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Introduction
Today’s world has experienced continuous economic and 
industrial development, leading to the production and 
emission of various gases. Some of these gases are ben-
eficial, while others harm human health [1–3]. These 
gases are categorized into inorganic and volatile organic 
compounds (VOCs) [4, 5]. Therefore, it is necessary to 
develop gas detection devices to identify toxic and flam-
mable gases that may leak into the air [6]. These devices 
are essential for protecting people in high-risk work-
places and the environment. The metal oxide materials, 
such as tin dioxide (SnO2) and copper oxide (CuO), are 
widely used in gas detection [7]. This is due to their high 
response, low cost [8], semiconductive behavior, and 
high lifetime stability [9]. SnO2 is an n-type semiconduc-
tor with a large bandgap of 3.6 eV at room temperature 
(RT) [9]. SnO2 has different morphological structures, 
including thin films, composite materials, and porous 
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Abstract
Low-cost preparation of nanostructured materials is one of the important factors for the commercialization of 
sensors. This study reports the sustainable and low-cost synthesis of pure SnO2 and SnO2-CuO nanostructures using 
a domestic microwave annealing approach. The material obtained was structurally examined using X-ray diffraction 
and a scanning electron microscope. The pure SnO2 and SnO2-CuO inks were deposited over laser-induced 
graphene interdigitated electrodes. Towards the volatile organic compounds, the pure SnO2 and SnO2-CuO went 
through ethanol sensing. The SnO2-CuO-based sensor demonstrated strong response and selectivity for detecting 
ethanol at room temperature with a response of 11%, a response time of 53 s, and a recovery time of 64 s at 100 
ppm of ethanol. The high response and selectivity of the sensor towards ethanol make it ideal for continuous 
tracking in both environmental and industrial settings.
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nanofibers [10], and nanoparticles that can be used in gas 
detector applications. On the other hand, CuO has differ-
ent advantages, such as a narrow bandgap of 1.2 eV with 
a p-type semiconductive characteristics, easy synthesis, 
low cost, and non-toxicity [8, 10–12], making it suitable 
for gas detection [13]. However, the p-n junction is the 
most effective structure in gas detection due to its high 
response; therefore, various structures of SnO2 and CuO 
can be synthesized using different approaches, including 
sol-gel [14], atomic layer deposition (ALD) [15], hydro-
thermal synthesis [16, 17], electrospinning [8], precipita-
tion [18], and microwave-assisted [19] techniques.

Microwave (MW) irradiation is a popular technique 
for synthesizing various materials, including organic and 
inorganic chemicals, which can be used in biochemi-
cal processes [20]. It is favored for its speed, time-saving 
capabilities, and low cost. This method operates with-
out high pressure and temperature, yet it can produce 
nanostructured materials with uniform shape and size 
in nanoparticles [20–22]. Therefore, microwave irradia-
tion is suitable for synthesizing a wide range of materials 
and offers an alternative way for producing metal oxide 
nanostructured materials. Microwave-assisted synthesis 
of SnO2 and CuO materials has been reported. Wang et 
al. prepared Pt/SnO2 nanostructures via a facile one-step 
microwave-assisted hydrothermal route in weight per-
centages of 1.5, 3, 4.5 wt.% for carbon monoxide (CO) 
gas sensors. The findings revealed that among them 3.0 
wt.% Pt/SnO2 showed the best performance for detect-
ing 100 ppm carbon monoxide (CO) at 225  °C with 
response of 3 and response time of 16 s [23]. Pech-Rodrí-
guez et al. synthesized SnO2/CuO nanocomposites via a 
microwave-assisted polyol process. SnO2/CuO hetero-
nanostructures have been employed as effective electro-
catalysts for hybrid water splitting. The results indicate 
that SnO2/CuO heteronanostructures synthesized using 
a microwave-assisted polyol technique can be active for 
the assisted oxygen evolution reaction [19]. Moreover, 
Silva et al. prepared SnO2: Zn nanocrystals synthesized 
via a microwave-assisted route and investigated their 
NO2 gas-sensing properties. Gas sensing tests revealed 
that the zinc-doped SnO2 nanoparticles were highly 
sensitive and exhibited good recovery and stability even 
under ambient humidity for NO2 gas concentrations at 
sub-ppm levels at 150 °C [24].

Combining n-type SnO2 with p-type CuO lowers the 
sensor’s operating temperature and boosts VOC detec-
tion by forming a p-n junction, which widens the deple-
tion region and improves charge transfer efficiency [25]. 
However, few studies report the synthesis of SnO2/CuO 
composites using the same mass ratio of precursors. In 
addition, while the synthesis of composites with NaCl 
residues or other alkali halides on the surface has not 
been studied, their effects on SnO2/CuO sensors have not 

yet been investigated. Therefore, addressing these issues, 
especially using halide-controlled stoichiometric micro-
wave synthesis followed by long-term gas detection tests, 
is essential to move SnO2/CuO VOC sensors from labo-
ratory prototypes to reliable field devices.

This work depicts a low-cost, domestic microwave-
assisted fabrication process for producing SnO2/CuO 
heteronanostructures with NaCl residual. A single one-
minute microwave treatment followed by calcination at 
500  °C yields a three-phase composition consisting of 
SnO2, CuO, and NaCl. The material shows a quick and 
selective ethanol response at RT, with strong sensor sig-
nals and rapid response and recovery times at 100 ppm, 
indicating its potential for scalable, reliable portable 
VOC sensors in ambient environments.

Materials and methods
Synthesis of SnO2-NaCl nanoparticles
The SnO2 nanoparticles were prepared using microwave-
assisted synthesis. Firstly, 4  g of tin chloride dihydrate 
(SnCl2⋅2H2O) powder was poured into a beaker and 
mixed with 20 mL of deionized water (DI water) and a 
dropwise addition of sodium hydroxide (NaOH) until the 
mixture reached a pH of 11 [26–28]. The solution was 
then stirred for another 60 min. After that, the product 
was placed in a microwave oven (Mitron, P70D17J-D3) 
using medium-low heat for 60  s. Followed by washing 
with DI water and ethanol using an ultrasonic cleaner. 
Subsequently, the formed SnO2 was kept in an oven 
(OXYGEN, DN09D) to dry at 100 °C for 2 h, as shown in 
Fig. 1a.

SnO2/CuO heteronanostructures with residual NaCl
For the SnO2/CuO nanocomposite, 4  g of SnCl2·2H2O 
and 4 g of CuSO4·2H4O were co-dissolved in 20 mL DI 
water, adjusted to pH 11 with NaOH, and processed 
under the same conditions, yielding the SnO2/CuO nano-
composite. The product was placed in a ceramic cup and 
annealed in a high-temperature muffle furnace at 500 °C 
for 2  h [26–29]. The schematic diagram illustrating the 
SnO2-NaCl nanoparticles and SnO2/CuO heteronano-
structures with residual NaCl, as shown in Fig. 1a.

Fabrication of laser-induced graphene (LIG) device
The laser engraving process was carried out using a com-
mercial CO₂ laser system (VLS 4.6/75, 10.6 μm) [1]. For 
the fabrication, we applied 25% of the maximum laser 
power, 30% of the maximum speed, and a resolution 
of 500 PPI to obtain low sheet resistance in the laser-
induced graphene interdigitated electrodes (LIG-IDE), 
Fig.  1b. The LIG-IDE structure consisted of six inter-
digitated fingers, each with a spacing of 0.5 mm, a finger 
width of 0.5  mm, and a bus bar width of 1  mm on the 
collecting side.



Page 3 of 10Chaiyo et al. Micro and Nano Systems Letters           (2025) 13:31 

Fig. 1  a Schematic diagram illustrating the synthesis procedure of SnO2-NaCl nanoparticles and SnO2/CuO hetero-nanostructures with residual NaCl 
via a microwave-assisted method, followed by drying and calcination steps; b Fabrication of a laser-induced graphene interdigitated pattern and spray 
printing of SnO2-CuO; and c VOCs gas setup
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Ink formulation and spray coating
Pure SnO2 and SnO2-CuO inks were prepared at a con-
centration of 10  mg mL− 1 in a 1:1 mixture of ethanol 
and isopropanol (EtOH: IPA), with 2  mg mL− 1 of PVP, 
and sonicated for 10 min to enhance dispersion for spray 
coating [30]. The resulting ink was spray-deposited (500 
µL) onto the LIG-IDE to precisely control the thickness 
and geometry of the film, as depicted in Fig.  1b. The 
active material was applied in a square pattern (5  mm 
× 5.5 mm) with a mass loading of 5 mg. A uniform coat-
ing was achieved by maintaining a consistent spray-to-
substrate distance of 5  cm under an air pressure of 20 
PSI. Finally, the sensor was annealed at 70 °C to remove 
residual solvents and moisture.

Characterization
The crystal structure of SnO2-NaCl nanoparticles and 
SnO2/CuO heteronanostructures with residual NaCl was 
analyzed by using an X-ray diffraction technique (Rigaku 
Mini Flex 600 instrument (M/S, Japan) with Cu-Kα 
(λ = 1.5405Å) with step size 3 degree/min. Then, SnO2-
NaCl nanoparticles and SnO2/CuO hetero nanostruc-
tures with residual NaCl morphology were investigated 
using a Scanning Electron Microscope (SEM, SU-8230, 
Japan). Gas-sensing performance was evaluated using 
our mentioned design in Fig.  1c towards VOC gases at 
30 ± 3  °C, connected to a Keithley 2400c source meter, 
USA. The system represents a VOC ethanol-sensing plat-
form integrated with an airflow meter for controlled gas 
exchange and sensor recovery, enabling real-time electri-
cal characterization. A sealed test chamber was placed on 
a hot plate to maintain the measurement temperature at 
30 ± 3 °C, assisted by a fan to ensure uniform ethanol dis-
tribution. The chamber also contained humidity and tem-
perature sensors, while the sensor device was positioned 
inside to maintain them at 10 RH% and 30 ± 3 °C during 
measurements. The source meter recorded the electrical 
response, allowing controlled evaluation of sensor per-
formance under varying ethanol concentrations (20–100 
ppm). VOC gases are introduced into the chamber via a 
micropipette through an injection port in volumes that 
were calculated by Eq.  (1). The volume of high-purity 
alcohol (V) [99.99%] is calculated by the equation below 
using the desired gas concentration (in ppm) within the 
test chamber volume [31]. The sensor response (SR) was 
determined based on the electrical resistance in air (Ra) 
and the electrical resistance upon exposure to EtOH gas 
(Rg) using Eq. (2) [32–34]. The response time is the 90% 
of time needed for the sensor to react to reintroducing 
EtOH gas [33], while the recovery time represents the 
time needed for the sensor to return to 90% of its initial 
state when air gas is reintroduced [35, 36].

	
V = CvaM

2.46 ∗ 107 ∗ D
� (1)

	
SR = Ra

Rg
Reducing gases� (2)

where C and va are the desired gas concentration (ppm) 
and the volume of the test chamber (mL), respectively, 
while M and D are the molecular weight (g mol− 1) and 
the density of the desired alcohol (g mL− 1), respectively.

Results and discussion
Structural analysis
Figure  2 presents the X-ray diffraction (XRD) patterns 
of the investigated powders, revealing three principal 
crystalline phases: rutile-SnO2, tenorite-CuO, and cubic 
NaCl. For the SnO2-NaCl nanoparticles (red line), dif-
fraction peaks appear at 2θ = 26.6°, 33.9°, 37.9°, 51.8°, and 
55.0°, which can be indexed to the (110), (101), (200), 
(211), and (220) planes of rutile-SnO2 (PDF 41-1445) 
[37]. Additional reflections at 31.7° and 45.5° correspond 
to the (111) and (200) planes of rock-salt NaCl (PDF 
05-0628) [38]. The low intensity of these NaCl peaks, 
consistent with Wang et al. [39], indicates that only resid-
ual amounts of the salt remain after calcination at 500 °C. 
The SnO2/CuO heteronanostructures with residual NaCl 
(black line) show the same SnO2 and NaCl reflections 
together with new peaks at 32.5° (110), 35.5° (002), 38.7° 
(111), and 48.7° (202), assigned to tenorite-CuO (PDF 
45-0937) [40, 41]. Their coexistence confirms the forma-
tion of a p-CuO/n-SnO2 heterojunction within the nano-
composite, a junction type known to lower operating 
temperature and enhance ethanol sensing [25, 42].

Although the residual NaCl is present only in residual 
quantities, such alkali-halide layers can adsorb a thin film 
of moisture, accelerate the O2/O2⁻ surface exchange, and 
mitigate baseline drift under high relative humidity, as 
demonstrated for KCl- and NaCl-modified SnO2/CuO 
systems [39, 43]. Taken together, these structural features 
render SnO2/CuO-NaCl heteronanostructures highly 
suitable for low-temperature ethanol sensing, benefit-
ing simultaneously from the p-n junction at SnO2/CuO 
interfaces [44] and NaCl-templated porosity [45].

The SnO₂-NaCl nanoparticles shown in Fig.  3a con-
sist of 20–40  nm nanocrystals interconnected into a 
highly porous foam. The broad SnO2 peaks, along with 
the intense NaCl peaks (200, 220, 222), support the role 
of NaCl as a salt template. This template creates poros-
ity and inhibits grain coarsening [45–47], and such 
microstructures are consistent with the excellent eth-
anol-sensing behavior of porous SnO2 [48]. Figure  3b 
shows the surface of the SnO2/CuO-NaCl heteronano-
structures. This material forms large clusters, approxi-
mately 200–400 nm, which are themselves composed of 
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smaller crystallites around 15  nm. The assembled XRD 
patterns display prominent CuO peaks alongside SnO2 
and residual NaCl. This indicates the independent crys-
tallization of the two oxide phases and a high density of 
p-n junctions, a characteristic associated with fast etha-
nol response time [44]. Overall, the LIG crack network, 
the porosity created by NaCl, and the well-dispersed 
CuO on SnO2 work together synergistically. This collec-
tive effect enlarges the specific surface area, increases 
oxygen adsorption sites [49, 50], and boosts the p-n junc-
tion density [51], thus enabling the composite samples 
to exhibit promising gas-sensing capabilities. Figure  3c 
shows the LIG-SnO₂/CuO-NaCl film, where 50–200 μm 
shrinkage cracks propagate through LIG layer. This forms 
a three-dimensional conductive network and creates 
openings for gas diffusion. The SnO2/CuO nanoparticles 
deposited on the LIG match the XRD patterns, which 
show the SnO2 (110, 101) and CuO (−111, 111) phases. 
This confirms the formation of p-n heterojunctions at the 
interface, a feature widely reported to accelerate chemire-
sistive reactions [52, 53]. Table 1 confirms the weight and 
atomic percentages of each element in SnO2, SnO2-CuO, 
and SnO2-CuO/LIG.

VOCs sensing measurements
The gas sensing performance of 500 µL deposited pure 
SnO2 and SnO2-CuO, patterned in a square configura-
tion on the LIG-IDE, was evaluated for ethanol detec-
tion. Figure  4a, b represents a comparative analysis of 

the ethanol sensing behavior of the pure SnO2 and SnO2-
CuO sensors exposed sequentially to ethanol concentra-
tions ranging from 100 to 20 ppm in dry air with RH 10% 
and 30 ± 3  °C. Pure SnO2 sensors exhibited lower resis-
tance than SnO2-CuO, which is consistent with Zhou et 
al.‘s work, as the increasing in CuO contents increases 
the resistance of SnO2 [54]. As discussed by R.N. Mari-
ammal et al. [55], apart from the formation of p–n junc-
tion, it is expected that doping of SnO2 with Cu would 
enhance the oxygen vacancies, thus triggering the surface 
reactions. Pure SnO2 and SnO2-CuO sensors exhibited 
an n-type response trend toward ethanol, as evidenced 
by the decrease in resistance upon 60 s exposure to the 
reducing gas, attributed to electron donation. The sen-
sor achieved a high response (Rair/Rgas) of 11 at 100 ppm, 
with fast response and recovery times of 53  s and 64  s, 
at RT, respectively. Figure 4c-d, compared to pure SnO2 
reported in literature, which achieved a response of 10.5 
at 350 °C [56].

Moreover, Fig. 4e exhibited high lifetime stability over 
30 days, which proves the capability of using the sen-
sor in environmental real-time sensing. Figure  4f indi-
cates the selectivity test over IPA, MeOH, and acetone 
towards ethanol at 100 ppm, which is important for 
real-time application to detect one gas over others with 
high selectivity and response. In SnO2/CuO composite 
sensors, selectivity arises from the formation of a p-n 
heterojunction at the SnO2 (n-type) and CuO (p-type) 
interface. This heterojunction affects the charge carrier 

Fig. 2  XRD pattern of SnO2-NaCl nanoparticles and SnO2/CuO heteronanostructures with residual NaCl
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depletion layer and resistance in specific ways, depend-
ing on the gas [57]. Figure 4g evaluates the cyclic stabil-
ity of the sensor towards ethanol at 100 ppm through 
10 cycles with an average response of 12.77. A consis-
tent and reproducible decrease in resistance is observed 
with each gas pulse, followed by a clear recovery when 
ethanol is removed, indicating excellent reversibility and 
surface regeneration. Table  2 demonstrates the com-
parison between recent work and reported works in the 
literature. Figure  4h shows the ethanol sensing mecha-
nism. The sensing mechanism involves the oxidation of 
ethanol molecules by chemisorbed oxygen (e.g., O2

−) at 
RT, releasing electrons back into the conduction band 
and thereby reducing resistance [58, 59]. This highlights 
the robust redox dynamics between ethanol and surface-
adsorbed oxygen species, where ethanol donates elec-
trons, reducing the surface depletion layer (EDL). As 
discussed by Mariammal et al. [55], they found that the 

Table 1  EDS mapping elemental composition
Materials Element Wt.% Atomic %
SnO2 O 70.68 94.70

Sn 29.32 5.30

Total 100.00 100.00

SnO2-CuO O 50.97 84.25

Cu 24.94 10.38

Sn 24.08 5.37

Total 100.00 100.00

SnO2-CuO/LIG C 32.05 57.36

N 3.68 5.64

O 19.35 26.01

Cu 18.14 6.14

Sn 26.79 4.85

Total 100.00 100.00

Fig. 3  SEM images and EDS of (a) SnO2-NaCl nanoparticles with 20–40 nm grains; b SnO2/CuO-NaCl heteronanostructures showing large clusters, ap-
proximately 200–400 nm; c LIG-SnO2/CuO-NaCl film with 50–200 μm cracks in the laser-induced graphene
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Table 2  EtOH ethanol sensing performance compared to reported works in literature
Materials EtOH

(ppm)
Temp
(oC)

Response
s1 = (ΔR/Ra) × 100% or s2 = Rg/Ra or Ra/Rg

Response/recovery time (s) Refs.

SnO2 100 RT S2 = 7.5 61.5/104 This work

SnO2-CuO 100 RT S2 = 11 53/64 This work

Sm-ZnFe2O4 nanoparticles 40 300 S2 = 37.1 50/116 [61]

SnO2-CuO 100 320 S2 = 8 4/10 [44]

5% Fe-doped ZnO 50 125 S1 = 77.25 16/24 [62]

SnO2 100 350 S2 = 10.5 5/40 [56]

CuO 1000 220 S2 = 1.5 30/100 [63]

Fe2O3-Co3O4 composite 100 250 S2 = 26.2 –/– [64]

α-Fe2O3 nanoparticles 100 150 S1 = 14.5 –/– [65]

SnO2 hollow spheres 40 75 S2 = 20.1 110/90 [66]

SnO2 LA nanoparticles 40 150 S2 = 59.6 105/100 [66]

α-Fe2O3(0.09)/Nb2O5 100 160 S2 = 12.6 8/2 [67]

Fig. 4  Gas sensing performance of pure SnO2 and SnO2-CuO towards EtOH at RT: Gas sensing performance at different concentrations from 100 to 20 
ppm of (a) pure SnO2 and (b) SnO2/CuO; c recovery and response times; d response versus concentrations; e lifetime stability at 100 ppm; f selectivity 
towards ethanol, IPA, MeOH, and acetone; g cyclic stability; and h ethanol sensing mechanism

 



Page 8 of 10Chaiyo et al. Micro and Nano Systems Letters           (2025) 13:31 

ethanol sensing mechanism in n-type MOS is governed 
by the interaction between ethanol molecules and chemi-
sorbed oxygen species (O2

−, O2− and O−) on the semicon-
ductor surface. The reaction restores trapped electrons 
to the conduction band, reducing the depletion layer and 
increasing conductivity, which forms the basis for gas 
detection. As discussed by Abokifa et al. [60], they found 
confirmation by DFT about forming pre-adsorbed oxy-
gen species at RT. Oxygen molecules from the ambient 
atmosphere first adsorb onto the metal oxide surface and 
become ionised into superoxide species (O2

−) by captur-
ing free electrons from the conduction band. At higher 
temperatures above 200  °C, these superoxide ions fur-
ther transform into more reactive oxygen anions (O− and 
O2−) that trap free electrons, lowering the material’s car-
rier concentration and conductivity. When the target gas 
reacts with these ionosorbed oxygen species, the trapped 
electrons are released, causing a distinct change in resis-
tance that enables gas detection.

	 C2H5OH (gas) → C2H5OH (ads) � (3)

	 C2H5OH (ads) + 3O−
2 (ads) → 2CO2 + 3H2O + 3e− � (4)

Conclusions
This study presented a comprehensive evaluation of 
pure SnO2 and SnO2/CuO nanostructures ethanol sen-
sors fabricated using domestic microwave and anneal-
ing approaches, with extensive characterization via SEM, 
XRD, and gas sensing analysis. The sustainable synthesis 
route successfully produced SnO2 and SnO2/CuO nano-
structures with favourable surface morphology and oxy-
gen-rich active sites, enabling enhanced interaction with 
ethanol gas. The fabricated sensor demonstrated high 
sensor response at room temperature, along with high 
selectivity, fast response and recovery times, and pro-
longed operational stability. The SnO2/CuO-based sen-
sors achieved a response of 11 with response/recovery 
times of 53/64 s at 100 ppm of ethanol, indicating their 
strong potential for practical ethanol detection at RT.
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