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In this study, the influence of various buffer-layer structures on the magnetic properties of 30-nm-thick NigoFeyy thin films was
investigated. NigoFe,o layers were deposited on Si/SiO, substrates with four different buffer configurations: Ta (5 nm), Ta (5 nm)/Ru
(5 nm)/Ta (5 nm), Ta (5 nm)/Ru (10 nm)/Ta (5 nm), and Ta (5 nm)/Ru (10 nm)/Ta (10 nm), using DC magnetron sputtering. The
surface morphology and crystalline structure of the buffer layers were examined using atomic force microscopy (AFM) and X-ray
diffraction (XRD), respectively. The surface roughness deviations were below 0.03 nm, smaller than the Ni atomic monolayer
thickness (0.2 nm), suggesting negligible effects on the film growth. The influence of the buffer layer variation on the film properties
appears to be minimal. The magnetic dynamic properties were analyzed using Brillouin light scattering (BLS), where the Damon-
Eshbach and the first bulk modes were clearly resolved. From these spectra, the saturation magnetization (M) and exchange stiffness
constant (4e) were extracted. The analysis showed that the M exhibited no significant differences depending on the buffer layer.
Although the 4. varied by up to approximately 3% depending on the buffer-layer structure, the standard deviation of the determined
values was about 0.2 pJ/m, which is comparable to the fitting error obtained from the least-squares method. The A values therefore
did not show a considerable dependence on the stacking configuration of the buffer layer. This suggests that the crystallographic
characteristics of the buffer layers have a negligible influence on the bulk spin-wave mode behavior of the NigyFe, thin film.
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Fig. 1. (Color online) (a)~(d) AFM images (5 x 5 um) for various
buffer layers: (a) Ta (5 nm), (b) Ta (5 nm)/Ru (5 nm)/Ta (5 nm), (c) Ta
(5 nm)/Ru (10 nm)/Ta (5 nm), and (d) Ta (5 nm)/Ru (10 nm)/Ta (10
nm). (¢) AFM RMS roughness of various buffer layers with error
bars.

o
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Fig. 2. (Color online) X-ray diffraction (XRD) patterns of buffer
layers with different stacking structures: (a) Ta (5 nm), (b) Ta (5 nm)/
Ru (5 nm)/Ta (5 nm), (¢) Ta (5 nm)/Ru (10 nm)/Ta (5 nm), and (d) Ta
(5 nm)/Ru (10 nm)/Ta (10 nm).
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Fig. 3. Typical BLS spectra for 30-nm-thick NigFey film under the
applied magnetic field at 340 mT. The peak labeled “DE” is the
Damon-Eshbach (surface) mode and “B1” is the first bulk mode,
respectively.
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Fig. 4. (Color online) Variation of spinwave frequencies with the
applied magnetic field for 30-nm-thick NiFe film. The open black
rectangles (open red circles) are experimental results using BLS
measurements for Damon-Eshbach (the first bulk) mode. The solid
lines represent the calculated valued with the determined M and A.y.
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Fig. 5. (a) The buffer layer dependent saturation magnetization values
with error. bars (b) The buffer layer dependent exchange stiffness
constant values with error bars.

P ERA Hojg] Be) Ade aeoz izl A glol
t}. Ta (5 nm)NigFe,, (30 nm) A& M 4.= 42+
745+ 4 kA/m&}t 17.6+0.1 pl/mo|ct.

Fig. 5@ HHTY] WHalol] tist M, el weh HAIgH
Aotk M, #2 A= T HATS 7HA= NigFey H
oM olleHAMANA A vl gks 71Xt oA 4
AE M, 32 Al dYdsted 2Ag 4, 3k Fig 5(b)
of ZAAISIATE. A, 2 Ta (5 nm)/Ru (5 nm)/(Ta 5 nm)
o] MYZFS 7= ABOIA 179 + 02 pI/imEA 7F &

2 73 A3, Ta (5 nm)Ru (10 nm)/(Ta 10 nm)<]
HEZS 7IAE ABAA 174 + 0.1 pl/m2A 78 ZHe

= 7HAL i 7R 2 AL TP AR 3] Aol
3% =olQldll, AAHHE S RFHAR= 0.2 piim Ax A
AFHoz AAHE 5] oxe} & Ao} gtk 4= A
A5 (36,371, AlEe] 27943[38-40], A Z7[30,41]
SOl oJgle] ZA W 4= de=dl, B AFol=E AFM H
XRDE 53l W] BH ARV, Tad] AR ole &
W3l glar, M| Wl IE 4,9 Aol FA YA
%1—0}’ Hﬁi%ol 30 nmg] NigoFey E]'E}'g] Eéoiil -)—\—T‘ﬂf"} 2
o] EAddle 93 7IAA S & 7 AUTh

Iv. 4 =

B A7lde Ok Ta 719 W¥S 7271 30 nm

sfoll W 30 nm AL ... - PBL - A5Y - WNHE - FAYD - 2

Y] NigoFey B 727 B 2M34 40 nXe JF
< AR AFM 4] Ay, BE Al BWH AF7]
HAE= 0.03 nm ©J3FE Nio] U4 @ F4)(0.2 nm)=ch
Zlo}, HZ-o] 3 A7} NigFey W2He] 24 A7l
Hxe GRS AIRHEQ Zog ATEQTE XRD 48 5
& Ruo]l E3FE WZFolA= Ru(100), Ru(002)e] Bk
FAEIROH, HFe] T wWsle] w2 5318t Ta T ©
22 Hols BEER] it} BYR}; BATHBLS) =4
A3}, Damon-Eshbach T=9} 3 W] W3 R=gXHE ¥
ABH M)t wg WSt .S AEsIeH, Me W
YT Fxo A &S] AT 4., 7 TS S A
% Feo o} 2 AolE HolA] E3ISlth o= WS
A48 5Ado] NigFeyt2te] Woje] 2t me £/
[e]

E e R4 g Aow AzEr.

2

HAlel =2

o] =2 WSO AYoR FrATFAGe] 7|ZATFAL
Y (No. NRF-2021M3F3A2A01037526) & DGIST 7|3
AKA(25-ET-02, 25-SENS2-11)2] A9 Hbo} =55t

References

[1] S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys.
40, 580 (2001).

[2] H. Gong, D. Litvinov, T. J. Klemmer, D. N. Lambeth, and J. K.
Howard, IEEE Trans. Magn. 36, 2963 (2000).

[3] B. Warot, J. Imrie, A. K. Petford-Long, J. H. Nickel, and T. C.
Anthony, J. Magn. Magn. Mater. 272-276, 1495 (2004).

[4] J. Kanak, M. Czapkiewicz, T. Stobiecki, M. Kachel, I. Sveklo,
A. Maziewski, and S. van Dijken, Phys. Status Solidi A 204,
3950 (2007).

[5] P. D. R. Araujo, R. Macedo, E. Paz, S. Cardoso, D. C. Leitao,
and P. P. Freitas, Nanotechnology 34, 435502 (2023).

[6] H.-R. Liu, T.-L. Ren, B.-J. Qu, L.-T. Liu, W.-J. Ku, and W. Li,
Thin Solid Films 441, 111 (2003).

[7] K. Vahaplar, S. Tari, H. Tokuc, and S. Okur, J. Vac. Sci. Tech-
nol. B 27, 2112 (2009).

[8] L. Liu, C.-F. Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R. A.
Buhrman, Science 336, 555 (2012).

[9] Q. Hao and G. Xiao, Phys. Rev. B 91, 224413 (2015).

[10] A. Kumar, R. Bansal, S. Chaudhary, and P. K. Muduli, Phys.
Rev. B 98, 104403 (2018).

[11] M. Gottwald, K. Lee, J. J. Kan, B. Ocker, J. Wrona, S. Tibus, J.
Langer, S. H. Kang, and E. E. Fullerton, Appl. Phys. Lett. 102,
052405 (2013).

[12] J. Jung, J. Cho, H.-C. Choi, K. Lee, C.-Y. You, S.-B. Choe, and
J.-S. Kim Appl. Phys. Lett. 118, 262408 (2021).



L A= Journal of the Korean Magnetics Society Vol. 35, No. 6, December 2025

[13] J. Bae, H.-J. Kim, J. Chang, S. H. Han, H. C. Koo, and S. H.
Lim, J. Korean Phys. Soc. 61, 1500 (2012).

[14] D.-H. Kim, S.-C. Yoo, D.-Y. Kim, K.-W. Moon, S.-G. Je, C.-G.
Cho, B.-C. Min, and S.-B. Choe, Appl. Phys. Lett. 104,
142410 (2014).

[15] M. Yamanouchi, R. Koizumi, S. Tkeda, H. Sato, K. Mizu-
numa, K. Miura, H. D. Gan, F. Matsukura, and H. Ohno, J.
Appl. Phys. 109, 07C712 (2011).

[16] M. Frankowski et al., J. Appl. Phys. 117, 223908 (2015).

[17] S.Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan,
M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno,
Nat. Mater. 9, 721 (2010).

[18] P. Griinberg, Light Scattering in Solids V, Topics in Applied
physics (TAP, volume 66), Springer-Verlag, Berlin (1989) pp.
303~335.

[19] T. Wolfram and R. E. Dewames, Progr. Surface Sci. 2, 310
(1972).

[20] R. E. Camley and D. L. Mills, Phys. Rev. B 18, 4821 (1978).

[21] P. Griinberg, C. M. Mayr, W. Vach, and M. Grimsditch, J.
Magn. Magn. Mater. 28, 319 (1982).

[22] K. Lee, J. Cho, C.-K. Lee, J. Kim, C.-Y. You, M. Byun, and
J.-S. Kim J. Magn. Magn. Mater. 512, 167057 (2020).

[23] J. R. Dutcher, B. Heinrich, J. F. Cochran, D. A. Steigerwald,
and W. F. J. Egelhoff, Jr. Appl. Phys. 63, 3464 (1988).

[24] A. Murayama, K. Hyomi, J. Eickmann, and C. M. Falco, Phys.
Rev. B 60, 15245 (1999).

[25] J. Cho, C.-K. Lee, J. Kim, J.-S. Kim, and C.-Y. You, J Phys. D:
Appl. Phys. 55, 435008 (2022).

[26] J. Cho, J. Jung, S. B. Kim, W. R. Ju, D. H. Kim, M. Byun, and
J.-S. Kim, Materials. 16, 6418 (2023).

[27] M. Madami, S. Tacchi, G. Carlotti, G. Gubbiotti, and R. L.

-311-

Stamps, Phys. Rev. B 69, 144408 2004.

[28] J. M. Shaw, S. Lee, and C. M. Falco, Phys. Lev. B 73, 094417
(2006).

[29] C. Kittel, Introduction to Solid State Physics, 7th ed., John
Wiley & Sons (1996) p. 446.

[30] J. Cho, J. Jung, K.-E. Kim, S.-I. Kim, S.-Y. Park, M.-H. Jung,
and C.-Y. You, J. Magn. Magn. Mater. 339, 36 (2013).

[31] J. Cho, J. Jung, S.-Y. Cho, and C.-Y. You, J. Magn. Magn.
Mater. 395, 18 (2015).

[32] J. Cho, J.-S. Kim, and C.-Y. You, J Korean Magn. Soc. 31, 219
(2021).

[33] J. R. Sanderock, Light Scattering in Solid III, Topics in
Applied physics (TAP, volume 51), Springer-Verlag, Berlin
(1982) pp. 173~206.

[34] J. Cho, J.-S. Kim, and C.-Y. You, J Korean Magn. Soc. 31, 69
(2021).

[35] R. E. Camley, Surf. Sci. Rep. 7, 103 (1987).

[36] J. R. Dutcher. Doctoral dissertation, Brillouin light scattering
studies of epitaxial ferromagnetic films, Simon Fraser Univer-
sity, Canada (1988).

[37] J.-S. Kim, G Kim, J. Jung, K. Jung, J. Cho, W.-Y. Kim, and
C.-Y. You, Sci. Rep. 12, 4549 (2022).

[38] S. P. Vernon, S. M. Lindsay, and M. B. Stearns, Phys. Rev. B
29, 4439 (1984).

[39] C. Eyrich, et al., Phys. Rev. B 90, 235408 (2014).

[40] X. Liu, M. M. Steiner, R. Sooryakumar, G. A. Prinz, R. F. C.
Farrow, and G. Harp, Phys. Rev. B 53, 12166 (1996).

[41] D.-H. Kim, Mater’s thesis, Spin-pumping effect in Py/Pd
bilayers with nano-oxide layer using vector network analyzer
ferromagnetic resonance, Inha University, Korea (2011).



