate filaments from type I/II, coiled-coil hetero-
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Coulombe, 2009). The formation of cross-linked networks is essential to
achieve the mechanical properties required to support the structural role
of keratin filaments in vivo (Ma et al., 2001; Lee and Coulombe, 2009;
Alvarado and Coulombe, 2014).

The type I keratin (K17) and type II keratin 6 (K6) paralogs are
significantly co-regulated in ectoderm-derived epithelial appendages (e.
g., hair, nail, glands) and are co-induced or upregulated when complex
epithelia are subjected to various stresses or undergo disease (McGowan

and Coulombe, 1998; Cohen et al., 2024). Accordingly, these keratins
are often referred to as “wound-inducible” or stress-responsive keratins
(Zhang et al., 2019; Cohen et al., 2024). Upregulation of K6 and K17
occurs in a broad range of diseases, including psoriasis and cancers such
as breast, cervical, oral squamous, and gastric carcinomas (Yang et al.,
2018; Babu et al., 2019; Roa-Pena et al., 2019; Lin et al., 2022), and K17
levels have prognostic value for several carcinomas (Baraks et al., 2022;
Delgado-Coka et al., 2024). Mutations in the K17 gene are also associ-
ated with steatocystoma multiplex and pachyonychia congenita

dimers (Lee et al., 2012; Bunick and Milstone, 2017; Eldirany et al.,
2019; Lee et al., 2020). Antiparallel, lateral interactions between het-
erodimers yield structurally apolar tetramers which then interact
longitudinally and laterally to form protofibrils and, ultimately, mature
10-nm filaments (Fuchs and Weber, 1994). Several types of keratin fil-
aments are capable of self-organization into cross-linked networks
including bundles, which reflect lateral association between filaments to
form thicker, multi-filamentous structures (Yamada et al., 2002; Lee and
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Fig. 1. Domain structure of keratin proteins. (A) Diagram of the keratin intermediate filament protein domains. Keratins consist of three major domains: head, rod,
and tail. (B) Multiple sequence alignments for the tail domains of type I keratins. (C) Schematic of the recombinant K6, K17, K17AT, K17ACT, K6R, K17R, and K17T.
(D) SDS-PAGE analysis of the recombinant keratins expressed in E.coli. Purified keratins were analyzed by gel electrophoresis (12 % SDS polyacrylamide) and
visualized by staining with Coomassie brilliant blue. (Lane 1) wild-type K6; (Lane 2) wild-type K17; (Lane 3) K17AT; (Lane 4) K17ACT; (Lane 5) K6/K17 pair; (Lane
6) K6/K17AT pair; (Lane 7) K6/K17ACT pair; (Lane 8) K6R; (Lane 9) K17R; (Lane 10) K6R/K17R pair. (E) SDS-PAGE analysis of the recombinant K17T (K17 tail
domain) expressed in E.coli. Purified K17T was analyzed using 18 % SDS polyacrylamide gel electrophoresis and visualized by staining with Coomassie brilliant blue.
(Lane 1) His-tag infused K17T; (Lane 2) K17T cleaved by TEV protease. The red circle represents K17T part without His-tag; (Lane 3) Separated K17T using HiTrap
Phenyl column.
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(McLean and Lane., 1995; Liao et al., 2007; Gass et al., 2009; Zieman
and Coulombe, 2020). In addition to its structural role, K17 regulates
several signaling pathways involved in epithelial cell migration and cell
growth (Coulombe and Wong, 2004; Chung et al., 2013) via interactions
with the adaptor protein 14-3-3c and the mTOR/AKT pathway (Kim
et al., (2006); Khanom et al., (2016); Hobbs et al., (2016); Liu et al.,
(2020)), secretion of neutrophil chemokines (via regulation of Protein
Kinase C alpha (PKCa) activity and signaling; Xu et al., (2024)), and hair
follicle cycling (via TNFalpha-dependent apoptosis; Tong and Cou-
lombe., 2006). The sequences of K6 and K17 are respectively highly
homologous to keratin 5 (K5) and keratin 14 (K14), which are consti-
tutively expressed in progenitor keratinocytes located in the basal layer
of skin epithelia. The evidence in hand suggests that though homologous
in several respects, K5/K14 and K6/K17 fulfill shared and distinct
functions in skin keratinocytes (Cohen et al., 2024). A likely possibility is
that such functional differences are specified, to a degree, by de-
terminants located in the N-terminal head and C-terminal domains of
these keratins, which are more divergent.

In this study, we show that the C-terminal tail domain of K17 (K17T),
which is short (42 residues), is a key determinant of the ability of K6/
K17 filaments to self-organize into bundles. Further, we employed nu-
clear magnetic resonance (NMR) spectroscopy to determine the struc-
ture of K17T, and show that it is highly disordered. Our findings suggest
akey role for seven amino acid residues, located in the middle of the K17
tail domain, that maintain a curved structure to facilitate filament
bundling. The structural model of the K17 tail domain provides a new
perspective to understand structure-function relationships for type I
keratins that exhibit conservation of this newly uncovered short struc-
tural motif.

2. Materials and methods
2.1. Plasmids

The keratin protein genes were subcloned into the following vectors
for overexpression in E.coli: K6a (UniProt: P50446; pET-28b), K6 rod
domain (K6R; from G133 to E473; pET-21), K17 (UniProt: Q9QWL7;
pET-28b), K17 rod domain (K17R; from G83 to H394; pET-21), K17
tailless mutant (K17AT; from M1 to A393; pET-28b), K17 tail domain
(K17T; from G390 to the end R433; pT7-HMT (Geisbrecht et al., 2006),
and TEV protease (pET-15b-TEV-C9R, AddGene)). The DNA gene of the
K17 deletion mutant of the curved tail region (K17ACT; full-length K17
internally deleted from T404 to T410) was synthesized and subcloned
into pET-28b. All the genes used in this work were validated with
sequencing. The boundary between the tail domain and the rod domain
is based on the proteolytic experiment in the precedent literature (Lee
and Coulombe, 2009). All keratin genes were synthesized based on
codon-optimized sequences for E.coli expression (Bionics). Each plasmid
was transformed into DH5a competent cells, and plasmid DNA was
extracted using the AccuPrep Nano-Plus Plasmid Midi Extraction Kit
(Bioneer) to ensure sufficient concentration for subsequent experiments.

2.2. Protein expression

The plasmids were transformed into Rosetta (DE3 pLysS) competent
cells for keratin protein expression. Transformants were selected on LB
agar plates containing ampicillin or kanamycin, depending on the
plasmid resistance marker. Positive colonies were cultured in LB me-
dium supplemented with the appropriate antibiotic. Protein expression
was induced using 1 mM IPTG at 16°C for soluble proteins (K17 tail
domain and TEV protease) and 37°C for insoluble proteins (K6a, K6R,
K17, K17R, K17AT, and K17ACT). Following induction, the cells were
incubated for an additional 16-20 h with shaking and harvested by
centrifugation.

In the case of uniform '3C and 15N-labeling ([U-13C; U-1°N]) for
K17T, M9 minimal media (42.2mM disodium phosphate, 22 mM
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potassium dihydrogen phosphate, 8.56 mM sodium chloride, 2 mM
magnesium sulfate, 0.1 mM calcium chloride) with 0.4 % 13C—glucose
(Cambridge isotope) and 0.1 % 15N-ammonium chloride (Cambridge
isotope) was used instead of LB medium.

2.3. Inclusion body (IB) preparation

Expressed keratin proteins were isolated based on previously
described methods (Bernot et al., 2005; Lee and Coulombe, 2009).
Briefly, cell pellets were resuspended in lysis buffer (50 mM Tris-HCl, pH
8.0, 1 mM EDTA, 2 mM DTT, and 1 mM PMSF) and disrupted using a
sonicator. After centrifuging the lysate (4°C, 20,000 xg, 30 min), the
pellet was washed with IB washing buffer I (50 mM Tris-HCI, pH 8.0,
0.2 M NaCl, 1 mM EDTA, 2 mM DTT, 1 mM PMSF, and 1 % NP-40) and
centrifuged again. The pellet was washed with IB washing buffer II
(50 mM Tris-HCl, pH 8.0, 0.5 M NaCl, 1 mM EDTA, 2 mM DTT, 1 mM
PMSF, 0.5 % Triton X-100, and 0.5 % Tween-20), followed by centri-
fugation to obtain a purified inclusion body pellet.

2.4. Protein purification

The K6, K17 wild type, the K6 rod domain, the K17 rod domain, the
tailless variant of keratin 17, and the curved tail region deleted mutant
of keratin 17 were purified in multiple steps, including IB recovery, their
solubilization and purification by ion-exchange chromatography using a
HiTrap Q column (Cytiva). Equimolar type I and type II keratin pairs
were purified using the HiTrap Q column followed by Mono Q column
(Cytiva). Both columns used Buffer A (containing 6 M urea, 50 mM Tris-
HCI (pH 8.0), 2 mM DTT, and 1 mM PMSF) and Buffer B (containing 6 M
urea, 50 mM Tris-HCl (pH 8.0), 2 mM DTT, 1 mM PMSF, and 300 mM
guanidinium chloride).

The fusion polypeptide of K17 tail domain with His-tag and Myc-tag
(HMT-K17T) was purified via affinity chromatography using a HiTrap
chelating column (Cytiva) with Buffer A containing 50 mM Tris-HCl (pH
8.0), 0.5 M NaCl, 5 mM imidazole, and Buffer B containing 50 mM Tris-
HCI (pH 8.0), 0.5 M NaCl, 1 M imidazole. Additional purification was
performed with a HiTrap Q column with Buffer A containing 25 mM
Tris-HCI (pH 8.0) and Buffer B containing 25 mM Tris-HCI (pH 8.0), 1 M
NaCl. The TEV protease, purified using a HiTrap SP column (Cytiva),
was mixed with the HMT-K17T (1:25 ratio) and incubated overnight to
cleave the His-tag and Myc-tag. The cleaved product was purified using
a HiTrap Phenyl column (Cytiva) to separate the fusion tags or uncut
HMT-K17T from the K17 tail domain. Buffer A contained 20 mM Tris-
HCI (pH 7.5) and 1.5 M ammonium sulfate and Buffer B contained
20 mM Tris-HCl (pH 7.5).

2.5. Reconstitution of the keratin filament

Purified keratins were reconstituted into filaments through serial
dialysis using the following buffer conditions: (a) 9 M urea, 25 mM Tris-
HCI (pH 7.4), and 25 mM p-mercaptoethanol for 4 h at room tempera-
ture; (b) 2 M urea, 5 mM Tris-HCl (pH 7.4), and 5 mM p-mercaptoe-
thanol for 4 h at 4°C; and (¢) 5mM Tris-HCl (pH 7.4) and 5 mM
B-mercaptoethanol overnight at 4°C. The final buffer NaCl concentration
was adjusted to 0 mM (standard assembly conditions) or 10 mM to
promote network formation.

2.6. Assessing keratin filament assembly and bundling

Filament assemblies were evaluated using sedimentation assays (see
Lee and Coulombe, 2009). To assess the efficiency of 10-nm filament
polymerization, dialyzed samples (100 pL, 0.5 mg/mL) were subjected
to ultracentrifugation (Airfuge, 100,000 x g, 1 h, room temperature).
Pellets were resuspended in 20 pL sodium dodecyl sulfate (SDS) sample
buffer (Biosesang) with 80 pL distilled deionized water (3DW). To assess
the formation of bundled filament networks, a low-speed sedimentation



J. Yeom et al.

assay was conducted by centrifuging 100 pL of keratins (0.5 mg/mL,
containing 10 mM NacCl) at 8000 x g for 30 min at 4°C to avoid any
proteolytic damage to keratin proteins after adding NaCl and probable
activation of contaminated protease(s). The pellet was resuspended in
20 pL SDS sample buffer with 80 pL of 3DW.

2.7. Electron microscopy and differential interference contrast
microscopy

Filament assemblies were visualized with negative staining and
transmission electron microscopy, as described (Lee and Coulombe,
2009). Protein samples (10 pL per sample) were applied to a copper grid
and stained with 1 % uranyl acetate (Electron Microscopy Sciences).
Samples were examined using a Tecnai G2 F20 TWIN TMP transmission
electron microscope (FEI) operating at 200 kV.

Filament bundles were visualized with differential interference (DIC)
microscopy, also described previously (Lee and Coulombe, 2009).
Briefly, a keratin solution (30 pL per sample) was put on a glass slide
with the barriers of hydrophobic nail polish solution. After adding NaCl
solution to make a 10 mM concentration, a cover slip was put on the
solution, and examined using an inverted microscope (Nikon Eclipse
Ti-U) equipped with DIC optics module and S Plan Fluor ELWD 40x/0.60
DIC N1 lens.

2.8. NMR spectroscopy

For NMR experiments, [U-13¢; U-15N1-K17T samples were prepared
at a concentration of 0.34 mg/mL in a buffer containing 50 mM sodium
phosphate (pH 7.4) and 7 % deuterium oxide (Cambridge isotope). The
sample volume was adjusted to 300 pL and filled into a 5-mm Shigemi
tube (Sigma-Aldrich). All NMR data were acquired on a Bruker Avance
III HD 850 MHz spectrometer equipped with a cryogenic HCN probe
(Bruker). The sample temperature was set to 283 K, the best condition
for spectral quality in our screening trials. For the backbone signal
assignment, we collected 2D 'H-!N heteronuclear single quantum
coherence (HSQC), 3D HNCA, 3D CBCA(CO)NH, and 3D HNCACB
spectra. Subsequent side-chain signal assignment was done with 2D
1H-13¢C HSQC, 3D HCCH-TOCSY, 3D 'H-'H NOESY 'H-'°N HSQC, and
3D 'H-'H NOESY 'H-'3C HSQC data sets. We used the TOPSPIN 3.2
software (Bruker) for data acquisition and processing, and the POKY
software suite for additional data processing, signal assignment, and
structure calculation (Lee et al., 2021).

Secondary structure and S? analyses were done by using TALOS-N
(Shen and Bax, 2015) implemented in POKY. We used the POKY struc-
ture builder and the POKY analyzer for AUDANA/AUDASA-based
NOESY spectral analysis, the XPLOR-based structural ensemble calcu-
lation, and the final structural model refinement (Schwieters et al.,
2006; Lee et al., 2021, 2016). For the structural model calculation, we
computed an ensemble of 200 potential models and selected the 20
lowest-energy models. The final ensemble was constructed with 17
models based on the structural consistency. Note that although the
calculated ensemble of K17T exhibited significant disorder, we tabu-
lated the statistics of the structural model calculation (Table 1), partic-
ularly for the residues presenting relatively high order parameters
(T404-T410; Fig. 5B), to show the validity of our procedure and the final
ensemble. Structural visualization and analysis were performed using
PyMOL (DeLano, 2002).

The ensemble for the Table 1 was deposited to the Protein Data Bank
(PDB) under accession code 9M1Y and the PDB DOI is 10.2210/
pdb9m1ly/pdb. The Biological Magnetic Resonance Bank (BMRB) code
for this deposition is 36731 and the BMRB DOI is 10.13018/BMR36731.

2.9. DSS crosslinking assay followed by Western Blot

Cross-linking assays were performed using disuccinimidyl suberate
(DSS; S1885; Sigma-Aldrich). DSS was dissolved in DMSO and added ata
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Table 1
Summary of the parameters for modeled structures and NMR spectroscopy.

Analyses performed for well-defined

residues.
Total structures computed 200
Number of structures used 17
RMSD Values
all ordered®  Selected’
All backbone atoms 8.4 A 0.4 A 0.4 A
All heavy atoms 8.8 A 1.4A 1.4A
Curvature forming region (T404-T410) 1.8A
backbone atoms
Structure Quality Factors - overall statistics
Mean SD Z-score®
score
Procheck G-factor® (phi / psi only) —0.51 N/A -1.69
Procheck G-factor® (all dihedral angles) —0.24 N/A —1.42
Verify3D —-0.07 0.0229 —8.51
Prosall (-ve) -0.12 0.0608 -3.18
MolProbity clashscore 4.03 2.5113 0.83
Ramachandran Plot Summary from
Procheck’
Most favoured regions 98.50 %
Additionally allowed regions 1.50 %
Generously allowed regions 0.00 %
Disallowed regions 0.00 %
Ramachandran Plot Statistics from
Richardson’s lab
Most favoured regions 100 %
Allowed regions 0%
Disallowed regions 0%

“Residues with sum of phi and psi order parameters > = 1.8: Y401-E405

f Residues selected (DAOP with S(phi)+S(psi)> =1.8): Y401-E405

8 With respect to mean and standard deviation for for a set of 252 X-ray struc-
tures < 500 residues, of resolution < = 1.80 10\, R-factor < = 0.25 and R-free
< = 0.28; a positive value indicates a ’better’ score.

20-fold molar excess relative to the protein concentration. After incu-
bation for 30 min at room temperature, reactions were quenched with
200 mM Tris-HCl (pH 7.4). SDS was then added and samples were
analyzed via SDS-PAGE.

Cross-linked protein samples were separated by SDS-PAGE and
transferred to a 0.2 pm polyvinylidene fluoride (PVDF; AmershamTM
HyBond P 0.2; Cytiva) membrane using a wet transfer system (100 V,
1 h). Membranes were blocked for 30 min at RT with 5 % skim milk in
TBST buffer. Following the blocking step, membranes were incubated
with a primary antibody (E-4) directed at an epitope from the K17 tail
domain (sc-393002; Santa Cruz Biotechnology) diluted in TBST buffer
(1:1000), overnight at 4°C. After incubation, membranes were washed
three times for 10 min each with TBST buffer. Membranes were then
incubated with a horseradish peroxidase (HRP)-conjugated secondary
antibody (goat anti-Mouse IgG (H+L) 31430; Invitrogen) diluted in
TBST buffer with 5 % skim milk (1:10,000) for 2 h at RT. After three
additional washes in TBST buffer, the protein bands were visualized
using an enhanced chemiluminescence (ECL; Pierce) detection system.
Images were captured using a Chemiluminescence Imaging System
(LuminoGraphl, ATTO Corporation, Japan).

3. Results
3.1. Purification of the keratin proteins

The following proteins were purified: full-length human K6 (K6);
full-length human K17; K6 rod domain (K6R); K17 rod domain (K17R); a
K17 variant lacking the tail domain (K17AT); and a K17 deletion mutant
of the curved tail region (K17ACT) (Fig. 1C). These keratin proteins
were first individually expressed in bacteria and then purified by ion-
exchange chromatography under denaturing conditions (6 M urea-
containing buffer). High-purity fractions were selected after initial pu-
rification, and equimolar amounts of K6 and K17, K6 and K17AT, or K6
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and K17ACT were mixed and incubated overnight. The mixtures were
purified using ion-exchange chromatography columns as described (Lee
and Coulombe, 2009; see Fig. 1D). The keratin heterotypic complexes
were separated on SDS polyacrylamide gels for visualization. After pu-
rification, the keratin complexes were dialyzed in 9M - 2M - 0 M
urea-containing buffers to facilitate filament reconstitution. K17T was
purified using His-tag affinity chromatography, and the His-tag was then
cleaved and separated by TEV protease and hydrophobic interaction
chromatography (Fig. 1E).

3.2. Sedimentation assay of the reconstituted keratin filaments

IF assembly and bundling were assessed using high-speed sedimen-
tation and low-speed sedimentation assays, respectively (Bousquet et al.,
2001; Lee and Coulombe, 2009). IFs that fail to properly assemble into
long 10-nm filaments do not sediment when subjected to 100,000 x g
ultracentrifugation for 1 h. In contrast, properly assembled filaments
readily pellet in this setting. Thus, partitioning of the protein pool into
the pellet and supernatant fraction reflects the extent of 10-nm filament

No NaCl 10 mM NaCl
K6/K17 K6/KA17 K6/K17 K6/KA17
kDa
I s p 1 S P I S P I S P
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- e v o
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assembly. On the other hand, centrifugation at 8000 x g (low-speed
sedimentation) does not sediment individual, unbundled filaments.
When filaments are part of a cross-linked network, e.g., bundles, the
resulting assemblies will sediment under low-speed centrifugation
conditions. Therefore, the pellet fraction after low-speed sedimentation
serves as an indicator of the ability to undergo filament cross-linking.

To evaluate the assembly of reconstituted keratin pairs, high-speed
sedimentation (100,000 x g, 1 h, room temperature) was performed,
followed by SDS-PAGE analysis of the pellet and supernatant fractions
(Fig. 2A and B). Both K6/K17 and K6/K17AT pairs were detected in the
pellet fraction, regardless of the presence of NaCl, indicating highly
efficient filament assembly (Fig. 2B). This result suggests that deletion of
the K17 tail domain does not affect 10-nm filament assembly.

To assess keratin filament bundling, low-speed sedimentation was
conducted in assembly buffer supplemented with 10 mM NaCl, which
promotes filament bundling (Fig. 2C and D). Without NaCl, the K6/K17
and K6/K17AT pairs remained in the supernatant, indicating that
bundling did not occur for either combination. In the presence of 10 mM
NaCl, however, the K6/K17 pair predominantly sedimented into the
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Fig. 2. Assessing filament assembly and bundling with sedimentation assays. (A) SDS-PAGE (12 % polyacrylamide gel) of the high-speed sedimentation assay. I:
Input; P: Pellet; S: Supernatant. (B) Densitometry-based analysis of the pelleted fractions from (A). Pellet formation represents the assembly of keratin pairs. Data
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one-way ANOVA, **** for P < 0.0001.
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pellet fraction while most of the K6/K17AT pair remained in the su-
pernatant (Fig. 2D). Thus, the K6/K17AT pairing did not give rise to
cross-linked networks under conditions known to promote bundling,
indicating that deleting the K17 tail domain abrogates this property.

3.3. TEM observations of the reconstituted keratin filaments

The outcomes of high-speed and low-speed sedimentation assays
suggest that the deletion of K17T does not affect filament assembly but
severely impairs the formation of cross-linked networks. To validate this
interpretation and extend our analyses, we next sought to visualize the
structural attributes of the filament assemblies using negative staining
and TEM. After reconstitution, the keratin concentration was adjusted to
0.05 mg/mL, and TEM imaging was performed following negative
staining. Both the K6/K17 and K6/K17AT pairs assembled into elon-
gated filaments in the absence of NaCl, indicating efficient filament
formation (Fig. 3A and B). Furthermore, even in the presence of 10 mM
NaCl, both K6/K17 and K6/K17AT pairs continued to exhibit normal
filament assembly (Fig. 3C and D). These TEM analyses, therefore,
consistently support the sedimentation assay results, confirming that the
deletion of K17T did not impair K6/K17 filament assembly.

3.4. Structural analysis of K17T using NMR

Using NMR data, the molecular structure of K17T was determined in
an effort to elucidate the molecular mechanism by which K17T stabilizes
K6/K17 filament bundling. 3D NMR experiments of a [U-13C; U-1°N]-
K17T sample were conducted to obtain a molecular structure of K17T.
Before solving the complete structure, the backbone chemical shift data
obtained during the structural analysis were used to predict the sec-
ondary structure and flexibility of K17T. Torsion Angle Likelihood Ob-
tained from Shift and sequence similarity-Neural network (TALOS-N)
was used for this analysis. TALOS-N is a powerful tool to predict the
secondary structure by comparing the backbone chemical shift data

K6/K17

No NaCl

10 mM NaCl
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from NMR experiments given access to existing high-resolution X-ray
and NMR structural databases and identification of patterns that
resemble known structures (Shen and Bax, 2015). The probability of
each residue adopting an a-helix, p-strand, or loop (coil) conformation
was determined. The central region (V408-V412) of K17T exhibited a
higher probability of forming a f-strand, though only 40 %-60 %. The
remaining residues were predominantly predicted to form loop struc-
tures (Fig. 4A). This analysis suggests that K17T is a highly disordered
region with a minimally stable secondary structure.

Similar to the secondary structure prediction, the random coil index
(RCI-S?) evaluates the flexibility or stability of each amino acid residue
by comparing the structure of the residue to a structural database. Lower
RCI-S? values (<0.6) indicate greater disorder, flexibility, and structural
instability. Higher values (>0.6) suggest more stable structures (Peck
et al., 2024). Most residues of K17T had RCI-S? values near or below 0.6
(Fig. 4B). Combined with the secondary structure prediction, this data
strongly suggests that K17T is an intrinsically disordered region (IDR).

Side-chain assignments and refinements were conducted to further
assess the structure of K17T. The structural analysis confirmed that
K17T exhibits clear characteristics of an IDR. Overall, K17T displays a
highly flexible structure, with a less disordered core region (T404-T410)
forming a curvature (Fig. 4C and D). Given such structural features, the
overall flexibility may facilitate binding of the tail domain to the coiled-
coil rod domains of keratin filaments while the curvature in the central
region may play a crucial role in stabilizing filament bundling. The
overall backbone RMSD (BB RMSD) of K17T was 8.4 10\, indicating sig-
nificant flexibility. However, the curved region near the middle of K17T
had a lower BB RMSD of 1.8 A, suggesting that this portion maintains a
relatively consistent conformation (Fig. 4C and D). The stabilized local
structure in the curved region is formed by the local and consecutive
intra-molecular interaction with van der Waals forces (Fig. 4E and F).
These findings further support the idea that the structure of K17T is
flexible, enabling dynamic interactions with keratin filaments, and the
structured curvature region may act as a key element in filament

K6/K17AT

Fig. 3. Assembly of the tailless keratin filaments. Equimolar mixtures of type I and type II keratins were incubated in vitro and subjected to stepwise dialysis using
serially diluted urea-containing buffers as described in Materials and Methods. After negative staining, assemblies were visualized using TEM. (A, B) Assembled
keratin filaments of K6/K17 and K6/K17AT pairs without NaCl. (C, D) Assembled keratin filaments of K6/K17AT pairs with 10 mM NaCl. The scale bars represent

200 nm. The scale bars in the inset images represent 50 nm.
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bundling stabilization.

3.5. Conformational changes in K17T in response to alterations in buffer
conditions

After establishing the crucial role of K17T in K6/K17 filament
bundling, the mechanism by which K17T facilitates the bundling of fully
assembled filaments was investigated. Tail-tail association was investi-
gated first. Tail domains mostly extend outwardly in fully assembled
keratin filaments, a reality first demonstrated for the K14 tail domain
using partial proteolysis and MALDI-TOF mass spectrometry (Lee and
Coulombe, 2009). The K14 and K17 tail domains show 41 % sequence
identity, and share a rod domain-proximal (N-terminal) cleavage motif,
’GEDAHL’. From this, we infer that it is highly likely that the K17 tail
domain similarly extends outward from the assembled filament. The
recent cryoelectron tomography insight into the structure of vimentin
filaments in situ (Eibauer et al., 2024) revealed that the tail domains of
vimentin occer at the surface of the filaments, filling the spaces between
the protofibrils. This suggests the possibility that tail domains exposed at
the surface of assembled filaments may undergo structural change under
the bundling-promoting buffer conditions.

Previous studies have reported that bundling of intermediate fila-
ments (IFs), such as keratin and vimentin, can be induced by shifts in pH
or the presence of divalent cations like Ca®* and Mg?* (Fukuyama et al.,
1978; Wu et al., 2020). Therefore, the possibility of K17T conforma-
tional changes under these conditions was investigated using NMR
spectroscopy. To investigate the effects of divalent metal cations, 'H-'°N
HSQC experiments on K17T in the presence of Ca* and Mg* were
conducted. The K17T spectra showed no significant changes in the
presence of Ca®* or Mg?* (Fig. 5 A), suggesting that it does not undergo
conformational changes in the presence of divalent metal ions known to
promote filament bundling. The effects of altering pH were investigated
by observing changes in the 'H->N HSQC spectra of K17T at pH 7.5
(non-bundling condition) and pH 6.8 (bundling condition). Lowering
the pH to 6.8 did not induce significant changes in the spectra (Fig. 5B),
suggesting that K17T does not undergo conformational changes in
response to pH shifts during filament bundling stabilization.

Overall, these findings suggest that K17T neither possesses a binding
site for divalent metal ions, nor undergoes pH-induced conformational
changes. It implies that salt ion or pH-mediated change for filament
bundling might take place in a tail binding site(s) of keratin protein,
rather than the tail domain itself. This behavior is in contrast to the
vimentin tail, which is known to interact with divalent cations to form
networks (Wu et al., 2020).
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3.6. K17 tail domain specifically binds to the K6 rod domain

Our structural and functional analyses suggested that the K17T is a
crucial determinant of K6/K17 filament bundling. Based on these find-
ings, we hypothesized that K17T mediates the bundling of K6/K17 fil-
aments by binding directly to the rod domain of K6/K17. To test this
hypothesis, we performed in vitro cross-linking experiments using the
chemical cross-linker disuccinimidyl suberate (DSS) and Western blot
using an antibody specific to the K17T sequence.

In the non-bundling condition (no NaCl), DSS treatment of the K6R
and K17R mixture resulted in the formation of high-molecular-weight
complexes, as shown by SDS-PAGE analysis (Fig. 6A). Western blot
analysis using a K17T antibody revealed that K17T also binds to these
complexes (Fig. 6B).

However, a significant change in the band patterns was observed
under bundling-promoting buffer conditions (10 mM NaCl, 1 mM
CaClz). The high-molecular-weight complexes formed by the K6R and
K17R domains were reduced significantly. Furthermore, a new set of
complex bands with a wider range of molecular weights (approximately
49 kDa, 87 kDa, 174 kDa) appeared (Fig. 6A). Comparison with the
reference size marker bands suggests that K17T (5 kDa) specifically
binds to the K6R (44 kDa -+ 5 kDa), rather than to K17R (38 kDa +
5 kDa). Also, the emergence of K17 T-associated bands suggests that K17
tail association with the K6 rod domain is likely enhanced by bundling-
promoting buffer conditions (Fig. 6B).

These results provide strong evidence that the K17 tail domain spe-
cifically interacts with the K6 rod domain, and this interaction is influ-
enced by bundling-promoting buffer conditions. This direct interaction
between the K17T and the K6R provides a molecular mechanism for the
observed tail-dependent filament bundling and the enhanced mechani-
cal resilience of the K6/K17 filament network.

3.7. The curvature forming region (T404-T410) of K17T is essential for
K6/K17 filament bundling

Our NMR-based structural analysis of K17T revealed an overall
intrinsically disordered structure with a short and consistently curved
core in its middle (T404-T410). We next hypothesized that this region is
a key element for promoting and stabilizing K6/K17 filament bundling
(Fig. 5). To experimentally validate the functional significance of this
specific curvature, we engineered a K17 mutant where residues
T404-T410 were deleted, designated K17ACT. We then conducted a
comparative analysis of the filament assembly and bundling capacities
of K6/K17ACT alongside wild-type K6/K17 and the tailless mutant (K6/
K17AT), employing both high- and low-speed sedimentation assays,
transmission electron microscopy, and differential interference contrast
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(DIC) microscopy.

High-speed sedimentation assay results showed that K6/K17ACT
assemblies, similar to the tailless mutant, pelleted readily, suggesting no
impact on filament assembly capability (Fig. 7A and B). Conversely, in
low-speed sedimentation assays performed under 10 mM NaCl condi-
tions, the K17ACT mutant (like the tailless mutant) largely remained in
the supernatant fraction while wild type K6/K17 assemblies partitioned
to the pellet fraction (Fig. 7A and B). This suggests that the curvature-
forming region plays a crucial role in bundling.

TEM was performed to investigate potential changes in filament
morphology induced by the 7-residue deletion in K17T. Consistent with
the sedimentation assay results, the K17ACT mutant still allowed for 10-
nm filament assembly with or without 10 mM NaCl (Fig. 7C-H). A
notable difference was that the K6/K17ACT group (14.91 nm =+
3.20 nm; n = 51) showed a thicker filament width compared to both the
wild type (11.73nm =+ 1.42nm; n=>51) and the tailless group
(13.37 nm + 2.26 nm; n = 51) (Fig. 7C-H). To provide an alternative
approach to visualizing keratin filament bundle formation involving a
large fraction of the samples, DIC microscopy was conducted. While K6/
K17 wild-type readily formed relatively thick filament bundles (Fig. 71),
the K6/K17AT and K6/K17ACT mutants only formed very thin bundles
(Fig. 7J and K). These analyses involving the K6/K17ACT mutant
confirmed that the curved core region (T404-T410) seen by NMR mi-
croscopy is required to form K6/K17 keratin bundles.

4. Discussion

Formation of cross-linked networks significantly enhances the me-
chanical resilience of cytoskeletal networks (Pegoraro et al., 2017).
Keratin filaments, in particular, are readily capable of self-organizing
into bundles (Yamada et al., 2002; Lee and Coulombe, 2009; Alvarado
and Coulombe, 2014; Ramms et al., 2013), a property that is key to their
conferring mechanical resilience and integrity to epithelial cells and
tissues by enabling them to withstand various forms of physical stress (e.
g., compression, tension, shear forces). This mechanical robustness is
essential for maintaining the epidermal barrier function and protecting
against external damage (Alvarado and Coulombe, 2014; Ramms et al.,
2013). For K5/K14 keratin filaments, it has been shown that the 1 A and
2B domains of K5 and the tail domain of K14 mediate filament bundling
in vitro and in vivo (Lee and Coulombe, 2009; Alvarado and Coulombe,
2014). Whether the tail domain of other type I keratins possess similar
properties is, however, unknown. The sequences of the tail domains in
type I keratins can be highly divergent and have low complexity, and yet

some of them share similar sequence motifs (Franke, 1987).

Our results show that the C-terminal tail domain of K17 (K17T) is
crucial for K6/K17 filament bundling. High-speed sedimentation assays
demonstrated that both K6/K17 and K6/K17AT pairs assemble into
filaments, indicating that K17T is not essential for filament formation.
However, low-speed sedimentation assays and DIC microscopy images
revealed a significant reduction in bundling for the K6/K17AT pair
compared to the wild-type K6/K17 pair, suggesting that K17T contrib-
utes to the bundling process. With TEM observations, both of the wild-
type K6/K17 and K6/K17AT pairs exhibited well-assembled filaments.
These findings are in agreement with previous observations from the
K5/K14 keratin pair in which the K14 tail domain is critical for filament
bundling, but not for assembly (Wilson et al., 1992; Bousquet et al.,
2001; Lee and Coulombe, 2009).

K5/K14, constitutively expressed in basal keratinocytes, typically
forms a highly organized and mechanically robust network that is
essential for resisting constant physical stresses and maintaining the
stable architecture of epithelial tissues (Kim and Coulombe, 2007;
Ramms et al., 2013). In contrast, K6/K17 are stress-responsive keratins
that are rapidly upregulated during dynamic processes like wound
healing, inflammation, and hyperproliferation (Coulombe and Omary,
2002; Coulombe et al., 2024). It is known that the conserved region of
the C-terminal K14 tail (“T2”) is important for bundling formation, and
K17T’s C-terminal region is similar to the T2 region of the K14 tail
domain (Lee and Coulombe, 2009; Fig. 1B). Given the high sequence
homology among these keratins, similar tail-dependent bundling
mechanisms probably exist across other type I/type II keratin pairs.
Future studies should explore whether other type I keratins exhibit
similar bundling dependencies through comparative structural and
functional analyses.

To determine whether K17T undergoes conformational changes
under conditions favorable for filament bundling conditions, 'H-°N
HSQC experiments were performed in the presence of Ca?* and Mg** and
at pH 6.8. The K17T spectra did not change under these conditions,
suggesting that self-dimerization and conformational changes induced
by environmental factors do not occur during K17T-mediated stabili-
zation of the K6/K17 filament bundling. Instead, K17T may interact with
other segments of keratin proteins during the bundling process. During
K5/K14 bundling, the C-terminal half of the K14T (T2 region) binds to
the 1 A and 2B domains of K5 (Lee and Coulombe, 2009; Alvarado and
Coulombe, 2014). If this also occurs during K6/K17 bundling, the T2
region of K17T may bind with the 1 A and 2B domains of K6. Our in vitro
DSS cross-linking experiments provided evidence that K17T directly
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interacts with the rod domain of K6.

Our structural analysis confirmed that K17T exhibits the character-
istics of an IDR. TALOS-N predictions indicated that K17T lacks a well-
defined secondary structure; most residues adopt a highly dynamic
conformation. This structural flexibility may enhance the interactions of
K17T with multiple filament units during bundling. The dynamic nature
of K17T may promote flexible linker activity, accommodating different
spatial arrangements of the filaments and facilitating their stabilization.
The NMR studies indicate an overall flexible conformation, with a
distinct, relatively ordered curved central region (T404-T410). This
curved structure may serve as a key functional element stabilizing fila-
ment bundling by interacting with the rod domains. The structural
flexibility and dynamic properties of K17T may be key to its ability to
link adjacent filaments and stabilize bundling interactions. The presence
of a short structured region (T404-T410) within an otherwise disor-
dered domain may support the contribution of K17T to filament orga-
nization, emphasizing the importance of structural plasticity in
cytoskeletal assembly. Our findings showing that removal of the
T404-T410 segment from K17T results in a significant impairment in
filament bundling, closely mimicking the phenotype of the tailless
mutant as observed in both sedimentation assays and DIC microscopy,
provides supportive evidence for this interpretation.

Securing high-resolution structural data for intermediate filaments
has been a significant challenge due to their heterogeneous character
and properties. In this context, the recently determined cryo-EM struc-
ture of the entire vimentin filament at 7.2 A resolution (Eibauer et al.,
2024) yielded important insights that resonate with our findings. This
study revealed that vimentin’s tail domains, despite being predomi-
nantly intrinsically disordered regions, play a critical role by connecting
protofibrils laterally through individual contact sites, analogous to
outstretched hands holding and tightening the protofibrils together. This
observation reinforces the biological purpose of intrinsically disordered
proteins or regions within the context of cytoskeletal organization.
Although vimentin belongs to a distinct group of IFs, the function of tail
domains in mediating lateral interactions and overall filament network
integration may be conserved to some extent across subtypes of IF
proteins. Our demonstration that the intrinsically disordered K17 tail
domain is essential for K6/K17 filament bundling strongly supports this
emerging paradigm, suggesting a common mechanism whereby flexible,
disordered tail regions contribute fundamentally to the higher-order
organization and mechanical integrity of diverse intermediate filament
networks.
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