

CORRESPONDENCE

Open Access

Low-cost domestic microwave synthesis of SnO₂/CuO nanostructure for ethanol detection

Pitchanunt Chaiyo^{1†}, Mohamed Ahmed Belal^{2†}, Sugato Hajra³, Swati Panda³, Premkumar Sharad Bhosale², Hohyun Keum^{4,5*} and Hoe Joon Kim^{2*}

Abstract

Low-cost preparation of nanostructured materials is one of the important factors for the commercialization of sensors. This study reports the sustainable and low-cost synthesis of pure SnO₂ and SnO₂-CuO nanostructures using a domestic microwave annealing approach. The material obtained was structurally examined using X-ray diffraction and a scanning electron microscope. The pure SnO₂ and SnO₂-CuO inks were deposited over laser-induced graphene interdigitated electrodes. Towards the volatile organic compounds, the pure SnO₂ and SnO₂-CuO went through ethanol sensing. The SnO₂-CuO-based sensor demonstrated strong response and selectivity for detecting ethanol at room temperature with a response of 11%, a response time of 53 s, and a recovery time of 64 s at 100 ppm of ethanol. The high response and selectivity of the sensor towards ethanol make it ideal for continuous tracking in both environmental and industrial settings.

Keywords Ethanol, VOC gases, Spray coating, Pure SnO₂ and SnO₂-CuO, LIG

Introduction

Today's world has experienced continuous economic and industrial development, leading to the production and emission of various gases. Some of these gases are beneficial, while others harm human health [1–3]. These gases are categorized into inorganic and volatile organic compounds (VOCs) [4, 5]. Therefore, it is necessary to develop gas detection devices to identify toxic and flammable gases that may leak into the air [6]. These devices are essential for protecting people in high-risk workplaces and the environment. The metal oxide materials, such as tin dioxide (SnO₂) and copper oxide (CuO), are widely used in gas detection [7]. This is due to their high response, low cost [8], semiconductive behavior, and high lifetime stability [9]. SnO₂ is an n-type semiconductor with a large bandgap of 3.6 eV at room temperature (RT) [9]. SnO₂ has different morphological structures, including thin films, composite materials, and porous

[†]Pitchanunt Chaiyo and Mohamed Ahmed Belal have contributed equally to this work.

*Correspondence:
Hohyun Keum
hkeum@kitech.re.kr
Hoe Joon Kim
joonkim@dgist.ac.kr

¹Faculty of Sports and Health Science, National Sports University Sisaket Campus, Sisaket 33000, Thailand

²Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea

³Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea

⁴Department of Mechanical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea

⁵Industrial Transformation Technology Department, Korea Institute of Industrial Technology, Cheonan-si 31056, Republic of Korea

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

nanofibers [10], and nanoparticles that can be used in gas detector applications. On the other hand, CuO has different advantages, such as a narrow bandgap of 1.2 eV with a p-type semiconductive characteristics, easy synthesis, low cost, and non-toxicity [8, 10–12], making it suitable for gas detection [13]. However, the p-n junction is the most effective structure in gas detection due to its high response; therefore, various structures of SnO₂ and CuO can be synthesized using different approaches, including sol-gel [14], atomic layer deposition (ALD) [15], hydro-thermal synthesis [16, 17], electrospinning [8], precipitation [18], and microwave-assisted [19] techniques.

Microwave (MW) irradiation is a popular technique for synthesizing various materials, including organic and inorganic chemicals, which can be used in biochemical processes [20]. It is favored for its speed, time-saving capabilities, and low cost. This method operates without high pressure and temperature, yet it can produce nanostructured materials with uniform shape and size in nanoparticles [20–22]. Therefore, microwave irradiation is suitable for synthesizing a wide range of materials and offers an alternative way for producing metal oxide nanostructured materials. Microwave-assisted synthesis of SnO₂ and CuO materials has been reported. Wang et al. prepared Pt/SnO₂ nanostructures via a facile one-step microwave-assisted hydrothermal route in weight percentages of 1.5, 3, 4.5 wt.% for carbon monoxide (CO) gas sensors. The findings revealed that among them 3.0 wt.% Pt/SnO₂ showed the best performance for detecting 100 ppm carbon monoxide (CO) at 225 °C with response of 3 and response time of 16 s [23]. Pech-Rodríguez et al. synthesized SnO₂/CuO nanocomposites via a microwave-assisted polyol process. SnO₂/CuO heteronanostructures have been employed as effective electrocatalysts for hybrid water splitting. The results indicate that SnO₂/CuO heteronanostructures synthesized using a microwave-assisted polyol technique can be active for the assisted oxygen evolution reaction [19]. Moreover, Silva et al. prepared SnO₂: Zn nanocrystals synthesized via a microwave-assisted route and investigated their NO₂ gas-sensing properties. Gas sensing tests revealed that the zinc-doped SnO₂ nanoparticles were highly sensitive and exhibited good recovery and stability even under ambient humidity for NO₂ gas concentrations at sub-ppm levels at 150 °C [24].

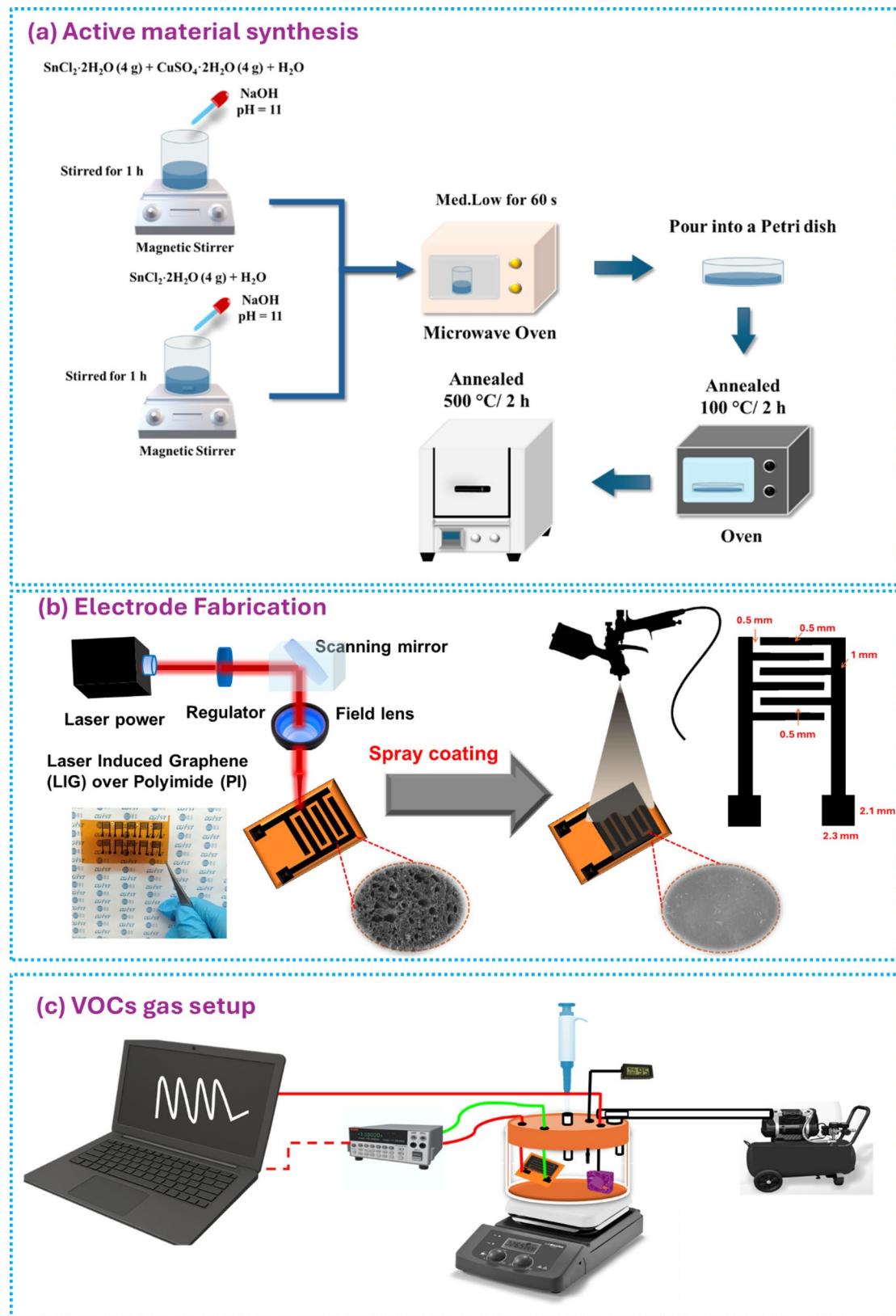
Combining n-type SnO₂ with p-type CuO lowers the sensor's operating temperature and boosts VOC detection by forming a p-n junction, which widens the depletion region and improves charge transfer efficiency [25]. However, few studies report the synthesis of SnO₂/CuO composites using the same mass ratio of precursors. In addition, while the synthesis of composites with NaCl residues or other alkali halides on the surface has not been studied, their effects on SnO₂/CuO sensors have not

yet been investigated. Therefore, addressing these issues, especially using halide-controlled stoichiometric microwave synthesis followed by long-term gas detection tests, is essential to move SnO₂/CuO VOC sensors from laboratory prototypes to reliable field devices.

This work depicts a low-cost, domestic microwave-assisted fabrication process for producing SnO₂/CuO heteronanostructures with NaCl residual. A single one-minute microwave treatment followed by calcination at 500 °C yields a three-phase composition consisting of SnO₂, CuO, and NaCl. The material shows a quick and selective ethanol response at RT, with strong sensor signals and rapid response and recovery times at 100 ppm, indicating its potential for scalable, reliable portable VOC sensors in ambient environments.

Materials and methods

Synthesis of SnO₂-NaCl nanoparticles


The SnO₂ nanoparticles were prepared using microwave-assisted synthesis. Firstly, 4 g of tin chloride dihydrate (SnCl₂·2H₂O) powder was poured into a beaker and mixed with 20 mL of deionized water (DI water) and a dropwise addition of sodium hydroxide (NaOH) until the mixture reached a pH of 11 [26–28]. The solution was then stirred for another 60 min. After that, the product was placed in a microwave oven (Mitron, P70D17J-D3) using medium-low heat for 60 s. Followed by washing with DI water and ethanol using an ultrasonic cleaner. Subsequently, the formed SnO₂ was kept in an oven (OXYGEN, DN09D) to dry at 100 °C for 2 h, as shown in Fig. 1a.

SnO₂/CuO heteronanostructures with residual NaCl

For the SnO₂/CuO nanocomposite, 4 g of SnCl₂·2H₂O and 4 g of CuSO₄·2H₂O were co-dissolved in 20 mL DI water, adjusted to pH 11 with NaOH, and processed under the same conditions, yielding the SnO₂/CuO nanocomposite. The product was placed in a ceramic cup and annealed in a high-temperature muffle furnace at 500 °C for 2 h [26–29]. The schematic diagram illustrating the SnO₂-NaCl nanoparticles and SnO₂/CuO heteronanostructures with residual NaCl, as shown in Fig. 1a.

Fabrication of laser-induced graphene (LIG) device

The laser engraving process was carried out using a commercial CO₂ laser system (VLS 4.6/75, 10.6 μm) [1]. For the fabrication, we applied 25% of the maximum laser power, 30% of the maximum speed, and a resolution of 500 PPI to obtain low sheet resistance in the laser-induced graphene interdigitated electrodes (LIG-IDE), Fig. 1b. The LIG-IDE structure consisted of six interdigitated fingers, each with a spacing of 0.5 mm, a finger width of 0.5 mm, and a bus bar width of 1 mm on the collecting side.

Fig. 1 **a** Schematic diagram illustrating the synthesis procedure of SnO_2 -NaCl nanoparticles and SnO_2 /CuO hetero-nanostructures with residual NaCl via a microwave-assisted method, followed by drying and calcination steps; **b** Fabrication of a laser-induced graphene interdigitated pattern and spray printing of SnO_2 -CuO; and **c** VOCs gas setup

Ink formulation and spray coating

Pure SnO_2 and $\text{SnO}_2\text{-CuO}$ inks were prepared at a concentration of 10 mg mL^{-1} in a 1:1 mixture of ethanol and isopropanol (EtOH: IPA), with 2 mg mL^{-1} of PVP, and sonicated for 10 min to enhance dispersion for spray coating [30]. The resulting ink was spray-deposited ($500 \mu\text{L}$) onto the LIG-IDE to precisely control the thickness and geometry of the film, as depicted in Fig. 1b. The active material was applied in a square pattern ($5 \text{ mm} \times 5.5 \text{ mm}$) with a mass loading of 5 mg. A uniform coating was achieved by maintaining a consistent spray-to-substrate distance of 5 cm under an air pressure of 20 PSI. Finally, the sensor was annealed at 70°C to remove residual solvents and moisture.

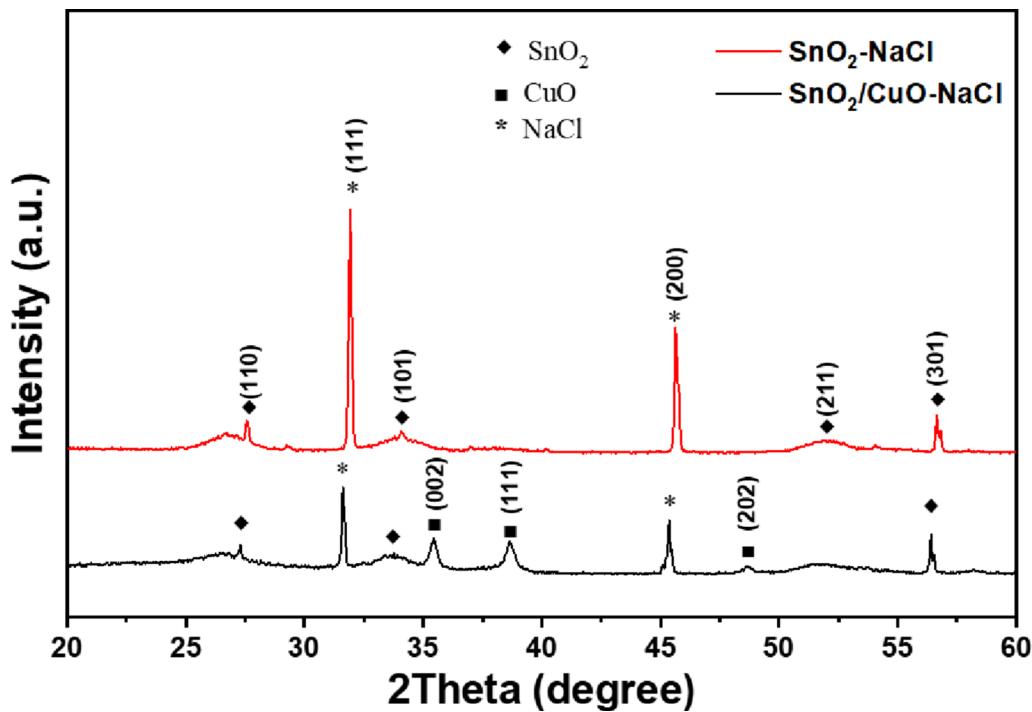
Characterization

The crystal structure of $\text{SnO}_2\text{-NaCl}$ nanoparticles and $\text{SnO}_2\text{/CuO}$ heteronanostructures with residual NaCl was analyzed by using an X-ray diffraction technique (Rigaku Mini Flex 600 instrument (M/S, Japan) with Cu-K α ($\lambda = 1.5405 \text{ \AA}$) with step size 3 degree/min. Then, $\text{SnO}_2\text{-NaCl}$ nanoparticles and $\text{SnO}_2\text{/CuO}$ hetero nanostructures with residual NaCl morphology were investigated using a Scanning Electron Microscope (SEM, SU-8230, Japan). Gas-sensing performance was evaluated using our mentioned design in Fig. 1c towards VOC gases at $30 \pm 3^\circ\text{C}$, connected to a Keithley 2400c source meter, USA. The system represents a VOC ethanol-sensing platform integrated with an airflow meter for controlled gas exchange and sensor recovery, enabling real-time electrical characterization. A sealed test chamber was placed on a hot plate to maintain the measurement temperature at $30 \pm 3^\circ\text{C}$, assisted by a fan to ensure uniform ethanol distribution. The chamber also contained humidity and temperature sensors, while the sensor device was positioned inside to maintain them at 10 RH% and $30 \pm 3^\circ\text{C}$ during measurements. The source meter recorded the electrical response, allowing controlled evaluation of sensor performance under varying ethanol concentrations (20–100 ppm). VOC gases are introduced into the chamber via a micropipette through an injection port in volumes that were calculated by Eq. (1). The volume of high-purity alcohol (V) [99.99%] is calculated by the equation below using the desired gas concentration (in ppm) within the test chamber volume [31]. The sensor response (SR) was determined based on the electrical resistance in air (R_a) and the electrical resistance upon exposure to EtOH gas (R_g) using Eq. (2) [32–34]. The response time is the 90% of time needed for the sensor to react to reintroducing EtOH gas [33], while the recovery time represents the time needed for the sensor to return to 90% of its initial state when air gas is reintroduced [35, 36].

$$V = \frac{Cv_a M}{2.46 * 10^7 * D} \quad (1)$$

$$SR = \frac{R_a}{R_g} \quad Reducing \ gases \quad (2)$$

where C and v_a are the desired gas concentration (ppm) and the volume of the test chamber (mL), respectively, while M and D are the molecular weight (g mol^{-1}) and the density of the desired alcohol (g mL^{-1}), respectively.


Results and discussion

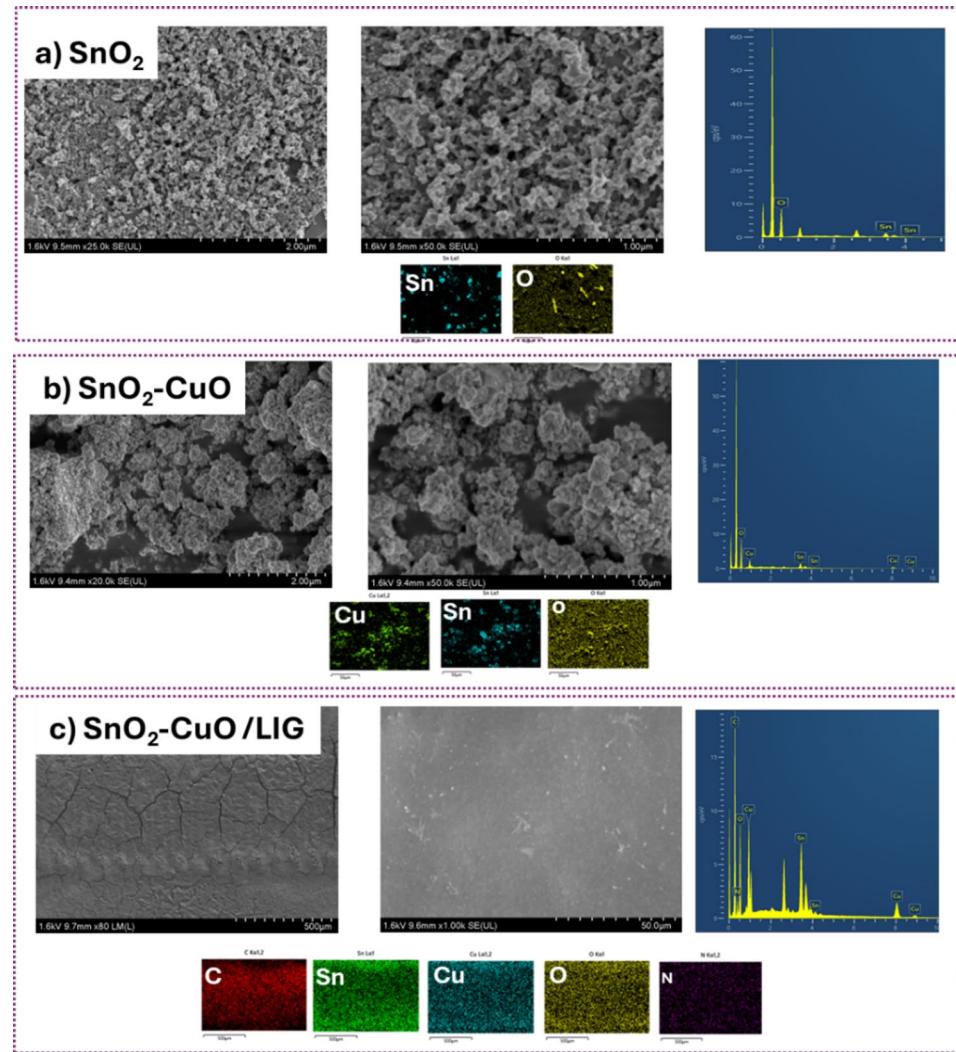
Structural analysis

Figure 2 presents the X-ray diffraction (XRD) patterns of the investigated powders, revealing three principal crystalline phases: rutile- SnO_2 , tenorite- CuO , and cubic NaCl. For the $\text{SnO}_2\text{-NaCl}$ nanoparticles (red line), diffraction peaks appear at $2\theta = 26.6^\circ, 33.9^\circ, 37.9^\circ, 51.8^\circ$, and 55.0° , which can be indexed to the (110), (101), (200), (211), and (220) planes of rutile- SnO_2 (PDF 41-1445) [37]. Additional reflections at 31.7° and 45.5° correspond to the (111) and (200) planes of rock-salt NaCl (PDF 05-0628) [38]. The low intensity of these NaCl peaks, consistent with Wang et al. [39], indicates that only residual amounts of the salt remain after calcination at 500°C . The $\text{SnO}_2\text{/CuO}$ heteronanostructures with residual NaCl (black line) show the same SnO_2 and NaCl reflections together with new peaks at 32.5° (110), 35.5° (002), 38.7° (111), and 48.7° (202), assigned to tenorite- CuO (PDF 45-0937) [40, 41]. Their coexistence confirms the formation of a p- CuO /n- SnO_2 heterojunction within the nanocomposite, a junction type known to lower operating temperature and enhance ethanol sensing [25, 42].

Although the residual NaCl is present only in residual quantities, such alkali-halide layers can adsorb a thin film of moisture, accelerate the O_2/O_2^- surface exchange, and mitigate baseline drift under high relative humidity, as demonstrated for KCl- and NaCl-modified $\text{SnO}_2\text{/CuO}$ systems [39, 43]. Taken together, these structural features render $\text{SnO}_2\text{/CuO-NaCl}$ heteronanostructures highly suitable for low-temperature ethanol sensing, benefiting simultaneously from the p-n junction at $\text{SnO}_2\text{/CuO}$ interfaces [44] and NaCl-templated porosity [45].

The $\text{SnO}_2\text{-NaCl}$ nanoparticles shown in Fig. 3a consist of 20–40 nm nanocrystals interconnected into a highly porous foam. The broad SnO_2 peaks, along with the intense NaCl peaks (200, 220, 222), support the role of NaCl as a salt template. This template creates porosity and inhibits grain coarsening [45–47], and such microstructures are consistent with the excellent ethanol-sensing behavior of porous SnO_2 [48]. Figure 3b shows the surface of the $\text{SnO}_2\text{/CuO-NaCl}$ heteronanostructures. This material forms large clusters, approximately 200–400 nm, which are themselves composed of

Fig. 2 XRD pattern of SnO_2 -NaCl nanoparticles and SnO_2 /CuO heteronanostructures with residual NaCl


smaller crystallites around 15 nm. The assembled XRD patterns display prominent CuO peaks alongside SnO_2 and residual NaCl. This indicates the independent crystallization of the two oxide phases and a high density of p-n junctions, a characteristic associated with fast ethanol response time [44]. Overall, the LIG crack network, the porosity created by NaCl, and the well-dispersed CuO on SnO_2 work together synergistically. This collective effect enlarges the specific surface area, increases oxygen adsorption sites [49, 50], and boosts the p-n junction density [51], thus enabling the composite samples to exhibit promising gas-sensing capabilities. Figure 3c shows the LIG- SnO_2 /CuO-NaCl film, where 50–200 μm shrinkage cracks propagate through LIG layer. This forms a three-dimensional conductive network and creates openings for gas diffusion. The SnO_2 /CuO nanoparticles deposited on the LIG match the XRD patterns, which show the SnO_2 (110, 101) and CuO (−111, 111) phases. This confirms the formation of p-n heterojunctions at the interface, a feature widely reported to accelerate chemiresistive reactions [52, 53]. Table 1 confirms the weight and atomic percentages of each element in SnO_2 , SnO_2 -CuO, and SnO_2 -CuO/LIG.

VOCs sensing measurements

The gas sensing performance of 500 μL deposited pure SnO_2 and SnO_2 -CuO, patterned in a square configuration on the LIG-IDE, was evaluated for ethanol detection. Figure 4a, b represents a comparative analysis of

the ethanol sensing behavior of the pure SnO_2 and SnO_2 -CuO sensors exposed sequentially to ethanol concentrations ranging from 100 to 20 ppm in dry air with RH 10% and 30 ± 3 °C. Pure SnO_2 sensors exhibited lower resistance than SnO_2 -CuO, which is consistent with Zhou et al.'s work, as the increasing in CuO contents increases the resistance of SnO_2 [54]. As discussed by R.N. Mariammal et al. [55], apart from the formation of p-n junction, it is expected that doping of SnO_2 with Cu would enhance the oxygen vacancies, thus triggering the surface reactions. Pure SnO_2 and SnO_2 -CuO sensors exhibited an n-type response trend toward ethanol, as evidenced by the decrease in resistance upon 60 s exposure to the reducing gas, attributed to electron donation. The sensor achieved a high response ($R_{\text{air}}/R_{\text{gas}}$) of 11 at 100 ppm, with fast response and recovery times of 53 s and 64 s, at RT, respectively. Figure 4c-d, compared to pure SnO_2 reported in literature, which achieved a response of 10.5 at 350 °C [56].

Moreover, Fig. 4e exhibited high lifetime stability over 30 days, which proves the capability of using the sensor in environmental real-time sensing. Figure 4f indicates the selectivity test over IPA, MeOH, and acetone towards ethanol at 100 ppm, which is important for real-time application to detect one gas over others with high selectivity and response. In SnO_2 /CuO composite sensors, selectivity arises from the formation of a p-n heterojunction at the SnO_2 (n-type) and CuO (p-type) interface. This heterojunction affects the charge carrier

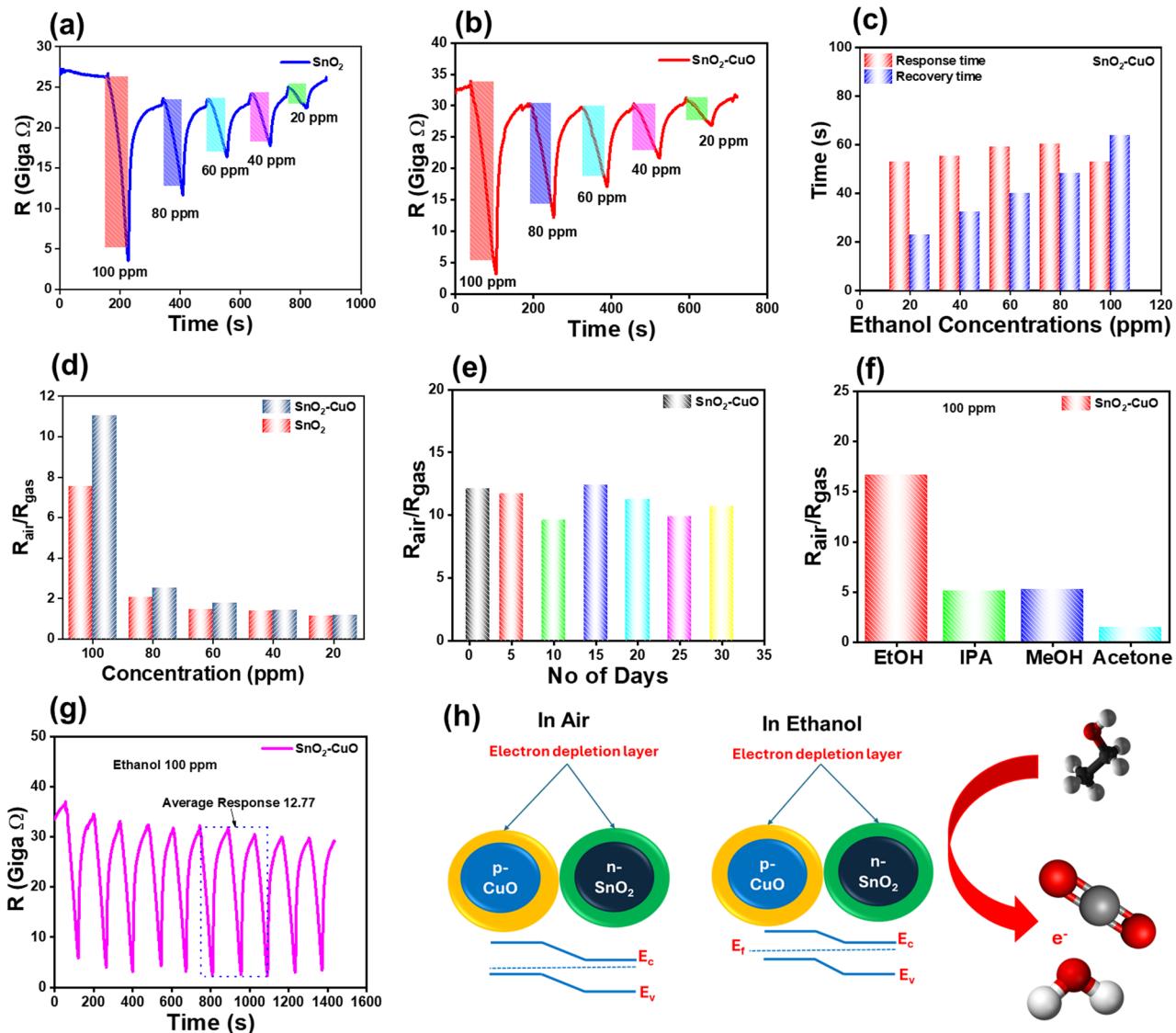


Fig. 3 SEM images and EDS of **a** SnO_2 -NaCl nanoparticles with 20–40 nm grains; **b** SnO_2 -CuO-NaCl heteronanostructures showing large clusters, approximately 200–400 nm; **c** LIG- SnO_2 /CuO-NaCl film with 50–200 μm cracks in the laser-induced graphene

Table 1 EDS mapping elemental composition

Materials	Element	Wt.%	Atomic %
SnO_2	O	70.68	94.70
	Sn	29.32	5.30
	Total	100.00	100.00
SnO_2 -CuO	O	50.97	84.25
	Cu	24.94	10.38
	Sn	24.08	5.37
	Total	100.00	100.00
SnO_2 -CuO/LIG	C	32.05	57.36
	N	3.68	5.64
	O	19.35	26.01
	Cu	18.14	6.14
	Sn	26.79	4.85
	Total	100.00	100.00

depletion layer and resistance in specific ways, depending on the gas [57]. Figure 4g evaluates the cyclic stability of the sensor towards ethanol at 100 ppm through 10 cycles with an average response of 12.77. A consistent and reproducible decrease in resistance is observed with each gas pulse, followed by a clear recovery when ethanol is removed, indicating excellent reversibility and surface regeneration. Table 2 demonstrates the comparison between recent work and reported works in the literature. Figure 4h shows the ethanol sensing mechanism. The sensing mechanism involves the oxidation of ethanol molecules by chemisorbed oxygen (e.g., O_2^-) at RT, releasing electrons back into the conduction band and thereby reducing resistance [58, 59]. This highlights the robust redox dynamics between ethanol and surface-adsorbed oxygen species, where ethanol donates electrons, reducing the surface depletion layer (EDL). As discussed by Mariammal et al. [55], they found that the

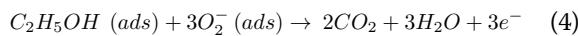
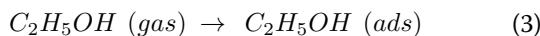



Fig. 4 Gas sensing performance of pure SnO_2 and $\text{SnO}_2\text{-CuO}$ towards EtOH at RT: Gas sensing performance at different concentrations from 100 to 20 ppm of (a) pure SnO_2 and (b) $\text{SnO}_2\text{-CuO}$; (c) recovery and response times; (d) response versus concentrations; (e) lifetime stability at 100 ppm; (f) selectivity towards ethanol, IPA, MeOH, and acetone; (g) cyclic stability; and (h) ethanol sensing mechanism

Table 2 EtOH ethanol sensing performance compared to reported works in literature

Materials	EtOH (ppm)	Temp (°C)	Response $s_1 = (\Delta R/R_a) \times 100\%$ or $s_2 = R_g/R_a$ or R_a/R_g	Response/recovery time (s)	Refs.
SnO_2	100	RT	$S_2 = 7.5$	61.5/104	This work
$\text{SnO}_2\text{-CuO}$	100	RT	$S_2 = 11$	53/64	This work
$\text{Sm-ZnFe}_2\text{O}_4$ nanoparticles	40	300	$S_2 = 37.1$	50/116	[61]
$\text{SnO}_2\text{-CuO}$	100	320	$S_2 = 8$	4/10	[44]
5% Fe-doped ZnO	50	125	$S_1 = 77.25$	16/24	[62]
SnO_2	100	350	$S_2 = 10.5$	5/40	[56]
CuO	1000	220	$S_2 = 1.5$	30/100	[63]
$\text{Fe}_2\text{O}_3\text{-Co}_3\text{O}_4$ composite	100	250	$S_2 = 26.2$	–/–	[64]
$\alpha\text{-Fe}_2\text{O}_3$ nanoparticles	100	150	$S_1 = 14.5$	–/–	[65]
SnO_2 hollow spheres	40	75	$S_2 = 20.1$	110/90	[66]
SnO_2 LA nanoparticles	40	150	$S_2 = 59.6$	105/100	[66]
$\alpha\text{-Fe}_2\text{O}_3(0.09)/\text{Nb}_2\text{O}_5$	100	160	$S_2 = 12.6$	8/2	[67]

ethanol sensing mechanism in n-type MOS is governed by the interaction between ethanol molecules and chemisorbed oxygen species (O_2^- , O^{2-} and O^-) on the semiconductor surface. The reaction restores trapped electrons to the conduction band, reducing the depletion layer and increasing conductivity, which forms the basis for gas detection. As discussed by Abokifa et al. [60], they found confirmation by DFT about forming pre-adsorbed oxygen species at RT. Oxygen molecules from the ambient atmosphere first adsorb onto the metal oxide surface and become ionised into superoxide species (O_2^-) by capturing free electrons from the conduction band. At higher temperatures above 200 °C, these superoxide ions further transform into more reactive oxygen anions (O^- and O^{2-}) that trap free electrons, lowering the material's carrier concentration and conductivity. When the target gas reacts with these ionosorbed oxygen species, the trapped electrons are released, causing a distinct change in resistance that enables gas detection.

Conclusions

This study presented a comprehensive evaluation of pure SnO_2 and SnO_2/CuO nanostructures ethanol sensors fabricated using domestic microwave and annealing approaches, with extensive characterization via SEM, XRD, and gas sensing analysis. The sustainable synthesis route successfully produced SnO_2 and SnO_2/CuO nanostructures with favourable surface morphology and oxygen-rich active sites, enabling enhanced interaction with ethanol gas. The fabricated sensor demonstrated high sensor response at room temperature, along with high selectivity, fast response and recovery times, and prolonged operational stability. The SnO_2/CuO -based sensors achieved a response of 11 with response/recovery times of 53/64 s at 100 ppm of ethanol, indicating their strong potential for practical ethanol detection at RT.

Author contributions

Pitchanunt Chaiyo: Conceptualization, Writing-Original Draft, Mohamed Ahmed Belal: Investigation, Formal analysis, Writing-Original Draft, Sugato Hajra: Writing-Editing, Data Curation, Swati Panda: Writing-Editing, Visualisation, Premkumar Sharad Bhosale: Data Curation, Hohyun Keum: Funding Acquisition, Project administration, Visualisation, Hoe Joon Kim: Supervision, Funding Acquisition, Writing-Editing.

Funding

This research was supported by the National Research Foundation of Korea (NRF) (RS-2024-00346135). SH would like to thank the support of the InnoCORE program of the Ministry of Science and ICT (25-InnoCORE-01). We acknowledge the support from the Korea Institute of Industrial Technology as "Development of core technology for smart sensing and digital medical process to support medical surgical field diagnosis" (KITECH EH-25-0002).

Data availability

Data and materials are available upon request to the authors.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 5 October 2025 / Accepted: 16 November 2025

Published online: 23 December 2025

References

1. Belal MA, Hajra S, Panda S, Kaja KR, El-Moneim AA, Achary P. Ganga Raju, Kim HJ (2025) Mechanochemically synthesized ZIF-8@ZnO composite-based NO_2 gas detection. *New J Chem* 49(42):18436–18446. <https://doi.org/10.1039/d5nj02514a>
2. Belal MA, Panda S, Khanapuram U, Hajra S, Kaja KR, Rajaboina RK, Vivekananthan V, Vittayakorn N, Kim HJ (2025) Advances in nanogenerator enabled smart mask-based self-powered health monitoring units. *Mater Adv* 6(22):8210–8238. <https://doi.org/10.1039/d5ma00845>
3. Belal MA, Hajra S, Panda S, Kaja KR, Park KJ, Jana R, Achary P. Ganga Raju, Kim HJ (2025) Functionalized MWNTs@ZnO nanocomposites via spray printing for NO_2 gas sensing. *J Mater Sci Mater Elec* 36(12):750. <https://doi.org/10.1007/s10854-025-14663-9>
4. Li Z, Zeng W, Li Q (2022) SnO_2 as a gas sensor in detection of volatile organic compounds: a review. *Sens Actuators A Phys*. <https://doi.org/10.1016/j.sna.2022.113845>
5. Belal MA, Hajra S, Panda S, Kaja KR, Abdo MMM, El-Moneim A. Abd, Janas D, Mishra YK, Kim HJ (2025) Advances in gas sensors using screen printing. *Journal of Materials Chemistry A* 13(8):5447–5497
6. Belal MA, Hajra S, Panda S, Kaja KR, Park KJ, Kim HJ (2025) Spray-printed ZnO thin film for high-sensitivity NO_2 gas sensing. *Micro Nano Syst Lett* 13(1):10
7. Taulo GT, Moharram AE, Belal MA, Shaalan NM, Ayad MM, Mohamed GG, El-Moneim AA (2025) Impact of NS co-doped rGO on the CO gas sensing performance of inkjet-printed SnO_2 nanoparticles. *Sens Actuators B Chem*. <https://doi.org/10.1016/j.snb.2025.138186>
8. Zhang J, Ma S, Wang B, Pei S (2021) Preparation of composite SnO_2/CuO nanotubes by electrospinning and excellent gas selectivity to ethanol. *Sens Actuators A Phys*. <https://doi.org/10.1016/j.sna.2021.113090>
9. Kang X, Deng N, Yan Z, Pan Y, Sun W, Zhang Y (2022) Resistive-type VOCs and pollution gases sensor based on SnO_2 : a review. *Mater Sci Semicond Process*. <https://doi.org/10.1016/j.mssp.2021.106246>
10. Phuoc PH, Hung CM, Toan N. Van, Duy N. Van, Hoa ND, Hieu N. Van (2020) One-step fabrication of SnO_2 porous nanofiber gas sensors for sub-ppm H_2S detection. *Sens Actuators A Phys*. <https://doi.org/10.1016/j.sna.2019.111722>
11. Kadhim IH, Hassan HA, Ibrahim FT (2020) Hydrogen gas sensing based on nanocrystalline SnO_2 thin films operating at low temperatures. *Int J Hydrogen Energy* 45(46):25599–25607. <https://doi.org/10.1016/j.ijhydene.2020.06.136>
12. Choi M. Sik, Ahn J. Kim M. Young, Mirzaei A, Choi S-M, Chun D. Won, Jin C, Lee K. Hyoung (2021) Changes in the crystal structure of SnO_2 nanoparticles and improved H_2S gas-sensing characteristics by Al doping. *Appl Surf Sci*. <https://doi.org/10.1016/j.apsusc.2021.150493>
13. Tian Z, Bai H, Li Y, Liu W, Li J, Kong Q, Xi G (2020) Gas-sensing activity of amorphous copper oxide porous nanosheets. *ChemistryOpen* 9(1):80–86. <https://doi.org/10.1002/open.201900327>
14. Poiásina MP, Bianchetti MF, Bojorge CD, Gard FS (2025) Characterization of CuO-doped SnO_2 thin films prepared by sol-gel and dip-coating: a multi-analytical approach. *Surf Interface Anal* 57(8):600–618. <https://doi.org/10.1002/sia.7418>
15. Li S, Li X, Guo J, Liu X, Zhang J (2025) Heterostructured SnO_2/CuO hydrangea nanocomposites for highly sensitive NO_2 detection. *ACS Appl Nano Mater* 8(20):10549–10558. <https://doi.org/10.1021/acsam.5c01293>

16. Al-Mousawi RA, Al-Kadhemy MFH, Abbas KN, Saeed AA (2024) Activity SnO_2/CuO nanocomposite toward photocatalytic degradation of methylene blue dye under solar light. *AIP Conf Proc.* 3097(1):090020
17. Taulo GT, Shaalan NM, Mohamed GG, Ayad MM, El-Moneim AA (2024) Inkjet printing of SnO_2 nanoparticles with exposed high-energy facets for Co gas sensing. *Ceram Int* 50(11):18638–18646. <https://doi.org/10.1016/j.ceramint.2024.02.352>
18. Dhage SB, Patil VL, Patil PS, Ryu J, Patil DR, Malghe YS (2021) Synthesis and characterization of CuO- SnO_2 nanocomposite for CO gas sensing application. *Mater Lett.* <https://doi.org/10.1016/j.matlet.2021.130831>
19. Pech-Rodríguez WJ, García-Lezama HM, Sahin NE (2023) Facile preparation of SnO_2/CuO nanocomposites as electrocatalysts for energy-efficient hybrid water electrolysis in the presence of ethanol. *Energies.* <https://doi.org/10.3390/en16134986>
20. Devi N, Sahoo S, Kumar R, Singh RK (2021) A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. *Nanoscale* 13(27):11679–11711. <https://doi.org/10.1039/dnr01134k>
21. Kang S, Mirzaei A, Shin KY, Oum W, Yu DJ, Kim SS, Kim HW (2023) Highly selective NO_2 gas sensing with $\text{SnO}_2\text{-Ti}_3\text{C}_2\text{T}$ nanocomposites synthesized via the microwave process. *Sens Actuators B Chem.* <https://doi.org/10.1016/j.snb.2022.1132882>
22. Gaber A, Attia SY, Salem AMS, Mohamed SG, El-Hout SI (2023) Microwave-assisted fabrication of SnO_2 nanostructures as electrode for high-performance pseudocapacitors. *J Energy Storage.* <https://doi.org/10.1016/j.est.2022.106358>
23. Wang Q, Bao L, Cao Z, Li C, Li X, Liu F, Sun P, Lu G (2020) Microwave-assisted hydrothermal synthesis of Pt/ SnO_2 gas sensor for CO detection. *Chin Chem Lett* 31(8):2029–2032. <https://doi.org/10.1016/j.cclet.2019.12.007>
24. da Silva LF, Lucchini MA, Catto AC, Avansi W Jr, Bernardini S, Aguir K, Niederberger M, Longo E (2023) The role of Zn ions in the structural, surface, and gas-sensing properties of $\text{SnO}_2\text{-Zn}$ nanocrystals synthesized via a microwave-assisted route. *Sensors (Basel).* <https://doi.org/10.3390/s24010140>
25. Paleczek A, Szafranik B, Fursik L, Brudnik A, Grochala D, Kluska S, Jurzeka-Szymacha M, Maciak E, Kaluzynski P, Rydosz A (2021) The heterostructures of CuO and SnO_x for NO_2 detection. *Sensors (Basel).* <https://doi.org/10.3390/s21134387>
26. Stefan M, Leostean C, Pana O, Popa A, Toloman D, Macavei S, Perhaita I, Barbu-Tudoran L, Silipas D (2019) Interface tailoring of $\text{SnO}_2\text{-TiO}_2$ photocatalysts modified with anionic/cationic surfactants. *J Mater Sci* 55(8):3279–3298. <https://doi.org/10.1007/s10853-019-04192-2>
27. Skuriti P, Chand (2019) Effect of pH values on the structural, optical and electrical properties of SnO_2 nanostructures. *Optik* 181:768–778. <https://doi.org/10.1016/j.jleo.2018.10.203>
28. Mamakhel A, Søndergaard M, Borup K, Brummerstedt Iversen B (2020) Continuous flow hydrothermal synthesis of rutile SnO_2 nanoparticles: exploration of pH and temperature effects. *J Supercrit Fluids.* <https://doi.org/10.1016/j.supflu.2020.105029>
29. Van Viet P, Nguyen H-P, Tran H-H, Bui D-P, Hai LV, Pham M-T, You S-J (2021) Thi. Constructing g-C₃N₄/ SnO_2 s-scheme heterojunctions for efficient photocatalytic no removal and low NO_2 generation. *J Science: Adv Mater Devices* 6(4):551–559. <https://doi.org/10.1016/j.jjsamd.2021.07.005>
30. Ma HZ, Luo C, Zhao JN, Shao Y, Zhang YH, Liu X, Li S, Yin B, Zhang K, Ke K, Zhou L, Yang MB (2023) Metal-organic framework based triboelectric nanogenerator for a self-powered methanol sensor with high sensitivity and selectivity. *ACS Appl Mater Interfaces* 15(31):37563–37570. <https://doi.org/10.1021/acsami.3c07966>
31. Parayil RT, Bhagat B, Gupta SK, Mukherjee K, Mohapatra M (2024) Oxygen vacancy-enriched Zn_2SnO_4 for aliphatic alcohol sensing and enhanced selectivity towards n-butanol. *Phys Chem Chem Phys* 26(9):7424–7434. <https://doi.org/10.1039/d3cp05178a>
32. Birajdar SN, Adhyapak PV (2020) Palladium-decorated vanadium pentoxide as nox gas sensor. *Ceram Int* 46(17):27381–27393. <https://doi.org/10.1016/j.ceramint.2020.07.223>
33. Me DM, Sundaram NG, Singh A, Singh AK, Kalidindi SB (2019) An amine functionalized zirconium metal-organic framework as an effective chemiresistive sensor for acidic gases. *Chem Commun (Camb)* 55(3):349–352. <https://doi.org/10.1039/c8cc06875e>
34. Liu X-L, Ma S-X, Zhu S-W, Zhao Y, Ning X-J, Zhao L, Zhuang J (2019) Light stimulated and regulated gas sensing ability for ammonia using sulfur-hyper-doped silicon. *Sens Actuators B* 291:345–353. <https://doi.org/10.1016/j.snb.2019.04.073>
35. Park JY, Kwak Y, Lim HR, Park SW, Lim MS, Cho HB, Myung NV, Choa YH (2022) Tuning the sensing responses towards room-temperature hypersensitive methanol gas sensor using exfoliated graphene-enhanced ZnO quantum dot nanostructures. *J Hazard Mater* 438:129412. <https://doi.org/10.1016/j.jhazmat.2022.129412>
36. Jaiswal J, Singh P, Chandra R (2021) Low-temperature highly selective and sensitive NO_2 gas sensors using cdte-functionalized ZnO filled porous Si hybrid hierarchical nanostructured thin films. *Sens Actuators B Chem.* <https://doi.org/10.1016/j.snb.2020.128862>
37. Doubi Y, Hartiti B, Batan A, Siadat M, Labrim H, Tahiri M, Kotbi A, Thevenin P, Jouiad M (2025) Controlled SnO_2 nanostructures for enhanced sensing of hydrogen sulfide and nitrogen dioxide. *Sens Actuators B Chem.* <https://doi.org/10.1016/j.snb.2025.137878>
38. Yuan C, Wu W-W, Liu Y, Wang Z, Yang Y, Han L-L, Zhou Q, Liu J-Q, Liu P (2022) High yield hollow carbon cubes with excellent microwave absorption property at a low loading ratio. *Carbon* 195:101–111. <https://doi.org/10.1016/j.carbon.2022.04.007>
39. Wang L, Huang F, Yao X, Yuan S, Yu X, Tu ST, Chen S (2023) Collaborative enhancement of humidity sensing performance by kcl-doped CuO/ $\text{SnO}_2\text{-p}$ n heterostructures for monitoring human activities. *ACS Omega* 8(5):4878–4888. <https://doi.org/10.1021/acsomega.2c07098>
40. Ni Z, Wan M, Tang G, Sun L (2022) Synthesis of cuo and paa-regulated silver-carried CuO nanosheet composites and their antibacterial properties. *Polymers (Basel).* <https://doi.org/10.3390/polym14245422>
41. Zhou J, Gao Q, Zhang Y, Shao Z, Zhang N, Qin Y, Feng W (2024) CuO nanobelts array-based omnidirectional uv-visible-nir photoelectrochemical photodetectors. *ACS Appl Mater Interfaces* 16(51):70694–70700. <https://doi.org/10.1021/acsami.4c17080>
42. Ayesh AI, Alyafei AA, Anjum RS, Mohamed RM, Abuharb MB, Salah B, El-Muraikhi M (2019) Production of sensitive gas sensors using CuO/ $\text{SnO}_2\text{-n}$ -anoparticles. *Appl Phys A.* <https://doi.org/10.1007/s00339-019-2856-6>
43. Song X, Qi Q, Zhang T, Wang C (2009) A humidity sensor based on kcl-doped SnO_2 nanofibers. *Sens Actuators B Chem* 138(1):368–373. <https://doi.org/10.1016/j.snb.2009.02.027>
44. Zhang J, Ma S, Wang B, Pei S (2021) Hydrothermal synthesis of $\text{SnO}_2\text{-CuO}$ composite nanoparticles as a fast-response ethanol gas sensor. *J Alloys Compd.* <https://doi.org/10.1016/j.jallcom.2021.161299>
45. Shu Y, Liu Q, Shi M, Zhang Z, Xie C, Bi S, Zhang P (2024) Surfactant-free synthesis of crystalline mesoporous metal oxides by a seeds/ nacl-mediated growth strategy. *Adv Sci Weinh* 11(1):e2304533. <https://doi.org/10.1002/advs.202304533>
46. Shu Y, Chen H, Chen N, Duan X, Zhang P, Yang S, Bao Z, Wu Z, Dai S (2020) A principle for highly active metal oxide catalysts via NaCl-based solid solution. *Chem* 6(7):1723–1741. <https://doi.org/10.1016/j.chempr.2020.04.003>
47. Amer MS, AlOraij HA, Al-Mayouf AM (2024) Facial synthesis of high-performance ni doped-tin oxide mesoporous for CO_2 electroreduction to formate. *Journal of CO₂Utilization.* <https://doi.org/10.1016/j.jcou.2024.102742>
48. Li G, Hou J, Hilal M, Kim H, Chen Z, Cui Y, Kim JH, Cai Z (2024) Development of high-performance ethanol gas sensors based on La_2O_3 nanoparticles-embedded porous SnO_2 nanofibers. *Sensors.* <https://doi.org/10.3390/s24216839>
49. Francis C, Rektor A, Valayil-Varghese T, McKibben N, Estrada I, Forbey J, Estrada D (2024) Laser-induced graphene gas sensors for environmental monitoring. *Front Chem* 12:1448205. <https://doi.org/10.3389/fchem.2024.1448205>
50. Zhang R, Yao Y, Lin G, Zhang X (2024) A flexible sensor fabricated by laser-induced graphene on PI fabric with macroscopic crack array for GF modulation strategy. *Sens Actuators A Phys.* <https://doi.org/10.1016/j.sna.2024.115529>
51. Sharma A, Eadi SB, Noothalapati H, Otyepka M, Lee HD, Jayaramulu K (2024) Porous materials as effective chemiresistive gas sensors. *Chem Soc Rev* 53(5):2530–2577. <https://doi.org/10.1039/d2cs00761d>
52. Ma S, Xu J (2023) Nanostructured metal oxide heterojunctions for chemiresistive gas sensors. *J Mater Chem A* 11(44):23742–23771. <https://doi.org/10.1039/d3ta04953a>
53. Yang S, Lei G, Xu H, Lan Z, Wang Z, Gu H (2021) Metal oxide based heterojunctions for gas sensors: a review. *Nanomaterials (Basel).* <https://doi.org/10.3390/nano11041026>
54. Zhou X, Cao Q, Huang H, Yang P, Hu Y (2003) Study on sensing mechanism of CuO- SnO_2 gas sensors. *Mater Sci Eng B Solid-State Mater Adv Technol* 99(1–3):44–47. [https://doi.org/10.1016/S0921-5107\(02\)00501-9](https://doi.org/10.1016/S0921-5107(02)00501-9)
55. Mariammal RN, Ramachandran K, Renganathan B, Sastikumar D (2012) On the enhancement of ethanol sensing by cuo modified SnO_2 nanoparticles

using fiber-optic sensor. *Sens Actuators B Chem* 169:199–207. <https://doi.org/10.1016/j.snb.2012.04.067>

- 56. Wang B, Sun L, Wang Y (2018) Template-free synthesis of nanosheets-assembled SnO_2 hollow spheres for enhanced ethanol gas sensing. *Mater Lett* 218:290–294. <https://doi.org/10.1016/j.matlet.2018.02.003>
- 57. Ingole SM, Molane AC, Patel UJ, Patil SL, Selvaraj M, Assiri MA, Mahanwar PA, Patil VB (2025) Development of SnO_2/CuO heterostructure sensor for detection of toxic NO_2 gas. *Inorg Chem Commun*. <https://doi.org/10.1016/j.inoche.2025.115402>
- 58. Tagbo PC, Mohamed MM, Ayad MM, El-Moniem AA (2025) Fabrication of flexible MoS_2 sensors for high-performance detection of ethanol vapor at room temperature. *Sens Actuators A Phys*. <https://doi.org/10.1016/j.sna.2025.116531>
- 59. Thomas A, Thirumalaisamy L, Madaganurusamy S, Sivaperuman K (2023) Incompatibility of pure SnO_2 thin films for room-temperature gas sensing application. *ACS Omega* 8(36):32848–32854. <https://doi.org/10.1021/acsomega.3c04038>
- 60. Abokifa AA, Haddad K, Raman B, Fortner J, Biswas P (2021) Room temperature gas sensing mechanism of SnO_2 towards chloroform: comparing first principles calculations with sensing experiments. *Appl Surf Sci*. <https://doi.org/10.1016/j.apsusc.2021.149603>
- 61. Khurshid R, Ali F, Afzal A, Ali Z, Qureshi MT (2019) Polyol-mediated coprecipitation and aminosilane grafting of superparamagnetic, spinel ZnFe_2O_4 nanoparticles for room-temperature ethanol sensors. *J Electrochem Soc* 166(4):B258–B265. <https://doi.org/10.1149/2.1021904jes>
- 62. Chandak VS, Kathwate LH, Kumbhar MB, Kulal PM (2025) Spray deposited high performance fe-doped ZnO ethanol sensor operating at low temperatures. *J Ind Eng Chem* 149:397–411. <https://doi.org/10.1016/j.jiec.2025.01.053>
- 63. Raksa P, Gardchareon A, Chairuangtsri T, Mangkorntong P, Mangkorntong N, Choopun S (2009) Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction. *Ceram Int* 35(2):649–652. <https://doi.org/10.1016/j.ceramint.2008.01.028>
- 64. Bagherzadeh Enferadi SMH, Mirzaei A (2024) $\text{Fe}_2\text{O}_3\text{-Co}_3\text{O}_4$ nanocomposite gas sensor for ethanol sensing studies. *Ceram Int* 50(24):52861–52870. <https://doi.org/10.1016/j.ceramint.2024.10.138>
- 65. Shoorangiz M, Sharififard L, Roshan H, Mirzaei A (2021) Selective ethanol sensor based on $\alpha\text{-Fe}_2\text{O}_3$ nanoparticles. *Inorg Chem Commun*. <https://doi.org/10.1016/j.inoche.2021.108961>
- 66. Motsoeneng RG, Kortidis I, Ray SS, Motaung DE (2019) Designing SnO_2 nanostructure-based sensors with tailored selectivity toward propanol and ethanol vapors. *ACS Omega* 4(9):13696–13709. <https://doi.org/10.1021/acsomega.9b01079>
- 67. Khatoon R, Rauf S, Haq MU, Attique S, Din SU, Ali N, Guo Y, Chen H, Tian Y, Lu J (2021) Design of highly sensitive and selective ethanol sensor based on $\alpha\text{-Fe}_2\text{O}_3/\text{Nb}_2\text{O}_5$ heterostructure. *Nanotechnology* 32(19):195503. <https://doi.org/10.1088/1361-6528/abdd5e>

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.